to do:
draw <- read.csv("C:/Users/Marri/Dropbox/graduate school records/research projects/longitudinal gratitude/data prep/long_grat_raw.csv", header = T)
delete_cases <- c(3, 6, 70, 77, 102, 140, 152, 192, 205, 214, 232, 261, 306, 417)
draw$remove <- ifelse(draw$subID %in% delete_cases, 1, 0)
draw <- draw %>% filter(remove == 0)
describe(draw$age, na.rm = T)
table(draw$sex)
##
## female male
## 69 32
table(draw$class)
##
## freshman junior senior sophomore
## 65 9 5 22
How close is your friendship with this person? (0 = not at all close, 6 = extremely close)
psych::alpha(d[c("w1close", "w2closeAvg", "w3closeAvg", "w4closeAvg", "w5closeAvg")]) #.91
##
## Reliability analysis
## Call: psych::alpha(x = d[c("w1close", "w2closeAvg", "w3closeAvg", "w4closeAvg",
## "w5closeAvg")])
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.91 0.91 0.92 0.67 10 0.0066 4.3 1.3 0.68
##
## 95% confidence boundaries
## lower alpha upper
## Feldt 0.9 0.91 0.92
## Duhachek 0.9 0.91 0.92
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## w1close 0.91 0.91 0.90 0.72 10.1 0.0068 0.0053 0.70
## w2closeAvg 0.88 0.88 0.86 0.64 7.1 0.0092 0.0156 0.63
## w3closeAvg 0.89 0.89 0.89 0.66 7.7 0.0089 0.0167 0.66
## w4closeAvg 0.88 0.88 0.87 0.65 7.5 0.0088 0.0108 0.65
## w5closeAvg 0.89 0.89 0.88 0.67 8.3 0.0081 0.0087 0.70
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## w1close 400 0.85 0.79 0.72 0.67 4.5 1.4
## w2closeAvg 406 0.92 0.90 0.87 0.83 4.4 1.4
## w3closeAvg 394 0.90 0.87 0.83 0.79 4.3 1.4
## w4closeAvg 336 0.90 0.88 0.86 0.81 4.3 1.4
## w5closeAvg 151 0.87 0.85 0.82 0.76 4.5 1.4
##
## Non missing response frequency for each item
## 0 1 2 2.5 3 4 5 6 miss
## w1close 0.00 0.03 0.05 0 0.14 0.23 0.23 0.31 0.18
## w2closeAvg 0.01 0.02 0.05 0 0.15 0.26 0.25 0.26 0.17
## w3closeAvg 0.02 0.03 0.04 0 0.15 0.27 0.27 0.21 0.19
## w4closeAvg 0.02 0.02 0.04 0 0.17 0.26 0.27 0.22 0.31
## w5closeAvg 0.03 0.03 0.03 0 0.10 0.26 0.25 0.30 0.69
describe(d[c("w1close", "w2closeAvg", "w3closeAvg", "w4closeAvg", "w5closeAvg")])
How committed are you to your friendship with this person? (0 = not at all committed, 6 = extremely committed)
psych::alpha(d[c("w1commit", "w2commitAvg", "w3commitAvg", "w4commitAvg", "w5commitAvg")]) #.91
##
## Reliability analysis
## Call: psych::alpha(x = d[c("w1commit", "w2commitAvg", "w3commitAvg",
## "w4commitAvg", "w5commitAvg")])
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.91 0.91 0.91 0.67 10 0.0065 4.4 1.3 0.68
##
## 95% confidence boundaries
## lower alpha upper
## Feldt 0.9 0.91 0.92
## Duhachek 0.9 0.91 0.92
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## w1commit 0.91 0.91 0.89 0.72 10.1 0.0067 0.0027 0.70
## w2commitAvg 0.88 0.88 0.86 0.65 7.3 0.0090 0.0127 0.65
## w3commitAvg 0.89 0.89 0.89 0.66 7.9 0.0086 0.0138 0.68
## w4commitAvg 0.89 0.89 0.87 0.66 7.8 0.0086 0.0084 0.68
## w5commitAvg 0.89 0.89 0.87 0.67 8.3 0.0081 0.0060 0.70
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## w1commit 399 0.86 0.80 0.73 0.68 4.6 1.4
## w2commitAvg 406 0.91 0.90 0.87 0.83 4.5 1.4
## w3commitAvg 398 0.90 0.87 0.82 0.79 4.3 1.5
## w4commitAvg 339 0.91 0.87 0.85 0.80 4.5 1.4
## w5commitAvg 152 0.88 0.86 0.82 0.77 4.6 1.5
##
## Non missing response frequency for each item
## 0 1 2 3 4 5 6 miss
## w1commit 0.01 0.03 0.05 0.15 0.14 0.26 0.36 0.18
## w2commitAvg 0.01 0.02 0.04 0.15 0.22 0.27 0.28 0.17
## w3commitAvg 0.03 0.03 0.04 0.13 0.26 0.25 0.26 0.19
## w4commitAvg 0.02 0.02 0.03 0.15 0.24 0.22 0.31 0.31
## w5commitAvg 0.03 0.02 0.03 0.11 0.16 0.32 0.33 0.69
describe(d[c("w1commit", "w2commitAvg", "w3commitAvg", "w4commitAvg", "w5commitAvg")])
Using the diagram below, please indicate which picture best described your relationship with this person by selecting a number: 1 = no overlap, 4 = half overlap, 7 = almost complete overlap)
psych::alpha(d[c("w1ios", "w2iosAvg", "w3iosAvg", "w4iosAvg", "w5iosAvg")]) #.92
##
## Reliability analysis
## Call: psych::alpha(x = d[c("w1ios", "w2iosAvg", "w3iosAvg", "w4iosAvg",
## "w5iosAvg")])
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.92 0.92 0.91 0.7 12 0.0057 4.2 1.4 0.71
##
## 95% confidence boundaries
## lower alpha upper
## Feldt 0.91 0.92 0.93
## Duhachek 0.91 0.92 0.93
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## w1ios 0.91 0.91 0.89 0.72 10.4 0.0065 0.0013 0.73
## w2iosAvg 0.89 0.89 0.86 0.67 8.1 0.0082 0.0016 0.66
## w3iosAvg 0.90 0.90 0.88 0.70 9.4 0.0071 0.0025 0.71
## w4iosAvg 0.90 0.90 0.88 0.70 9.3 0.0072 0.0036 0.70
## w5iosAvg 0.91 0.91 0.89 0.71 10.0 0.0068 0.0039 0.74
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## w1ios 400 0.87 0.84 0.79 0.75 4.3 1.6
## w2iosAvg 412 0.92 0.92 0.90 0.87 4.2 1.6
## w3iosAvg 400 0.90 0.87 0.83 0.79 4.2 1.6
## w4iosAvg 340 0.88 0.87 0.83 0.80 4.4 1.4
## w5iosAvg 153 0.87 0.86 0.80 0.77 4.5 1.6
##
## Non missing response frequency for each item
## 1 2 2.5 3 4 5 5.5 6 7 miss
## w1ios 0.03 0.13 0.00 0.16 0.24 0.18 0 0.16 0.10 0.18
## w2iosAvg 0.04 0.14 0.00 0.14 0.21 0.23 0 0.18 0.07 0.16
## w3iosAvg 0.04 0.12 0.00 0.15 0.25 0.20 0 0.17 0.06 0.18
## w4iosAvg 0.04 0.09 0.00 0.12 0.27 0.25 0 0.18 0.05 0.30
## w5iosAvg 0.05 0.07 0.01 0.10 0.25 0.23 0 0.20 0.10 0.69
describe(d[c("w1ios", "w2iosAvg", "w3iosAvg", "w4iosAvg", "w5iosAvg")])
The following questions are about this friend: For the questions on this page, please consider the interactions you have had with this person since the last time you filled out this questionnaire.
Over the past two weeks how grateful have you been toward this person?
psych::alpha(d[c("grat2", "grat3", "grat4", "grat5")]) #.85
##
## Reliability analysis
## Call: psych::alpha(x = d[c("grat2", "grat3", "grat4", "grat5")])
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.85 0.85 0.83 0.58 5.6 0.011 3.4 1.6 0.6
##
## 95% confidence boundaries
## lower alpha upper
## Feldt 0.82 0.85 0.87
## Duhachek 0.83 0.85 0.87
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## grat2 0.84 0.84 0.79 0.63 5.2 0.013 0.0062 0.68
## grat3 0.79 0.79 0.74 0.55 3.7 0.017 0.0216 0.58
## grat4 0.76 0.76 0.70 0.52 3.2 0.019 0.0141 0.54
## grat5 0.83 0.83 0.77 0.63 5.0 0.013 0.0026 0.63
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## grat2 383 0.86 0.78 0.67 0.61 3.5 1.8
## grat3 365 0.89 0.86 0.80 0.73 3.4 1.8
## grat4 320 0.88 0.89 0.85 0.78 3.5 1.9
## grat5 143 0.87 0.79 0.69 0.62 3.6 1.9
##
## Non missing response frequency for each item
## 0 1 2 3 4 5 6 miss
## grat2 0.09 0.07 0.10 0.22 0.21 0.16 0.14 0.22
## grat3 0.10 0.05 0.13 0.21 0.23 0.13 0.15 0.25
## grat4 0.11 0.05 0.10 0.14 0.25 0.18 0.16 0.35
## grat5 0.11 0.05 0.12 0.13 0.25 0.17 0.17 0.71
describe(d[c("grat2", "grat3", "grat4", "grat5")])
Over the past two weeks how angry have you been with this person?
psych::alpha(d[c("anger2", "anger3", "anger4", "anger5")]) #.81
##
## Reliability analysis
## Call: psych::alpha(x = d[c("anger2", "anger3", "anger4", "anger5")])
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.81 0.81 0.79 0.51 4.2 0.014 1.1 1.4 0.55
##
## 95% confidence boundaries
## lower alpha upper
## Feldt 0.78 0.81 0.83
## Duhachek 0.78 0.81 0.83
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## anger2 0.79 0.79 0.72 0.56 3.8 0.017 0.00032 0.56
## anger3 0.72 0.72 0.66 0.46 2.6 0.022 0.02177 0.52
## anger4 0.74 0.74 0.69 0.48 2.8 0.020 0.02629 0.56
## anger5 0.78 0.78 0.71 0.55 3.6 0.017 0.00137 0.54
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## anger2 380 0.85 0.75 0.64 0.57 1.09 1.6
## anger3 368 0.89 0.84 0.78 0.70 1.19 1.7
## anger4 317 0.84 0.83 0.74 0.67 0.92 1.5
## anger5 147 0.79 0.76 0.66 0.57 0.88 1.4
##
## Non missing response frequency for each item
## 0 1 2 3 4 5 6 miss
## anger2 0.57 0.15 0.08 0.07 0.06 0.05 0.01 0.22
## anger3 0.56 0.13 0.10 0.07 0.05 0.04 0.04 0.25
## anger4 0.61 0.16 0.06 0.09 0.04 0.02 0.02 0.35
## anger5 0.59 0.18 0.10 0.07 0.02 0.01 0.02 0.70
describe(d[c("anger2", "anger3", "anger4", "anger5")])
Over the past two weeks how irritated have you been with this person?
psych::alpha(d[c("irritated2", "irritated3", "irritated4", "irritated5")]) #.81
##
## Reliability analysis
## Call: psych::alpha(x = d[c("irritated2", "irritated3", "irritated4",
## "irritated5")])
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.81 0.81 0.78 0.51 4.2 0.014 1.4 1.5 0.54
##
## 95% confidence boundaries
## lower alpha upper
## Feldt 0.78 0.81 0.84
## Duhachek 0.78 0.81 0.84
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## irritated2 0.77 0.77 0.69 0.53 3.4 0.018 0.00069 0.53
## irritated3 0.74 0.74 0.66 0.48 2.8 0.021 0.00821 0.53
## irritated4 0.75 0.75 0.69 0.50 3.1 0.019 0.01175 0.56
## irritated5 0.78 0.78 0.70 0.54 3.5 0.017 0.00140 0.54
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## irritated2 383 0.85 0.78 0.68 0.60 1.4 1.7
## irritated3 370 0.87 0.83 0.75 0.67 1.4 1.8
## irritated4 320 0.83 0.81 0.71 0.64 1.3 1.7
## irritated5 146 0.81 0.77 0.66 0.59 1.2 1.7
##
## Non missing response frequency for each item
## 0 1 2 3 4 5 6 miss
## irritated2 0.48 0.15 0.13 0.08 0.09 0.05 0.03 0.22
## irritated3 0.48 0.17 0.11 0.08 0.07 0.05 0.05 0.24
## irritated4 0.48 0.22 0.10 0.08 0.05 0.03 0.04 0.35
## irritated5 0.53 0.16 0.10 0.08 0.04 0.05 0.03 0.70
describe(d[c("irritated2", "irritated3", "irritated4", "irritated5")])
Over the past two weeks how happy have you been with this person?
psych::alpha(d[c("happy2", "happy3", "happy4", "happy5")]) #.85
##
## Reliability analysis
## Call: psych::alpha(x = d[c("happy2", "happy3", "happy4", "happy5")])
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.85 0.85 0.81 0.58 5.6 0.011 3.9 1.5 0.58
##
## 95% confidence boundaries
## lower alpha upper
## Feldt 0.83 0.85 0.87
## Duhachek 0.83 0.85 0.87
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## happy2 0.82 0.82 0.76 0.61 4.7 0.014 0.00282 0.64
## happy3 0.81 0.81 0.74 0.58 4.2 0.015 0.00371 0.59
## happy4 0.78 0.78 0.71 0.55 3.6 0.017 0.00063 0.55
## happy5 0.82 0.82 0.75 0.60 4.5 0.014 0.00121 0.59
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## happy2 383 0.86 0.81 0.70 0.65 4.0 1.5
## happy3 368 0.88 0.83 0.75 0.69 3.8 1.6
## happy4 319 0.88 0.86 0.81 0.75 4.0 1.6
## happy5 147 0.88 0.82 0.72 0.67 4.1 1.7
##
## Non missing response frequency for each item
## 0 1 2 3 4 5 6 miss
## happy2 0.05 0.02 0.08 0.16 0.27 0.26 0.15 0.22
## happy3 0.06 0.04 0.07 0.18 0.30 0.18 0.17 0.25
## happy4 0.07 0.03 0.07 0.14 0.26 0.25 0.18 0.35
## happy5 0.06 0.03 0.05 0.16 0.19 0.27 0.24 0.70
describe(d[c("happy2", "happy3", "happy4", "happy5")])
Over the past two weeks how thankful have you been toward this person?
psych::alpha(d[c("thankful2", "thankful3", "thankful4", "thankful5")]) #.87
##
## Reliability analysis
## Call: psych::alpha(x = d[c("thankful2", "thankful3", "thankful4", "thankful5")])
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.87 0.87 0.85 0.63 6.8 0.0094 3.4 1.6 0.62
##
## 95% confidence boundaries
## lower alpha upper
## Feldt 0.85 0.87 0.89
## Duhachek 0.85 0.87 0.89
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## thankful2 0.87 0.87 0.82 0.68 6.5 0.010 0.0035 0.69
## thankful3 0.83 0.83 0.79 0.62 4.9 0.013 0.0141 0.62
## thankful4 0.80 0.80 0.74 0.57 4.0 0.015 0.0041 0.60
## thankful5 0.84 0.84 0.78 0.64 5.3 0.012 0.0024 0.62
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## thankful2 380 0.85 0.80 0.69 0.65 3.5 1.8
## thankful3 370 0.89 0.86 0.79 0.74 3.4 1.8
## thankful4 319 0.89 0.90 0.87 0.81 3.5 1.9
## thankful5 147 0.89 0.84 0.78 0.72 3.7 1.8
##
## Non missing response frequency for each item
## 0 1 2 3 4 5 6 miss
## thankful2 0.09 0.05 0.10 0.22 0.21 0.20 0.13 0.22
## thankful3 0.10 0.08 0.12 0.17 0.23 0.14 0.16 0.24
## thankful4 0.11 0.08 0.08 0.18 0.18 0.22 0.15 0.35
## thankful5 0.10 0.03 0.12 0.18 0.18 0.20 0.20 0.70
describe(d[c("thankful2", "thankful3", "thankful4", "thankful5")])
Over the past two weeks how appreciative have you been toward this person?
psych::alpha(d[c("appreciative2", "appreciative3", "appreciative4", "appreciative5")]) #.87
##
## Reliability analysis
## Call: psych::alpha(x = d[c("appreciative2", "appreciative3", "appreciative4",
## "appreciative5")])
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.86 0.86 0.84 0.61 6.3 0.01 3.5 1.6 0.61
##
## 95% confidence boundaries
## lower alpha upper
## Feldt 0.84 0.86 0.88
## Duhachek 0.84 0.86 0.88
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## appreciative2 0.86 0.86 0.81 0.66 5.9 0.011 0.0088 0.68
## appreciative3 0.82 0.82 0.78 0.60 4.5 0.014 0.0219 0.60
## appreciative4 0.78 0.78 0.72 0.54 3.6 0.017 0.0071 0.56
## appreciative5 0.84 0.84 0.78 0.63 5.2 0.013 0.0019 0.62
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## appreciative2 385 0.85 0.79 0.68 0.63 3.7 1.7
## appreciative3 368 0.89 0.85 0.78 0.72 3.5 1.8
## appreciative4 319 0.88 0.90 0.88 0.81 3.5 1.9
## appreciative5 148 0.88 0.82 0.75 0.68 3.8 1.8
##
## Non missing response frequency for each item
## 0 1 2 3 4 5 6 miss
## appreciative2 0.08 0.06 0.07 0.21 0.24 0.20 0.15 0.21
## appreciative3 0.10 0.05 0.10 0.18 0.25 0.15 0.15 0.25
## appreciative4 0.11 0.08 0.08 0.18 0.18 0.22 0.15 0.35
## appreciative5 0.10 0.03 0.09 0.16 0.22 0.20 0.20 0.70
describe(d[c("appreciative2", "appreciative3", "appreciative4", "appreciative5")])
psych::alpha(d[c("appreciative2", "appreciative3", "appreciative4", "appreciative5",
"thankful2", "thankful3", "thankful4", "thankful5",
"grat2", "grat3", "grat4", "grat5")]) #alpha = .96
## Warning in cor.smooth(r): Matrix was not positive definite, smoothing was done
## In smc, smcs < 0 were set to .0
##
## Reliability analysis
## Call: psych::alpha(x = d[c("appreciative2", "appreciative3", "appreciative4",
## "appreciative5", "thankful2", "thankful3", "thankful4", "thankful5",
## "grat2", "grat3", "grat4", "grat5")])
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.96 0.96 0.98 0.66 23 0.0029 3.4 1.6 0.62
##
## 95% confidence boundaries
## lower alpha upper
## Feldt 0.95 0.96 0.96
## Duhachek 0.95 0.96 0.96
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## appreciative2 0.96 0.96 0.97 0.67 22 0.0030 0.020 0.67
## appreciative3 0.95 0.95 0.97 0.66 21 0.0032 0.022 0.62
## appreciative4 0.95 0.95 0.98 0.65 20 0.0034 0.022 0.62
## appreciative5 0.96 0.96 0.97 0.66 22 0.0031 0.020 0.62
## thankful2 0.96 0.96 0.97 0.67 22 0.0030 0.021 0.67
## thankful3 0.95 0.95 0.97 0.66 21 0.0032 0.022 0.62
## thankful4 0.95 0.95 0.98 0.65 20 0.0034 0.022 0.62
## thankful5 0.95 0.95 0.97 0.66 21 0.0032 0.021 0.62
## grat2 0.96 0.96 0.97 0.67 22 0.0030 0.021 0.67
## grat3 0.96 0.95 0.97 0.66 21 0.0032 0.023 0.62
## grat4 0.95 0.95 0.96 0.65 21 0.0033 0.023 0.62
## grat5 0.96 0.96 0.97 0.67 22 0.0030 0.018 0.62
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## appreciative2 385 0.82 0.77 0.77 0.72 3.7 1.7
## appreciative3 368 0.88 0.85 0.86 0.82 3.5 1.8
## appreciative4 319 0.88 0.90 0.85 0.88 3.5 1.9
## appreciative5 148 0.87 0.81 0.81 0.77 3.8 1.8
## thankful2 380 0.84 0.78 0.78 0.74 3.5 1.8
## thankful3 370 0.87 0.85 0.85 0.81 3.4 1.8
## thankful4 319 0.88 0.90 0.85 0.88 3.5 1.9
## thankful5 147 0.90 0.84 0.85 0.81 3.7 1.8
## grat2 383 0.82 0.77 0.76 0.72 3.5 1.8
## grat3 365 0.87 0.84 0.83 0.80 3.4 1.8
## grat4 320 0.86 0.88 0.87 0.85 3.5 1.9
## grat5 143 0.84 0.77 0.77 0.73 3.6 1.9
##
## Non missing response frequency for each item
## 0 1 2 3 4 5 6 miss
## appreciative2 0.08 0.06 0.07 0.21 0.24 0.20 0.15 0.21
## appreciative3 0.10 0.05 0.10 0.18 0.25 0.15 0.15 0.25
## appreciative4 0.11 0.08 0.08 0.18 0.18 0.22 0.15 0.35
## appreciative5 0.10 0.03 0.09 0.16 0.22 0.20 0.20 0.70
## thankful2 0.09 0.05 0.10 0.22 0.21 0.20 0.13 0.22
## thankful3 0.10 0.08 0.12 0.17 0.23 0.14 0.16 0.24
## thankful4 0.11 0.08 0.08 0.18 0.18 0.22 0.15 0.35
## thankful5 0.10 0.03 0.12 0.18 0.18 0.20 0.20 0.70
## grat2 0.09 0.07 0.10 0.22 0.21 0.16 0.14 0.22
## grat3 0.10 0.05 0.13 0.21 0.23 0.13 0.15 0.25
## grat4 0.11 0.05 0.10 0.14 0.25 0.18 0.16 0.35
## grat5 0.11 0.05 0.12 0.13 0.25 0.17 0.17 0.71
describe(d[c("appreciative2", "appreciative3", "appreciative4", "appreciative5",
"thankful2", "thankful3", "thankful4", "thankful5",
"grat2", "grat3", "grat4", "grat5")])
1. when I consider my life right now, I would say I am in a terrible place.
2. when I consider my life right now, i would say I am in a really good place.
Please indicate how much you agree that each of the following are currently a cause of stress:
1. Financial problems (ex: a lack of money, owe someone money, etc.)
2. Health related issues (ex: poor sleep, sickness, injury, death of someone close, etc.)
3. Friend problems (ex: arguments, conflicts with roommate, not enough friends, etc.)
4. General life problems (ex: victim of a crime, car troubles, traffic ticket, etc.)
5. Academic issues (ex: did poorly on a test, a lot of deadlines, etc.)
6. Relationship issues (ex: breaking up with a boy/girlfriend, fights,long-distance relationship, etc.)
7. Family problems (ex: divorce, arguments, not enough support, etc.)
d$w1need2.R <- 8 - d$w1need2
d$w2need2.R <- 8 - d$w2need2
d$w3need2.R <- 8 - d$w3need2
d$w4need2.R <- 8 - d$w4need2
d$w5need2.R <- 8 - d$w5need2
### need 1-9 for week 1-5
# lok at just need 1 and need 2.r cause they are close!
psych::alpha(d[c("w1need1",
"w1need2.R",
"w1need3",
"w1need4",
"w1need5",
"w1need6",
"w1need7",
"w1need8",
"w1need9")], check.keys = TRUE) #.56
##
## Reliability analysis
## Call: psych::alpha(x = d[c("w1need1", "w1need2.R", "w1need3", "w1need4",
## "w1need5", "w1need6", "w1need7", "w1need8", "w1need9")],
## check.keys = TRUE)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.69 0.71 0.74 0.21 2.4 0.021 3.1 0.96 0.24
##
## 95% confidence boundaries
## lower alpha upper
## Feldt 0.65 0.69 0.73
## Duhachek 0.65 0.69 0.73
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## w1need1 0.66 0.67 0.68 0.20 2.0 0.023 0.015 0.23
## w1need2.R 0.66 0.66 0.68 0.20 2.0 0.023 0.014 0.23
## w1need3 0.68 0.70 0.72 0.23 2.3 0.022 0.021 0.25
## w1need4 0.65 0.67 0.70 0.20 2.0 0.024 0.025 0.23
## w1need5 0.65 0.66 0.70 0.20 2.0 0.024 0.025 0.24
## w1need6 0.66 0.68 0.72 0.21 2.1 0.023 0.027 0.23
## w1need7 0.65 0.67 0.71 0.20 2.0 0.024 0.027 0.19
## w1need8 0.71 0.72 0.75 0.24 2.6 0.020 0.023 0.27
## w1need9 0.67 0.69 0.72 0.22 2.2 0.023 0.024 0.25
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## w1need1 484 0.53 0.60 0.58 0.40 2.0 1.3
## w1need2.R 484 0.54 0.62 0.61 0.42 2.3 1.3
## w1need3 484 0.52 0.46 0.36 0.32 3.7 2.0
## w1need4 484 0.61 0.60 0.53 0.44 3.5 2.0
## w1need5 484 0.61 0.62 0.56 0.45 3.5 1.8
## w1need6 484 0.53 0.56 0.46 0.38 2.3 1.6
## w1need7 484 0.61 0.60 0.52 0.45 4.4 1.9
## w1need8 484 0.38 0.36 0.20 0.17 3.3 2.0
## w1need9 484 0.55 0.50 0.40 0.35 2.8 2.0
##
## Non missing response frequency for each item
## 1 2 3 4 5 6 7 miss
## w1need1 0.51 0.27 0.06 0.08 0.05 0.01 0.01 0.01
## w1need2.R 0.27 0.41 0.17 0.05 0.07 0.02 0.01 0.01
## w1need3 0.19 0.21 0.08 0.06 0.24 0.12 0.09 0.01
## w1need4 0.25 0.18 0.07 0.06 0.29 0.11 0.04 0.01
## w1need5 0.17 0.23 0.08 0.16 0.19 0.12 0.04 0.01
## w1need6 0.43 0.30 0.04 0.09 0.09 0.04 0.02 0.01
## w1need7 0.12 0.11 0.08 0.07 0.31 0.20 0.12 0.01
## w1need8 0.27 0.19 0.07 0.12 0.17 0.13 0.04 0.01
## w1need9 0.42 0.18 0.09 0.10 0.06 0.08 0.08 0.01
psych::alpha(d[c("w2need1",
"w2need2.R",
"w2need3",
"w2need4",
"w2need5",
"w2need6",
"w2need7",
"w2need8",
"w2need9")], check.keys = TRUE) #.62
##
## Reliability analysis
## Call: psych::alpha(x = d[c("w2need1", "w2need2.R", "w2need3", "w2need4",
## "w2need5", "w2need6", "w2need7", "w2need8", "w2need9")],
## check.keys = TRUE)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.71 0.73 0.76 0.23 2.6 0.019 3.2 1 0.19
##
## 95% confidence boundaries
## lower alpha upper
## Feldt 0.67 0.71 0.75
## Duhachek 0.68 0.71 0.75
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## w2need1 0.69 0.69 0.70 0.22 2.2 0.021 0.014 0.20
## w2need2.R 0.70 0.70 0.72 0.23 2.4 0.021 0.014 0.20
## w2need3 0.68 0.70 0.74 0.23 2.3 0.022 0.022 0.19
## w2need4 0.68 0.69 0.73 0.22 2.2 0.022 0.025 0.18
## w2need5 0.67 0.68 0.73 0.21 2.2 0.022 0.024 0.17
## w2need6 0.68 0.70 0.72 0.22 2.3 0.022 0.019 0.19
## w2need7 0.69 0.70 0.74 0.23 2.3 0.021 0.024 0.19
## w2need8 0.73 0.74 0.77 0.26 2.9 0.018 0.019 0.24
## w2need9 0.69 0.70 0.73 0.23 2.3 0.021 0.023 0.19
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## w2need1 466 0.55 0.62 0.61 0.43 2.0 1.4
## w2need2.R 466 0.47 0.55 0.52 0.35 2.4 1.3
## w2need3 466 0.62 0.57 0.49 0.43 3.7 2.2
## w2need4 466 0.62 0.60 0.52 0.45 3.9 2.0
## w2need5 466 0.62 0.63 0.56 0.46 3.7 1.9
## w2need6 466 0.58 0.58 0.53 0.44 2.2 1.6
## w2need7 466 0.57 0.56 0.46 0.40 4.9 1.9
## w2need8 466 0.40 0.36 0.21 0.18 3.6 2.1
## w2need9 466 0.58 0.56 0.48 0.40 2.8 2.0
##
## Non missing response frequency for each item
## 1 2 3 4 5 6 7 miss
## w2need1 0.52 0.27 0.08 0.03 0.07 0.03 0.00 0.05
## w2need2.R 0.26 0.37 0.22 0.07 0.03 0.05 0.00 0.05
## w2need3 0.26 0.16 0.05 0.06 0.21 0.14 0.11 0.05
## w2need4 0.17 0.19 0.05 0.09 0.23 0.20 0.07 0.05
## w2need5 0.17 0.21 0.09 0.08 0.27 0.14 0.04 0.05
## w2need6 0.47 0.25 0.09 0.05 0.06 0.05 0.02 0.05
## w2need7 0.07 0.11 0.05 0.05 0.27 0.25 0.19 0.05
## w2need8 0.24 0.17 0.05 0.14 0.18 0.12 0.10 0.05
## w2need9 0.44 0.12 0.07 0.10 0.15 0.10 0.03 0.05
psych::alpha(d[c("w3need1",
"w3need2.R",
"w3need3",
"w3need4",
"w3need5",
"w3need6",
"w3need7",
"w3need8",
"w3need9")], check.keys = TRUE) #.60
##
## Reliability analysis
## Call: psych::alpha(x = d[c("w3need1", "w3need2.R", "w3need3", "w3need4",
## "w3need5", "w3need6", "w3need7", "w3need8", "w3need9")],
## check.keys = TRUE)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.76 0.77 0.8 0.27 3.3 0.017 3.1 1.1 0.28
##
## 95% confidence boundaries
## lower alpha upper
## Feldt 0.72 0.76 0.79
## Duhachek 0.72 0.76 0.79
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## w3need1 0.73 0.73 0.74 0.26 2.7 0.018 0.018 0.27
## w3need2.R 0.72 0.73 0.73 0.25 2.7 0.019 0.017 0.26
## w3need3 0.74 0.76 0.78 0.28 3.1 0.018 0.025 0.29
## w3need4 0.71 0.73 0.76 0.25 2.7 0.020 0.026 0.26
## w3need5 0.70 0.72 0.75 0.24 2.6 0.020 0.025 0.26
## w3need6 0.73 0.75 0.78 0.27 2.9 0.018 0.027 0.27
## w3need7 0.74 0.75 0.78 0.28 3.0 0.018 0.026 0.30
## w3need8 0.78 0.79 0.80 0.32 3.7 0.015 0.016 0.31
## w3need9 0.74 0.75 0.77 0.27 3.0 0.018 0.022 0.28
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## w3need1 448 0.60 0.66 0.65 0.51 1.9 1.3
## w3need2.R 448 0.64 0.69 0.69 0.54 2.6 1.5
## w3need3 448 0.57 0.53 0.44 0.39 3.5 2.0
## w3need4 448 0.69 0.67 0.62 0.56 3.4 2.0
## w3need5 448 0.72 0.72 0.68 0.60 3.7 1.8
## w3need6 448 0.59 0.60 0.51 0.46 2.5 1.7
## w3need7 448 0.56 0.56 0.46 0.40 4.5 1.9
## w3need8 443 0.35 0.34 0.20 0.16 3.3 2.0
## w3need9 444 0.57 0.56 0.48 0.40 2.8 2.0
##
## Non missing response frequency for each item
## 1 2 3 4 5 6 7 miss
## w3need1 0.51 0.27 0.09 0.05 0.07 0.01 0.00 0.08
## w3need2.R 0.24 0.36 0.21 0.04 0.08 0.08 0.00 0.08
## w3need3 0.22 0.21 0.09 0.07 0.22 0.10 0.09 0.08
## w3need4 0.24 0.23 0.05 0.06 0.28 0.06 0.08 0.08
## w3need5 0.18 0.19 0.05 0.15 0.26 0.13 0.04 0.08
## w3need6 0.40 0.25 0.10 0.09 0.08 0.06 0.01 0.08
## w3need7 0.09 0.12 0.10 0.08 0.21 0.29 0.12 0.08
## w3need8 0.26 0.23 0.04 0.17 0.13 0.14 0.05 0.09
## w3need9 0.40 0.23 0.03 0.07 0.11 0.12 0.04 0.09
psych::alpha(d[c("w4need1",
"w4need2.R",
"w4need3",
"w4need4",
"w4need5",
"w4need6",
"w4need7",
"w4need8",
"w4need9")], check.keys = TRUE) #.66
##
## Reliability analysis
## Call: psych::alpha(x = d[c("w4need1", "w4need2.R", "w4need3", "w4need4",
## "w4need5", "w4need6", "w4need7", "w4need8", "w4need9")],
## check.keys = TRUE)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.77 0.78 0.81 0.28 3.5 0.016 3 1.1 0.28
##
## 95% confidence boundaries
## lower alpha upper
## Feldt 0.74 0.77 0.8
## Duhachek 0.74 0.77 0.8
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## w4need1 0.75 0.76 0.77 0.28 3.1 0.017 0.014 0.28
## w4need2.R 0.75 0.76 0.76 0.28 3.1 0.017 0.015 0.29
## w4need3 0.73 0.75 0.77 0.27 3.0 0.018 0.018 0.28
## w4need4 0.75 0.76 0.79 0.28 3.1 0.017 0.022 0.27
## w4need5 0.73 0.74 0.78 0.27 2.9 0.018 0.022 0.25
## w4need6 0.73 0.74 0.77 0.26 2.8 0.019 0.018 0.26
## w4need7 0.75 0.76 0.80 0.29 3.3 0.017 0.022 0.30
## w4need8 0.78 0.78 0.81 0.31 3.6 0.015 0.017 0.31
## w4need9 0.75 0.76 0.79 0.28 3.2 0.017 0.018 0.28
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## w4need1 400 0.54 0.61 0.58 0.44 1.9 1.3
## w4need2.R 400 0.54 0.60 0.57 0.42 2.5 1.5
## w4need3 400 0.68 0.64 0.60 0.53 3.5 2.1
## w4need4 400 0.61 0.60 0.51 0.45 3.5 2.0
## w4need5 400 0.67 0.68 0.62 0.56 3.0 1.7
## w4need6 400 0.70 0.70 0.68 0.60 2.2 1.6
## w4need7 400 0.57 0.56 0.46 0.42 4.5 1.9
## w4need8 400 0.47 0.44 0.32 0.28 3.3 2.1
## w4need9 400 0.60 0.59 0.52 0.45 2.6 1.9
##
## Non missing response frequency for each item
## 1 2 3 4 5 6 7 miss
## w4need1 0.50 0.31 0.08 0.03 0.08 0.01 0.00 0.18
## w4need2.R 0.28 0.31 0.22 0.03 0.09 0.07 0.00 0.18
## w4need3 0.27 0.16 0.09 0.07 0.17 0.16 0.09 0.18
## w4need4 0.24 0.17 0.07 0.11 0.24 0.11 0.06 0.18
## w4need5 0.22 0.30 0.07 0.10 0.24 0.05 0.01 0.18
## w4need6 0.54 0.18 0.08 0.09 0.06 0.05 0.01 0.18
## w4need7 0.11 0.12 0.08 0.06 0.23 0.30 0.11 0.18
## w4need8 0.28 0.20 0.04 0.14 0.16 0.09 0.09 0.18
## w4need9 0.43 0.24 0.07 0.04 0.08 0.11 0.04 0.18
psych::alpha(d[c("w5need1",
"w5need2.R",
"w5need3",
"w5need4",
"w5need5",
"w5need6",
"w5need7",
"w5need8",
"w5need9")], check.keys = TRUE) #.44
##
## Reliability analysis
## Call: psych::alpha(x = d[c("w5need1", "w5need2.R", "w5need3", "w5need4",
## "w5need5", "w5need6", "w5need7", "w5need8", "w5need9")],
## check.keys = TRUE)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.71 0.73 0.83 0.23 2.7 0.02 3.1 1 0.26
##
## 95% confidence boundaries
## lower alpha upper
## Feldt 0.67 0.71 0.74
## Duhachek 0.67 0.71 0.75
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## w5need1 0.66 0.67 0.77 0.20 2.0 0.024 0.040 0.21
## w5need2.R 0.65 0.67 0.76 0.20 2.0 0.024 0.042 0.22
## w5need3 0.71 0.74 0.80 0.26 2.8 0.020 0.056 0.27
## w5need4 0.69 0.72 0.79 0.24 2.6 0.021 0.056 0.26
## w5need5 0.67 0.70 0.81 0.23 2.4 0.023 0.065 0.27
## w5need6 0.62 0.65 0.77 0.19 1.9 0.027 0.050 0.21
## w5need7 0.67 0.69 0.80 0.22 2.3 0.023 0.062 0.21
## w5need8 0.74 0.76 0.83 0.28 3.2 0.018 0.052 0.31
## w5need9 0.71 0.73 0.82 0.25 2.7 0.020 0.056 0.27
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## w5need1 194 0.67 0.73 0.75 0.583 1.8 1.3
## w5need2.R 194 0.68 0.73 0.76 0.575 2.5 1.5
## w5need3 194 0.46 0.40 0.33 0.247 3.5 2.1
## w5need4 190 0.51 0.49 0.44 0.316 3.5 1.9
## w5need5 194 0.57 0.58 0.49 0.427 3.0 1.7
## w5need6 194 0.78 0.79 0.79 0.674 2.7 2.0
## w5need7 194 0.61 0.62 0.55 0.459 4.5 1.8
## w5need8 194 0.31 0.27 0.14 0.092 3.4 2.0
## w5need9 194 0.45 0.45 0.35 0.249 2.8 2.0
##
## Non missing response frequency for each item
## 1 2 3 4 5 6 7 miss
## w5need1 0.60 0.24 0.05 0.04 0.05 0.03 0.00 0.60
## w5need2.R 0.26 0.37 0.21 0.02 0.07 0.04 0.03 0.60
## w5need3 0.25 0.21 0.06 0.05 0.23 0.11 0.10 0.60
## w5need4 0.17 0.26 0.11 0.00 0.29 0.11 0.05 0.61
## w5need5 0.16 0.41 0.08 0.09 0.18 0.06 0.03 0.60
## w5need6 0.43 0.21 0.07 0.02 0.12 0.10 0.06 0.60
## w5need7 0.07 0.09 0.21 0.03 0.30 0.15 0.16 0.60
## w5need8 0.24 0.17 0.16 0.11 0.10 0.14 0.07 0.60
## w5need9 0.42 0.13 0.09 0.09 0.15 0.06 0.05 0.60
x <- d[c("w1need2.R", "w2need2.R", "w3need2.R", "w4need2.R", "w5need2.R")]
d$w2needAvg <- rowMeans(x)
psych::alpha(d[c("w1needAvg", #alpha = .94
"w2needAvg",
"w3needAvg",
"w4needAvg",
"w5needAvg")], check.keys = TRUE) #.89
## Number of categories should be increased in order to count frequencies.
## Warning in psych::alpha(d[c("w1needAvg", "w2needAvg", "w3needAvg", "w4needAvg", : Some items were negatively correlated with total scale and were automatically reversed.
## This is indicated by a negative sign for the variable name.
##
## Reliability analysis
## Call: psych::alpha(x = d[c("w1needAvg", "w2needAvg", "w3needAvg", "w4needAvg",
## "w5needAvg")], check.keys = TRUE)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.57 0.68 0.68 0.3 2.1 0.026 3.8 0.43 0.23
##
## 95% confidence boundaries
## lower alpha upper
## Feldt 0.51 0.57 0.63
## Duhachek 0.52 0.57 0.62
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## w1needAvg 0.55 0.71 0.69 0.38 2.4 0.029 0.0282 0.40
## w2needAvg- 0.63 0.65 0.63 0.31 1.8 0.028 0.0392 0.27
## w3needAvg 0.41 0.51 0.45 0.21 1.0 0.035 0.0076 0.20
## w4needAvg 0.53 0.65 0.64 0.32 1.9 0.027 0.0319 0.23
## w5needAvg 0.51 0.59 0.57 0.26 1.4 0.030 0.0251 0.21
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## w1needAvg 484 0.61 0.51 0.28 0.26 3.8 0.54
## w2needAvg- 167 0.83 0.63 0.49 0.39 5.0 1.32
## w3needAvg 448 0.69 0.82 0.83 0.64 3.7 0.50
## w4needAvg 400 0.67 0.62 0.47 0.31 3.7 0.55
## w5needAvg 194 0.55 0.72 0.65 0.44 3.6 0.42
Please enter your current weight (pounds/kilograms)
Please enter your height
head(d1, 10)
i = 1
for(i in unique(d1$subID)){
print(ggplot(data = d1[d1$subID == i,], aes(x = week, y = rank, color = friend)) +
theme_minimal() +
ylab("rank") +
geom_point() +
geom_line() +
ggtitle(paste0("participant ", i)) +
scale_x_continuous(breaks = c(1, 2, 3, 4, 5),
limits = c(1, 5)))
}
h1 <- lmer(wtr ~ rank + (rank + week | subID) + (1 | fid), data = d1)
tab_model(h1,
show.df = T,
show.ci = .95,
show.se = T,
show.stat = T,
string.stat = "t",
string.se="SE",
string.est = "Est",
digits = 3)
| wtr | ||||||
|---|---|---|---|---|---|---|
| Predictors | Est | SE | CI | t | p | df |
| (Intercept) | 0.760 | 0.026 | 0.710 – 0.810 | 29.746 | <0.001 | 1480.000 |
| rank | -0.059 | 0.007 | -0.073 – -0.046 | -8.772 | <0.001 | 1480.000 |
| Random Effects | ||||||
| σ2 | 0.02 | |||||
| τ00 fid | 0.01 | |||||
| τ00 subID | 0.06 | |||||
| τ11 subID.rank | 0.00 | |||||
| τ11 subID.week | 0.00 | |||||
| ρ01 subID.rank | -0.24 | |||||
| ρ01 subID.week | -0.46 | |||||
| ICC | 0.83 | |||||
| N subID | 99 | |||||
| N fid | 472 | |||||
| Observations | 1490 | |||||
| Marginal R2 / Conditional R2 | 0.046 / 0.836 | |||||
p <-plot_model(h1, type = "pred", terms = "rank",
show.data = T,
jitter = .08,
line.size = 1.5,
dot.size = .8,
title = "") +
ylab("welfare trade-off ratio") +
xlab("friend ranking") +
theme_minimal() +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.line = element_line(colour = "black"),
text = element_text(size = 17),
axis.text = element_text(colour = "black"))+
scale_y_continuous(breaks = c(0,.1, .2,.3 ,.4, .5, .6, .7, .8, .9, 1, 1.1),
limits = c(0, 1.1))
## Scale for y is already present.
## Adding another scale for y, which will replace the existing scale.
summary(h2<- lmer(gratScale ~ wtr + (wtr + week | subID) + (1 | fid), data = d1))
## Linear mixed model fit by REML ['lmerMod']
## Formula: gratScale ~ wtr + (wtr + week | subID) + (1 | fid)
## Data: d1
##
## REML criterion at convergence: 3729
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.2737 -0.4769 0.0350 0.5066 3.3558
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## fid (Intercept) 0.57113 0.7557
## subID (Intercept) 2.80135 1.6737
## wtr 2.66759 1.6333 -0.74
## week 0.08015 0.2831 -0.64 0.54
## Residual 0.85026 0.9221
## Number of obs: 1128, groups: fid, 450; subID, 99
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 1.9706 0.1934 10.19
## wtr 2.6611 0.2660 10.00
##
## Correlation of Fixed Effects:
## (Intr)
## wtr -0.782
tab_model(h2,
show.df = T,
show.ci = .95,
show.se = T,
show.stat = T,
string.stat = "t",
string.se="SE",
string.est = "Est",
digits = 2)
| gratScale | ||||||
|---|---|---|---|---|---|---|
| Predictors | Est | SE | CI | t | p | df |
| (Intercept) | 1.97 | 0.19 | 1.59 – 2.35 | 10.19 | <0.001 | 1118.00 |
| wtr | 2.66 | 0.27 | 2.14 – 3.18 | 10.00 | <0.001 | 1118.00 |
| Random Effects | ||||||
| σ2 | 0.85 | |||||
| τ00 fid | 0.57 | |||||
| τ00 subID | 2.80 | |||||
| τ11 subID.wtr | 2.67 | |||||
| τ11 subID.week | 0.08 | |||||
| ρ01 subID.wtr | -0.74 | |||||
| ρ01 subID.week | -0.64 | |||||
| ICC | 0.72 | |||||
| N subID | 99 | |||||
| N fid | 450 | |||||
| Observations | 1128 | |||||
| Marginal R2 / Conditional R2 | 0.189 / 0.772 | |||||
plot_model(h2, type = "pred", terms = "wtr",
show.data = T,
jitter = .05,
line.size = 1.5,
dot.size = .8,
title = "") +
ylab("gratitude scale") +
xlab("welfare trade-off ratio") +
theme_minimal() +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.line = element_line(colour = "black"),
text = element_text(size = 17),
axis.text = element_text(colour = "black")) +
scale_y_continuous(breaks = c(0,1,2,3,4,5,6),
limits = c(0,6)) +
scale_x_continuous(breaks = c(0,.1, .2,.3 ,.4, .5, .6, .7, .8, .9, 1, 1.1),
limits = c(0, 1.1))
## Scale for y is already present.
## Adding another scale for y, which will replace the existing scale.
## Warning: Removed 216 rows containing missing values (`geom_point()`).
## Warning: Removed 1 row containing missing values (`geom_line()`).
summary(h3 <- lmer(gratScale ~ wtrDiff + (wtrDiff + week | subID) + (1 | fid), data = d1))
## Linear mixed model fit by REML ['lmerMod']
## Formula: gratScale ~ wtrDiff + (wtrDiff + week | subID) + (1 | fid)
## Data: d1
##
## REML criterion at convergence: 3580.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.3076 -0.4516 0.0565 0.4836 3.2143
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## fid (Intercept) 0.9410 0.9700
## subID (Intercept) 0.8042 0.8968
## wtrDiff 0.7922 0.8901 -0.39
## week 0.0661 0.2571 -0.29 0.52
## Residual 0.9331 0.9660
## Number of obs: 1042, groups: fid, 423; subID, 98
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 3.5301 0.1141 30.951
## wtrDiff 1.0727 0.2257 4.752
##
## Correlation of Fixed Effects:
## (Intr)
## wtrDiff -0.011
tab_model(h3,
show.df = T,
show.ci = .95,
show.se = T,
show.stat = T,
string.stat = "t",
string.se="SE",
string.est = "Est",
digits = 2)
| gratScale | ||||||
|---|---|---|---|---|---|---|
| Predictors | Est | SE | CI | t | p | df |
| (Intercept) | 3.53 | 0.11 | 3.31 – 3.75 | 30.95 | <0.001 | 1032.00 |
| wtrDiff | 1.07 | 0.23 | 0.63 – 1.52 | 4.75 | <0.001 | 1032.00 |
| Random Effects | ||||||
| σ2 | 0.93 | |||||
| τ00 fid | 0.94 | |||||
| τ00 subID | 0.80 | |||||
| τ11 subID.wtrDiff | 0.79 | |||||
| τ11 subID.week | 0.07 | |||||
| ρ01 subID.wtrDiff | -0.39 | |||||
| ρ01 subID.week | -0.29 | |||||
| ICC | 0.66 | |||||
| N subID | 98 | |||||
| N fid | 423 | |||||
| Observations | 1042 | |||||
| Marginal R2 / Conditional R2 | 0.016 / 0.662 | |||||
p <- plot_model(h3, type = "pred", terms = "wtrDiff",
show.data = T,
jitter = .05,
line.size = 1.5,
dot.size = .8,
title = "") +
ylab("gratitude scale") +
xlab("change in welfare trade-off ratio") +
theme_minimal() +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.line = element_line(colour = "black"),
text = element_text(size = 17),
axis.text = element_text(colour = "black"))+
scale_y_continuous(breaks = c(0,1,2,3,4,5,6),
limits = c(0,6)) +
scale_x_continuous(breaks = c( -1.1, -.8, -.6, -.4, -.2, 0,.2 ,.4, .6, .8, 1),
limits = c(-1.3, 1))
## Scale for y is already present.
## Adding another scale for y, which will replace the existing scale.
summary(Q1 <- lmer(gratScale ~ wtr + I(wtr^2) + (wtrDiff + week | subID) + (1 | fid), data = d1))
## Linear mixed model fit by REML ['lmerMod']
## Formula: gratScale ~ wtr + I(wtr^2) + (wtrDiff + week | subID) + (1 | fid)
## Data: d1
##
## REML criterion at convergence: 3445.3
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.2108 -0.4792 0.0597 0.5259 3.2661
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## fid (Intercept) 0.56794 0.7536
## subID (Intercept) 0.99861 0.9993
## wtrDiff 0.11248 0.3354 -0.78
## week 0.08004 0.2829 -0.32 0.84
## Residual 0.89785 0.9475
## Number of obs: 1042, groups: fid, 423; subID, 98
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 1.3150 0.2070 6.354
## wtr 5.6199 0.6381 8.807
## I(wtr^2) -2.6520 0.5415 -4.898
##
## Correlation of Fixed Effects:
## (Intr) wtr
## wtr -0.725
## I(wtr^2) 0.565 -0.950
summary(Q1 <- lmer(gratScale ~ wtrDiff + I(wtrDiff^2) + (wtrDiff + week | subID) + (1 | fid), data = d1))
## Linear mixed model fit by REML ['lmerMod']
## Formula: gratScale ~ wtrDiff + I(wtrDiff^2) + (wtrDiff + week | subID) +
## (1 | fid)
## Data: d1
##
## REML criterion at convergence: 3569.9
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.3493 -0.4740 0.0545 0.4814 3.2195
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## fid (Intercept) 0.9531 0.9763
## subID (Intercept) 0.8414 0.9173
## wtrDiff 0.4696 0.6852 -0.66
## week 0.0707 0.2659 -0.30 0.79
## Residual 0.9208 0.9596
## Number of obs: 1042, groups: fid, 423; subID, 98
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 3.5918 0.1165 30.824
## wtrDiff 1.0366 0.2074 4.997
## I(wtrDiff^2) -1.3199 0.3809 -3.465
##
## Correlation of Fixed Effects:
## (Intr) wtrDff
## wtrDiff -0.053
## I(wtrDff^2) -0.152 0.115
tab_model(Q1,
show.df = T,
show.ci = .95,
show.se = T,
show.stat = T,
string.stat = "t",
string.se="SE",
string.est = "Est",
digits = 2)
| gratScale | ||||||
|---|---|---|---|---|---|---|
| Predictors | Est | SE | CI | t | p | df |
| (Intercept) | 3.59 | 0.12 | 3.36 – 3.82 | 30.82 | <0.001 | 1031.00 |
| wtrDiff | 1.04 | 0.21 | 0.63 – 1.44 | 5.00 | <0.001 | 1031.00 |
| wtrDiff^2 | -1.32 | 0.38 | -2.07 – -0.57 | -3.47 | 0.001 | 1031.00 |
| Random Effects | ||||||
| σ2 | 0.92 | |||||
| τ00 fid | 0.95 | |||||
| τ00 subID | 0.84 | |||||
| τ11 subID.wtrDiff | 0.47 | |||||
| τ11 subID.week | 0.07 | |||||
| ρ01 subID.wtrDiff | -0.66 | |||||
| ρ01 subID.week | -0.30 | |||||
| ICC | 0.66 | |||||
| N subID | 98 | |||||
| N fid | 423 | |||||
| Observations | 1042 | |||||
| Marginal R2 / Conditional R2 | 0.025 / 0.673 | |||||
p <- plot_model(Q1, type = "pred", terms = "wtrDiff",
show.data = T,
jitter = .05,
line.size = 1.5,
dot.size = .8,
title = "") +
ylab("gratitude scale") +
xlab("change in welfare trade-off ratio") +
theme_minimal() +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.line = element_line(colour = "black"),
text = element_text(size = 17),
axis.text = element_text(colour = "black"))+
scale_y_continuous(breaks = c(0,1,2,3,4,5,6),
limits = c(0, 6)) +
scale_x_continuous(breaks = c(-1, -.8, -.6, -.4, -.2, 0, .2 ,.4, .6, .8, 1),
limits = c(-1.1, 1))
## Model contains polynomial or cubic / quadratic terms. Consider using
## `terms="wtrDiff [all]"` to get smooth plots. See also package-vignette
## 'Marginal Effects at Specific Values'.
## Scale for y is already present.
## Adding another scale for y, which will replace the existing scale.
#m <- lmer(rankDiff ~ gratitude + (gratitude + week | subID) + (1 | fid), data = d1)
#tab_model(m1,
# show.df = F,
# show.ci = F,
# show.se = F,
# show.stat = T,
# string.stat = "t",
# string.se="SE",
# string.est = "Est",
# digits = 2)
### closeness
h1 <- lmer(close ~ rank + (rank + week | subID) + (1 | fid), data = d1)
h2<- lmer(close ~ wtr + (wtr + week | subID) + (1 | fid), data = d1)
h3 <- lmer(close ~ wtrDiff + (wtrDiff + week | subID) + (1 | fid), data = d1)
## boundary (singular) fit: see help('isSingular')
### commitment
h1 <- lmer(commit ~ rank + (rank + week | subID), data = d1)
h2<- lmer(commit ~ wtr + (wtr + week | subID) , data = d1)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.00466312 (tol = 0.002, component 1)
h3 <- lmer(commit ~ wtrDiff + (wtrDiff + week | subID), data = d1)
## boundary (singular) fit: see help('isSingular')
### IOS
h1 <- lmer(ios ~ rank + (rank + week | subID), data = d1)
h2<- lmer(ios ~ wtr + (wtr + week | subID) , data = d1)
h3 <- lmer(ios ~ wtrDiff + (wtrDiff + week | subID), data = d1)
## boundary (singular) fit: see help('isSingular')
tab_model(h1, h2, h3,
show.df = F,
show.ci = F,
show.se = F,
show.stat = T,
string.stat = "t",
string.se="SE",
string.est = "Est",
digits = 2)
| ios | ios | ios | |||||||
|---|---|---|---|---|---|---|---|---|---|
| Predictors | Est | t | p | Est | t | p | Est | t | p |
| (Intercept) | 5.82 | 46.03 | <0.001 | 2.38 | 15.67 | <0.001 | 4.23 | 43.41 | <0.001 |
| rank | -0.61 | -13.02 | <0.001 | ||||||
| wtr | 3.22 | 14.19 | <0.001 | ||||||
| wtrDiff | 0.71 | 2.88 | 0.004 | ||||||
| Random Effects | |||||||||
| σ2 | 0.98 | 1.22 | 1.60 | ||||||
| τ00 | 1.25 subID | 1.58 subID | 0.67 subID | ||||||
| τ11 | 0.17 subID.rank | 2.66 subID.wtr | 0.52 subID.wtrDiff | ||||||
| 0.02 subID.week | 0.03 subID.week | 0.00 subID.week | |||||||
| ρ01 | -0.72 | -0.75 | -0.30 | ||||||
| -0.18 | -0.53 | 0.95 | |||||||
| ICC | 0.47 | 0.44 | 0.30 | ||||||
| N | 101 subID | 99 subID | 98 subID | ||||||
| Observations | 1615 | 1575 | 1047 | ||||||
| Marginal R2 / Conditional R2 | 0.201 / 0.577 | 0.318 / 0.615 | 0.008 / 0.309 | ||||||
h2<- lmer(gratScale ~ need + (need + week | subID) + (1 | fid) , data = d1)
## boundary (singular) fit: see help('isSingular')
tab_model(h2,
show.df = F,
show.ci = F,
show.se = F,
show.stat = T,
string.stat = "t",
string.se="SE",
string.est = "Est",
digits = 2)
| gratScale | |||
|---|---|---|---|
| Predictors | Est | t | p |
| (Intercept) | 3.43 | 8.81 | <0.001 |
| need | 0.02 | 0.21 | 0.834 |
| Random Effects | |||
| σ2 | 1.02 | ||
| τ00 fid | 0.99 | ||
| τ00 subID | 1.32 | ||
| τ11 subID.need | 0.00 | ||
| τ11 subID.week | 0.06 | ||
| ρ01 subID.need | -1.00 | ||
| ρ01 subID.week | -0.37 | ||
| N subID | 101 | ||
| N fid | 467 | ||
| Observations | 1218 | ||
| Marginal R2 / Conditional R2 | 0.000 / NA | ||
#use bobqa
summary(Q5 <- lmer(gratScale ~ wtr + wtr.past + (wtr + wtr.past + week | subID),
control = lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 100000)),
data = d1))
## boundary (singular) fit: see help('isSingular')
## Linear mixed model fit by REML ['lmerMod']
## Formula: gratScale ~ wtr + wtr.past + (wtr + wtr.past + week | subID)
## Data: d1
## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))
##
## REML criterion at convergence: 3528
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.1974 -0.5205 0.0470 0.5825 3.3028
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## subID (Intercept) 3.49908 1.8706
## wtr 1.38207 1.1756 -0.87
## wtr.past 1.49566 1.2230 -0.74 0.94
## week 0.05461 0.2337 -0.53 0.62 0.37
## Residual 1.26268 1.1237
## Number of obs: 1042, groups: subID, 98
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 1.8064 0.2310 7.819
## wtr 2.7733 0.2651 10.461
## wtr.past 0.1344 0.2687 0.500
##
## Correlation of Fixed Effects:
## (Intr) wtr
## wtr -0.542
## wtr.past -0.535 -0.174
## optimizer (bobyqa) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
tab_model(Q5,
show.df = T,
show.ci = .95,
show.se = T,
show.stat = T,
string.stat = "t",
string.se="SE",
string.est = "Est",
digits = 2)
| gratScale | ||||||
|---|---|---|---|---|---|---|
| Predictors | Est | SE | CI | t | p | df |
| (Intercept) | 1.81 | 0.23 | 1.35 – 2.26 | 7.82 | <0.001 | 1028.00 |
| wtr | 2.77 | 0.27 | 2.25 – 3.29 | 10.46 | <0.001 | 1028.00 |
| wtr past | 0.13 | 0.27 | -0.39 – 0.66 | 0.50 | 0.617 | 1028.00 |
| Random Effects | ||||||
| σ2 | 1.26 | |||||
| τ00 subID | 3.50 | |||||
| τ11 subID.wtr | 1.38 | |||||
| τ11 subID.wtr.past | 1.50 | |||||
| τ11 subID.week | 0.05 | |||||
| ρ01 | -0.87 | |||||
| -0.74 | ||||||
| -0.53 | ||||||
| N subID | 98 | |||||
| Observations | 1042 | |||||
| Marginal R2 / Conditional R2 | 0.392 / NA | |||||
plot_model(Q5, type = "pred", terms = "wtr",
show.data = T,
jitter = .05,
line.size = 1.5,
dot.size = .8,
title = "") +
ylab("gratitude scale") +
xlab("current week welfare trade-off ratio") +
theme_minimal() +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.line = element_line(colour = "black"),
text = element_text(size = 17),
axis.text = element_text(colour = "black"))+
scale_y_continuous(breaks = c(0,1,2,3,4,5,6),
limits = c(0, 6)) +
scale_x_continuous(breaks = c(0, .2 ,.4, .6, .8, 1, 1.2),
limits = c(0, 1.2))
## Scale for y is already present.
## Adding another scale for y, which will replace the existing scale.
## Warning: Removed 118 rows containing missing values (`geom_point()`).
summary(h3<- lmer(gratScale ~ wtrDiff + close + commit + ios + rank + (wtrDiff + close + commit + ios + rank + week | subID) + (wtrDiff||fid), control = lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 100000)), data = d1))
## boundary (singular) fit: see help('isSingular')
## Linear mixed model fit by REML ['lmerMod']
## Formula: gratScale ~ wtrDiff + close + commit + ios + rank + (wtrDiff +
## close + commit + ios + rank + week | subID) + ((1 | fid) +
## (0 + wtrDiff | fid))
## Data: d1
## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))
##
## REML criterion at convergence: 2822
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.0387 -0.4550 0.0483 0.4816 3.6921
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## fid wtrDiff 3.269e-10 1.808e-05
## fid.1 (Intercept) 2.660e-01 5.157e-01
## subID (Intercept) 8.534e-01 9.238e-01
## wtrDiff 8.926e-02 2.988e-01 -0.23
## close 4.021e-02 2.005e-01 0.18 0.52
## commit 8.294e-02 2.880e-01 0.23 -0.81 -0.59
## ios 7.727e-02 2.780e-01 -0.69 -0.04 -0.59 -0.18
## rank 2.711e-02 1.647e-01 -0.18 0.51 0.57 -0.13 -0.56
## week 4.100e-02 2.025e-01 -0.61 0.32 0.45 -0.27 0.06 0.52
## Residual 6.422e-01 8.013e-01
## Number of obs: 943, groups: fid, 390; subID, 98
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 1.26716 0.27564 4.597
## wtrDiff 0.63046 0.17441 3.615
## close 0.16642 0.06444 2.583
## commit 0.28259 0.06344 4.455
## ios 0.14058 0.05598 2.511
## rank -0.11302 0.04402 -2.567
##
## Correlation of Fixed Effects:
## (Intr) wtrDff close commit ios
## wtrDiff 0.114
## close -0.176 0.007
## commit -0.181 -0.082 -0.572
## ios -0.335 -0.059 -0.410 -0.197
## rank -0.687 -0.044 0.261 0.042 0.006
## optimizer (bobyqa) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
tab_model(h3,
show.df = T,
show.ci = .95,
show.se = T,
show.stat = T,
string.stat = "t",
string.se="SE",
string.est = "Est",
digits = 2)
| gratScale | ||||||
|---|---|---|---|---|---|---|
| Predictors | Est | SE | CI | t | p | df |
| (Intercept) | 1.27 | 0.28 | 0.73 – 1.81 | 4.60 | <0.001 | 906.00 |
| wtrDiff | 0.63 | 0.17 | 0.29 – 0.97 | 3.61 | <0.001 | 906.00 |
| close | 0.17 | 0.06 | 0.04 – 0.29 | 2.58 | 0.010 | 906.00 |
| commit | 0.28 | 0.06 | 0.16 – 0.41 | 4.45 | <0.001 | 906.00 |
| ios | 0.14 | 0.06 | 0.03 – 0.25 | 2.51 | 0.012 | 906.00 |
| rank | -0.11 | 0.04 | -0.20 – -0.03 | -2.57 | 0.010 | 906.00 |
| Random Effects | ||||||
| σ2 | 0.64 | |||||
| τ00 fid.1 | 0.27 | |||||
| τ00 subID | 0.85 | |||||
| τ11 subID.wtrDiff | 0.09 | |||||
| τ11 subID.close | 0.04 | |||||
| τ11 subID.commit | 0.08 | |||||
| τ11 subID.ios | 0.08 | |||||
| τ11 subID.rank | 0.03 | |||||
| τ11 subID.week | 0.04 | |||||
| τ11 fid.wtrDiff | 0.00 | |||||
| ρ01 subID.wtrDiff | -0.23 | |||||
| ρ01 subID.close | 0.18 | |||||
| ρ01 subID.commit | 0.23 | |||||
| ρ01 subID.ios | -0.69 | |||||
| ρ01 subID.rank | -0.18 | |||||
| ρ01 subID.week | -0.61 | |||||
| ICC | 0.58 | |||||
| N subID | 98 | |||||
| N fid | 390 | |||||
| Observations | 943 | |||||
| Marginal R2 / Conditional R2 | 0.323 / 0.715 | |||||
p <-plot_model(h3, type = "pred", terms = "wtrDiff",
show.data = T,
jitter = .05,
line.size = 1.5,
dot.size = .8,
title = "") +
ylab("gratitude scale") +
xlab("change in welfare trade-off ratio") +
theme_minimal() +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.line = element_line(colour = "black"),
text = element_text(size = 17),
axis.text = element_text(colour = "black"))+
scale_y_continuous(breaks = c(0,1,2,3,4,5,6),
limits = c(0, 6)) +
scale_x_continuous(breaks = c( -1, -.8, -.6, -.4, -.2, 0, .2 ,.4, .6, .8, 1),
limits = c(-1.1, 1))
## Scale for y is already present.
## Adding another scale for y, which will replace the existing scale.