title: “AUC analysis for seurat object” output: html_notebook author: Dr Upasna Srivastava

if (!require("BiocManager", quietly = TRUE))
    install.packages("BiocManager")

BiocManager::install("AUCell")
library(AUCell)
library(Seurat)
load("SeuratData.Robj")
Sri <- UpdateSeuratObject(object = Sri)
Sri[[]]
DimPlot(object = Sri, group.by = "cell.types", label = TRUE)
markers <- read.csv("PanglaoDB_markers_27_Mar_2020.tsv", sep = "\t")
markers <- markers[markers$cell.type == "Endothelial cells" & markers$species != "Hs",]
markers
genes <- markers$official.gene.symbol

mousify <- function(a){
  return(paste0(substr(a,1,1), tolower(substr(a,2,nchar(a)))))
  
}
genes <- sapply(genes, mousify)
genes
counts <- GetAssayData(object = Sri, slot = "counts")
cell_rankings <- AUCell_buildRankings(counts)
cells_AUC <- AUCell_calcAUC(genes, cell_rankings)
cells_assignment <- AUCell_exploreThresholds(cells_AUC, plotHist = TRUE, assign=TRUE)
cells_assignment$geneSet$assignment
new_cells <- names(which(getAUC(cells_AUC)["geneSet",]>0.15))
Sri$Diagonosis <- ifelse(colnames(tiss) %in% new_cells, "Disease", "Normal")
Sri[[]]
DimPlot(object = Sri, group.by = "Diagonosis", label = TRUE)
DimPlot(object = Sri, group.by = "cell.types", label = TRUE)
LS0tCm91dHB1dDoKICBodG1sX25vdGVib29rOiBkZWZhdWx0CiAgaHRtbF9kb2N1bWVudDogZGVmYXVsdAotLS0KdGl0bGU6ICJBVUMgYW5hbHlzaXMgZm9yIHNldXJhdCBvYmplY3QiCm91dHB1dDogaHRtbF9ub3RlYm9vawphdXRob3I6IERyIFVwYXNuYSBTcml2YXN0YXZhCgpgYGB7cn0KaWYgKCFyZXF1aXJlKCJCaW9jTWFuYWdlciIsIHF1aWV0bHkgPSBUUlVFKSkKICAgIGluc3RhbGwucGFja2FnZXMoIkJpb2NNYW5hZ2VyIikKCkJpb2NNYW5hZ2VyOjppbnN0YWxsKCJBVUNlbGwiKQpgYGAKCmBgYHtyfQpsaWJyYXJ5KEFVQ2VsbCkKbGlicmFyeShTZXVyYXQpCmBgYAoKYGBge3J9CmxvYWQoIlNldXJhdERhdGEuUm9iaiIpClNyaSA8LSBVcGRhdGVTZXVyYXRPYmplY3Qob2JqZWN0ID0gU3JpKQpgYGAKCmBgYHtyfQpTcmlbW11dCmBgYAoKYGBge3J9CkRpbVBsb3Qob2JqZWN0ID0gU3JpLCBncm91cC5ieSA9ICJjZWxsLnR5cGVzIiwgbGFiZWwgPSBUUlVFKQpgYGAKCmBgYHtyfQptYXJrZXJzIDwtIHJlYWQuY3N2KCJQYW5nbGFvREJfbWFya2Vyc18yN19NYXJfMjAyMC50c3YiLCBzZXAgPSAiXHQiKQptYXJrZXJzIDwtIG1hcmtlcnNbbWFya2VycyRjZWxsLnR5cGUgPT0gIkVuZG90aGVsaWFsIGNlbGxzIiAmIG1hcmtlcnMkc3BlY2llcyAhPSAiSHMiLF0KbWFya2VycwpgYGAKYGBge3J9CmdlbmVzIDwtIG1hcmtlcnMkb2ZmaWNpYWwuZ2VuZS5zeW1ib2wKCm1vdXNpZnkgPC0gZnVuY3Rpb24oYSl7CiAgcmV0dXJuKHBhc3RlMChzdWJzdHIoYSwxLDEpLCB0b2xvd2VyKHN1YnN0cihhLDIsbmNoYXIoYSkpKSkpCiAgCn0KZ2VuZXMgPC0gc2FwcGx5KGdlbmVzLCBtb3VzaWZ5KQpnZW5lcwpgYGAKCmBgYHtyfQpjb3VudHMgPC0gR2V0QXNzYXlEYXRhKG9iamVjdCA9IFNyaSwgc2xvdCA9ICJjb3VudHMiKQpgYGAKCmBgYHtyfQpjZWxsX3JhbmtpbmdzIDwtIEFVQ2VsbF9idWlsZFJhbmtpbmdzKGNvdW50cykKYGBgCgpgYGB7cn0KY2VsbHNfQVVDIDwtIEFVQ2VsbF9jYWxjQVVDKGdlbmVzLCBjZWxsX3JhbmtpbmdzKQpgYGAKCgpgYGB7cn0KY2VsbHNfYXNzaWdubWVudCA8LSBBVUNlbGxfZXhwbG9yZVRocmVzaG9sZHMoY2VsbHNfQVVDLCBwbG90SGlzdCA9IFRSVUUsIGFzc2lnbj1UUlVFKQpgYGAKCmBgYHtyfQpjZWxsc19hc3NpZ25tZW50JGdlbmVTZXQkYXNzaWdubWVudApgYGAKCgpgYGB7cn0KbmV3X2NlbGxzIDwtIG5hbWVzKHdoaWNoKGdldEFVQyhjZWxsc19BVUMpWyJnZW5lU2V0IixdPjAuMTUpKQpgYGAKCmBgYHtyfQpTcmkkRGlhZ29ub3NpcyA8LSBpZmVsc2UoY29sbmFtZXModGlzcykgJWluJSBuZXdfY2VsbHMsICJEaXNlYXNlIiwgIk5vcm1hbCIpCmBgYAoKYGBge3J9ClNyaVtbXV0KYGBgCgpgYGB7cn0KRGltUGxvdChvYmplY3QgPSBTcmksIGdyb3VwLmJ5ID0gIkRpYWdvbm9zaXMiLCBsYWJlbCA9IFRSVUUpCmBgYAoKYGBge3J9CkRpbVBsb3Qob2JqZWN0ID0gU3JpLCBncm91cC5ieSA9ICJjZWxsLnR5cGVzIiwgbGFiZWwgPSBUUlVFKQpgYGAKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCg==