Set environment; load data; look at data
rm(list=ls())
sessionInfo()
## R version 3.1.3 (2015-03-09)
## Platform: x86_64-apple-darwin13.4.0 (64-bit)
## Running under: OS X 10.10.2 (Yosemite)
##
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## loaded via a namespace (and not attached):
## [1] digest_0.6.8 evaluate_0.5.5 formatR_1.1 htmltools_0.2.6
## [5] knitr_1.9 rmarkdown_0.7 stringr_0.6.2 tools_3.1.3
library(drc)
## Loading required package: MASS
##
## 'drc' has been loaded.
##
## Please cite R and 'drc' if used for a publication,
## for references type 'citation()' and 'citation('drc')'.
##
##
## Attaching package: 'drc'
##
## The following objects are masked from 'package:stats':
##
## gaussian, getInitial
data = read.table("data.txt", header=T, sep="\t")
colnames(data) = c("Conc.uM", "log.Conc", "Pctrl")
plot(data$Conc.uM, data$Pctrl,
main="With original concentration", xlab="Concentration (uM)", ylab="% control", col="deeppink", pch=16)
plot(data$log.Conc, data$Pctrl,
main="With log concentration", xlab="Log concentration", ylab="% control", col="skyblue4", pch=16)
Fit a 4-parameter model with no constrain
m.4para = drm(Pctrl ~ Conc.uM, data = data, fct = L.4())
summary(m.4para)
##
## Model fitted: Logistic (ED50 as parameter) (4 parms)
##
## Parameter estimates:
##
## Estimate Std. Error t-value p-value
## b:(Intercept) 0.20039 0.13733 1.45923 0.1600
## c:(Intercept) 60.85553 9.78833 6.21715 0.0000
## d:(Intercept) 2211.93745 18930.03234 0.11685 0.9081
## e:(Intercept) -17.04595 48.86227 -0.34886 0.7308
##
## Residual standard error:
##
## 23.63569 (20 degrees of freedom)
plot(m.4para,
main="4-parameter; no contraints",
xlab="Concentration (uM)", ylab="% control",
col="blue", pch=16)
Fit a 5-parameter model with no constrain
m.5para = drm(Pctrl ~ Conc.uM, data = data, fct = L.5())
summary(m.5para)
##
## Model fitted: Generalised logistic (ED50 as parameter) (5 parms)
##
## Parameter estimates:
##
## Estimate Std. Error t-value p-value
## b:(Intercept) 2.7982e-01 1.1251e+00 2.4872e-01 0.8062
## c:(Intercept) 6.0848e+01 1.0227e+01 5.9497e+00 0.0000
## d:(Intercept) 1.4981e+03 1.6639e+04 9.0034e-02 0.9292
## e:(Intercept) -1.5341e+01 6.1116e+01 -2.5102e-01 0.8045
## f:(Intercept) 7.0695e-01 2.9737e+00 2.3774e-01 0.8146
##
## Residual standard error:
##
## 24.24578 (19 degrees of freedom)
plot(m.5para, main="5-parameter; no contraints",
xlab="Concentration (uM)", ylab="% control",
col="forestgreen", pch=16)
Fit a 4-parameter model with \(1000 \leq d \leq 2000\) and \(-17 \leq e \leq -1\)
m.4para.c1 = drm(Pctrl ~ Conc.uM, data = data, fct = L.4(),
lowerl=c(NA, NA, 1000, -17), upperl=c(NA, NA, 2000, -1))
summary(m.4para.c1)
##
## Model fitted: Logistic (ED50 as parameter) (4 parms)
##
## Parameter estimates:
##
## Estimate Std. Error t-value p-value
## b:(Intercept) 0.20040 0.13820 1.45009 0.1625
## c:(Intercept) 60.84418 9.78854 6.21586 0.0000
## d:(Intercept) 2000.00000 17286.80376 0.11570 0.9090
## e:(Intercept) -16.51015 49.80715 -0.33148 0.7437
##
## Residual standard error:
##
## 23.6364 (20 degrees of freedom)
plot(m.4para.c1, main="5-parameter; with contraints",
xlab="Concentration (uM)", ylab="% control",
col="orangered", pch=16)
Fit a 5-parameter model with \(1000 \leq d \leq 2000\) and \(-17 \leq e \leq -1\) and \(0 \leq f \leq 1\)
m.5para.c2 = drm(Pctrl ~ Conc.uM, data = data, fct = L.5(),
lowerl=c(NA, NA, 1000, -17, 0), upperl=c(NA, NA, 2000, -1, 1))
summary(m.5para.c2)
##
## Model fitted: Generalised logistic (ED50 as parameter) (5 parms)
##
## Parameter estimates:
##
## Estimate Std. Error t-value p-value
## b:(Intercept) 0.20649 1.71916 0.12011 0.9057
## c:(Intercept) 60.93540 11.40411 5.34328 0.0000
## d:(Intercept) 1002.85624 6149.57967 0.16308 0.8722
## e:(Intercept) -12.34579 35.26101 -0.35013 0.7301
## f:(Intercept) 1.00000 9.90861 0.10092 0.9207
##
## Residual standard error:
##
## 24.2586 (19 degrees of freedom)
plot(m.5para.c2, main="5-parameter; with contraints",
xlab="Concentration (uM)", ylab="% control",
col="royalblue", pch=16)