Loading library
library(FactoMineR)
## Warning: package 'FactoMineR' was built under R version 4.2.3
library(factoextra)
## Warning: package 'factoextra' was built under R version 4.2.3
## Loading required package: ggplot2
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
View data
data(decanthlon2)
## Warning in data(decanthlon2): data set 'decanthlon2' not found
head(decathlon2)
## X100m Long.jump Shot.put High.jump X400m X110m.hurdle Discus
## SEBRLE 11.04 7.58 14.83 2.07 49.81 14.69 43.75
## CLAY 10.76 7.40 14.26 1.86 49.37 14.05 50.72
## BERNARD 11.02 7.23 14.25 1.92 48.93 14.99 40.87
## YURKOV 11.34 7.09 15.19 2.10 50.42 15.31 46.26
## ZSIVOCZKY 11.13 7.30 13.48 2.01 48.62 14.17 45.67
## McMULLEN 10.83 7.31 13.76 2.13 49.91 14.38 44.41
## Pole.vault Javeline X1500m Rank Points Competition
## SEBRLE 5.02 63.19 291.7 1 8217 Decastar
## CLAY 4.92 60.15 301.5 2 8122 Decastar
## BERNARD 5.32 62.77 280.1 4 8067 Decastar
## YURKOV 4.72 63.44 276.4 5 8036 Decastar
## ZSIVOCZKY 4.42 55.37 268.0 7 8004 Decastar
## McMULLEN 4.42 56.37 285.1 8 7995 Decastar
str(decathlon2)
## 'data.frame': 27 obs. of 13 variables:
## $ X100m : num 11 10.8 11 11.3 11.1 ...
## $ Long.jump : num 7.58 7.4 7.23 7.09 7.3 7.31 6.81 7.56 6.97 7.27 ...
## $ Shot.put : num 14.8 14.3 14.2 15.2 13.5 ...
## $ High.jump : num 2.07 1.86 1.92 2.1 2.01 2.13 1.95 1.86 1.95 1.98 ...
## $ X400m : num 49.8 49.4 48.9 50.4 48.6 ...
## $ X110m.hurdle: num 14.7 14.1 15 15.3 14.2 ...
## $ Discus : num 43.8 50.7 40.9 46.3 45.7 ...
## $ Pole.vault : num 5.02 4.92 5.32 4.72 4.42 4.42 4.92 4.82 4.72 4.62 ...
## $ Javeline : num 63.2 60.1 62.8 63.4 55.4 ...
## $ X1500m : num 292 302 280 276 268 ...
## $ Rank : int 1 2 4 5 7 8 9 10 11 12 ...
## $ Points : int 8217 8122 8067 8036 8004 7995 7802 7733 7708 7651 ...
## $ Competition : Factor w/ 2 levels "Decastar","OlympicG": 1 1 1 1 1 1 1 1 1 1 ...
decathlon2.active <- decathlon2[1:23, 1:10]
head(decathlon2.active[, 1:5],3) # head of 3 rows of 5 columns.
## X100m Long.jump Shot.put High.jump X400m
## SEBRLE 11.04 7.58 14.83 2.07 49.81
## CLAY 10.76 7.40 14.26 1.86 49.37
## BERNARD 11.02 7.23 14.25 1.92 48.93
res.pca <- PCA(decathlon2.active, graph=FALSE) #Standadized data.
#View(res.pca)
print(res.pca)
## **Results for the Principal Component Analysis (PCA)**
## The analysis was performed on 23 individuals, described by 10 variables
## *The results are available in the following objects:
##
## name description
## 1 "$eig" "eigenvalues"
## 2 "$var" "results for the variables"
## 3 "$var$coord" "coord. for the variables"
## 4 "$var$cor" "correlations variables - dimensions"
## 5 "$var$cos2" "cos2 for the variables"
## 6 "$var$contrib" "contributions of the variables"
## 7 "$ind" "results for the individuals"
## 8 "$ind$coord" "coord. for the individuals"
## 9 "$ind$cos2" "cos2 for the individuals"
## 10 "$ind$contrib" "contributions of the individuals"
## 11 "$call" "summary statistics"
## 12 "$call$centre" "mean of the variables"
## 13 "$call$ecart.type" "standard error of the variables"
## 14 "$call$row.w" "weights for the individuals"
## 15 "$call$col.w" "weights for the variables"
# 4.4.1 eigenvales/variances