Import Dataset
## Import Raw Unballance Dataset that contain all county
Eperson4<- read_excel("ALL Civil Labor Force_1906 Unballance.xlsx",sheet = "Employee")
CLabor4<-read_excel("ALL Civil Labor Force_1906 Unballance.xlsx",sheet = "CivilLabor")
URate4<-read_excel("ALL Civil Labor Force_1906 Unballance.xlsx",sheet = "URate")
## List of Affected Parish in LA
# FIPS Affected Parish in LA
FIPS_aff = c("22051", "22071", "22103", "22089", "22087", "22095", "22075")
## Cheack correctness of list of Fips
filter(countypop, fips %in% FIPS_aff )[1:3]
## # A tibble: 7 × 3
## fips abbr county
## <chr> <chr> <chr>
## 1 22051 LA Jefferson Parish
## 2 22071 LA Orleans Parish
## 3 22075 LA Plaquemines Parish
## 4 22087 LA St. Bernard Parish
## 5 22089 LA St. Charles Parish
## 6 22095 LA St. John the Baptist Parish
## 7 22103 LA St. Tammany Parish
Employee Person
## Employee Person
LA_Emp<-Eperson4%>%
mutate(date=as.Date(date))%>% #Convert Posixt to Date format
filter(state=="LA"& !fips%in%FIPS_aff, #Filter State is LA and Fips out of Affected County
date=="2005-08-01"|date=="2006-07-01")%>% #Filter Focus Date
group_by(fips)%>% #Group by FIPS
mutate(Change=100*(value[2]-value[1])/value[1]) #Calculate Change From Aug-2005 to July-2006
LA_Emp$fips%>%unique()%>%length() # Check number of unique FIps in LA
## [1] 57
aff_Emp<-Eperson4%>%
mutate(date=as.Date(date))%>% #Convert Posixt to Date format
filter(fips%in%FIPS_aff, #Filter list in Affected County
date=="2005-08-01"|date=="2006-07-01")%>% #Filter Focus Date
group_by(fips)%>%
mutate(Change=100*(value[2]-value[1])/value[1])
US_Emp<-Eperson4%>%
mutate(date=as.Date(date))%>% #Convert Posixt to Date format
filter(state!="LA", #Filter State that non LA
date=="2005-08-01"|date=="2006-07-01")%>%
group_by(fips)%>%
mutate(Change=100*(value[2]-value[1])/value[1])
# NOTE : WE DONT USE LIST OF AFFECTED COUNTY SINCE ITS INCLUDE IN LA
## ARRANGE THE Average AREA Effect
df_Emp<-data.frame("Area"=c("Affected Parish","Neighbor Parish", "US National"),
"Employee Person"=c(mean(aff_Emp$Change),mean(LA_Emp$Change),mean(US_Emp$Change)))
Civil Labor
# Civil Labor
LA_Civ<-CLabor4%>%
mutate(date=as.Date(date))%>% #Convert Posixt to Date format
filter(state=="LA"& !fips%in%FIPS_aff, #Filter State is LA and Fips out of Affected County
date=="2005-08-01"|date=="2006-07-01")%>% #Filter Focus Date
group_by(fips)%>% #Group by FIPS
mutate(Change=100*(value[2]-value[1])/value[1]) #Calculate Change From Aug-2005 to July-2006
LA_Civ$fips%>%unique()%>%length() # Check number of unique FIps in LA
## [1] 57
aff_Civ<-CLabor4%>%
mutate(date=as.Date(date))%>% #Convert Posixt to Date format
filter(fips%in%FIPS_aff, #Filter list in Affected County
date=="2005-08-01"|date=="2006-07-01")%>% #Filter Focus Date
group_by(fips)%>%
mutate(Change=100*(value[2]-value[1])/value[1])
US_Civ<-CLabor4%>%
mutate(date=as.Date(date))%>% #Convert Posixt to Date format
filter(state!="LA", #Filter State that non LA
date=="2005-08-01"|date=="2006-07-01")%>%
group_by(fips)%>%
mutate(Change=100*(value[2]-value[1])/value[1])
df_Civ<-data.frame("Area"=c("Affected Parish","Neighbor Parish", "US National"),
"Civil Labor"=c(mean(aff_Civ$Change),mean(LA_Civ$Change),mean(US_Civ$Change)))
Unemployee Rate
## UnemRate
LA_UR<-URate4%>%
mutate(date=as.Date(date))%>%
filter(state=="LA"& !fips%in%FIPS_aff,
date=="2005-08-01"|date=="2006-07-01")%>%
group_by(fips)%>%
mutate(Change=(value[2]-value[1]),
Change_p=100*(value[2]-value[1])/value[1])
LA_UR$fips%>%unique()%>%length()
## [1] 57
aff_UR<-URate4%>%
mutate(date=as.Date(date))%>%
filter(fips%in%FIPS_aff,
date=="2005-08-01"|date=="2006-07-01")%>%
group_by(fips)%>%
mutate(Change=(value[2]-value[1]),
Change_p=100*(value[2]-value[1])/value[1])
aff_UR$fips%>%unique()%>%length()
## [1] 7
US_UR<-URate4%>%
mutate(date=as.Date(date))%>%
filter(state!="LA",
date=="2005-08-01"|date=="2006-07-01")%>%
group_by(fips)%>%
mutate(Change=(value[2]-value[1]),
Change_p=100*(value[2]-value[1])/value[1])
df_UR<-data.frame("Area"=c("Affected Parish","Neighbor Parish", "US National"),
"Unemployee Rate"=c(mean(aff_UR$Change),mean(LA_UR$Change),mean(US_UR$Change)),
"Unemployee Rate 2"=c(mean(aff_UR$Change_p),mean(LA_UR$Change_p),mean(US_UR$Change_p)))
Arrange Table
df_table<-df_Civ%>%
left_join(df_Emp)%>%
left_join(df_UR)
## Joining with `by = join_by(Area)`
## Joining with `by = join_by(Area)`
df_table
## Area Civil.Labor Employee.Person Unemployee.Rate Unemployee.Rate.2
## 1 Affected Parish -17.394856 -16.594595 -0.9714286 -17.932814
## 2 Neighbor Parish 4.295020 6.469592 -1.9298246 -28.862379
## 3 US National 2.058887 1.888285 0.1368035 2.878607