Debe tener dos factores como minimo. Igualmente requiere 2 aleatorizaciones.
Se usa en riego, fertilizacion, densidad de siembra, maquinaria- labranza
#Completamente al azar
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
xy = expand.grid(x = seq(6), y = seq(4))
xy$f1 = gl(4,6,24, paste0('V', 1:4))
xy$f2 = gl(3,2,24, paste0('R', 1:3))
xy$rep = gl(2,1,24, paste0('r', 1:2))
xy$name = paste0(xy$f1, xy$f2, xy$rep)
xy
## x y f1 f2 rep name
## 1 1 1 V1 R1 r1 V1R1r1
## 2 2 1 V1 R1 r2 V1R1r2
## 3 3 1 V1 R2 r1 V1R2r1
## 4 4 1 V1 R2 r2 V1R2r2
## 5 5 1 V1 R3 r1 V1R3r1
## 6 6 1 V1 R3 r2 V1R3r2
## 7 1 2 V2 R1 r1 V2R1r1
## 8 2 2 V2 R1 r2 V2R1r2
## 9 3 2 V2 R2 r1 V2R2r1
## 10 4 2 V2 R2 r2 V2R2r2
## 11 5 2 V2 R3 r1 V2R3r1
## 12 6 2 V2 R3 r2 V2R3r2
## 13 1 3 V3 R1 r1 V3R1r1
## 14 2 3 V3 R1 r2 V3R1r2
## 15 3 3 V3 R2 r1 V3R2r1
## 16 4 3 V3 R2 r2 V3R2r2
## 17 5 3 V3 R3 r1 V3R3r1
## 18 6 3 V3 R3 r2 V3R3r2
## 19 1 4 V4 R1 r1 V4R1r1
## 20 2 4 V4 R1 r2 V4R1r2
## 21 3 4 V4 R2 r1 V4R2r1
## 22 4 4 V4 R2 r2 V4R2r2
## 23 5 4 V4 R3 r1 V4R3r1
## 24 6 4 V4 R3 r2 V4R3r2
library(ggplot2)
ggplot(xy)+
aes(x,y, label = name, fill=f2)+
geom_tile(color = 'white')+
geom_text(color = 'white')+
labs(title = 'Completamente al azar')
#Parcelas Divididas
xy = expand.grid(y = seq(4), x = seq(6))
f2 = gl(3, 8, 24, paste0('R',1:3))
lf1 = paste0('V',1:4)
f1 = c(sample(lf1),sample(lf1),
sample(lf1),sample(lf1),
sample(lf1),sample(lf1))
rep = rep(rep(paste0('r',1:2), each=4), 3)
data = data.frame(xy, f1, f2, rep)
data$name = with(data, paste0(f1, rep))
\[Y_{ijk} = \mu + \alpha_{i} + n_k(i) + \beta_j + (\alpha\beta)_{ij} + \epsilon_k(ij)\]
set.seed(123)
data$biom = rnorm(24,8,2)
ggplot(data)+
aes(f2, biom)+
geom_boxplot()
ggplot(data)+
aes(f1, biom)+
geom_boxplot()
ggplot(data)+
aes(f2, biom, fill=f1)+
geom_boxplot()
library(lme4)
## Loading required package: Matrix
mod1 = aov(biom ~ f2 * f1 + Error(f2:rep),data)
## Warning in aov(biom ~ f2 * f1 + Error(f2:rep), data): Error() model is singular
summary(mod1)
##
## Error: f2:rep
## Df Sum Sq Mean Sq F value Pr(>F)
## f2 2 13.327 6.664 8.078 0.062 .
## Residuals 3 2.475 0.825
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Error: Within
## Df Sum Sq Mean Sq F value Pr(>F)
## f1 3 10.14 3.382 0.779 0.535
## f2:f1 6 19.58 3.264 0.752 0.624
## Residuals 9 39.06 4.340