## Cultivo de tomate
#Factor
aporque <- gl(2,60, 120, c('con_A', 'sin_A'))
#Segundo factor
variedad <- gl(3, 20, 120, c('v1', 'v2', 'v3' ))
#respuesta
peso_fresco <- rnorm(n =120, mean = 3, sd = 0.3)
df = data.frame(aporque, variedad, peso_fresco)
df$peso_fresco[3] = 3.5
df$peso_fresco[81] = 2.5
summary(df)
## aporque variedad peso_fresco
## con_A:60 v1:40 Min. :2.350
## sin_A:60 v2:40 1st Qu.:2.841
## v3:40 Median :2.976
## Mean :3.022
## 3rd Qu.:3.196
## Max. :3.692
library(collapsibleTree)
collapsibleTreeSummary(df, c('aporque', 'variedad', 'peso_fresco'), collapsed = F)
library(lattice)
bwplot(peso_fresco ~ variedad, df,
panel =function(...)
{panel.bwplot(...,groups=df$variedad, fill=c('red','blue','green'))})
library(lattice)
bwplot(peso_fresco ~ variedad, df,
panel =function(...)
{panel.bwplot(...,groups=df$aporque, fill=c('red','blue','green'))})
bwplot(peso_fresco ~ aporque|variedad, df)
tb = tapply(df$peso_fresco, list(df$aporque, df$variedad), mean)
tb
## v1 v2 v3
## con_A 3.031565 3.042426 2.996040
## sin_A 3.009915 3.005465 3.047802
tb = tapply(df$peso_fresco,
list(df$aporque, df$variedad), mean)
addmargins(tb, FUN = mean)
## Margins computed over dimensions
## in the following order:
## 1:
## 2:
## v1 v2 v3 mean
## con_A 3.031565 3.042426 2.996040 3.023344
## sin_A 3.009915 3.005465 3.047802 3.021061
## mean 3.020740 3.023945 3.021921 3.022202
\[H_1: \mu_1 = \mu_2 = \mu_3\] \[H_2: \mu_{aporque} = \mu_{no aporque}\]
\[H_3:\text{No hay interacción entre aporque y variedad}\] # Modelo
\[y_{ijk} = \mu + \tau_i + \delta_j + (\tau\delta)_{ij} + \epsilon_{ijk}\]
\(i: 1,2,3\) \(j: 1,2\) \(k: 1,2\)
\[H_{0_1}: \tau_{v1} = \tau_{v2} = \tau_{v3} = 0\] \[H_{0_2}:\delta_A = \delta_{\bar{A}}\] \[H_{0_3}:(\tau\sigma)_{ij}) = 0; \forall_{i,j}\] # Diseño (FCCA)
mod1 = aov(peso_fresco ~ variedad + aporque + variedad*aporque, df)
summary(mod1)
## Df Sum Sq Mean Sq F value Pr(>F)
## variedad 2 0.000 0.00011 0.001 0.999
## aporque 1 0.000 0.00016 0.002 0.965
## variedad:aporque 2 0.045 0.02249 0.271 0.763
## Residuals 114 9.473 0.08310
p = 0.3216 > 5, no se rechaza la hipotesis. Efecto de aporque nulo. No existe diferencia estadística en los pesos frescos promedio entre aporcar y no aporcar.
p = 0.4461 > 5, no se rechaza la hipotesis. Efecto de variedad nulo. No existe diferencia en los promedios de peso fresco en las variedades.
#Cultivo tomate
set.seed(123)
#Factor1
aporque <- gl(2,60, 120,c("Con_A", "Sin_A"))
#Factor2
variedad <- gl(3, 20, 120, c('v1', 'v2', 'v3'))
#rta
peso_fresco <- c(rnorm(n = 40, mean = 3, sd = 0.3),
rnorm(n = 80, mean = 4, sd = 0.4))
df1 = data.frame(aporque, variedad, peso_fresco)
df$peso_fresco[1] = 3.5
df$peso_fresco[81] = 2.5
mod2 = aov(peso_fresco ~ variedad + aporque +
+ variedad*aporque, df1)
summary(mod2)
## Df Sum Sq Mean Sq F value Pr(>F)
## variedad 2 4.738 2.369 22.42 6.13e-09 ***
## aporque 1 11.890 11.890 112.54 < 2e-16 ***
## variedad:aporque 2 10.312 5.156 48.81 4.87e-16 ***
## Residuals 114 12.044 0.106
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(ggplot2)
ggplot(data = df,
aes(variedad, peso_fresco, colour = aporque, group = aporque)) +
stat_summary(fun = mean, geom = "point", size = 4)+
stat_summary(fun = mean, geom = "line", linetype = 2)+
labs(y = "mean(peso)")+
theme_bw()