library(collapsibleTree)
FACTORIAL SIMPLE - COMPLETAMENTE AL AZAR
df1 = data.frame(
gen = gl(3, 5, 15, c('g1','g2','g3')),
rto = rnorm(n = 15, mean = 3, sd = 0.3)
)
collapsibleTreeSummary(df1, hierarchy = c('gen','rto'), collapsed = FALSE)
FACTORIAL COMPLETO - COMPLETAMENTE AL AZAR
df1 = data.frame(
gen = gl(3, 6, 18, c('g1','g2','g3')),
amb = gl(2, 3, 18, c('proveedor_1','proveedor_2')),
rto = rnorm(n = 18, mean = 3, sd = 0.3)
)
collapsibleTreeSummary(df1,
hierarchy = c('amb','gen','rto'),
collapsed = FALSE)
FACTORIAL INCOMPLETO - COMPLETAMENTE AL AZAR (DESCARADO)
df1 = data.frame(
gen = gl(6, 3, 18, paste0('g',1:6)),
amb = gl(2, 3, 18, c('proveedor_1','proveedor_2')),
rto = rnorm(n = 18, mean = 3, sd = 0.3)
)
collapsibleTreeSummary(df1,
hierarchy = c('amb','gen','rto'),
collapsed = FALSE)
FACTORIAL INCOMPLETO - COMPLETAMENTE AL AZAR (SOLAPADO)
df1 = data.frame(
fert = gl(3, 6, 18, c('gallinaza','pollinaza','15x15x15')),
dosis = gl(2, 3, 18, c('d0','d10')),
rto = rnorm(n = 18, mean = 3, sd = 0.3)
)
collapsibleTreeSummary(df1,
hierarchy = c('fert','dosis'),
collapsed = FALSE)
df1 = data.frame(
escuela = gl(3, 6, 18, c('publica','privada','mixta')),
profesor = gl(2, 3, 18, c('planta','ocasional')),
calidad_aten = rnorm(n = 18, mean = 3, sd = 0.3)
)
collapsibleTreeSummary(df1,
hierarchy = c('escuela','profesor'),
collapsed = FALSE)
df1 = data.frame(
platino = gl(3, 6, 18, c('pt1', 'pt2', 'sin')),
UV = gl(2, 3, 18, c('con','sin')),
vel_reac = rnorm(n = 18, mean = 3, sd = 0.3)
)
collapsibleTreeSummary(df1,
hierarchy = c('platino','UV'),
collapsed = FALSE)
df1 = data.frame(
fert = gl(3, 6, 18, c('org','qui','mix')),
dosis = gl(2, 3, 18, c('d0','d10')),
rto = rnorm(n = 18, mean = 3, sd = 0.3)
)
collapsibleTreeSummary(df1,
hierarchy = c('fert','dosis'),
collapsed = FALSE)
df1$trt = interaction(df1$fert, df1$dosis)
collapsibleTreeSummary(df1, hierarchy = c('trt', 'fert'))
xy = expand.grid(x=1:6, y=1:3)
xy$trt_ale = sample(df1$trt)
library(ggplot2)
ggplot(xy)+
aes(x,y, label = trt_ale)+
geom_tile(color='white')+
geom_text(color='white', size=7)

FATORIAL SIMPLE - ARREGLO EN BLOQUES COMPLETOS GENERALIZADOS AL
AZAR
df1 = data.frame(
# FACTOR - genotipo
gen = gl(3, 6, 18, c('g1','g2','g3')),
# BLOQUEO - procedencia
proc = gl(2, 3, 18, c('proveedor_1','proveedor_2')),
# RESPUESTA
rto = rnorm(n = 18, mean = 3, sd = 0.3)
)
collapsibleTreeSummary(df1,
hierarchy = c('proc','gen', 'rto'),
collapsed = FALSE)
FATORIAL SIMPLE - EN ARREGLO EN BLOQUES COMPLETOS AL AZAR
df1 = data.frame(
# FACTOR - genotipo
gen = gl(3, 2, 6, c('g1','g2','g3')),
# BLOQUEO - procedencia
proc = gl(2, 1, 6, c('proveedor_1','proveedor_2')),
# RESPUESTA
rto = rnorm(n = 6, mean = 3, sd = 0.3)
)
collapsibleTreeSummary(df1,
hierarchy = c('proc','gen', 'rto'),
collapsed = FALSE)
CUADRADO LATINO
df1 = data.frame(
# FACTOR - genotipo
variedad = gl(3, 12, 24, c('v1','v2','v3')),
# BLOQUEO 1 - procedencia
proc = gl(2, 6, 24, c('vendedor 1','vendedor 2')),
# BLOQUEO 2 - posicion invernadero (microclima)
pos_inver = gl(2, 3, 24, c('anterior','posterior')),
# RESPUESTA
rto = rnorm(n = 24, mean = 3, sd = 0.3)
)
collapsibleTreeSummary(df1,
hierarchy = c('pos_inver','proc','variedad', 'rto'),
collapsed = FALSE)
df1 = data.frame(
# FACTOR - genotipo
variedad = gl(3, 12, 36, c('v1','v2','v3')),
# BLOQUEO 1 - procedencia
proc = gl(2, 6, 36, c('vendedor 1','vendedor 2')),
# BLOQUEO 2 - posicion invernadero (microclima)
pos_inver = gl(3, 2, 36, c('anterior', 'central','posterior')),
# RESPUESTA
rto = rnorm(n = 36, mean = 3, sd = 0.3)
)
collapsibleTreeSummary(df1,
hierarchy = c('pos_inver','proc','variedad', 'rto'),
collapsed = TRUE)
PARCELAS DIVIDIDAS
df1 = data.frame(
# FACTOR 1 - temperatura
temp = gl(3, 12, 36, c('15C','20C','25C')),
# FACTOR 2 - presion
pres = gl(2, 6, 36, c('1 atm','2 atm')),
# RESPUESTA
cra = rnorm(n = 36, mean = 3, sd = 0.3)
)
collapsibleTreeSummary(df1,
hierarchy = c('temp','pres','cra'),
collapsed = FALSE)
df1 = data.frame(
# FACTOR 1 - variedad
var = gl(3, 12, 36, c('v1','v2','v3')),
# FACTOR 2 - densidad de siembra
dens = gl(2, 6, 36, c('d1','d2')),
# RESPUESTA
rto = rnorm(n = 36, mean = 3, sd = 0.3)
)
collapsibleTreeSummary(df1,
hierarchy = c('var','dens','rto'),
collapsed = FALSE)