library(collapsibleTree)

FACTORIAL SIMPLE - COMPLETAMENTE AL AZAR

df1 = data.frame(
  gen = gl(3, 5, 15, c('g1','g2','g3')),
  rto = rnorm(n = 15, mean = 3, sd = 0.3)
)
collapsibleTreeSummary(df1, hierarchy = c('gen','rto'), collapsed = FALSE)

FACTORIAL COMPLETO - COMPLETAMENTE AL AZAR

df1 = data.frame(
  gen = gl(3, 6, 18, c('g1','g2','g3')),
  amb = gl(2, 3, 18, c('proveedor_1','proveedor_2')),
  rto = rnorm(n = 18, mean = 3, sd = 0.3)
)
collapsibleTreeSummary(df1,
                       hierarchy = c('amb','gen','rto'),
                       collapsed = FALSE)

FACTORIAL INCOMPLETO - COMPLETAMENTE AL AZAR (DESCARADO)

df1 = data.frame(
  gen = gl(6, 3, 18, paste0('g',1:6)),
  amb = gl(2, 3, 18, c('proveedor_1','proveedor_2')),
  rto = rnorm(n = 18, mean = 3, sd = 0.3)
)
collapsibleTreeSummary(df1,
                       hierarchy = c('amb','gen','rto'),
                       collapsed = FALSE)

FACTORIAL INCOMPLETO - COMPLETAMENTE AL AZAR (SOLAPADO)

df1 = data.frame(
  fert = gl(3, 6, 18, c('gallinaza','pollinaza','15x15x15')),
  dosis = gl(2, 3, 18, c('d0','d10')),
  rto = rnorm(n = 18, mean = 3, sd = 0.3)
)
collapsibleTreeSummary(df1,
                       hierarchy = c('fert','dosis'),
                       collapsed = FALSE)
df1 = data.frame(
  escuela = gl(3, 6, 18, c('publica','privada','mixta')),
  profesor = gl(2, 3, 18, c('planta','ocasional')),
  calidad_aten = rnorm(n = 18, mean = 3, sd = 0.3)
)
collapsibleTreeSummary(df1,
                       hierarchy = c('escuela','profesor'),
                       collapsed = FALSE)
df1 = data.frame(
  platino = gl(3, 6, 18, c('pt1', 'pt2', 'sin')),
  UV = gl(2, 3, 18, c('con','sin')),
  vel_reac = rnorm(n = 18, mean = 3, sd = 0.3)
)
collapsibleTreeSummary(df1,
                       hierarchy = c('platino','UV'),
                       collapsed = FALSE)
df1 = data.frame(
  fert = gl(3, 6, 18, c('org','qui','mix')),
  dosis = gl(2, 3, 18, c('d0','d10')),
  rto = rnorm(n = 18, mean = 3, sd = 0.3)
)
collapsibleTreeSummary(df1,
                       hierarchy = c('fert','dosis'),
                       collapsed = FALSE)
df1$trt = interaction(df1$fert, df1$dosis)
collapsibleTreeSummary(df1, hierarchy = c('trt', 'fert'))
xy = expand.grid(x=1:6, y=1:3)
xy$trt_ale = sample(df1$trt)
library(ggplot2)
ggplot(xy)+
  aes(x,y, label = trt_ale)+
  geom_tile(color='white')+
  geom_text(color='white', size=7)

FATORIAL SIMPLE - ARREGLO EN BLOQUES COMPLETOS GENERALIZADOS AL AZAR

df1 = data.frame(
  # FACTOR - genotipo
  gen = gl(3, 6, 18, c('g1','g2','g3')),
  # BLOQUEO - procedencia
  proc = gl(2, 3, 18, c('proveedor_1','proveedor_2')),
  # RESPUESTA
  rto = rnorm(n = 18, mean = 3, sd = 0.3)
)
collapsibleTreeSummary(df1,
                       hierarchy = c('proc','gen', 'rto'),
                       collapsed = FALSE)

FATORIAL SIMPLE - EN ARREGLO EN BLOQUES COMPLETOS AL AZAR

df1 = data.frame(
  # FACTOR - genotipo
  gen = gl(3, 2, 6, c('g1','g2','g3')),
  # BLOQUEO - procedencia
  proc = gl(2, 1, 6, c('proveedor_1','proveedor_2')),
  # RESPUESTA
  rto = rnorm(n = 6, mean = 3, sd = 0.3)
)
collapsibleTreeSummary(df1,
                       hierarchy = c('proc','gen', 'rto'),
                       collapsed = FALSE)

CUADRADO LATINO

df1 = data.frame(
  # FACTOR - genotipo
  variedad = gl(3, 12, 24, c('v1','v2','v3')),
  # BLOQUEO 1 - procedencia
  proc = gl(2, 6, 24, c('vendedor 1','vendedor 2')),
  # BLOQUEO 2 - posicion invernadero (microclima)
  pos_inver = gl(2, 3, 24, c('anterior','posterior')),
  # RESPUESTA
  rto = rnorm(n = 24, mean = 3, sd = 0.3)
)
collapsibleTreeSummary(df1,
                       hierarchy = c('pos_inver','proc','variedad', 'rto'),
                       collapsed = FALSE)
df1 = data.frame(
  # FACTOR - genotipo
  variedad = gl(3, 12, 36, c('v1','v2','v3')),
  # BLOQUEO 1 - procedencia
  proc = gl(2, 6, 36, c('vendedor 1','vendedor 2')),
  # BLOQUEO 2 - posicion invernadero (microclima)
  pos_inver = gl(3, 2, 36, c('anterior', 'central','posterior')),
  # RESPUESTA
  rto = rnorm(n = 36, mean = 3, sd = 0.3)
)
collapsibleTreeSummary(df1,
                       hierarchy = c('pos_inver','proc','variedad', 'rto'),
                       collapsed = TRUE)

PARCELAS DIVIDIDAS

df1 = data.frame(
  # FACTOR 1 - temperatura
  temp = gl(3, 12, 36, c('15C','20C','25C')),
  # FACTOR 2 - presion
  pres = gl(2, 6, 36, c('1 atm','2 atm')),
  # RESPUESTA
  cra = rnorm(n = 36, mean = 3, sd = 0.3)
)
collapsibleTreeSummary(df1,
                       hierarchy = c('temp','pres','cra'),
                       collapsed = FALSE)
df1 = data.frame(
  # FACTOR 1 - variedad
  var = gl(3, 12, 36, c('v1','v2','v3')),
  # FACTOR 2 - densidad de siembra
  dens = gl(2, 6, 36, c('d1','d2')),
  # RESPUESTA
  rto = rnorm(n = 36, mean = 3, sd = 0.3)
)
collapsibleTreeSummary(df1,
                       hierarchy = c('var','dens','rto'),
                       collapsed = FALSE)