MODELO LINEALES MIXTOS

EJEMPLO CO2

Variable 1= Type Variable 2= Treatment Variable 3= Plant (Aleatoria) Variable 4= Conc *Variable5= Uptake (Co2)

library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.3.1
## Warning: package 'lubridate' was built under R version 4.3.1
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.2     ✔ readr     2.1.4
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ ggplot2   3.4.2     ✔ tibble    3.2.1
## ✔ lubridate 1.9.2     ✔ tidyr     1.3.0
## ✔ purrr     1.0.1     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(broom.mixed)
## Warning: package 'broom.mixed' was built under R version 4.3.1
library(lme4)
## Warning: package 'lme4' was built under R version 4.3.1
## Loading required package: Matrix
## 
## Attaching package: 'Matrix'
## 
## The following objects are masked from 'package:tidyr':
## 
##     expand, pack, unpack
library(ggplot2)

1. BASE DE DATOS

data2023= "co2"
print(CO2)
## Grouped Data: uptake ~ conc | Plant
##    Plant        Type  Treatment conc uptake
## 1    Qn1      Quebec nonchilled   95   16.0
## 2    Qn1      Quebec nonchilled  175   30.4
## 3    Qn1      Quebec nonchilled  250   34.8
## 4    Qn1      Quebec nonchilled  350   37.2
## 5    Qn1      Quebec nonchilled  500   35.3
## 6    Qn1      Quebec nonchilled  675   39.2
## 7    Qn1      Quebec nonchilled 1000   39.7
## 8    Qn2      Quebec nonchilled   95   13.6
## 9    Qn2      Quebec nonchilled  175   27.3
## 10   Qn2      Quebec nonchilled  250   37.1
## 11   Qn2      Quebec nonchilled  350   41.8
## 12   Qn2      Quebec nonchilled  500   40.6
## 13   Qn2      Quebec nonchilled  675   41.4
## 14   Qn2      Quebec nonchilled 1000   44.3
## 15   Qn3      Quebec nonchilled   95   16.2
## 16   Qn3      Quebec nonchilled  175   32.4
## 17   Qn3      Quebec nonchilled  250   40.3
## 18   Qn3      Quebec nonchilled  350   42.1
## 19   Qn3      Quebec nonchilled  500   42.9
## 20   Qn3      Quebec nonchilled  675   43.9
## 21   Qn3      Quebec nonchilled 1000   45.5
## 22   Qc1      Quebec    chilled   95   14.2
## 23   Qc1      Quebec    chilled  175   24.1
## 24   Qc1      Quebec    chilled  250   30.3
## 25   Qc1      Quebec    chilled  350   34.6
## 26   Qc1      Quebec    chilled  500   32.5
## 27   Qc1      Quebec    chilled  675   35.4
## 28   Qc1      Quebec    chilled 1000   38.7
## 29   Qc2      Quebec    chilled   95    9.3
## 30   Qc2      Quebec    chilled  175   27.3
## 31   Qc2      Quebec    chilled  250   35.0
## 32   Qc2      Quebec    chilled  350   38.8
## 33   Qc2      Quebec    chilled  500   38.6
## 34   Qc2      Quebec    chilled  675   37.5
## 35   Qc2      Quebec    chilled 1000   42.4
## 36   Qc3      Quebec    chilled   95   15.1
## 37   Qc3      Quebec    chilled  175   21.0
## 38   Qc3      Quebec    chilled  250   38.1
## 39   Qc3      Quebec    chilled  350   34.0
## 40   Qc3      Quebec    chilled  500   38.9
## 41   Qc3      Quebec    chilled  675   39.6
## 42   Qc3      Quebec    chilled 1000   41.4
## 43   Mn1 Mississippi nonchilled   95   10.6
## 44   Mn1 Mississippi nonchilled  175   19.2
## 45   Mn1 Mississippi nonchilled  250   26.2
## 46   Mn1 Mississippi nonchilled  350   30.0
## 47   Mn1 Mississippi nonchilled  500   30.9
## 48   Mn1 Mississippi nonchilled  675   32.4
## 49   Mn1 Mississippi nonchilled 1000   35.5
## 50   Mn2 Mississippi nonchilled   95   12.0
## 51   Mn2 Mississippi nonchilled  175   22.0
## 52   Mn2 Mississippi nonchilled  250   30.6
## 53   Mn2 Mississippi nonchilled  350   31.8
## 54   Mn2 Mississippi nonchilled  500   32.4
## 55   Mn2 Mississippi nonchilled  675   31.1
## 56   Mn2 Mississippi nonchilled 1000   31.5
## 57   Mn3 Mississippi nonchilled   95   11.3
## 58   Mn3 Mississippi nonchilled  175   19.4
## 59   Mn3 Mississippi nonchilled  250   25.8
## 60   Mn3 Mississippi nonchilled  350   27.9
## 61   Mn3 Mississippi nonchilled  500   28.5
## 62   Mn3 Mississippi nonchilled  675   28.1
## 63   Mn3 Mississippi nonchilled 1000   27.8
## 64   Mc1 Mississippi    chilled   95   10.5
## 65   Mc1 Mississippi    chilled  175   14.9
## 66   Mc1 Mississippi    chilled  250   18.1
## 67   Mc1 Mississippi    chilled  350   18.9
## 68   Mc1 Mississippi    chilled  500   19.5
## 69   Mc1 Mississippi    chilled  675   22.2
## 70   Mc1 Mississippi    chilled 1000   21.9
## 71   Mc2 Mississippi    chilled   95    7.7
## 72   Mc2 Mississippi    chilled  175   11.4
## 73   Mc2 Mississippi    chilled  250   12.3
## 74   Mc2 Mississippi    chilled  350   13.0
## 75   Mc2 Mississippi    chilled  500   12.5
## 76   Mc2 Mississippi    chilled  675   13.7
## 77   Mc2 Mississippi    chilled 1000   14.4
## 78   Mc3 Mississippi    chilled   95   10.6
## 79   Mc3 Mississippi    chilled  175   18.0
## 80   Mc3 Mississippi    chilled  250   17.9
## 81   Mc3 Mississippi    chilled  350   17.9
## 82   Mc3 Mississippi    chilled  500   17.9
## 83   Mc3 Mississippi    chilled  675   18.9
## 84   Mc3 Mississippi    chilled 1000   19.9
Ruido=runif(84,0.02,0.04)
Uptake2= Ruido+CO2$uptake
print(Uptake2)
##  [1] 16.024269 30.430803 34.830751 37.236099 35.338709 39.233665 39.739403
##  [8] 13.625062 27.332062 37.133075 41.836500 40.629038 41.426623 44.336706
## [15] 16.226614 32.435378 40.331728 42.123874 42.931842 43.923327 45.522295
## [22] 14.234168 24.120403 30.338876 34.625652 32.520859 35.427634 38.735680
## [29]  9.323210 27.335237 35.026381 38.826496 38.626286 37.520760 42.439008
## [36] 15.134291 21.028970 38.120407 34.020015 38.923176 39.620840 41.429767
## [43] 10.629146 19.232918 26.235948 30.022028 30.924584 32.427455 35.525549
## [50] 12.025922 22.025837 30.634936 31.821229 32.427029 31.130845 31.533873
## [57] 11.327390 19.427482 25.824640 27.939488 28.521386 28.137217 27.830469
## [64] 10.539310 14.929518 18.121689 18.933059 19.532601 22.222825 21.926568
## [71]  7.738803 11.426874 12.331619 13.031225 12.534495 13.738229 14.421754
## [78] 10.633734 18.029090 17.921885 17.931126 17.931070 18.938221 19.934600
hist(Uptake2)

2.ANÁLISIS DESCRIPTIVO

ggplot(CO2, aes(x= conc, y= Uptake2, color=Type))+ geom_point()

*Podemos ver en el primer grafico que a mayor conc las mejores plantas que captan CO2 son las del type= Quebec

ggplot(CO2, aes(x= conc, y= Uptake2, color=Type))+ geom_point(aes(shape=Treatment))+theme_bw()

*En la grafica anterior podemos ver la interaccion del primer grafico con el Treatment o enfriamiento -Nonchilled= No Resfriado; Chilled= Resfriado

ggplot(CO2, aes(x= conc, y= Uptake2, color=Type))+ geom_point(aes(shape=Treatment))+
  geom_path(aes(group=Plant, lty=Treatment)) +theme_bw()

Podemos apreciar tres plantas del tipo Mississippi que encuentra resfriadas Podemos apreciar tres plantas del tipo Mississippi que encuentra No resfriadas * Adiferencia del type Quebec no se puede ver una tendecia clara

*Ya que la variable Plant es una variable aleatoria no podriamos interpretar adecaudamente solo con la grafica anterior

*Aunque podemos ver una interaccion entre Type y treatment

Para analizar los modelos aleatorios se usa:

MODELO LINEAL VS MODELO LINEAL MIXTO

#NOTA: Modelo exponencial se usa la función (Log).

#Modelo lineal
Fit1 <- lm(Uptake2 ~ I(log(conc)) + Type:Treatment, data = CO2)
summary(Fit1)
## 
## Call:
## lm(formula = Uptake2 ~ I(log(conc)) + Type:Treatment, data = CO2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -11.721  -2.890   0.583   2.765   8.867 
## 
## Coefficients: (1 not defined because of singularities)
##                                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                         -33.5256     4.0764  -8.224 3.19e-12 ***
## I(log(conc))                          8.4840     0.6783  12.508  < 2e-16 ***
## TypeQuebec:Treatmentnonchilled       19.5190     1.4401  13.554  < 2e-16 ***
## TypeMississippi:Treatmentnonchilled  10.1361     1.4401   7.038 6.31e-10 ***
## TypeQuebec:Treatmentchilled          15.9348     1.4401  11.065  < 2e-16 ***
## TypeMississippi:Treatmentchilled          NA         NA      NA       NA    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.667 on 79 degrees of freedom
## Multiple R-squared:  0.8228, Adjusted R-squared:  0.8138 
## F-statistic: 91.68 on 4 and 79 DF,  p-value: < 2.2e-16
##se utiliza unicamente para variables de efecto fijo. 
#siendo uptake 2 la variable respuesta que depende de la concentración de CO2, y la interacción entre el tratamiento y el lugar. 
#Planteamos interacción en el ejemplo al observar la gráfica. 
#Modelo lineal mixto

#Aleatorizar los datos, factor aleatorio (1| Plant).
#Esto hace que cada una de las plantas tenga un intercepto distinto.
Fit2 <- lmer(Uptake2 ~ I(log(conc)) + Type : Treatment + (1 | Plant), data = CO2)
## fixed-effect model matrix is rank deficient so dropping 1 column / coefficient
summary(Fit2)
## Linear mixed model fit by REML ['lmerMod']
## Formula: Uptake2 ~ I(log(conc)) + Type:Treatment + (1 | Plant)
##    Data: CO2
## 
## REML criterion at convergence: 482.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.6944 -0.5386  0.1038  0.6899  1.8917 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  Plant    (Intercept)  2.151   1.467   
##  Residual             20.252   4.500   
## Number of obs: 84, groups:  Plant, 12
## 
## Fixed effects:
##                                     Estimate Std. Error t value
## (Intercept)                         -33.5256     4.0213  -8.337
## I(log(conc))                          8.4840     0.6541  12.970
## TypeQuebec:Treatmentnonchilled       19.5190     1.8338  10.644
## TypeMississippi:Treatmentnonchilled  10.1361     1.8338   5.527
## TypeQuebec:Treatmentchilled          15.9348     1.8338   8.689
## 
## Correlation of Fixed Effects:
##                (Intr) I(l()) TypQbc:Trtmntn TypM:T
## I(log(cnc))    -0.947                             
## TypQbc:Trtmntn -0.228  0.000                      
## TypMssssp:T    -0.228  0.000  0.500               
## TypQbc:Trtmntc -0.228  0.000  0.500          0.500
## fit warnings:
## fixed-effect model matrix is rank deficient so dropping 1 column / coefficient
#Se tiene en cuenta errores aleatorios por individuo. 

*Se observa que los interceptos y pendientes de cada modelos son muy similares

*En este caso para las variables aleatorias la varianza es de 2.166

##MODELO LINEAL.

broom::glance(Fit1)
## # A tibble: 1 × 12
##   r.squared adj.r.squared sigma statistic  p.value    df logLik   AIC   BIC
##       <dbl>         <dbl> <dbl>     <dbl>    <dbl> <dbl>  <dbl> <dbl> <dbl>
## 1     0.823         0.814  4.67      91.7 6.98e-29     4  -246.  504.  519.
## # ℹ 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>
broom::tidy(Fit1)
## # A tibble: 6 × 5
##   term                                estimate std.error statistic   p.value
##   <chr>                                  <dbl>     <dbl>     <dbl>     <dbl>
## 1 (Intercept)                           -33.5      4.08      -8.22  3.19e-12
## 2 I(log(conc))                            8.48     0.678     12.5   2.02e-20
## 3 TypeQuebec:Treatmentnonchilled         19.5      1.44      13.6   2.60e-22
## 4 TypeMississippi:Treatmentnonchilled    10.1      1.44       7.04  6.31e-10
## 5 TypeQuebec:Treatmentchilled            15.9      1.44      11.1   1.00e-17
## 6 TypeMississippi:Treatmentchilled       NA       NA         NA    NA
#El tidy nos indica cual sera el estimador de cada uno de los factores.

Modelo lineal mixto

broom.mixed::glance(Fit2) 
## # A tibble: 1 × 7
##    nobs sigma logLik   AIC   BIC REMLcrit df.residual
##   <int> <dbl>  <dbl> <dbl> <dbl>    <dbl>       <int>
## 1    84  4.50  -241.  496.  513.     482.          77
#En este modelo no se tienen R cuadrados.

*En este caso se observa la columna logLik, donde, valores negativos indican una mejor calidad del ajsute del modelo, por tanto, como el nuestor es -241.1621 es un buen ajuste.

broom.mixed::tidy(Fit2)
## # A tibble: 7 × 6
##   effect   group    term                            estimate std.error statistic
##   <chr>    <chr>    <chr>                              <dbl>     <dbl>     <dbl>
## 1 fixed    <NA>     (Intercept)                       -33.5      4.02      -8.34
## 2 fixed    <NA>     I(log(conc))                        8.48     0.654     13.0 
## 3 fixed    <NA>     TypeQuebec:Treatmentnonchilled     19.5      1.83      10.6 
## 4 fixed    <NA>     TypeMississippi:Treatmentnonch…    10.1      1.83       5.53
## 5 fixed    <NA>     TypeQuebec:Treatmentchilled        15.9      1.83       8.69
## 6 ran_pars Plant    sd__(Intercept)                     1.47    NA         NA   
## 7 ran_pars Residual sd__Observation                     4.50    NA         NA

*Se observa los valores de las interacciones para la columna estimate y se puede decir que se cumple con el análisis descriptivo, debido a que Quebec-nonchilled presenta mayor valor (19.519) y en la grafica concuerda con que son las plantas que más captan CO2. Por otro lado, Mississipi - nonchilled presentan menor valor (10.139) y en la grafica concuerda que captan menos CO2 en comparación con las de Quebec.

EJEMPLO POLLO

data("chickWeight")
## Warning in data("chickWeight"): data set 'chickWeight' not found
print(ChickWeight)
## Grouped Data: weight ~ Time | Chick
##     weight Time Chick Diet
## 1       42    0     1    1
## 2       51    2     1    1
## 3       59    4     1    1
## 4       64    6     1    1
## 5       76    8     1    1
## 6       93   10     1    1
## 7      106   12     1    1
## 8      125   14     1    1
## 9      149   16     1    1
## 10     171   18     1    1
## 11     199   20     1    1
## 12     205   21     1    1
## 13      40    0     2    1
## 14      49    2     2    1
## 15      58    4     2    1
## 16      72    6     2    1
## 17      84    8     2    1
## 18     103   10     2    1
## 19     122   12     2    1
## 20     138   14     2    1
## 21     162   16     2    1
## 22     187   18     2    1
## 23     209   20     2    1
## 24     215   21     2    1
## 25      43    0     3    1
## 26      39    2     3    1
## 27      55    4     3    1
## 28      67    6     3    1
## 29      84    8     3    1
## 30      99   10     3    1
## 31     115   12     3    1
## 32     138   14     3    1
## 33     163   16     3    1
## 34     187   18     3    1
## 35     198   20     3    1
## 36     202   21     3    1
## 37      42    0     4    1
## 38      49    2     4    1
## 39      56    4     4    1
## 40      67    6     4    1
## 41      74    8     4    1
## 42      87   10     4    1
## 43     102   12     4    1
## 44     108   14     4    1
## 45     136   16     4    1
## 46     154   18     4    1
## 47     160   20     4    1
## 48     157   21     4    1
## 49      41    0     5    1
## 50      42    2     5    1
## 51      48    4     5    1
## 52      60    6     5    1
## 53      79    8     5    1
## 54     106   10     5    1
## 55     141   12     5    1
## 56     164   14     5    1
## 57     197   16     5    1
## 58     199   18     5    1
## 59     220   20     5    1
## 60     223   21     5    1
## 61      41    0     6    1
## 62      49    2     6    1
## 63      59    4     6    1
## 64      74    6     6    1
## 65      97    8     6    1
## 66     124   10     6    1
## 67     141   12     6    1
## 68     148   14     6    1
## 69     155   16     6    1
## 70     160   18     6    1
## 71     160   20     6    1
## 72     157   21     6    1
## 73      41    0     7    1
## 74      49    2     7    1
## 75      57    4     7    1
## 76      71    6     7    1
## 77      89    8     7    1
## 78     112   10     7    1
## 79     146   12     7    1
## 80     174   14     7    1
## 81     218   16     7    1
## 82     250   18     7    1
## 83     288   20     7    1
## 84     305   21     7    1
## 85      42    0     8    1
## 86      50    2     8    1
## 87      61    4     8    1
## 88      71    6     8    1
## 89      84    8     8    1
## 90      93   10     8    1
## 91     110   12     8    1
## 92     116   14     8    1
## 93     126   16     8    1
## 94     134   18     8    1
## 95     125   20     8    1
## 96      42    0     9    1
## 97      51    2     9    1
## 98      59    4     9    1
## 99      68    6     9    1
## 100     85    8     9    1
## 101     96   10     9    1
## 102     90   12     9    1
## 103     92   14     9    1
## 104     93   16     9    1
## 105    100   18     9    1
## 106    100   20     9    1
## 107     98   21     9    1
## 108     41    0    10    1
## 109     44    2    10    1
## 110     52    4    10    1
## 111     63    6    10    1
## 112     74    8    10    1
## 113     81   10    10    1
## 114     89   12    10    1
## 115     96   14    10    1
## 116    101   16    10    1
## 117    112   18    10    1
## 118    120   20    10    1
## 119    124   21    10    1
## 120     43    0    11    1
## 121     51    2    11    1
## 122     63    4    11    1
## 123     84    6    11    1
## 124    112    8    11    1
## 125    139   10    11    1
## 126    168   12    11    1
## 127    177   14    11    1
## 128    182   16    11    1
## 129    184   18    11    1
## 130    181   20    11    1
## 131    175   21    11    1
## 132     41    0    12    1
## 133     49    2    12    1
## 134     56    4    12    1
## 135     62    6    12    1
## 136     72    8    12    1
## 137     88   10    12    1
## 138    119   12    12    1
## 139    135   14    12    1
## 140    162   16    12    1
## 141    185   18    12    1
## 142    195   20    12    1
## 143    205   21    12    1
## 144     41    0    13    1
## 145     48    2    13    1
## 146     53    4    13    1
## 147     60    6    13    1
## 148     65    8    13    1
## 149     67   10    13    1
## 150     71   12    13    1
## 151     70   14    13    1
## 152     71   16    13    1
## 153     81   18    13    1
## 154     91   20    13    1
## 155     96   21    13    1
## 156     41    0    14    1
## 157     49    2    14    1
## 158     62    4    14    1
## 159     79    6    14    1
## 160    101    8    14    1
## 161    128   10    14    1
## 162    164   12    14    1
## 163    192   14    14    1
## 164    227   16    14    1
## 165    248   18    14    1
## 166    259   20    14    1
## 167    266   21    14    1
## 168     41    0    15    1
## 169     49    2    15    1
## 170     56    4    15    1
## 171     64    6    15    1
## 172     68    8    15    1
## 173     68   10    15    1
## 174     67   12    15    1
## 175     68   14    15    1
## 176     41    0    16    1
## 177     45    2    16    1
## 178     49    4    16    1
## 179     51    6    16    1
## 180     57    8    16    1
## 181     51   10    16    1
## 182     54   12    16    1
## 183     42    0    17    1
## 184     51    2    17    1
## 185     61    4    17    1
## 186     72    6    17    1
## 187     83    8    17    1
## 188     89   10    17    1
## 189     98   12    17    1
## 190    103   14    17    1
## 191    113   16    17    1
## 192    123   18    17    1
## 193    133   20    17    1
## 194    142   21    17    1
## 195     39    0    18    1
## 196     35    2    18    1
## 197     43    0    19    1
## 198     48    2    19    1
## 199     55    4    19    1
## 200     62    6    19    1
## 201     65    8    19    1
## 202     71   10    19    1
## 203     82   12    19    1
## 204     88   14    19    1
## 205    106   16    19    1
## 206    120   18    19    1
## 207    144   20    19    1
## 208    157   21    19    1
## 209     41    0    20    1
## 210     47    2    20    1
## 211     54    4    20    1
## 212     58    6    20    1
## 213     65    8    20    1
## 214     73   10    20    1
## 215     77   12    20    1
## 216     89   14    20    1
## 217     98   16    20    1
## 218    107   18    20    1
## 219    115   20    20    1
## 220    117   21    20    1
## 221     40    0    21    2
## 222     50    2    21    2
## 223     62    4    21    2
## 224     86    6    21    2
## 225    125    8    21    2
## 226    163   10    21    2
## 227    217   12    21    2
## 228    240   14    21    2
## 229    275   16    21    2
## 230    307   18    21    2
## 231    318   20    21    2
## 232    331   21    21    2
## 233     41    0    22    2
## 234     55    2    22    2
## 235     64    4    22    2
## 236     77    6    22    2
## 237     90    8    22    2
## 238     95   10    22    2
## 239    108   12    22    2
## 240    111   14    22    2
## 241    131   16    22    2
## 242    148   18    22    2
## 243    164   20    22    2
## 244    167   21    22    2
## 245     43    0    23    2
## 246     52    2    23    2
## 247     61    4    23    2
## 248     73    6    23    2
## 249     90    8    23    2
## 250    103   10    23    2
## 251    127   12    23    2
## 252    135   14    23    2
## 253    145   16    23    2
## 254    163   18    23    2
## 255    170   20    23    2
## 256    175   21    23    2
## 257     42    0    24    2
## 258     52    2    24    2
## 259     58    4    24    2
## 260     74    6    24    2
## 261     66    8    24    2
## 262     68   10    24    2
## 263     70   12    24    2
## 264     71   14    24    2
## 265     72   16    24    2
## 266     72   18    24    2
## 267     76   20    24    2
## 268     74   21    24    2
## 269     40    0    25    2
## 270     49    2    25    2
## 271     62    4    25    2
## 272     78    6    25    2
## 273    102    8    25    2
## 274    124   10    25    2
## 275    146   12    25    2
## 276    164   14    25    2
## 277    197   16    25    2
## 278    231   18    25    2
## 279    259   20    25    2
## 280    265   21    25    2
## 281     42    0    26    2
## 282     48    2    26    2
## 283     57    4    26    2
## 284     74    6    26    2
## 285     93    8    26    2
## 286    114   10    26    2
## 287    136   12    26    2
## 288    147   14    26    2
## 289    169   16    26    2
## 290    205   18    26    2
## 291    236   20    26    2
## 292    251   21    26    2
## 293     39    0    27    2
## 294     46    2    27    2
## 295     58    4    27    2
## 296     73    6    27    2
## 297     87    8    27    2
## 298    100   10    27    2
## 299    115   12    27    2
## 300    123   14    27    2
## 301    144   16    27    2
## 302    163   18    27    2
## 303    185   20    27    2
## 304    192   21    27    2
## 305     39    0    28    2
## 306     46    2    28    2
## 307     58    4    28    2
## 308     73    6    28    2
## 309     92    8    28    2
## 310    114   10    28    2
## 311    145   12    28    2
## 312    156   14    28    2
## 313    184   16    28    2
## 314    207   18    28    2
## 315    212   20    28    2
## 316    233   21    28    2
## 317     39    0    29    2
## 318     48    2    29    2
## 319     59    4    29    2
## 320     74    6    29    2
## 321     87    8    29    2
## 322    106   10    29    2
## 323    134   12    29    2
## 324    150   14    29    2
## 325    187   16    29    2
## 326    230   18    29    2
## 327    279   20    29    2
## 328    309   21    29    2
## 329     42    0    30    2
## 330     48    2    30    2
## 331     59    4    30    2
## 332     72    6    30    2
## 333     85    8    30    2
## 334     98   10    30    2
## 335    115   12    30    2
## 336    122   14    30    2
## 337    143   16    30    2
## 338    151   18    30    2
## 339    157   20    30    2
## 340    150   21    30    2
## 341     42    0    31    3
## 342     53    2    31    3
## 343     62    4    31    3
## 344     73    6    31    3
## 345     85    8    31    3
## 346    102   10    31    3
## 347    123   12    31    3
## 348    138   14    31    3
## 349    170   16    31    3
## 350    204   18    31    3
## 351    235   20    31    3
## 352    256   21    31    3
## 353     41    0    32    3
## 354     49    2    32    3
## 355     65    4    32    3
## 356     82    6    32    3
## 357    107    8    32    3
## 358    129   10    32    3
## 359    159   12    32    3
## 360    179   14    32    3
## 361    221   16    32    3
## 362    263   18    32    3
## 363    291   20    32    3
## 364    305   21    32    3
## 365     39    0    33    3
## 366     50    2    33    3
## 367     63    4    33    3
## 368     77    6    33    3
## 369     96    8    33    3
## 370    111   10    33    3
## 371    137   12    33    3
## 372    144   14    33    3
## 373    151   16    33    3
## 374    146   18    33    3
## 375    156   20    33    3
## 376    147   21    33    3
## 377     41    0    34    3
## 378     49    2    34    3
## 379     63    4    34    3
## 380     85    6    34    3
## 381    107    8    34    3
## 382    134   10    34    3
## 383    164   12    34    3
## 384    186   14    34    3
## 385    235   16    34    3
## 386    294   18    34    3
## 387    327   20    34    3
## 388    341   21    34    3
## 389     41    0    35    3
## 390     53    2    35    3
## 391     64    4    35    3
## 392     87    6    35    3
## 393    123    8    35    3
## 394    158   10    35    3
## 395    201   12    35    3
## 396    238   14    35    3
## 397    287   16    35    3
## 398    332   18    35    3
## 399    361   20    35    3
## 400    373   21    35    3
## 401     39    0    36    3
## 402     48    2    36    3
## 403     61    4    36    3
## 404     76    6    36    3
## 405     98    8    36    3
## 406    116   10    36    3
## 407    145   12    36    3
## 408    166   14    36    3
## 409    198   16    36    3
## 410    227   18    36    3
## 411    225   20    36    3
## 412    220   21    36    3
## 413     41    0    37    3
## 414     48    2    37    3
## 415     56    4    37    3
## 416     68    6    37    3
## 417     80    8    37    3
## 418     83   10    37    3
## 419    103   12    37    3
## 420    112   14    37    3
## 421    135   16    37    3
## 422    157   18    37    3
## 423    169   20    37    3
## 424    178   21    37    3
## 425     41    0    38    3
## 426     49    2    38    3
## 427     61    4    38    3
## 428     74    6    38    3
## 429     98    8    38    3
## 430    109   10    38    3
## 431    128   12    38    3
## 432    154   14    38    3
## 433    192   16    38    3
## 434    232   18    38    3
## 435    280   20    38    3
## 436    290   21    38    3
## 437     42    0    39    3
## 438     50    2    39    3
## 439     61    4    39    3
## 440     78    6    39    3
## 441     89    8    39    3
## 442    109   10    39    3
## 443    130   12    39    3
## 444    146   14    39    3
## 445    170   16    39    3
## 446    214   18    39    3
## 447    250   20    39    3
## 448    272   21    39    3
## 449     41    0    40    3
## 450     55    2    40    3
## 451     66    4    40    3
## 452     79    6    40    3
## 453    101    8    40    3
## 454    120   10    40    3
## 455    154   12    40    3
## 456    182   14    40    3
## 457    215   16    40    3
## 458    262   18    40    3
## 459    295   20    40    3
## 460    321   21    40    3
## 461     42    0    41    4
## 462     51    2    41    4
## 463     66    4    41    4
## 464     85    6    41    4
## 465    103    8    41    4
## 466    124   10    41    4
## 467    155   12    41    4
## 468    153   14    41    4
## 469    175   16    41    4
## 470    184   18    41    4
## 471    199   20    41    4
## 472    204   21    41    4
## 473     42    0    42    4
## 474     49    2    42    4
## 475     63    4    42    4
## 476     84    6    42    4
## 477    103    8    42    4
## 478    126   10    42    4
## 479    160   12    42    4
## 480    174   14    42    4
## 481    204   16    42    4
## 482    234   18    42    4
## 483    269   20    42    4
## 484    281   21    42    4
## 485     42    0    43    4
## 486     55    2    43    4
## 487     69    4    43    4
## 488     96    6    43    4
## 489    131    8    43    4
## 490    157   10    43    4
## 491    184   12    43    4
## 492    188   14    43    4
## 493    197   16    43    4
## 494    198   18    43    4
## 495    199   20    43    4
## 496    200   21    43    4
## 497     42    0    44    4
## 498     51    2    44    4
## 499     65    4    44    4
## 500     86    6    44    4
## 501    103    8    44    4
## 502    118   10    44    4
## 503    127   12    44    4
## 504    138   14    44    4
## 505    145   16    44    4
## 506    146   18    44    4
## 507     41    0    45    4
## 508     50    2    45    4
## 509     61    4    45    4
## 510     78    6    45    4
## 511     98    8    45    4
## 512    117   10    45    4
## 513    135   12    45    4
## 514    141   14    45    4
## 515    147   16    45    4
## 516    174   18    45    4
## 517    197   20    45    4
## 518    196   21    45    4
## 519     40    0    46    4
## 520     52    2    46    4
## 521     62    4    46    4
## 522     82    6    46    4
## 523    101    8    46    4
## 524    120   10    46    4
## 525    144   12    46    4
## 526    156   14    46    4
## 527    173   16    46    4
## 528    210   18    46    4
## 529    231   20    46    4
## 530    238   21    46    4
## 531     41    0    47    4
## 532     53    2    47    4
## 533     66    4    47    4
## 534     79    6    47    4
## 535    100    8    47    4
## 536    123   10    47    4
## 537    148   12    47    4
## 538    157   14    47    4
## 539    168   16    47    4
## 540    185   18    47    4
## 541    210   20    47    4
## 542    205   21    47    4
## 543     39    0    48    4
## 544     50    2    48    4
## 545     62    4    48    4
## 546     80    6    48    4
## 547    104    8    48    4
## 548    125   10    48    4
## 549    154   12    48    4
## 550    170   14    48    4
## 551    222   16    48    4
## 552    261   18    48    4
## 553    303   20    48    4
## 554    322   21    48    4
## 555     40    0    49    4
## 556     53    2    49    4
## 557     64    4    49    4
## 558     85    6    49    4
## 559    108    8    49    4
## 560    128   10    49    4
## 561    152   12    49    4
## 562    166   14    49    4
## 563    184   16    49    4
## 564    203   18    49    4
## 565    233   20    49    4
## 566    237   21    49    4
## 567     41    0    50    4
## 568     54    2    50    4
## 569     67    4    50    4
## 570     84    6    50    4
## 571    105    8    50    4
## 572    122   10    50    4
## 573    155   12    50    4
## 574    175   14    50    4
## 575    205   16    50    4
## 576    234   18    50    4
## 577    264   20    50    4
## 578    264   21    50    4
ChickWeight$Chick%>%length()
## [1] 578
ChickWeight$Chick%>%unique()%>%length()
## [1] 50
ggplot(ChickWeight, aes(x= Time, y= weight))+geom_point(aes(color=Diet))+ geom_path(aes(color=Diet, group=Chick))

Podemos ver que aun lo pollos tengan una dia establecidad su pendiente de crecimiento va ser variable Podemos observar que con la dieta 3 los pollos tienen una pendiente de crecimiento relevante * La identidad (Chick) tambien es una variable importante, ya que algunos con la dieta 3 no tuvieron buenos rendimientos

Filt1_poisson= glm(weight~Diet:Time, data = ChickWeight, family =poisson())
tidy(Filt1_poisson)
## # A tibble: 5 × 5
##   term        estimate std.error statistic p.value
##   <chr>          <dbl>     <dbl>     <dbl>   <dbl>
## 1 (Intercept)   3.86    0.00931      415.        0
## 2 Diet1:Time    0.0656  0.000722      90.8       0
## 3 Diet2:Time    0.0754  0.000768      98.1       0
## 4 Diet3:Time    0.0862  0.000729     118.        0
## 5 Diet4:Time    0.0823  0.000756     109.        0

*En la tabla tenemos distintas dietas en relacion con el tiempo, donde su pendiente de crecimiento es mas alta para cada pollo en la Diet3:time con 0,086g/dia

Filt2_poisson= glmer(weight~Diet:Time+(1|Chick), data = ChickWeight, family =poisson())
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model is nearly unidentifiable: very large eigenvalue
##  - Rescale variables?
tidy(Filt2_poisson)
## # A tibble: 6 × 7
##   effect   group term            estimate std.error statistic p.value
##   <chr>    <chr> <chr>              <dbl>     <dbl>     <dbl>   <dbl>
## 1 fixed    <NA>  (Intercept)       3.84     0.0315      122.        0
## 2 fixed    <NA>  Diet1:Time        0.0666   0.00105      63.7       0
## 3 fixed    <NA>  Diet2:Time        0.0749   0.00129      57.9       0
## 4 fixed    <NA>  Diet3:Time        0.0868   0.00123      70.5       0
## 5 fixed    <NA>  Diet4:Time        0.0763   0.00126      60.4       0
## 6 ran_pars Chick sd__(Intercept)   0.213   NA            NA        NA
broom::tidy(Filt1_poisson)
## # A tibble: 5 × 5
##   term        estimate std.error statistic p.value
##   <chr>          <dbl>     <dbl>     <dbl>   <dbl>
## 1 (Intercept)   3.86    0.00931      415.        0
## 2 Diet1:Time    0.0656  0.000722      90.8       0
## 3 Diet2:Time    0.0754  0.000768      98.1       0
## 4 Diet3:Time    0.0862  0.000729     118.        0
## 5 Diet4:Time    0.0823  0.000756     109.        0
broom.mixed::tidy(Filt1_poisson)
## # A tibble: 5 × 5
##   term        estimate std.error statistic p.value
##   <chr>          <dbl>     <dbl>     <dbl>   <dbl>
## 1 (Intercept)   3.86    0.00931      415.        0
## 2 Diet1:Time    0.0656  0.000722      90.8       0
## 3 Diet2:Time    0.0754  0.000768      98.1       0
## 4 Diet3:Time    0.0862  0.000729     118.        0
## 5 Diet4:Time    0.0823  0.000756     109.        0

*Se observan diferencias entre los modelos, porque, en el modelo lineal da un estimate del intercepto de 3.86 y cuando se aleatorizan la variable individuo en el modelo mixtose observaun ligero cambio de ese intercepto a 3.84.

*Por otro lado, se observa que la identidad del pollo capta alguna variabilidad y esto genera que no sean iguales los modelos.

broom.mixed::tidy(Filt2_poisson)
## # A tibble: 6 × 7
##   effect   group term            estimate std.error statistic p.value
##   <chr>    <chr> <chr>              <dbl>     <dbl>     <dbl>   <dbl>
## 1 fixed    <NA>  (Intercept)       3.84     0.0315      122.        0
## 2 fixed    <NA>  Diet1:Time        0.0666   0.00105      63.7       0
## 3 fixed    <NA>  Diet2:Time        0.0749   0.00129      57.9       0
## 4 fixed    <NA>  Diet3:Time        0.0868   0.00123      70.5       0
## 5 fixed    <NA>  Diet4:Time        0.0763   0.00126      60.4       0
## 6 ran_pars Chick sd__(Intercept)   0.213   NA            NA        NA

Conclucion: Estos modelos tienen la caracteristica de que nos ayudan a visualizar la variables como interactuan para cada uno de los modelos