# Load packages

# Core
library(tidyverse)
library(tidyquant)

# Source function
source("../00_scripts/simulate_accumulation.R")

1 Import stock prices

Revise the code below.

symbols <- c("TSLA", "META", "XOM", "AAPL", "PG", "AMZN")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Assign a weight to each asset

Revise the code for weights.

# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AAPL" "AMZN" "META" "PG"   "TSLA" "XOM"
# weights
weights <- c(0.2, 0.2, 0.2, 0.15, 0.15, 0.1)
weights
## [1] 0.20 0.20 0.20 0.15 0.15 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 6 × 2
##   symbols weights
##   <chr>     <dbl>
## 1 AAPL       0.2 
## 2 AMZN       0.2 
## 3 META       0.2 
## 4 PG         0.15
## 5 TSLA       0.15
## 6 XOM        0.1

4 Build a portfolio

portfolio_returns_tbl <- asset_returns_tbl %>%
    
    tq_portfolio(assets_col = asset, 
                 returns_col = returns, 
                 weights = w_tbl, 
                 rebalance_on = "months", 
                 col_rename = "returns")

portfolio_returns_tbl
## # A tibble: 126 × 2
##    date         returns
##    <date>         <dbl>
##  1 2013-01-31  0.0462  
##  2 2013-02-28 -0.0406  
##  3 2013-03-28  0.00457 
##  4 2013-04-30  0.0591  
##  5 2013-05-31  0.0813  
##  6 2013-06-28 -0.000296
##  7 2013-07-31  0.166   
##  8 2013-08-30  0.0485  
##  9 2013-09-30  0.0706  
## 10 2013-10-31  0.0354  
## # ℹ 116 more rows

5 Simulating growth of a dollar

# Get mean portfolio return
mean_port_return <- mean(portfolio_returns_tbl$returns)
mean_port_return
## [1] 0.01881709
# Get standard deviation of portfolio returns
stddev_port_return <- sd(portfolio_returns_tbl$returns)
stddev_port_return
## [1] 0.06211403

6 Simulation function

No need

7 Running multiple simulations

# Create a vector of 1s as a starting point
sims <- 51
starts <- rep(100, sims) %>%
    set_names(paste0("sim", 1:sims))

starts
##  sim1  sim2  sim3  sim4  sim5  sim6  sim7  sim8  sim9 sim10 sim11 sim12 sim13 
##   100   100   100   100   100   100   100   100   100   100   100   100   100 
## sim14 sim15 sim16 sim17 sim18 sim19 sim20 sim21 sim22 sim23 sim24 sim25 sim26 
##   100   100   100   100   100   100   100   100   100   100   100   100   100 
## sim27 sim28 sim29 sim30 sim31 sim32 sim33 sim34 sim35 sim36 sim37 sim38 sim39 
##   100   100   100   100   100   100   100   100   100   100   100   100   100 
## sim40 sim41 sim42 sim43 sim44 sim45 sim46 sim47 sim48 sim49 sim50 sim51 
##   100   100   100   100   100   100   100   100   100   100   100   100
# Simulate
# for reproducible research
set.seed(1234)

monte_carle_sim_51 <- starts %>%
    
    # Simulate
    map_dfc(.x = ., 
            .f = ~simulate_accumulation(initial_value = .x, 
                                       N              = 240, 
                                       mean_return    = mean_port_return,
                                       sd_return      = stddev_port_return)) %>%
    
    # Add column month
    mutate(month = 1:nrow(.)) %>%
    select(month, everything()) %>%
    
    # Rearrange column names
    set_names(c("month", names(starts))) %>%
    
    # Transform to long form
    pivot_longer(cols = -month, names_to = "sim", values_to = "growth")

# Find quantiles 
monte_carle_sim_51 %>%
    
    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup() %>%
    pull(growth) %>%
    
    quantile(probs = c(0, 0.25, 0.5, 0.75, 1)) %>%
    round(2)
##       0%      25%      50%      75%     100% 
##   772.94  3840.97  7457.23 13077.46 30666.12

8 Visualizing simulations with ggplot

Line Plot of Simulations with Max, Median, and Min

# Step 1 Summarize data into max, median, and min of last value
sim_summary <- monte_carle_sim_51 %>%
    
    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup() %>%

    summarise(max    = max(growth), 
              median = median(growth), 
              min    = min(growth)) 

sim_summary
## # A tibble: 1 × 3
##      max median   min
##    <dbl>  <dbl> <dbl>
## 1 30666.  7457.  773.
# Step 2 Plot
monte_carle_sim_51 %>%
    
    # Filter for max, median, min sim
    group_by(sim) %>%
    filter(last(growth) == sim_summary$max | 
               last(growth) == sim_summary$median | 
               last(growth) == sim_summary$min) %>%
    ungroup() %>%
    
    # Plot
        ggplot(aes(x = month, y = growth, color = sim)) +
    geom_line() + 
    theme(legend.position = "none") +
    theme(plot.title = element_text(hjust = 0.5)) +
    theme(plot.subtitle = element_text(hjust = 0.5)) +

    labs(title = "Simulating Growth of $100 over 240 months", 
         subtitle = "Maximum, Median, and Mimimum Simulation")

Questions

Based on the Monte Carlo simulation results, how much should you expect from your $100 investment after 20 years?

Based on the Monte Carlo simulation results, after 20 years (240 months), on average, I can expect my initial $100 investment to grow to $7457 (median).

What is the best-case scenario? And what is the worst-case scenario?

The best-case scenario is that my initial $100 investment grows to $30,666 in 20 years. On the other hand, the worst-case scenario is that my initial $100 investment only grows to $773 in 20 years.

What are limitations of this simulation analysis?

Examples of limitations are:

  • Simplified assumptions as the simulation is based on certain assumptions and simplifications (constant mean return and standard deviation). In reality, market conditions can vary significantly.

  • The simulation relies on historical stock price data, which may not fully capture future market conditions as these are likely to be different than those we have seen before.

  • Then, as you mentioned in the Apply 13 Video guide, we are assuming normal distribution of returns. But in reality, oftentimes the distribution of returns are negatively skewed, not normal, causing the results to be perhaps optimistic.