# Load packages

# Core
library(tidyverse)
library(tidyquant)

# time series
library(timetk)

Goal

Simulate future portfolio returns

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”

market: “SPY”

from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Assign a weight to each asset

# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AGG" "EEM" "EFA" "IJS" "SPY"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
##   symbols weights
##   <chr>     <dbl>
## 1 AGG        0.25
## 2 EEM        0.25
## 3 EFA        0.2 
## 4 IJS        0.2 
## 5 SPY        0.1

4 Build a portfolio

# ?tq_portfolio

portfolio_returns_tbl <- asset_returns_tbl %>%
    
    tq_portfolio(assets_col = asset, 
                 returns_col = returns, 
                 weights = w_tbl, 
                 rebalance_on = "months", 
                 col_rename = "returns")

portfolio_returns_tbl
## # A tibble: 60 × 2
##    date        returns
##    <date>        <dbl>
##  1 2013-01-31  0.0204 
##  2 2013-02-28 -0.00239
##  3 2013-03-28  0.0121 
##  4 2013-04-30  0.0174 
##  5 2013-05-31 -0.0128 
##  6 2013-06-28 -0.0247 
##  7 2013-07-31  0.0321 
##  8 2013-08-30 -0.0224 
##  9 2013-09-30  0.0511 
## 10 2013-10-31  0.0301 
## # ℹ 50 more rows

5 Simulating growth of a dollar

# Get mean portfolio return
mean_port_return <- mean(portfolio_returns_tbl$returns)
mean_port_return
## [1] 0.005899135
# Get standard deviation of portfolio returns
stddev_port_return <- sd(portfolio_returns_tbl$returns)
stddev_port_return
## [1] 0.02347491
# Construct a normal distribution
simulated_monthly_returns <- rnorm(120, mean_port_return, stddev_port_return)
simulated_monthly_returns
##   [1] -0.0016775750  0.0138970417  0.0029126456  0.0376453644 -0.0142245577
##   [6]  0.0224203622 -0.0148264137  0.0062142863 -0.0158679152  0.0268565161
##  [11]  0.0129852250 -0.0017522349 -0.0036084845 -0.0083523787  0.0017060156
##  [16]  0.0083238261 -0.0001713892  0.0236575403 -0.0128064541 -0.0149282433
##  [21] -0.0186260060  0.0302158616  0.0453590154 -0.0161391759 -0.0237522059
##  [26]  0.0056446421  0.0068269986 -0.0308165243  0.0001290838 -0.0003184444
##  [31] -0.0321084897 -0.0208347533 -0.0218863925  0.0133792117  0.0027966597
##  [36] -0.0136773252  0.0384138034  0.0302759160 -0.0223968952  0.0269258022
##  [41]  0.0152536822  0.0226238069  0.0057193335 -0.0044932627 -0.0048593298
##  [46]  0.0442728766  0.0192122835 -0.0059947381  0.0141853224  0.0013889597
##  [51]  0.0215258630  0.0330552859 -0.0084221980  0.0182877185  0.0017405035
##  [56]  0.0235325322 -0.0076930558 -0.0620698345  0.0368732387 -0.0250408190
##  [61] -0.0119861351  0.0145834128 -0.0089296127 -0.0060538260 -0.0270494992
##  [66]  0.0199351475  0.0307418797  0.0195796865  0.0328244617  0.0144723199
##  [71] -0.0220074361 -0.0039690023 -0.0368621534 -0.0052776641 -0.0076680655
##  [76]  0.0432789400  0.0245475078  0.0268016702 -0.0425128909  0.0055774490
##  [81] -0.0162376399 -0.0192604651 -0.0358617945  0.0158777061 -0.0271767610
##  [86]  0.0277708716  0.0155193570  0.0240617858  0.0200719078  0.0125596237
##  [91]  0.0130413955  0.0024764072  0.0294205800 -0.0168479570  0.0320475506
##  [96]  0.0374142436  0.0242916608  0.0132741196  0.0002914924 -0.0219789571
## [101] -0.0023049695  0.0449419090 -0.0175430033  0.0309167022  0.0052818565
## [106]  0.0173470114  0.0057436659 -0.0210494624 -0.0124545228 -0.0041573000
## [111]  0.0121756918  0.0115540322 -0.0123859891  0.0128031284  0.0626475654
## [116]  0.0396207500 -0.0083686450 -0.0240974410 -0.0204741459 -0.0250085440
# Add a dollar
simulated_returns_add_1 <- tibble(returns = c(1, 1 + simulated_monthly_returns))
simulated_returns_add_1
## # A tibble: 121 × 1
##    returns
##      <dbl>
##  1   1    
##  2   0.998
##  3   1.01 
##  4   1.00 
##  5   1.04 
##  6   0.986
##  7   1.02 
##  8   0.985
##  9   1.01 
## 10   0.984
## # ℹ 111 more rows
# Calculate the cumulative growth of a dollar
simulated_growth <- simulated_returns_add_1 %>%
    mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
    select(growth)

simulated_growth
## # A tibble: 121 × 1
##    growth
##     <dbl>
##  1  1    
##  2  0.998
##  3  1.01 
##  4  1.02 
##  5  1.05 
##  6  1.04 
##  7  1.06 
##  8  1.05 
##  9  1.05 
## 10  1.04 
## # ℹ 111 more rows
# Check the compound annual growth rate
cagr <- ((simulated_growth$growth[nrow(simulated_growth)]^(1/10)) - 1) * 100
cagr
## [1] 4.734222

6 Simulation function

simulate_accumulation <- function(initial_value, N, mean_return, sd_return) {
    
    # Add a dollar
    simulated_returns_add_1 <- tibble(returns = c(initial_value, 1 + rnorm(N, mean_return, sd_return)))
    
    # Calculate the cumulative growth of a dollar
    simulated_growth <- simulated_returns_add_1 %>%
        mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
        select(growth)
    
    return(simulated_growth)
    
}

simulate_accumulation(initial_value = 100, N = 240, mean_return = 0.005, sd_return = 0.01) %>%
    tail()
## # A tibble: 6 × 1
##   growth
##    <dbl>
## 1   382.
## 2   388.
## 3   393.
## 4   398.
## 5   408.
## 6   415.
dump(list = c("simulate_accumulation"), 
     file = "../00_scripts/simulate_accumulation.R")

7 Running multiple simulations

# Create a vector of 1s as a starting point
sims <- 51
starts <- rep(1, sims) %>%
    set_names(paste0("sim", 1:sims))

starts
##  sim1  sim2  sim3  sim4  sim5  sim6  sim7  sim8  sim9 sim10 sim11 sim12 sim13 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim14 sim15 sim16 sim17 sim18 sim19 sim20 sim21 sim22 sim23 sim24 sim25 sim26 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim27 sim28 sim29 sim30 sim31 sim32 sim33 sim34 sim35 sim36 sim37 sim38 sim39 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim40 sim41 sim42 sim43 sim44 sim45 sim46 sim47 sim48 sim49 sim50 sim51 
##     1     1     1     1     1     1     1     1     1     1     1     1
# Simulate
# for reproducible research
set.seed(1234)

monte_carle_sim_51 <- starts %>%
    
    # Simulate
    map_dfc(.x = ., 
            .f = ~simulate_accumulation(initial_value = .x, 
                                       N              = 120, 
                                       mean_return    = mean_port_return,
                                       sd_return      = stddev_port_return)) %>%
    
    # Add column month
    mutate(month = 1:nrow(.)) %>%
    select(month, everything()) %>%
    
    # Rearrange column names
    set_names(c("month", names(starts))) %>%
    
    # Transform to long form
    pivot_longer(cols = -month, names_to = "sim", values_to = "growth")

# Find quantiles 
monte_carle_sim_51 %>%
    
    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup() %>%
    pull(growth) %>%
    
    quantile(probs = c(0, 0.25, 0.5, 0.75, 1)) %>%
    round(2)
##   0%  25%  50%  75% 100% 
## 1.17 1.59 1.98 2.40 3.88

8 Visualizing simulations with ggplot

monte_carle_sim_51 %>%
    
    ggplot(aes(x = month, y = growth, color = sim)) +
    geom_line() + 
    theme(legend.position = "none") +
    theme(plot.title = element_text(hjust = 0.5)) +

    labs(title = "Simulating Growth of $1 over 120 months")

Line plot with max, median, and min

# Step 1 Summarize data into max, median, and min of last value
sim_summary <- monte_carle_sim_51 %>%
    
    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup() %>%

    summarise(max    = max(growth), 
              median = median(growth), 
              min    = min(growth)) 

sim_summary
## # A tibble: 1 × 3
##     max median   min
##   <dbl>  <dbl> <dbl>
## 1  3.88   1.98  1.17
# Step 2 Plot
monte_carle_sim_51 %>%
    
    # Filter for max, median, min sim
    group_by(sim) %>%
    filter(last(growth) == sim_summary$max | 
               last(growth) == sim_summary$median | 
               last(growth) == sim_summary$min) %>%
    ungroup() %>%
    
    # Plot
        ggplot(aes(x = month, y = growth, color = sim)) +
    geom_line() + 
    theme(legend.position = "none") +
    theme(plot.title = element_text(hjust = 0.5)) +
    theme(plot.subtitle = element_text(hjust = 0.5)) +

    labs(title = "Simulating Growth of $1 over 120 months", 
         subtitle = "Maximum, Median, and Mimimum Simulation")