library(gapminder)
## Warning: package 'gapminder' was built under R version 4.3.1
dat2=gapminder
library(ggplot2)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.2 ✔ readr 2.1.4
## ✔ forcats 1.0.0 ✔ stringr 1.5.0
## ✔ lubridate 1.9.2 ✔ tibble 3.2.1
## ✔ purrr 1.0.1 ✔ tidyr 1.3.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
head(dat2)
## # A tibble: 6 × 6
## country continent year lifeExp pop gdpPercap
## <fct> <fct> <int> <dbl> <int> <dbl>
## 1 Afghanistan Asia 1952 28.8 8425333 779.
## 2 Afghanistan Asia 1957 30.3 9240934 821.
## 3 Afghanistan Asia 1962 32.0 10267083 853.
## 4 Afghanistan Asia 1967 34.0 11537966 836.
## 5 Afghanistan Asia 1972 36.1 13079460 740.
## 6 Afghanistan Asia 1977 38.4 14880372 786.
names(dat2)
## [1] "country" "continent" "year" "lifeExp" "pop" "gdpPercap"
p=ggplot(data=dat2,aes(x=gdpPercap,y=lifeExp))
p=p+geom_point(col="blue")
p
# Buoc 3: Ve them duong xu huong cua data
p=p+geom_smooth(col="coral")
p
## `geom_smooth()` using method = 'gam' and formula = 'y ~ s(x, bs = "cs")'
# Buoc 3B: Ve them duong xu huong cua data, meyhod=“loess”
p=ggplot(data=dat2,aes(x=gdpPercap,y=lifeExp))+geom_point()
p=p+geom_smooth(col="red",method="loess")
p
## `geom_smooth()` using formula = 'y ~ x'
# Buoc 4: Hoan chuyen truc hoanh “gdpPercap”
p=ggplot(data=dat2,aes(x=gdpPercap,y=lifeExp))+geom_point(col="darkgreen")+geom_smooth(col="red",method="loess")
p=p+scale_x_log10()
p
## `geom_smooth()` using formula = 'y ~ x'
# Buoc 5: Gan nhan cho tieu de, truc x, truc y
p=p+labs(title="Mối liên quan giữa GDP và Life Expectancy", x="Log GDP per Capita", y="Life Expectancy")
p
## `geom_smooth()` using formula = 'y ~ x'
# Bước 6: Chinh Theme cho bieu do ### 6A: chon theme trang
p+theme_bw()
## `geom_smooth()` using formula = 'y ~ x'
### chon theme Classic
p+theme_classic()
## `geom_smooth()` using formula = 'y ~ x'
### chon theme test
p+theme_test()
## `geom_smooth()` using formula = 'y ~ x'
### chon theme replace
p+theme_replace()
## `geom_smooth()` using formula = 'y ~ x'
ggplot(data=dat2,aes(x=gdpPercap,y=lifeExp))+geom_point(aes(col=continent))+geom_smooth(col="coral")+scale_x_continuous(breaks=seq(0,120000,30000))+scale_y_continuous(breaks=seq(0,120,20))+labs(title="Mối liên quan giữa GDP và Life Expectancy", x="Log GDP per Capita", y="Life Expectancy")
## `geom_smooth()` using method = 'gam' and formula = 'y ~ s(x, bs = "cs")'
# Buoc 7: Trang tri theme ### axis.title.x va axis.title.y: dieu chinh
nhan cac truc (mau xanh) ### axis.text.x va axis.text.y: dieu chinh chu
so gia tri cac truc (mau nau) ### legend.position=“none”: khong hien chu
giai
ggplot(data=dat2,aes(x=gdpPercap,y=lifeExp))+geom_point(aes(col=continent))+geom_smooth(col="coral")+scale_x_continuous(breaks=seq(0,120000,30000))+scale_y_continuous(breaks=seq(0,120,20))+labs(title="Mối liên quan giữa GDP và Life Expectancy", x="Log GDP per Capita", y="Life Expectancy")+theme(axis.title.x = element_text(color="blue",size = 14,face="bold"),axis.title.y = element_text(color="blue",size = 14,face="bold"),axis.text.x = element_text(colour="brown",angle=45,vjust=0.5,size=10,face="bold"),axis.text.y = element_text(colour="brown",angle=90,vjust=0.5,size=10,face="bold"),legend.position = "none")
## `geom_smooth()` using method = 'gam' and formula = 'y ~ s(x, bs = "cs")'