library("tidyverse")
library("plyr")
library("dplyr")
library("ggplot2")
#library("scales")
#library("ggpubr")
#library("gridExtra")
#library("grid")
#library("GGally")
library("data.table")
library("stringr")
library("janitor")
library("knitr")
library("kableExtra")
knitr::opts_chunk$set(echo = TRUE, warning = FALSE, message = FALSE)
# fig.width = 20,
# fig.asp = 0.6,
# out.width = "100%")
The aim of the study is to look at the distribution of herbivore
mites:
- Tetranychus
sp. (Yellow/red mite)
- Panonychus
ulmi (European red mite)
- Bryobia
rubrioculus (brwon mite)
and the predatory mites:
- Typhlodromus
athiasae (local species)
- Neoseiulus
californicus (artificially introduced 30 years ago, and
augmented in the current study).
the predatory mites, Neoseiulus californicus, artificially reared at Biobee Sde Eliyahu, were applied on ___ via the sachets method, in 3 concentrations:
The study design was as follow:
A total of ~9 dunams, containing 22 rows, in each row one type of
cultivar: Gala, Gold, Pink or Grani Smith.
In each row, 68 trees, except for Smith, which is planted in higher gaps and so 48 trees are planted per row.
map <- read.csv(check.names=FALSE, "/Users/nuriteliash/Documents/GitHub/Biological-control-mites-apples/data/study_map.csv")
kable(map, caption = "Study design, each column is one row") %>%
column_spec(1:23,border_left = T, border_right = T) %>%
kable_styling()
| row number | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| treatment | low | control | high | low | control | high | low | control | high | control | high | low | high | low | control | low | high | control | low | high | control | high |
| apple strain | pink | pink | gala | gold | gold | smith | smith | smith | gala | pink | pink | gala | gold | gold | smith | smith | smith | gala | pink | pink | gala | gold |
the mites population was monitored every ~2 weeks, by inspecting 10 leaves under a magnified glass, and observing adult and eggs (5 outer and 5 inner leaves).
the level of infestation was classified as follow:
- “0”: no mites observed
- “1-5”
- “5-10”
- 10+“, more then 10 mites/eggs per leave
5-8 trees were monitored per row, and the trees were marked and re-inspected each time.
| The study was conducted in collaboration of Shamir Research Institute, and Biobee company. |
meta <- read.csv("/Users/nuriteliash/Documents/GitHub/Biological-control-mites-apples/data/18jun.csv")
design <- read.csv("/Users/nuriteliash/Documents/GitHub/Biological-control-mites-apples/data/design.csv")
data <- left_join(design,meta, by = "row") %>% # match the cultivar name to each row
filter(row !="23") %>% # remove row 23 (we checked only once)
mutate(across(everything(), as.character))
data[data == ""] <- NA
data[is.na(data)] <- 0
#write the arranged data as csv file
#write_csv(x= data, file="/Users/nuriteliash/Documents/GitHub/Biological-control-mites-apples/outfiles/data.csv")
#data <- left_join(design,meta, by = "row") %>% # match the cultivar name to each row
# filter(row !="23")
#data <- data %>% mutate(across(-1, ~ as.numeric(replace(., . == '', 0)))) %>%
# mutate(across(everything(), as.character)) %>%
#replace(is.na(.),0)
# count adult mites
#on 5 outer leaves:
out_leaves <- data %>%
dplyr::select(-contains('egg')) %>%
dplyr::select(-starts_with('inner')) %>%
pivot_longer(cols = starts_with('outer')) %>%
separate(name, c('leave_position', 'leave_number', 'mite_species')) %>%
group_by( mite_species, tree, strain, treatment) %>%
dplyr::count(value, .drop = FALSE)
# plot the distribution
out_leaves$value <- factor(out_leaves$value, levels = c("0","1-5","5-10","10+"))
out_leaves %>%
ggplot(aes(fill=value, y=n, x=treatment)) +
geom_bar(position="fill", stat="identity") +
xlab("Treatment") +
ylab("Outer leaves count per tree") +
labs(title = "mite infestation distribution on outer leaves,
comparison between the 4 species") +
labs(fill = "Infestation
level") +
theme_classic() +
theme(axis.text.x = element_text(size=15),
axis.title.x = element_blank()) + scale_fill_manual(values=c("#66b032", "#FFC300","#FF5733","#C70039")) +
facet_wrap(~mite_species)
out_leaves %>%
ggplot(aes(fill=value, y=n, x=treatment)) +
geom_bar(position="fill", stat="identity") +
xlab("Treatment") +
ylab("Outer leaves count per tree") +
labs(title = "mite infestation distribution on outer leaves
comparison between the 4 apples cultivars") +
labs(fill = "Infestation
level") +
theme_classic() +
theme(axis.text.x = element_text(size=15),
axis.title.x = element_blank()) + scale_fill_manual(values=c("#66b032", "#FFC300","#FF5733","#C70039")) +
facet_wrap(~strain)
# count adult mites
#on 5 outer leaves:
in_leaves <- data %>%
dplyr::select(-contains('egg')) %>%
dplyr::select(-starts_with('outer')) %>%
pivot_longer(cols = starts_with('inner')) %>%
separate(name, c('leave_position', 'leave_number', 'mite_species')) %>%
group_by( mite_species, tree, strain, treatment) %>%
dplyr::count(value, .drop = FALSE)
# plot the distribution
in_leaves$value <- factor(in_leaves$value, levels = c("0","1-5","5-10","10+"))
in_leaves %>%
ggplot(aes(fill=value, y=n, x=treatment)) +
geom_bar(position="fill", stat="identity") +
xlab("Treatment") +
ylab("Outer leaves count per tree") +
labs(title = "mite infestation distribution on inner leaves
comparison between the 4 mite species") +
labs(fill = "Infestation
level") +
theme_classic() +
theme(axis.text.x = element_text(size=15),
axis.title.x = element_blank()) + scale_fill_manual(values=c("#66b032", "#FFC300","#FF5733","#C70039")) +
facet_wrap(~mite_species)
in_leaves %>%
ggplot(aes(fill=value, y=n, x=treatment)) +
geom_bar(position="fill", stat="identity") +
xlab("Treatment") +
ylab("Outer leaves count per tree") +
labs(title = "mite infestation distribution on inner leaves
comparison between the 4 apple cultivars") +
labs(fill = "Infestation
level") +
theme_classic() +
theme(axis.text.x = element_text(size=15),
axis.title.x = element_blank()) + scale_fill_manual(values=c("#66b032", "#FFC300","#FF5733","#C70039")) +
facet_wrap(~strain)
# count mites eggs on 5 outer leaves:
out_leaves_eggs <- data %>%
dplyr::select( c(row, treatment, strain, tree),contains('Egg')) %>%
dplyr::select(-starts_with('inner'))
# make a list of the columns to keep:
keep <- out_leaves_eggs %>% dplyr::select(starts_with('outer')) %>%
colnames()
out_leaves_eggs <- out_leaves_eggs %>%
mutate_at(keep, as.character) %>%
pivot_longer(cols = starts_with('outer')) %>%
separate(name, c('leave_position', 'leave_number', 'egg_type')) %>%
group_by(egg_type, tree, strain, treatment) %>%
dplyr::count(value, .drop = FALSE)
# plot the distribution
out_leaves_eggs$value <- factor(out_leaves_eggs$value, levels = c("0","1-5","5-10","10+"))
out_leaves_eggs %>%
ggplot(aes(fill=value, y=n, x=treatment)) +
geom_bar(position="fill", stat="identity") +
xlab("Treatment") +
ylab("Outer leaves count per tree") +
labs(title = "Egg distribution on outer leaves") +
labs(fill = "Infestation
level") +
theme_classic() +
theme(axis.text.x = element_text(size=15),
axis.title.x = element_blank()) + scale_fill_manual(values=c("#66b032", "#FFC300","#FF5733","#C70039")) +
facet_wrap(~egg_type)
out_leaves_eggs %>%
ggplot(aes(fill=value, y=n, x=treatment)) +
geom_bar(position="fill", stat="identity") +
xlab("Treatment") +
ylab("Outer leaves count per tree") +
labs(title = "Egg distribution on outer leaves") +
labs(fill = "Infestation
level") +
theme_classic() +
theme(axis.text.x = element_text(size=15),
axis.title.x = element_blank()) + scale_fill_manual(values=c("#66b032", "#FFC300","#FF5733","#C70039")) +
facet_wrap(~strain)
# count mites eggs
#on 5 inner leaves:
in_leaves_eggs <- data %>%
dplyr::select( c(row, treatment, strain, tree),contains('egg')) %>%
dplyr::select(-starts_with('outer')) %>%
pivot_longer(cols = starts_with('inner')) %>%
separate(name, c('leave_position', 'leave_number', 'egg_type')) %>%
group_by(egg_type, tree, strain, treatment) %>%
dplyr::count(value, .drop = FALSE)
# plot the distribution
in_leaves_eggs$value <- factor(in_leaves_eggs$value, levels = c("0","1-5","5-10","10+"))
in_leaves_eggs %>%
ggplot(aes(fill=value, y=n, x=treatment)) +
geom_bar(position="fill", stat="identity") +
xlab("Treatment") +
ylab("Outer leaves count per tree") +
labs(title = "Egg distribution on outer leaves") +
labs(fill = "Infestation
level") +
theme_classic() +
theme(axis.text.x = element_text(size=15),
axis.title.x = element_blank()) + scale_fill_manual(values=c("#66b032", "#FFC300","#FF5733","#C70039")) +
facet_wrap(~egg_type)
in_leaves_eggs %>%
ggplot(aes(fill=value, y=n, x=treatment)) +
geom_bar(position="fill", stat="identity") +
xlab("Treatment") +
ylab("Outer leaves count per tree") +
labs(title = "Egg distribution on outer leaves") +
labs(fill = "Infestation
level") +
theme_classic() +
theme(axis.text.x = element_text(size=15),
axis.title.x = element_blank()) + scale_fill_manual(values=c("#66b032", "#FFC300","#FF5733","#C70039")) +
facet_wrap(~strain)