A0521002 折笠空生
This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
summary(cars)
## speed dist
## Min. : 4.0 Min. : 2.00
## 1st Qu.:12.0 1st Qu.: 26.00
## Median :15.0 Median : 36.00
## Mean :15.4 Mean : 42.98
## 3rd Qu.:19.0 3rd Qu.: 56.00
## Max. :25.0 Max. :120.00
You can also embed plots, for example:
Note that the echo = FALSE parameter was added to the
code chunk to prevent printing of the R code that generated the
plot.
# 変数の消去
rm(list = ls())
# パッケージ `pacman`を使って必要なパッケージをインストール
if(!require("pacman")) install.packages("pacman")
## 要求されたパッケージ pacman をロード中です
pacman::p_load("tidyverse",
"skimr")
# 表示を科学表示から変更
options(scipen = 999)
library(readr)
readLines("tairyo_navi_Flounder_teaching2023.csv", n = 5)
## [1] "Landing_Date,Market,Gear_Type,Species,Standard,Landing_Amount,Landing_Price,Highest_Price,Average_Price,Lowest_Price"
## [2] "2004-04-03,八木,底刺網,ヒラメ,活魚,1.2,3120,2600,2600,2600"
## [3] "1994-07-05,大槌,小延縄,ヒラメ,活魚,41.6,46011,1869,1106.03,820"
## [4] "2001-08-13,久慈,底刺網,ヒラメ,活魚,470,596807,2760,1269.8,1090"
## [5] "2017-07-12,大船渡,定置網,ヒラメ,山,3.5,1250,0,357.14,0"
market_data_raw <-
readr::read_csv("tairyo_navi_Flounder_teaching2023.csv")
## Rows: 1937 Columns: 10
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (4): Market, Gear_Type, Species, Standard
## dbl (5): Landing_Amount, Landing_Price, Highest_Price, Average_Price, Lowes...
## date (1): Landing_Date
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
skimr::skim(market_data_raw)
| Name | market_data_raw |
| Number of rows | 1937 |
| Number of columns | 10 |
| _______________________ | |
| Column type frequency: | |
| character | 4 |
| Date | 1 |
| numeric | 5 |
| ________________________ | |
| Group variables | None |
Variable type: character
| skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
|---|---|---|---|---|---|---|---|
| Market | 0 | 1 | 2 | 3 | 0 | 14 | 0 |
| Gear_Type | 0 | 1 | 2 | 6 | 0 | 11 | 0 |
| Species | 0 | 1 | 3 | 3 | 0 | 1 | 0 |
| Standard | 0 | 1 | 1 | 2 | 0 | 4 | 0 |
Variable type: Date
| skim_variable | n_missing | complete_rate | min | max | median | n_unique |
|---|---|---|---|---|---|---|
| Landing_Date | 0 | 1 | 1994-06-20 | 2021-09-03 | 2007-10-06 | 1675 |
Variable type: numeric
| skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
|---|---|---|---|---|---|---|---|---|---|---|
| Landing_Amount | 0 | 1 | 17.62 | 44.69 | -7 | 1.8 | 5.50 | 17.00 | 836.30 | ▇▁▁▁▁ |
| Landing_Price | 0 | 1 | 19936.37 | 55647.62 | -11188 | 1971.0 | 6491.00 | 21850.00 | 1842700.00 | ▇▁▁▁▁ |
| Highest_Price | 0 | 1 | 1758.92 | 1316.78 | 0 | 860.0 | 1500.00 | 2420.00 | 10000.00 | ▇▃▁▁▁ |
| Average_Price | 0 | 1 | 1341.93 | 1348.62 | 0 | 700.0 | 1092.81 | 1696.03 | 43873.81 | ▇▁▁▁▁ |
| Lowest_Price | 0 | 1 | 801.69 | 845.92 | 0 | 300.0 | 600.00 | 1000.00 | 8500.00 | ▇▁▁▁▁ |
library(readxl)
readxl::excel_sheets("tairyo_navi_Flounder_teaching.xlsx")
## [1] "data_2" "data_1"
market_data_raw_xls <- readxl::read_excel("tairyo_navi_Flounder_teaching.xlsx")
skimr::skim(market_data_raw_xls)
| Name | market_data_raw_xls |
| Number of rows | 1 |
| Number of columns | 1 |
| _______________________ | |
| Column type frequency: | |
| character | 1 |
| ________________________ | |
| Group variables | None |
Variable type: character
| skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
|---|---|---|---|---|---|---|---|
| テスト | 0 | 1 | 3 | 3 | 0 | 1 | 0 |
market_data_raw_xls <- readxl::read_excel("tairyo_navi_Flounder_teaching.xlsx", sheet = "data_1")
skimr::skim(market_data_raw_xls)
| Name | market_data_raw_xls |
| Number of rows | 193738 |
| Number of columns | 10 |
| _______________________ | |
| Column type frequency: | |
| character | 4 |
| numeric | 5 |
| POSIXct | 1 |
| ________________________ | |
| Group variables | None |
Variable type: character
| skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
|---|---|---|---|---|---|---|---|
| Market | 0 | 1 | 2 | 3 | 0 | 14 | 0 |
| Gear_Type | 0 | 1 | 2 | 10 | 0 | 23 | 0 |
| Species | 0 | 1 | 2 | 3 | 0 | 3 | 0 |
| Standard | 0 | 1 | 1 | 2 | 0 | 8 | 0 |
Variable type: numeric
| skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
|---|---|---|---|---|---|---|---|---|---|---|
| Landing_Amount | 0 | 1 | 18.75 | 44.28 | -58.40 | 1.80 | 5.6 | 18.00 | 4181.8 | ▇▁▁▁▁ |
| Landing_Price | 0 | 1 | 19843.10 | 37140.40 | -101196.00 | 1901.00 | 6760.0 | 21780.00 | 1992600.0 | ▇▁▁▁▁ |
| Highest_Price | 0 | 1 | 1736.06 | 1312.04 | 0.00 | 800.00 | 1500.0 | 2400.00 | 15800.0 | ▇▁▁▁▁ |
| Average_Price | 0 | 1 | 1304.34 | 1045.87 | -5197.06 | 684.55 | 1075.0 | 1660.45 | 91100.0 | ▇▁▁▁▁ |
| Lowest_Price | 0 | 1 | 785.80 | 815.32 | -5000.00 | 300.00 | 580.0 | 1000.00 | 10700.0 | ▁▇▂▁▁ |
Variable type: POSIXct
| skim_variable | n_missing | complete_rate | min | max | median | n_unique |
|---|---|---|---|---|---|---|
| Landing_Date | 0 | 1 | 1994-01-05 | 2021-09-08 | 2007-08-08 | 8233 |
pacman::p_load("tidyverse",
"skimr", "gt")
# 表示を科学表示から変更
options(scipen = 999)
library(skimr) # 表を作るパッケージ
market_data_raw <-
readr::read_csv("tairyo_navi_Flounder_teaching2023.csv")
## Rows: 1937 Columns: 10
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (4): Market, Gear_Type, Species, Standard
## dbl (5): Landing_Amount, Landing_Price, Highest_Price, Average_Price, Lowes...
## date (1): Landing_Date
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
market_data_raw |> skimr::skim()
| Name | market_data_raw |
| Number of rows | 1937 |
| Number of columns | 10 |
| _______________________ | |
| Column type frequency: | |
| character | 4 |
| Date | 1 |
| numeric | 5 |
| ________________________ | |
| Group variables | None |
Variable type: character
| skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
|---|---|---|---|---|---|---|---|
| Market | 0 | 1 | 2 | 3 | 0 | 14 | 0 |
| Gear_Type | 0 | 1 | 2 | 6 | 0 | 11 | 0 |
| Species | 0 | 1 | 3 | 3 | 0 | 1 | 0 |
| Standard | 0 | 1 | 1 | 2 | 0 | 4 | 0 |
Variable type: Date
| skim_variable | n_missing | complete_rate | min | max | median | n_unique |
|---|---|---|---|---|---|---|
| Landing_Date | 0 | 1 | 1994-06-20 | 2021-09-03 | 2007-10-06 | 1675 |
Variable type: numeric
| skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
|---|---|---|---|---|---|---|---|---|---|---|
| Landing_Amount | 0 | 1 | 17.62 | 44.69 | -7 | 1.8 | 5.50 | 17.00 | 836.30 | ▇▁▁▁▁ |
| Landing_Price | 0 | 1 | 19936.37 | 55647.62 | -11188 | 1971.0 | 6491.00 | 21850.00 | 1842700.00 | ▇▁▁▁▁ |
| Highest_Price | 0 | 1 | 1758.92 | 1316.78 | 0 | 860.0 | 1500.00 | 2420.00 | 10000.00 | ▇▃▁▁▁ |
| Average_Price | 0 | 1 | 1341.93 | 1348.62 | 0 | 700.0 | 1092.81 | 1696.03 | 43873.81 | ▇▁▁▁▁ |
| Lowest_Price | 0 | 1 | 801.69 | 845.92 | 0 | 300.0 | 600.00 | 1000.00 | 8500.00 | ▇▁▁▁▁ |
market_data_raw |> distinct(Market)
## # A tibble: 14 × 1
## Market
## <chr>
## 1 八木
## 2 大槌
## 3 久慈
## 4 大船渡
## 5 宮古
## 6 船越
## 7 釜石
## 8 山田
## 9 田野畑
## 10 田老
## 11 普代
## 12 野田
## 13 種市
## 14 細浦
market_data_raw |> ggplot(aes(x = Market)) + geom_bar() + theme(text = element_text(family = "HiraKakuPro-W3"))
## Warning in grid.Call(C_stringMetric, as.graphicsAnnot(x$label)): Windows
## のフォントデータベースにフォントファミリが見付かりません
## Warning in grid.Call(C_stringMetric, as.graphicsAnnot(x$label)): Windows
## のフォントデータベースにフォントファミリが見付かりません
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, :
## Windows のフォントデータベースにフォントファミリが見付かりません
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, :
## Windows のフォントデータベースにフォントファミリが見付かりません
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, :
## Windows のフォントデータベースにフォントファミリが見付かりません
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, :
## Windows のフォントデータベースにフォントファミリが見付かりません
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, :
## Windows のフォントデータベースにフォントファミリが見付かりません
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, :
## Windows のフォントデータベースにフォントファミリが見付かりません
## Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
## Windows のフォントデータベースにフォントファミリが見付かりません
market_data_raw |> group_by(Market) |> summarize(n =n())
## # A tibble: 14 × 2
## Market n
## <chr> <int>
## 1 久慈 265
## 2 八木 152
## 3 大槌 108
## 4 大船渡 306
## 5 宮古 307
## 6 山田 138
## 7 普代 88
## 8 田老 72
## 9 田野畑 76
## 10 種市 50
## 11 細浦 2
## 12 船越 105
## 13 野田 88
## 14 釜石 180
market_data_raw |> group_by(Species) |> summarize(n =n())
## # A tibble: 1 × 2
## Species n
## <chr> <int>
## 1 ヒラメ 1937