rm(list = ls())

if(!require("pacman")) install.packages("pacman")
##  要求されたパッケージ pacman をロード中です
pacman::p_load("tidyverse", 
               "skimr", "gt")

options(scipen = 999)
library(skimr)
et_data_raw <- 
      readr::read_csv("tairyo_navi_Flounder_teaching2023.csv")
## Rows: 1937 Columns: 10
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr  (4): Market, Gear_Type, Species, Standard
## dbl  (5): Landing_Amount, Landing_Price, Highest_Price, Average_Price, Lowes...
## date (1): Landing_Date
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
et_data_raw |> skimr::skim() |>gt()
skim_type skim_variable n_missing complete_rate Date.min Date.max Date.median Date.n_unique character.min character.max character.empty character.n_unique character.whitespace numeric.mean numeric.sd numeric.p0 numeric.p25 numeric.p50 numeric.p75 numeric.p100 numeric.hist
Date Landing_Date 0 1 1994-06-20 2021-09-03 2007-10-06 1675 NA NA NA NA NA NA NA NA NA NA NA NA NA
character Market 0 1 NA NA NA NA 2 3 0 14 0 NA NA NA NA NA NA NA NA
character Gear_Type 0 1 NA NA NA NA 2 6 0 11 0 NA NA NA NA NA NA NA NA
character Species 0 1 NA NA NA NA 3 3 0 1 0 NA NA NA NA NA NA NA NA
character Standard 0 1 NA NA NA NA 1 2 0 4 0 NA NA NA NA NA NA NA NA
numeric Landing_Amount 0 1 NA NA NA NA NA NA NA NA NA 17.61972 44.69087 -7 1.8 5.50 17.00 836.30 ▇▁▁▁▁
numeric Landing_Price 0 1 NA NA NA NA NA NA NA NA NA 19936.37429 55647.62121 -11188 1971.0 6491.00 21850.00 1842700.00 ▇▁▁▁▁
numeric Highest_Price 0 1 NA NA NA NA NA NA NA NA NA 1758.92210 1316.77968 0 860.0 1500.00 2420.00 10000.00 ▇▃▁▁▁
numeric Average_Price 0 1 NA NA NA NA NA NA NA NA NA 1341.92707 1348.62224 0 700.0 1092.81 1696.03 43873.81 ▇▁▁▁▁
numeric Lowest_Price 0 1 NA NA NA NA NA NA NA NA NA 801.69041 845.91571 0 300.0 600.00 1000.00 8500.00 ▇▁▁▁▁
et_data_raw |> summary()
##   Landing_Date           Market           Gear_Type           Species         
##  Min.   :1994-06-20   Length:1937        Length:1937        Length:1937       
##  1st Qu.:2001-05-24   Class :character   Class :character   Class :character  
##  Median :2007-10-06   Mode  :character   Mode  :character   Mode  :character  
##  Mean   :2007-11-30                                                           
##  3rd Qu.:2014-08-01                                                           
##  Max.   :2021-09-03                                                           
##    Standard         Landing_Amount   Landing_Price     Highest_Price  
##  Length:1937        Min.   : -7.00   Min.   : -11188   Min.   :    0  
##  Class :character   1st Qu.:  1.80   1st Qu.:   1971   1st Qu.:  860  
##  Mode  :character   Median :  5.50   Median :   6491   Median : 1500  
##                     Mean   : 17.62   Mean   :  19936   Mean   : 1759  
##                     3rd Qu.: 17.00   3rd Qu.:  21850   3rd Qu.: 2420  
##                     Max.   :836.30   Max.   :1842700   Max.   :10000  
##  Average_Price    Lowest_Price   
##  Min.   :    0   Min.   :   0.0  
##  1st Qu.:  700   1st Qu.: 300.0  
##  Median : 1093   Median : 600.0  
##  Mean   : 1342   Mean   : 801.7  
##  3rd Qu.: 1696   3rd Qu.:1000.0  
##  Max.   :43874   Max.   :8500.0
et_data_raw|>distinct(Market)
## # A tibble: 14 × 1
##    Market
##    <chr> 
##  1 八木  
##  2 大槌  
##  3 久慈  
##  4 大船渡
##  5 宮古  
##  6 船越  
##  7 釜石  
##  8 山田  
##  9 田野畑
## 10 田老  
## 11 普代  
## 12 野田  
## 13 種市  
## 14 細浦
et_data_raw|>ggplot(aes(x=Market))+geom_bar()

et_data_raw|>group_by(Market)|>summarize(n=n())
## # A tibble: 14 × 2
##    Market     n
##    <chr>  <int>
##  1 久慈     265
##  2 八木     152
##  3 大槌     108
##  4 大船渡   306
##  5 宮古     307
##  6 山田     138
##  7 普代      88
##  8 田老      72
##  9 田野畑    76
## 10 種市      50
## 11 細浦       2
## 12 船越     105
## 13 野田      88
## 14 釜石     180
et_data_raw|>distinct(Gear_Type)
## # A tibble: 11 × 1
##    Gear_Type   
##    <chr>       
##  1 底刺網      
##  2 小延縄      
##  3 定置網      
##  4 底びき網    
##  5 その他      
##  6 磯建網      
##  7 底延縄      
##  8 小延縄(新)
##  9 かご        
## 10 搬入        
## 11 一本釣り
et_data_raw|>ggplot(aes(x=Gear_Type))+geom_bar()

et_data_raw|>group_by(Gear_Type)|>summarize(n=n())
## # A tibble: 11 × 2
##    Gear_Type        n
##    <chr>        <int>
##  1 かご           107
##  2 その他         152
##  3 一本釣り        18
##  4 定置網         814
##  5 小延縄         100
##  6 小延縄(新)    13
##  7 底びき網        41
##  8 底刺網         516
##  9 底延縄          17
## 10 搬入            29
## 11 磯建網         130
et_data_raw|>distinct(Standard)
## # A tibble: 4 × 1
##   Standard
##   <chr>   
## 1 活魚    
## 2 山      
## 3 生鮮    
## 4 不明
et_data_raw|>ggplot(aes(x=Standard))+geom_bar()

et_data_raw|>group_by(Standard)|>summarize(n=n())
## # A tibble: 4 × 2
##   Standard     n
##   <chr>    <int>
## 1 不明       302
## 2 山         173
## 3 活魚       719
## 4 生鮮       743