Setting up the data

library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.2     ✔ readr     2.1.4
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ ggplot2   3.4.2     ✔ tibble    3.2.1
## ✔ lubridate 1.9.2     ✔ tidyr     1.3.0
## ✔ purrr     1.0.1     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(stats)
library(car)
## Loading required package: carData
## 
## Attaching package: 'car'
## 
## The following object is masked from 'package:dplyr':
## 
##     recode
## 
## The following object is masked from 'package:purrr':
## 
##     some
library(dplyr)
library(stargazer)
## 
## Please cite as: 
## 
##  Hlavac, Marek (2022). stargazer: Well-Formatted Regression and Summary Statistics Tables.
##  R package version 5.2.3. https://CRAN.R-project.org/package=stargazer
cities <- read.csv('C:/Users/canda/DEM Dissertation Data/citiesALLYRS.csv')
cities <- cities %>% mutate_if(is.character, as.numeric)
## Warning: There were 117 warnings in `mutate()`.
## The first warning was:
## ℹ In argument: `cityname = .Primitive("as.double")(cityname)`.
## Caused by warning:
## ! NAs introduced by coercion
## ℹ Run `dplyr::last_dplyr_warnings()` to see the 116 remaining warnings.
cities$Proximity<-as.factor(ifelse(cities$Proximity==1, "In Proximity", "Not in Prox"))
head(cities)
##   statefp20 placefp20 cityname    Proximity Miles FC.name pboo_20 pboo_10
## 1        48      1000       NA  Not in Prox    NA      NA    4.74    4.73
## 2        48      1240       NA In Proximity     3      NA    4.08    2.53
## 3        48      1576       NA  Not in Prox    NA      NA    0.26    0.19
## 4        48      1696       NA  Not in Prox    NA      NA    3.13    3.31
## 5        48      1852       NA  Not in Prox    NA      NA    0.65    0.57
## 6        48      1924       NA  Not in Prox    NA      NA    6.50    7.01
##   pboo_00 pboo_90 pboo_80  w_20  b_20  h_20  a_20 o_20   t_20     pw_20
## 1    4.68      NA      NA 70391 14221 33634  3674 3262 125182 56.230927
## 2    1.73      NA      NA  8001  2893  3807  1535  425  16661 48.022327
## 3    0.00      NA      NA  2302    39 17005    36  111  19493 11.809367
## 4    4.42      NA      NA  1288   385 13984   232  110  15999  8.050503
## 5    0.48      NA      NA  2120   131 15352   133  155  17891 11.849533
## 6    3.58      NA      NA 53330 11286 13197 24113 2701 104627 50.971546
##        pb_20    ph_20      pa_20     po_20   dwb_20    dwh_20    dwa_20
## 1 11.3602591 26.86808  2.9349267 2.6058059 28.71591 28.876587 25.311729
## 2 17.3639031 22.84977  9.2131329 2.5508673 24.97171 24.299740  9.137611
## 3  0.2000718 87.23644  0.1846817 0.5694352 35.25474 37.839760 57.845837
## 4  2.4064004 87.40546  1.4500906 0.6875430 32.83879  4.459177 21.953308
## 5  0.7322117 85.80851  0.7433906 0.8663574 38.17082 28.835796 10.373103
## 6 10.7868910 12.61338 23.0466328 2.5815516 13.79678 13.915831 27.770782
##     dbw_20   dbh_20   dba_20    dhw_20   dhb_20   dha_20    daw_20   dab_20
## 1 28.71591 21.11862 39.04976 28.876587 21.11862 44.49091 25.311729 39.04976
## 2 24.97171 22.51835 18.21161 24.299740 22.51835 19.16062  9.137611 18.21161
## 3 35.25474 48.17920 61.96581 37.839760 48.17920 40.63903 57.845837 61.96581
## 4 32.83879 33.14220 47.37349  4.459177 33.14220 20.41890 21.953308 47.37349
## 5 38.17082 12.03613 37.92114 28.835796 12.03613 29.04787 10.373103 37.92114
## 6 13.79678 10.68244 32.44231 13.915831 10.68244 36.19292 27.770782 32.44231
##     dah_20  w_10  b_10  h_10  a_10 o_10   t_10    pw_10      pb_10    ph_10
## 1 44.49091 73016 11726 28666  2526 1129 117063 62.37325 10.0168285 24.48767
## 2 19.16062  6991  1575  3290  1077  123  13056 53.54626 12.0634193 25.19914
## 3 40.63903  2722    36 15528    24   43  18353 14.83136  0.1961532 84.60742
## 4 20.41890  2026   446 13036   306   55  15869 12.76703  2.8105111 82.14758
## 5 29.04787  2545   113 16259   120   67  19104 13.32182  0.5914991 85.10783
## 6 36.19292 54690  7437  9443 11793  883  84246 64.91703  8.8277187 11.20884
##        pa_10     po_10   dwb_10    dwh_10   dwa_10   dbw_10   dbh_10   dba_10
## 1  2.1578124 0.9644380 34.83399 32.331924 21.93330 34.83399 25.58607 38.84781
## 2  8.2490807 0.9420956 21.38260 42.693466 14.55660 21.38260 40.37555 21.58695
## 3  0.1307688 0.2342941 55.31675 37.772499 62.52443 55.31675 50.72557 83.33334
## 4  1.9282879 0.3465877 36.01920  5.878032 19.16201 36.01920 33.09196 48.48911
## 5  0.6281407 0.3507119 27.59289 26.033392 23.33170 27.59289 11.17671 46.42331
## 6 13.9982910 1.0481210 17.53230 16.067127 23.47931 17.53230 10.99336 30.91798
##      dhw_10   dhb_10   dha_10   daw_10   dab_10   dah_10  w_00  b_00  h_00 a_00
## 1 32.331924 25.58607 44.50213 21.93330 38.84781 44.50213 79712 10540 22548 2038
## 2 42.693466 40.37555 31.37419 14.55660 21.58695 31.37419  7945  1388  3406 1196
## 3 37.772499 50.72557 38.79432 62.52443 83.33334 38.79432  3154    17 11528   12
## 4  5.878032 33.09196 18.63983 19.16201 48.48911 18.63983  4731   811  7875  493
## 5 26.033392 11.17671 44.16447 23.33170 46.42331 44.16447  3824   141 14837  159
## 6 16.067127 10.99336 34.08430 23.47931 30.91798 34.08430 36239  2029  3038 1803
##   o_00   t_00    pw_00     pb_00     ph_00      pa_00     po_00   dwb_00
## 1 1092 115930 68.75874 9.0916929 19.449667 1.75795734 0.9419477 37.67316
## 2  231  14166 56.08499 9.7981081 24.043484 8.44274998 1.6306649 38.84475
## 3   49  14760 21.36856 0.1151761 78.102982 0.08130081 0.3319783 23.42496
## 4   69  13979 33.84362 5.8015594 56.334503 3.52671862 0.4935975 28.66123
## 5   49  19010 20.11573 0.7417149 78.048393 0.83640188 0.2577591 27.41735
## 6  445  43554 83.20476 4.6585846  6.975249 4.13968849 1.0217202 13.73801
##     dwh_00   dwa_00   dbw_00   dbh_00    dba_00   dhw_00   dhb_00   dha_00
## 1 38.75163 21.95675 37.67316 32.39957 40.093239 38.75163 32.39957 48.42324
## 2 51.26093 29.91368 38.84475 12.41617  8.947934 51.26093 12.41617 21.34724
## 3 18.40219 19.05525 23.42496 11.74057 28.921568 18.40219 11.74057 17.18115
## 4 14.20844 10.35100 28.66123 15.43837 28.574896 14.20844 15.43837 16.15624
## 5 25.87468 17.56499 27.41735 19.75505 34.898968 25.87468 19.75505 38.05710
## 6 17.91144 22.23367 13.73801 14.46472 21.561922 17.91144 14.46472 32.96284
##     daw_00    dab_00   dah_00  w_90 b_90  h_90 a_90   t_90 o_90    pw_90
## 1 21.95675 40.093239 48.42324 81077 7270 16549 1296 106654  462 76.01871
## 2 29.91368  8.947934 21.34724    NA   NA    NA   NA     NA   NA       NA
## 3 19.05525 28.921568 17.18115    NA   NA    NA   NA     NA   NA       NA
## 4 10.35100 28.574896 16.15624  7426  408  2911  317  11133   71 66.70260
## 5 17.56499 34.898968 38.05710  5165  155 14364   31  19788   73 26.10168
## 6 22.23367 21.561922 32.96284 16600  590   800  208  18309  111 90.66579
##      pb_90     ph_90     pa_90     po_90    dwb_90    dwh_90   dwa_90    dbw_90
## 1 6.816434 15.516530 1.2151443 0.4331764 38.120529 40.886463 23.78641 38.120529
## 2       NA        NA        NA        NA        NA        NA       NA        NA
## 3       NA        NA        NA        NA        NA        NA       NA        NA
## 4 3.664780 26.147490 2.8473907 0.6377437 24.671652  9.945574 29.99929 24.671652
## 5 0.783303 72.589447 0.1566606 0.3689105 41.193501 33.300629 16.18521 41.193501
## 6 3.222459  4.369436 1.1360533 0.6062592  9.219427 15.289162 18.73400  9.219427
##     dbh_90   dba_90    dhw_90   dhb_90   dha_90   daw_90   dab_90   dah_90
## 1 34.77698 34.51051 40.886463 34.77698 48.04832 23.78641 34.51051 48.04832
## 2       NA       NA        NA       NA       NA       NA       NA       NA
## 3       NA       NA        NA       NA       NA       NA       NA       NA
## 4 14.72609 46.91965  9.945574 14.72609 35.98111 29.99929 46.91965 35.98111
## 5 34.33053 45.16128 33.300629 34.33053 37.88809 16.18521 45.16128 37.88809
## 6 10.26271 22.92699 15.289162 10.26271 24.45193 18.73400 22.92699 24.45193
##    t_80  w_80 b_80  h_80 a_80 o_80    pw_80     pb_80    ph_80     pa_80
## 1 98315 78076 6473 12427  649  690 79.41413 6.5839396 12.63998 0.6601231
## 2    NA    NA   NA    NA   NA   NA       NA        NA       NA        NA
## 3    NA    NA   NA    NA   NA   NA       NA        NA       NA        NA
## 4 12623 10766  269  1404   90   94 85.28876 2.1310306 11.12255 0.7129843
## 5 20961  6504  179 14213   24   41 31.02905 0.8539669 67.80688 0.1144984
## 6    NA    NA   NA    NA   NA   NA       NA        NA       NA        NA
##       po_80   dwb_80    dwh_80   dwa_80   dbw_80   dbh_80   dba_80    dhw_80
## 1 0.7018257 48.22921 41.218159 25.76917 48.22921 44.52198 44.96911 41.218159
## 2        NA       NA        NA       NA       NA       NA       NA        NA
## 3        NA       NA        NA       NA       NA       NA       NA        NA
## 4 0.7446724 29.94836  3.628741  9.46873 29.94836 30.73666 35.14250  3.628741
## 5 0.1956014 52.62288 41.008732 48.76996 52.62288 35.88138 46.97393 41.008732
## 6        NA       NA        NA       NA       NA       NA       NA        NA
##     dhb_80   dha_80   daw_80   dab_80   dah_80
## 1 44.52198 43.98988 25.76917 44.96911 43.98988
## 2       NA       NA       NA       NA       NA
## 3       NA       NA       NA       NA       NA
## 4 30.73666 10.12821  9.46873 35.14250 10.12821
## 5 35.88138 29.21453 48.76996 46.97393 29.21453
## 6       NA       NA       NA       NA       NA
str(cities)
## 'data.frame':    272 obs. of  126 variables:
##  $ statefp20: int  48 48 48 48 48 48 48 48 48 48 ...
##  $ placefp20: int  1000 1240 1576 1696 1852 1924 2212 2272 3000 3216 ...
##  $ cityname : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ Proximity: Factor w/ 2 levels "In Proximity",..: 2 1 2 2 2 2 1 2 2 2 ...
##  $ Miles    : num  NA 3 NA NA NA NA 13.7 NA NA NA ...
##  $ FC.name  : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ pboo_20  : num  4.74 4.08 0.26 3.13 0.65 6.5 0.13 2.73 3.56 1.08 ...
##  $ pboo_10  : num  4.73 2.53 0.19 3.31 0.57 7.01 0.19 1.49 3.69 1.53 ...
##  $ pboo_00  : num  4.68 1.73 0 4.42 0.48 3.58 0 1.15 3.76 2.69 ...
##  $ pboo_90  : logi  NA NA NA NA NA NA ...
##  $ pboo_80  : logi  NA NA NA NA NA NA ...
##  $ w_20     : num  70391 8001 2302 1288 2120 ...
##  $ b_20     : num  14221 2893 39 385 131 ...
##  $ h_20     : num  33634 3807 17005 13984 15352 ...
##  $ a_20     : num  3674 1535 36 232 133 ...
##  $ o_20     : num  3262 425 111 110 155 ...
##  $ t_20     : num  125182 16661 19493 15999 17891 ...
##  $ pw_20    : num  56.23 48.02 11.81 8.05 11.85 ...
##  $ pb_20    : num  11.36 17.364 0.2 2.406 0.732 ...
##  $ ph_20    : num  26.9 22.8 87.2 87.4 85.8 ...
##  $ pa_20    : num  2.935 9.213 0.185 1.45 0.743 ...
##  $ po_20    : num  2.606 2.551 0.569 0.688 0.866 ...
##  $ dwb_20   : num  28.7 25 35.3 32.8 38.2 ...
##  $ dwh_20   : num  28.88 24.3 37.84 4.46 28.84 ...
##  $ dwa_20   : num  25.31 9.14 57.85 21.95 10.37 ...
##  $ dbw_20   : num  28.7 25 35.3 32.8 38.2 ...
##  $ dbh_20   : num  21.1 22.5 48.2 33.1 12 ...
##  $ dba_20   : num  39 18.2 62 47.4 37.9 ...
##  $ dhw_20   : num  28.88 24.3 37.84 4.46 28.84 ...
##  $ dhb_20   : num  21.1 22.5 48.2 33.1 12 ...
##  $ dha_20   : num  44.5 19.2 40.6 20.4 29 ...
##  $ daw_20   : num  25.31 9.14 57.85 21.95 10.37 ...
##  $ dab_20   : num  39 18.2 62 47.4 37.9 ...
##  $ dah_20   : num  44.5 19.2 40.6 20.4 29 ...
##  $ w_10     : num  73016 6991 2722 2026 2545 ...
##  $ b_10     : num  11726 1575 36 446 113 ...
##  $ h_10     : num  28666 3290 15528 13036 16259 ...
##  $ a_10     : num  2526 1077 24 306 120 ...
##  $ o_10     : num  1129 123 43 55 67 ...
##  $ t_10     : num  117063 13056 18353 15869 19104 ...
##  $ pw_10    : num  62.4 53.5 14.8 12.8 13.3 ...
##  $ pb_10    : num  10.017 12.063 0.196 2.811 0.591 ...
##  $ ph_10    : num  24.5 25.2 84.6 82.1 85.1 ...
##  $ pa_10    : num  2.158 8.249 0.131 1.928 0.628 ...
##  $ po_10    : num  0.964 0.942 0.234 0.347 0.351 ...
##  $ dwb_10   : num  34.8 21.4 55.3 36 27.6 ...
##  $ dwh_10   : num  32.33 42.69 37.77 5.88 26.03 ...
##  $ dwa_10   : num  21.9 14.6 62.5 19.2 23.3 ...
##  $ dbw_10   : num  34.8 21.4 55.3 36 27.6 ...
##  $ dbh_10   : num  25.6 40.4 50.7 33.1 11.2 ...
##  $ dba_10   : num  38.8 21.6 83.3 48.5 46.4 ...
##  $ dhw_10   : num  32.33 42.69 37.77 5.88 26.03 ...
##  $ dhb_10   : num  25.6 40.4 50.7 33.1 11.2 ...
##  $ dha_10   : num  44.5 31.4 38.8 18.6 44.2 ...
##  $ daw_10   : num  21.9 14.6 62.5 19.2 23.3 ...
##  $ dab_10   : num  38.8 21.6 83.3 48.5 46.4 ...
##  $ dah_10   : num  44.5 31.4 38.8 18.6 44.2 ...
##  $ w_00     : num  79712 7945 3154 4731 3824 ...
##  $ b_00     : num  10540 1388 17 811 141 ...
##  $ h_00     : num  22548 3406 11528 7875 14837 ...
##  $ a_00     : num  2038 1196 12 493 159 ...
##  $ o_00     : num  1092 231 49 69 49 ...
##  $ t_00     : num  115930 14166 14760 13979 19010 ...
##  $ pw_00    : num  68.8 56.1 21.4 33.8 20.1 ...
##  $ pb_00    : num  9.092 9.798 0.115 5.802 0.742 ...
##  $ ph_00    : num  19.4 24 78.1 56.3 78 ...
##  $ pa_00    : num  1.758 8.4427 0.0813 3.5267 0.8364 ...
##  $ po_00    : num  0.942 1.631 0.332 0.494 0.258 ...
##  $ dwb_00   : num  37.7 38.8 23.4 28.7 27.4 ...
##  $ dwh_00   : num  38.8 51.3 18.4 14.2 25.9 ...
##  $ dwa_00   : num  22 29.9 19.1 10.4 17.6 ...
##  $ dbw_00   : num  37.7 38.8 23.4 28.7 27.4 ...
##  $ dbh_00   : num  32.4 12.4 11.7 15.4 19.8 ...
##  $ dba_00   : num  40.09 8.95 28.92 28.57 34.9 ...
##  $ dhw_00   : num  38.8 51.3 18.4 14.2 25.9 ...
##  $ dhb_00   : num  32.4 12.4 11.7 15.4 19.8 ...
##  $ dha_00   : num  48.4 21.3 17.2 16.2 38.1 ...
##  $ daw_00   : num  22 29.9 19.1 10.4 17.6 ...
##  $ dab_00   : num  40.09 8.95 28.92 28.57 34.9 ...
##  $ dah_00   : num  48.4 21.3 17.2 16.2 38.1 ...
##  $ w_90     : num  81077 NA NA 7426 5165 ...
##  $ b_90     : num  7270 NA NA 408 155 ...
##  $ h_90     : num  16549 NA NA 2911 14364 ...
##  $ a_90     : num  1296 NA NA 317 31 ...
##  $ t_90     : num  106654 NA NA 11133 19788 ...
##  $ o_90     : num  462 NA NA 71 73 ...
##  $ pw_90    : num  76 NA NA 66.7 26.1 ...
##  $ pb_90    : num  6.816 NA NA 3.665 0.783 ...
##  $ ph_90    : num  15.5 NA NA 26.1 72.6 ...
##  $ pa_90    : num  1.215 NA NA 2.847 0.157 ...
##  $ po_90    : num  0.433 NA NA 0.638 0.369 ...
##  $ dwb_90   : num  38.1 NA NA 24.7 41.2 ...
##  $ dwh_90   : num  40.89 NA NA 9.95 33.3 ...
##  $ dwa_90   : num  23.8 NA NA 30 16.2 ...
##  $ dbw_90   : num  38.1 NA NA 24.7 41.2 ...
##  $ dbh_90   : num  34.8 NA NA 14.7 34.3 ...
##  $ dba_90   : num  34.5 NA NA 46.9 45.2 ...
##  $ dhw_90   : num  40.89 NA NA 9.95 33.3 ...
##  $ dhb_90   : num  34.8 NA NA 14.7 34.3 ...
##   [list output truncated]

Descriptive Statistics

stargazer(cities[c("pboo_20","t_20","dbw_20")], header=FALSE, type='text', 
          title="Descriptive Statistics 2020", digits=2,
          covariate.labels=c("Black Homeownership","City Population","B-W Dissimilarity")
          )
## 
## Descriptive Statistics 2020
## =============================================================
## Statistic            N    Mean     St. Dev.   Min      Max   
## -------------------------------------------------------------
## Black Homeownership 261   8.54      10.61     0.00    67.12  
## City Population     261 75,681.66 207,755.30 10,070 2,304,580
## B-W Dissimilarity   261   25.12     12.01     0.00    69.14  
## -------------------------------------------------------------
stargazer(cities[c("pboo_10","t_10","dbw_10")], header=FALSE, type='text', 
          title="Descriptive Statistics 2010", digits=2,
          covariate.labels=c("Black Homeownership","City Population","B-W Dissimilarity")
          )
## 
## Descriptive Statistics 2010
## =============================================================
## Statistic            N    Mean     St. Dev.   Min      Max   
## -------------------------------------------------------------
## Black Homeownership 241   8.65      11.07     0.05    65.63  
## City Population     241 70,713.28 194,540.90 10,127 2,099,451
## B-W Dissimilarity   241   27.13     14.08     0.00    82.22  
## -------------------------------------------------------------
stargazer(cities[c("pboo_00","t_00","dbw_00")], header=FALSE, type='text', 
          title="Descriptive Statistics 2000", digits=2,
          covariate.labels=c("Black Homeownership","City Population","B-W Dissimilarity")
          )
## 
## Descriptive Statistics 2000
## =============================================================
## Statistic            N    Mean     St. Dev.   Min      Max   
## -------------------------------------------------------------
## Black Homeownership 258   7.18       9.34     0.00    61.00  
## City Population     205 68,613.65 190,232.90 10,302 1,953,631
## B-W Dissimilarity   205   30.71     16.06     0.00    75.64  
## -------------------------------------------------------------
sapply(cities, function(x) sum(is.na(x)))
## statefp20 placefp20  cityname Proximity     Miles   FC.name   pboo_20   pboo_10 
##         0         0       272         0       158       272        11        31 
##   pboo_00   pboo_90   pboo_80      w_20      b_20      h_20      a_20      o_20 
##        14       272       272        11        11        11        11        11 
##      t_20     pw_20     pb_20     ph_20     pa_20     po_20    dwb_20    dwh_20 
##        11        11        11        11        11        11        11        11 
##    dwa_20    dbw_20    dbh_20    dba_20    dhw_20    dhb_20    dha_20    daw_20 
##        11        11        11        11        11        11        11        11 
##    dab_20    dah_20      w_10      b_10      h_10      a_10      o_10      t_10 
##        11        11        31        31        31        31        31        31 
##     pw_10     pb_10     ph_10     pa_10     po_10    dwb_10    dwh_10    dwa_10 
##        31        31        31        31        31        31        31        31 
##    dbw_10    dbh_10    dba_10    dhw_10    dhb_10    dha_10    daw_10    dab_10 
##        31        31        31        31        31        31        31        31 
##    dah_10      w_00      b_00      h_00      a_00      o_00      t_00     pw_00 
##        31        67        67        67        67        67        67        67 
##     pb_00     ph_00     pa_00     po_00    dwb_00    dwh_00    dwa_00    dbw_00 
##        67        67        67        67        67        67        67        67 
##    dbh_00    dba_00    dhw_00    dhb_00    dha_00    daw_00    dab_00    dah_00 
##        67        67        67        67        67        67        67        67 
##      w_90      b_90      h_90      a_90      t_90      o_90     pw_90     pb_90 
##        90        90        90        90        90        90        90        90 
##     ph_90     pa_90     po_90    dwb_90    dwh_90    dwa_90    dbw_90    dbh_90 
##        90        90        90        90        90        90        90        90 
##    dba_90    dhw_90    dhb_90    dha_90    daw_90    dab_90    dah_90      t_80 
##        90        90        90        90        90        90        90       115 
##      w_80      b_80      h_80      a_80      o_80     pw_80     pb_80     ph_80 
##       115       115       115       115       115       115       115       115 
##     pa_80     po_80    dwb_80    dwh_80    dwa_80    dbw_80    dbh_80    dba_80 
##       115       115       115       115       115       115       115       115 
##    dhw_80    dhb_80    dha_80    daw_80    dab_80    dah_80 
##       115       115       115       115       115       115
#Cities In Proximity = 1, Cities Not in Proximity = 0
table(cities$Proximity)
## 
## In Proximity  Not in Prox 
##          108          164

Count of missing values of Percent Black Homeownership for cities 2020 (pboo_20) = 11, 2010 (pboo_10) = 31, 2000 (pboo_00) = 14

Testing the correlation of proximity to a freedom colony and percent Black homeownership.

#In proximity = 1, Not in proximity = 0. Using point biserial correlation. Treat as numeric within dataframe to get Pearsons R.

cor.test(cities$pboo_20, as.numeric(cities$Proximity))
## 
##  Pearson's product-moment correlation
## 
## data:  cities$pboo_20 and as.numeric(cities$Proximity)
## t = -6.2183, df = 259, p-value = 2.004e-09
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.4616335 -0.2499329
## sample estimates:
##        cor 
## -0.3604154
plot(cities$Proximity,cities$pboo_20,pch=20, 
     xlab='Proximity',ylab='Percent Black Homeowners',
     main='Cities by Proximity and Black Homeownership in 2020')

cor.test(cities$pboo_10, as.numeric(cities$Proximity))
## 
##  Pearson's product-moment correlation
## 
## data:  cities$pboo_10 and as.numeric(cities$Proximity)
## t = -6.0327, df = 239, p-value = 6.091e-09
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.4683765 -0.2485787
## sample estimates:
##        cor 
## -0.3635261
plot(cities$Proximity,cities$pboo_10,pch=20,
     xlab='Proximity',ylab='Percent Black Homeowners',
     main='Cities by Proximity and Black Homeownership in 2010')

cor.test(cities$pboo_00, as.numeric(cities$Proximity))
## 
##  Pearson's product-moment correlation
## 
## data:  cities$pboo_00 and as.numeric(cities$Proximity)
## t = -6.617, df = 256, p-value = 2.132e-10
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.4818092 -0.2727777
## sample estimates:
##        cor 
## -0.3821715
plot(cities$Proximity,cities$pboo_00,pch=20,
     xlab='Proximity',ylab='Percent Black Homeowners',
     main='Cities by Proximity and Black Homeownership in 2000')

Result - all 3 years show a weak positive association between proximity and percent Black homeownership.

#Plot the correlation between Proximity and homeownership using a different visual

ggplot(cities, aes(pboo_20, Proximity, col = pboo_20)) +
  geom_point()
## Warning: Removed 11 rows containing missing values (`geom_point()`).

ggplot(cities, aes(pboo_10, Proximity, col = pboo_10)) +
  geom_point()
## Warning: Removed 31 rows containing missing values (`geom_point()`).

ggplot(cities, aes(pboo_00, Proximity, col = pboo_00)) +
  geom_point()
## Warning: Removed 14 rows containing missing values (`geom_point()`).