Research Question

Did the 1984 Massachusetts ban on the promotion of alcohol sales via a happy hour affect deadly driving accidents in the state?

Merging Data Sets

data_80 <- data_80[c("STATE","COUNTY", "MONTH", "DAY", "YEAR", "HOUR", "DRUNK_DR", "FATALS", "VE_FORMS")]
data_81 <- data_81[c("STATE","COUNTY", "MONTH", "DAY", "YEAR", "HOUR", "DRUNK_DR", "FATALS", "VE_FORMS")]
data_82 <- data_82[c("STATE","COUNTY", "MONTH", "DAY", "YEAR", "HOUR", "DRUNK_DR", "FATALS", "VE_FORMS")]
data_83 <- data_83[c("STATE","COUNTY", "MONTH", "DAY", "YEAR", "HOUR", "DRUNK_DR", "FATALS", "VE_FORMS")]
data_84 <- data_84[c("STATE","COUNTY", "MONTH", "DAY", "YEAR", "HOUR", "DRUNK_DR", "FATALS", "VE_FORMS")]
data_85 <- data_85[c("STATE","COUNTY", "MONTH", "DAY", "YEAR", "HOUR", "DRUNK_DR", "FATALS", "VE_FORMS")]
data_86 <- data_86[c("STATE","COUNTY", "MONTH", "DAY", "YEAR", "HOUR", "DRUNK_DR", "FATALS", "VE_FORMS")]
data_87 <- data_87[c("STATE","COUNTY", "MONTH", "DAY", "YEAR", "HOUR", "DRUNK_DR", "FATALS", "VE_FORMS")]
data_88 <- data_88[c("STATE","COUNTY", "MONTH", "DAY", "YEAR", "HOUR", "DRUNK_DR", "FATALS", "VE_FORMS")]
data_89 <- data_89[c("STATE","COUNTY", "MONTH", "DAY", "YEAR", "HOUR", "DRUNK_DR", "FATALS", "VE_FORMS")]

totaldata <- rbind(data_80,data_81, data_82, data_83, data_84, data_85, data_86, data_87, data_88, data_89)

rm(data_80,data_81, data_82, data_83, data_84, data_85, data_86, data_87, data_88, data_89)

Cleaning Data

totaldata$YEAR <- sprintf("19%d", totaldata$YEAR)
totaldata$YEAR <- as.integer(totaldata$YEAR)

totaldata$MONTH <- sprintf("%02d", totaldata$MONTH )

totaldata <- mutate(totaldata, dates2 = paste(YEAR, MONTH, sep = "-"))
totaldata$date <- as.Date(with(totaldata, paste(YEAR, MONTH, DAY, sep ="-"), "%Y-%m-%d"))


# Create FIPS 
totaldata$STATE <- sprintf("%02d", totaldata$STATE)
totaldata$COUNTY <- sprintf("%03d", totaldata$COUNTY)
totaldata$FIPS <- paste(totaldata$STATE,totaldata$COUNTY, sep="")

# Only looking at alcohol related incidents
data_drunk <- subset(totaldata, DRUNK_DR >0 )

data_drunk$posttreatment <- ifelse(data_drunk$date > "1984-12-11" | data_drunk$date == "1984-12-11" , 1, 0)

# Create new data set

newdf <- data_drunk %>%  group_by(STATE, FIPS, YEAR, posttreatment) %>% 
  count()

newdf <- rename(newdf, fatalaccidents = n)

Cleaning Census Data & Merge

Census Data has population data by county

census$FIPS <- sprintf("%05d",census$FIPS )

mergeddata <- merge(newdf, census, by="FIPS")

see sample clean data

head(mergeddata, 10)
##     FIPS STATE YEAR posttreatment fatalaccidents   Area.Name Census1980
## 1  01001    01 1982             0              4 Autauga Co.      32259
## 2  01001    01 1986             1              7 Autauga Co.      32259
## 3  01001    01 1985             1              2 Autauga Co.      32259
## 4  01001    01 1987             1              4 Autauga Co.      32259
## 5  01001    01 1988             1              6 Autauga Co.      32259
## 6  01001    01 1983             0              6 Autauga Co.      32259
## 7  01001    01 1989             1              1 Autauga Co.      32259
## 8  01001    01 1981             0              2 Autauga Co.      32259
## 9  01003    01 1984             1              3 Baldwin Co.      78556
## 10 01003    01 1987             1             22 Baldwin Co.      78556
##    Estimate1981 Estimate1982 Estimate1983 Estimate1984 Estimate1985
## 1         31985        32036        32054        32134        32245
## 2         31985        32036        32054        32134        32245
## 3         31985        32036        32054        32134        32245
## 4         31985        32036        32054        32134        32245
## 5         31985        32036        32054        32134        32245
## 6         31985        32036        32054        32134        32245
## 7         31985        32036        32054        32134        32245
## 8         31985        32036        32054        32134        32245
## 9         80287        82331        83978        86752        89401
## 10        80287        82331        83978        86752        89401
##    Estimate1986 Estimate1987 Estimate1988 Estimate1989
## 1         32893        33268        33636        33996
## 2         32893        33268        33636        33996
## 3         32893        33268        33636        33996
## 4         32893        33268        33636        33996
## 5         32893        33268        33636        33996
## 6         32893        33268        33636        33996
## 7         32893        33268        33636        33996
## 8         32893        33268        33636        33996
## 9         91311        93214        94649        96198
## 10        91311        93214        94649        96198

Creating Synthetic Control

  syntheticcontrol <-
  mergeddata %>%
  synthetic_control(outcome= fatalaccidents,
                    unit = STATE,
                    time = YEAR,
                    i_unit = "26",
                    i_time = 1984,
                    generate_placebos = TRUE) %>%
  generate_predictor(time_window = 1980,
                     fatalaccidents_1980 = fatalaccidents) %>%
  generate_predictor(time_window = 1981,
                     fatalaccidents_1981 = fatalaccidents) %>%
  generate_predictor(time_window = 1982,
                     fatalaccidents_1982 = fatalaccidents) %>%
  generate_predictor(time_window = 1983,
                     fatalaccidents_1983 = fatalaccidents) %>%
  generate_predictor(time_window = 1984,
                     fatalaccidents_1984 = fatalaccidents) %>%
  generate_weights(optimization_window =1980:1984,
                   Margin.ipop=.02,Sigf.ipop=7,Bound.ipop=6) %>%
  generate_control()
## Warning: Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Values from `fatalaccidents` are not uniquely identified; output will contain list-cols.
## * Use `values_fn = list` to suppress this warning.
## * Use `values_fn = {summary_fun}` to summarise duplicates.
## * Use the following dplyr code to identify duplicates.
##   {data} %>%
##     dplyr::group_by(YEAR, STATE) %>%
##     dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
##     dplyr::filter(n > 1L)
## Warning: Returning more (or less) than 1 row per `summarise()` group was deprecated in
## dplyr 1.1.0.
## ℹ Please use `reframe()` instead.
## ℹ When switching from `summarise()` to `reframe()`, remember that `reframe()`
##   always returns an ungrouped data frame and adjust accordingly.
## ℹ The deprecated feature was likely used in the tidysynth package.
##   Please report the issue to the authors.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## Error in `tidyr::spread()`:
## ! Each row of output must be identified by a unique combination of keys.
## Keys are shared for 78 rows:
## * 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78