R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

library(stats)
library(psych)
beauty_raw <- read.csv("C:/Users/brand/Desktop/UCR/PhD CCN/PSYC213_Spring2023/Final/ProfEvaltnsBeautyPublic.csv")
beauty<-beauty_raw
# cannot find spec() command. When I search spec, spectrum{stats}: Spectral Density Estimation appears. 
dim(beauty)
## [1] 463  64
# spec_data<-spec(beauty)
# Error in spec(beauty) : could not find function "spec"
describe(beauty)
##                   vars   n  mean    sd median trimmed   mad   min    max  range
## tenured              1 463  0.55  0.50   1.00    0.56  0.00  0.00   1.00   1.00
## profnumber           2 463 45.43 27.51  44.00   44.96 37.06  1.00  94.00  93.00
## minority             3 463  0.14  0.35   0.00    0.05  0.00  0.00   1.00   1.00
## age                  4 463 48.37  9.80  48.00   48.35 11.86 29.00  73.00  44.00
## beautyf2upper        5 463  5.21  2.02   5.00    5.16  1.48  1.00  10.00   9.00
## beautyflowerdiv      6 463  3.96  1.87   4.00    3.86  1.48  1.00   8.00   7.00
## beautyfupperdiv      7 463  5.02  1.93   5.00    5.01  1.48  1.00   9.00   8.00
## beautym2upper        8 463  4.75  1.58   5.00    4.73  1.48  1.00   9.00   8.00
## beautymlowerdiv      9 463  3.41  1.64   3.00    3.33  1.48  1.00   7.00   6.00
## beautymupperdiv     10 463  4.15  2.11   4.00    4.00  1.48  1.00   9.00   8.00
## btystdave           11 463 -0.09  0.79  -0.16   -0.13  0.87 -1.54   1.88   3.42
## btystdf2u           12 463 -0.09  0.96  -0.19   -0.11  0.71 -2.10   2.20   4.29
## btystdfl            13 463 -0.09  1.00  -0.07   -0.15  0.79 -1.67   2.05   3.72
## btystdfu            14 463 -0.08  0.94  -0.09   -0.08  0.72 -2.03   1.84   3.87
## btystdm2u           15 463 -0.07  0.95   0.08   -0.08  0.90 -2.34   2.50   4.84
## btystdml            16 463 -0.07  0.96  -0.31   -0.12  0.87 -1.49   2.04   3.53
## btystdmu            17 463 -0.13  0.97  -0.20   -0.19  0.68 -1.57   2.10   3.67
## class1              18 463  0.01  0.10   0.00    0.00  0.00  0.00   1.00   1.00
## class2              19 463  0.00  0.07   0.00    0.00  0.00  0.00   1.00   1.00
## class3              20 463  0.02  0.13   0.00    0.00  0.00  0.00   1.00   1.00
## class4              21 463  0.04  0.20   0.00    0.00  0.00  0.00   1.00   1.00
## class5              22 463  0.01  0.09   0.00    0.00  0.00  0.00   1.00   1.00
## class6              23 463  0.01  0.11   0.00    0.00  0.00  0.00   1.00   1.00
## class7              24 463  0.01  0.09   0.00    0.00  0.00  0.00   1.00   1.00
## class8              25 463  0.00  0.07   0.00    0.00  0.00  0.00   1.00   1.00
## class9              26 463  0.02  0.13   0.00    0.00  0.00  0.00   1.00   1.00
## class10             27 463  0.01  0.10   0.00    0.00  0.00  0.00   1.00   1.00
## class11             28 463  0.00  0.07   0.00    0.00  0.00  0.00   1.00   1.00
## class12             29 463  0.01  0.08   0.00    0.00  0.00  0.00   1.00   1.00
## class13             30 463  0.01  0.08   0.00    0.00  0.00  0.00   1.00   1.00
## class14             31 463  0.01  0.08   0.00    0.00  0.00  0.00   1.00   1.00
## class15             32 463  0.00  0.07   0.00    0.00  0.00  0.00   1.00   1.00
## class16             33 463  0.01  0.09   0.00    0.00  0.00  0.00   1.00   1.00
## class17             34 463  0.02  0.12   0.00    0.00  0.00  0.00   1.00   1.00
## class18             35 463  0.01  0.09   0.00    0.00  0.00  0.00   1.00   1.00
## class19             36 463  0.01  0.11   0.00    0.00  0.00  0.00   1.00   1.00
## class20             37 463  0.01  0.10   0.00    0.00  0.00  0.00   1.00   1.00
## class21             38 463  0.03  0.17   0.00    0.00  0.00  0.00   1.00   1.00
## class22             39 463  0.02  0.15   0.00    0.00  0.00  0.00   1.00   1.00
## class23             40 463  0.01  0.10   0.00    0.00  0.00  0.00   1.00   1.00
## class24             41 463  0.01  0.08   0.00    0.00  0.00  0.00   1.00   1.00
## class25             42 463  0.01  0.08   0.00    0.00  0.00  0.00   1.00   1.00
## class26             43 463  0.01  0.08   0.00    0.00  0.00  0.00   1.00   1.00
## class27             44 463  0.00  0.07   0.00    0.00  0.00  0.00   1.00   1.00
## class28             45 463  0.01  0.09   0.00    0.00  0.00  0.00   1.00   1.00
## class29             46 463  0.00  0.07   0.00    0.00  0.00  0.00   1.00   1.00
## class30             47 463  0.02  0.13   0.00    0.00  0.00  0.00   1.00   1.00
## courseevaluation    48 463  4.00  0.55   4.00    4.03  0.59  2.10   5.00   2.90
## didevaluation       49 463 36.62 45.02  23.00   27.54 14.83  5.00 380.00 375.00
## female              50 463  0.42  0.49   0.00    0.40  0.00  0.00   1.00   1.00
## formal              51 463  0.17  0.37   0.00    0.08  0.00  0.00   1.00   1.00
## fulldept            52 463  0.89  0.31   1.00    0.99  0.00  0.00   1.00   1.00
## lower               53 463  0.34  0.47   0.00    0.30  0.00  0.00   1.00   1.00
## multipleclass       54 463  0.34  0.47   0.00    0.30  0.00  0.00   1.00   1.00
## nonenglish          55 463  0.06  0.24   0.00    0.00  0.00  0.00   1.00   1.00
## onecredit           56 463  0.06  0.23   0.00    0.00  0.00  0.00   1.00   1.00
## percentevaluating   57 463 74.43 16.76  76.92   75.64 17.08 10.42 100.00  89.58
## profevaluation      58 463  4.17  0.54   4.30    4.22  0.59  2.30   5.00   2.70
## students            59 463 55.18 75.07  29.00   38.66 19.27  8.00 581.00 573.00
## tenuretrack         60 463  0.78  0.41   1.00    0.85  0.00  0.00   1.00   1.00
## blkandwhite         61 463  0.17  0.37   0.00    0.09  0.00  0.00   1.00   1.00
## btystdvariance      62 463  1.84  1.26   1.57    1.71  1.12  0.09   5.79   5.71
## btystdavepos        63 463  0.28  0.48   0.00    0.17  0.00  0.00   1.88   1.88
## btystdaveneg        64 463 -0.37  0.43  -0.16   -0.31  0.23 -1.54   0.00   1.54
##                    skew kurtosis   se
## tenured           -0.19    -1.97 0.02
## profnumber         0.12    -1.25 1.28
## minority           2.09     2.37 0.02
## age                0.05    -0.80 0.46
## beautyf2upper      0.23    -0.27 0.09
## beautyflowerdiv    0.37    -0.57 0.09
## beautyfupperdiv    0.02    -0.78 0.09
## beautym2upper      0.16    -0.23 0.07
## beautymlowerdiv    0.43    -0.87 0.08
## beautymupperdiv    0.56    -0.40 0.10
## btystdave          0.51    -0.40 0.04
## btystdf2u          0.23    -0.27 0.04
## btystdfl           0.37    -0.57 0.05
## btystdfu           0.03    -0.79 0.04
## btystdm2u          0.16    -0.23 0.04
## btystdml           0.43    -0.87 0.04
## btystdmu           0.56    -0.40 0.05
## class1             9.44    87.22 0.00
## class2            15.07   225.51 0.00
## class3             7.38    52.65 0.01
## class4             4.61    19.31 0.01
## class5            10.58   110.27 0.00
## class6             8.58    71.86 0.01
## class7            10.58   110.27 0.00
## class8            15.07   225.51 0.00
## class9             7.38    52.65 0.01
## class10            9.44    87.22 0.00
## class11           15.07   225.51 0.00
## class12           12.26   148.68 0.00
## class13           12.26   148.68 0.00
## class14           12.26   148.68 0.00
## class15           15.07   225.51 0.00
## class16           10.58   110.27 0.00
## class17            7.92    60.88 0.01
## class18           10.58   110.27 0.00
## class19            8.58    71.86 0.01
## class20            9.44    87.22 0.00
## class21            5.47    27.97 0.01
## class22            6.23    36.94 0.01
## class23            9.44    87.22 0.00
## class24           12.26   148.68 0.00
## class25           12.26   148.68 0.00
## class26           12.26   148.68 0.00
## class27           15.07   225.51 0.00
## class28           10.58   110.27 0.00
## class29           15.07   225.51 0.00
## class30            7.38    52.65 0.01
## courseevaluation  -0.46    -0.13 0.03
## didevaluation      4.47    25.98 2.09
## female             0.32    -1.90 0.02
## formal             1.79     1.19 0.02
## fulldept          -2.55     4.53 0.01
## lower              0.68    -1.54 0.02
## multipleclass      0.68    -1.54 0.02
## nonenglish         3.68    11.54 0.01
## onecredit          3.76    12.14 0.01
## percentevaluating -0.66     0.04 0.78
## profevaluation    -0.70     0.04 0.03
## students           4.13    21.74 3.49
## tenuretrack       -1.35    -0.19 0.02
## blkandwhite        1.77     1.12 0.02
## btystdvariance     0.92     0.13 0.06
## btystdavepos       1.70     1.84 0.02
## btystdaveneg      -0.89    -0.37 0.02
library(ggplot2)
## 
## Attaching package: 'ggplot2'
## The following objects are masked from 'package:psych':
## 
##     %+%, alpha
ggplot(beauty, aes(y=courseevaluation, x=factor(female, labels=c("Male",
"Female")))) +
geom_boxplot(outlier.shape = NULL) + geom_jitter(width=.1, height=.05, alpha=.5) + xlab("Gender") + ylab("Course Evaluation")

library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.2     ✔ readr     2.1.4
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ lubridate 1.9.2     ✔ tibble    3.2.1
## ✔ purrr     1.0.1     ✔ tidyr     1.3.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ ggplot2::%+%()   masks psych::%+%()
## ✖ ggplot2::alpha() masks psych::alpha()
## ✖ dplyr::filter()  masks stats::filter()
## ✖ dplyr::lag()     masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(lme4)
## Loading required package: Matrix
## 
## Attaching package: 'Matrix'
## 
## The following objects are masked from 'package:tidyr':
## 
##     expand, pack, unpack
library(psych)
library(ggplot2)
library(MASS)
## 
## Attaching package: 'MASS'
## 
## The following object is masked from 'package:dplyr':
## 
##     select
library(arm)
## 
## arm (Version 1.13-1, built: 2022-8-25)
## 
## Working directory is C:/Users/brand/Desktop/UCR/PhD CCN/PSYC213_Spring2023/Final
## 
## 
## Attaching package: 'arm'
## 
## The following objects are masked from 'package:psych':
## 
##     logit, rescale, sim
library(lme4)
beaut.m.1<-lmer(courseevaluation ~ female + (1 | female), data = beauty)
display(beaut.m.1)
## lmer(formula = courseevaluation ~ female + (1 | female), data = beauty)
##             coef.est coef.se
## (Intercept)  4.07     0.04  
## female      -0.17     0.06  
## 
## Error terms:
##  Groups   Name        Std.Dev.
##  female   (Intercept) 0.02    
##  Residual             0.55    
## ---
## number of obs: 463, groups: female, 2
## AIC = 774.6, DIC = 747.4
## deviance = 757.0
beaut.m.2<-lmer(btystdave ~ female + (1 | female), data = beauty)
display(beaut.m.2)
## lmer(formula = btystdave ~ female + (1 | female), data = beauty)
##             coef.est coef.se
## (Intercept) -0.17     0.11  
## female       0.20     0.16  
## 
## Error terms:
##  Groups   Name        Std.Dev.
##  female   (Intercept) 0.10    
##  Residual             0.78    
## ---
## number of obs: 463, groups: female, 2
## AIC = 1101.9, DIC = 1077.5
## deviance = 1085.7
beaut.m.3<-lmer(courseevaluation ~ 1 + (1 | profnumber), data = beauty)
display(beaut.m.3)
## lmer(formula = courseevaluation ~ 1 + (1 | profnumber), data = beauty)
## coef.est  coef.se 
##     3.94     0.05 
## 
## Error terms:
##  Groups     Name        Std.Dev.
##  profnumber (Intercept) 0.38    
##  Residual               0.41    
## ---
## number of obs: 463, groups: profnumber, 94
## AIC = 650, DIC = 635.3
## deviance = 639.7
fixef(beaut.m.3)
## (Intercept) 
##    3.935731
ranef(beaut.m.3)
## $profnumber
##     (Intercept)
## 1   0.049842704
## 2  -0.290349282
## 3  -0.307645912
## 4   0.067063605
## 5   0.347262761
## 6   0.435155608
## 7  -0.077732562
## 8   0.079664516
## 9   0.275797532
## 10  0.559494490
## 11 -0.482762014
## 12  0.149623985
## 13 -0.153243442
## 14 -0.279759723
## 15 -0.686915663
## 16  0.165640909
## 17  0.165863738
## 18  0.099822818
## 19  0.362130069
## 20 -0.408444415
## 21 -0.281428266
## 22 -0.294629774
## 23 -0.029013302
## 24  0.459672236
## 25  0.199047347
## 26  0.052185465
## 27  0.042889575
## 28 -0.027710808
## 29 -0.085875943
## 30 -0.758080002
## 31 -0.226793323
## 32 -0.097936549
## 33  0.182103491
## 34 -0.230581171
## 35  0.238785733
## 36 -0.163429455
## 37 -0.260528530
## 38  0.142579367
## 39  0.438334692
## 40 -0.201939729
## 41  0.588097324
## 42  0.398833509
## 43  0.108007838
## 44 -0.001730183
## 45  0.398833509
## 46 -0.097936549
## 47 -0.201939729
## 48 -0.338452465
## 49 -0.079693561
## 50  0.080203136
## 51  0.556826437
## 52  0.224338107
## 53  0.459672236
## 54 -0.183631884
## 55 -0.482762014
## 56  0.003466205
## 57 -0.022630954
## 58 -0.023061333
## 59 -0.370982569
## 60 -0.699226339
## 61  0.029785385
## 62  0.168820454
## 63 -0.085967611
## 64 -0.218194507
## 65  0.067406202
## 66 -0.211573707
## 67  0.009037375
## 68 -0.987845438
## 69 -0.433664843
## 70  0.509800872
## 71  0.756667230
## 72 -0.071864590
## 73  0.523138311
## 74 -0.066487565
## 75 -0.212640926
## 76 -0.465987555
## 77  0.011960880
## 78  0.030454326
## 79 -0.097936549
## 80 -0.085875943
## 81  0.476387022
## 82  0.099274847
## 83  0.198343244
## 84  0.263302258
## 85  0.744087351
## 86  0.238785733
## 87  0.167379018
## 88 -0.668092611
## 89 -0.242246098
## 90 -0.117635940
## 91  0.383095283
## 92 -0.018401993
## 93  0.179611821
## 94 -0.357313236
## 
## with conditional variances for "profnumber"
class(beauty$age)
## [1] "integer"
beaut.m.4<-lmer(courseevaluation ~ 1 + age + btystdave + female + (1 | profnumber), data = beauty)
display(beaut.m.4)
## lmer(formula = courseevaluation ~ 1 + age + btystdave + female + 
##     (1 | profnumber), data = beauty)
##             coef.est coef.se
## (Intercept)  4.06     0.24  
## age          0.00     0.00  
## btystdave    0.13     0.06  
## female      -0.21     0.09  
## 
## Error terms:
##  Groups     Name        Std.Dev.
##  profnumber (Intercept) 0.37    
##  Residual               0.41    
## ---
## number of obs: 463, groups: profnumber, 94
## AIC = 662.1, DIC = 609.2
## deviance = 629.7
fixef(beaut.m.4)
##   (Intercept)           age     btystdave        female 
##  4.0583130810 -0.0006386705  0.1338766617 -0.2083662021
ranef(beaut.m.4)
## $profnumber
##     (Intercept)
## 1   0.110783918
## 2  -0.264435132
## 3  -0.297729322
## 4   0.250766277
## 5   0.271845480
## 6   0.302188659
## 7   0.031740236
## 8   0.217935424
## 9   0.355393435
## 10  0.417889682
## 11 -0.553482910
## 12  0.084536811
## 13 -0.246671489
## 14 -0.307607346
## 15 -0.635727797
## 16  0.102198476
## 17  0.373914284
## 18  0.035753922
## 19  0.477266217
## 20 -0.288860518
## 21 -0.195473950
## 22 -0.178551884
## 23 -0.006968618
## 24  0.406694215
## 25  0.119678547
## 26  0.026814886
## 27 -0.047295237
## 28 -0.002871855
## 29 -0.059683229
## 30 -0.689000265
## 31 -0.282120168
## 32 -0.065122605
## 33  0.048790126
## 34 -0.102273414
## 35  0.280223875
## 36 -0.170180471
## 37 -0.205411068
## 38  0.157154486
## 39  0.416032061
## 40 -0.284916770
## 41  0.535706458
## 42  0.295098126
## 43 -0.001479769
## 44 -0.156226329
## 45  0.311053040
## 46 -0.285042398
## 47 -0.138985934
## 48 -0.211421195
## 49  0.105359835
## 50  0.088962304
## 51  0.565846938
## 52  0.098853734
## 53  0.435045270
## 54  0.077910657
## 55 -0.640791219
## 56 -0.033793449
## 57 -0.018161704
## 58  0.154424259
## 59 -0.383911914
## 60 -0.536565844
## 61  0.044379560
## 62  0.084592794
## 63 -0.066264503
## 64 -0.220425946
## 65  0.300649946
## 66 -0.147771734
## 67 -0.155225259
## 68 -0.878164335
## 69 -0.377360205
## 70  0.488543691
## 71  0.748270079
## 72 -0.218246533
## 73  0.357178522
## 74 -0.073098177
## 75 -0.154895057
## 76 -0.360687923
## 77  0.225503199
## 78 -0.030826750
## 79 -0.077289222
## 80 -0.085665849
## 81  0.457768891
## 82  0.123717226
## 83  0.173239724
## 84  0.232201658
## 85  0.466278578
## 86  0.006754395
## 87  0.047398948
## 88 -0.585091364
## 89 -0.317748710
## 90 -0.109298904
## 91  0.464705780
## 92  0.103281807
## 93 -0.033740209
## 94 -0.297761954
## 
## with conditional variances for "profnumber"
# beauty1<-data.frame(beauty[,2],drop = FALSE)
# beauty2<-data.frame(beauty[, 18:48], drop = FALSE)
# beauty3<-c(beauty1,beauty2)
class(beauty$age)
## [1] "integer"
beaut.m.5<- lmer(courseevaluation ~ (1 | profnumber), data = beauty)  
      
display(beaut.m.5)
## lmer(formula = courseevaluation ~ (1 | profnumber), data = beauty)
## coef.est  coef.se 
##     3.94     0.05 
## 
## Error terms:
##  Groups     Name        Std.Dev.
##  profnumber (Intercept) 0.38    
##  Residual               0.41    
## ---
## number of obs: 463, groups: profnumber, 94
## AIC = 650, DIC = 635.3
## deviance = 639.7
fixef(beaut.m.5)
## (Intercept) 
##    3.935731
ranef(beaut.m.5)
## $profnumber
##     (Intercept)
## 1   0.049842704
## 2  -0.290349282
## 3  -0.307645912
## 4   0.067063605
## 5   0.347262761
## 6   0.435155608
## 7  -0.077732562
## 8   0.079664516
## 9   0.275797532
## 10  0.559494490
## 11 -0.482762014
## 12  0.149623985
## 13 -0.153243442
## 14 -0.279759723
## 15 -0.686915663
## 16  0.165640909
## 17  0.165863738
## 18  0.099822818
## 19  0.362130069
## 20 -0.408444415
## 21 -0.281428266
## 22 -0.294629774
## 23 -0.029013302
## 24  0.459672236
## 25  0.199047347
## 26  0.052185465
## 27  0.042889575
## 28 -0.027710808
## 29 -0.085875943
## 30 -0.758080002
## 31 -0.226793323
## 32 -0.097936549
## 33  0.182103491
## 34 -0.230581171
## 35  0.238785733
## 36 -0.163429455
## 37 -0.260528530
## 38  0.142579367
## 39  0.438334692
## 40 -0.201939729
## 41  0.588097324
## 42  0.398833509
## 43  0.108007838
## 44 -0.001730183
## 45  0.398833509
## 46 -0.097936549
## 47 -0.201939729
## 48 -0.338452465
## 49 -0.079693561
## 50  0.080203136
## 51  0.556826437
## 52  0.224338107
## 53  0.459672236
## 54 -0.183631884
## 55 -0.482762014
## 56  0.003466205
## 57 -0.022630954
## 58 -0.023061333
## 59 -0.370982569
## 60 -0.699226339
## 61  0.029785385
## 62  0.168820454
## 63 -0.085967611
## 64 -0.218194507
## 65  0.067406202
## 66 -0.211573707
## 67  0.009037375
## 68 -0.987845438
## 69 -0.433664843
## 70  0.509800872
## 71  0.756667230
## 72 -0.071864590
## 73  0.523138311
## 74 -0.066487565
## 75 -0.212640926
## 76 -0.465987555
## 77  0.011960880
## 78  0.030454326
## 79 -0.097936549
## 80 -0.085875943
## 81  0.476387022
## 82  0.099274847
## 83  0.198343244
## 84  0.263302258
## 85  0.744087351
## 86  0.238785733
## 87  0.167379018
## 88 -0.668092611
## 89 -0.242246098
## 90 -0.117635940
## 91  0.383095283
## 92 -0.018401993
## 93  0.179611821
## 94 -0.357313236
## 
## with conditional variances for "profnumber"
# library(dplyr)
# 
# beaut.m.6<- lmer(courseevaluation ~ startsWith(beauty, "class") + (1 | profnumber), data = beauty)  
#       
# display(beaut.m.6)
# fixef(beaut.m.6)
# ranef(beaut.m.6)
# Load necessary libraries
library(lme4)
library(dplyr)



# Subset the desired columns
diffclasses.sameprofnumber <- beauty[, c(2, 18:48)]

# Create a new data frame with the subsetted columns
dif.class.profnumber<- data.frame(diffclasses.sameprofnumber)
#dif.class.profnumber2<-as.logical(dif.class.profnumber)


# Create the linear mixed-effects model
beaut.m.6<- lmer(courseevaluation ~ . + (1 | profnumber), data = dif.class.profnumber)
display(beaut.m.6)
## lmer(formula = courseevaluation ~ . + (1 | profnumber), data = dif.class.profnumber)
##             coef.est coef.se
## (Intercept)  4.03     0.10  
## profnumber   0.00     0.00  
## class1       0.29     0.23  
## class2       0.31     0.30  
## class3      -0.13     0.21  
## class4      -0.28     0.13  
## class5       0.16     0.21  
## class6      -0.29     0.25  
## class7      -0.54     0.26  
## class8      -0.19     0.36  
## class9      -0.18     0.20  
## class10      0.40     0.25  
## class11      0.38     0.31  
## class12     -0.12     0.25  
## class13     -0.10     0.28  
## class14     -0.39     0.29  
## class15     -1.52     0.35  
## class16      0.25     0.25  
## class17      0.29     0.18  
## class18      0.18     0.24  
## class19     -0.50     0.25  
## class20      0.51     0.20  
## class21     -0.32     0.16  
## class22     -0.25     0.21  
## class23      0.53     0.21  
## class24     -0.39     0.31  
## class25     -0.19     0.31  
## class26      0.15     0.24  
## class27      0.07     0.30  
## class28      0.42     0.28  
## class29     -0.28     0.30  
## class30      0.24     0.22  
## 
## Error terms:
##  Groups     Name        Std.Dev.
##  profnumber (Intercept) 0.38    
##  Residual               0.39    
## ---
## number of obs: 463, groups: profnumber, 94
## AIC = 678.6, DIC = 516.4
## deviance = 563.5
fixef(beaut.m.6)
##  (Intercept)   profnumber       class1       class2       class3       class4 
##  4.026235594 -0.001061925  0.285221138  0.314339454 -0.126962734 -0.283094125 
##       class5       class6       class7       class8       class9      class10 
##  0.161586018 -0.288539854 -0.540673332 -0.185850012 -0.178391405  0.395449968 
##      class11      class12      class13      class14      class15      class16 
##  0.382831413 -0.122669765 -0.096397583 -0.393559447 -1.515694393  0.249101405 
##      class17      class18      class19      class20      class21      class22 
##  0.285690747  0.175162682 -0.496859121  0.512219404 -0.315492018 -0.247311468 
##      class23      class24      class25      class26      class27      class28 
##  0.527715063 -0.389284766 -0.188641637  0.149564497  0.071151050  0.416547625 
##      class29      class30 
## -0.280105392  0.242384371
ranef(beaut.m.6)
## $profnumber
##     (Intercept)
## 1   0.080716896
## 2  -0.364056374
## 3  -0.190493969
## 4  -0.054117259
## 5   0.259059447
## 6   0.438467183
## 7   0.060442336
## 8   0.009425195
## 9   0.186772185
## 10  0.595442211
## 11 -0.344781025
## 12  0.076334767
## 13 -0.174798854
## 14 -0.233788211
## 15 -0.655410069
## 16  0.304549780
## 17 -0.087234017
## 18  0.037928230
## 19  0.303205176
## 20 -0.475357826
## 21 -0.293406400
## 22 -0.252915773
## 23 -0.071859527
## 24  0.409578759
## 25  0.164449353
## 26  0.223116999
## 27 -0.027042088
## 28 -0.094940242
## 29  0.258844667
## 30 -0.087407802
## 31 -0.284939869
## 32  0.232164737
## 33  0.112909547
## 34 -0.153564805
## 35  0.039421352
## 36 -0.110059179
## 37 -0.413636765
## 38  0.038736941
## 39  0.344996092
## 40 -0.044123334
## 41  0.560287255
## 42  0.469461984
## 43  0.199968795
## 44  0.149199876
## 45  0.499021221
## 46  0.051869496
## 47 -0.491153169
## 48 -0.193819640
## 49 -0.202424789
## 50 -0.104076173
## 51  0.534838353
## 52  0.144861327
## 53  0.294550790
## 54 -0.214834764
## 55 -0.614779056
## 56 -0.085481306
## 57 -0.043167195
## 58 -0.049477287
## 59 -0.341142219
## 60 -0.738717890
## 61  0.018853764
## 62  0.166126273
## 63 -0.104678852
## 64 -0.241037785
## 65  0.049666108
## 66 -0.232372671
## 67 -0.003341796
## 68 -1.029133570
## 69 -0.466167286
## 70  0.501071951
## 71  0.750762629
## 72 -0.084985910
## 73  0.522219338
## 74 -0.077437198
## 75  0.077777968
## 76 -0.489794956
## 77  0.234973990
## 78  0.142664374
## 79 -0.105589549
## 80 -0.092209224
## 81  0.381999624
## 82  0.100212599
## 83  0.200110963
## 84  0.009030414
## 85  0.584868439
## 86  0.246094987
## 87  0.174855420
## 88 -0.674954537
## 89 -0.246071014
## 90 -0.118690858
## 91  0.398392390
## 92 -0.012402596
## 93  0.189536196
## 94 -0.357963704
## 
## with conditional variances for "profnumber"
beaut.m.7<- lmer(courseevaluation ~ minority + tenured + btystdave + female + (1 + female| profnumber), data = beauty)
display(beaut.m.7)
## lmer(formula = courseevaluation ~ minority + tenured + btystdave + 
##     female + (1 + female | profnumber), data = beauty)
##             coef.est coef.se
## (Intercept)  4.08     0.09  
## minority    -0.16     0.13  
## tenured     -0.07     0.09  
## btystdave    0.13     0.05  
## female      -0.20     0.09  
## 
## Error terms:
##  Groups     Name        Std.Dev. Corr  
##  profnumber (Intercept) 0.37           
##             female      0.48     -0.69 
##  Residual               0.41           
## ---
## number of obs: 463, groups: profnumber, 94
## AIC = 662.5, DIC = 610.8
## deviance = 627.7
head(beauty)
##   tenured profnumber minority age beautyf2upper beautyflowerdiv beautyfupperdiv
## 1       0          1        1  36             6               5               7
## 2       1          2        0  59             2               4               4
## 3       1          3        0  51             5               5               2
## 4       1          4        0  40             4               2               5
## 5       0          5        0  31             9               7               9
## 6       1          6        0  62             5               6               6
##   beautym2upper beautymlowerdiv beautymupperdiv  btystdave  btystdf2u
## 1             6               2               4  0.2015666  0.2893519
## 2             3               2               3 -0.8260813 -1.6193560
## 3             3               2               3 -0.6603327 -0.1878249
## 4             2               3               3 -0.7663125 -0.6650018
## 5             6               7               6  1.4214450  1.7208830
## 6             6               5               5  0.5002196 -0.1878249
##     btystdfl   btystdfu  btystdm2u   btystdml   btystdmu class1 class2 class3
## 1  0.4580018  0.8758139  0.6817153 -0.9000649 -0.1954181      0      0      1
## 2 -0.0735065 -0.5770065 -1.1319040 -0.9000649 -0.6546507      0      0      0
## 3  0.4580018 -1.5455530 -1.1319040 -0.9000649 -0.6546507      0      0      0
## 4 -1.1365230 -0.0927330 -1.7364440 -0.3125226 -0.6546507      0      1      0
## 5  1.5210190  1.8443610  0.6817153  2.0376470  0.7230470      0      0      0
## 6  0.9895102  0.3915404  0.6817153  0.8625621  0.2638144      0      0      0
##   class4 class5 class6 class7 class8 class9 class10 class11 class12 class13
## 1      0      0      0      0      0      0       0       0       0       0
## 2      0      0      0      0      0      0       0       0       0       0
## 3      1      0      0      0      0      0       0       0       0       0
## 4      0      0      0      0      0      0       0       0       0       0
## 5      0      0      0      0      0      0       0       0       0       0
## 6      0      0      0      0      0      0       0       0       0       0
##   class14 class15 class16 class17 class18 class19 class20 class21 class22
## 1       0       0       0       0       0       0       0       0       0
## 2       0       0       0       0       0       0       0       0       0
## 3       0       0       0       0       0       0       0       0       0
## 4       0       0       0       0       0       0       0       0       0
## 5       0       0       0       0       0       0       0       0       0
## 6       0       0       0       0       0       0       0       0       0
##   class23 class24 class25 class26 class27 class28 class29 class30
## 1       0       0       0       0       0       0       0       0
## 2       0       0       0       0       0       0       0       0
## 3       0       0       0       0       0       0       0       0
## 4       0       0       0       0       0       0       0       0
## 5       0       0       0       0       0       0       0       0
## 6       0       0       0       0       0       0       0       0
##   courseevaluation didevaluation female formal fulldept lower multipleclass
## 1              4.3            24      1      0        1     0             1
## 2              4.5            17      0      0        1     0             0
## 3              3.7            55      0      0        1     0             1
## 4              4.3            40      1      0        1     0             1
## 5              4.4            42      1      0        1     0             0
## 6              4.2           182      0      1        1     0             0
##   nonenglish onecredit percentevaluating profevaluation students tenuretrack
## 1          0         0          55.81395            4.7       43           1
## 2          0         0          85.00000            4.6       20           1
## 3          0         0         100.00000            4.1       55           1
## 4          0         0          86.95652            4.5       46           1
## 5          0         0          87.50000            4.8       48           1
## 6          0         0          64.53901            4.4      282           1
##   blkandwhite btystdvariance btystdavepos btystdaveneg
## 1           0      2.1298060     0.201567     0.000000
## 2           0      1.3860810     0.000000    -0.826081
## 3           0      2.5374350     0.000000    -0.660333
## 4           0      1.7605770     0.000000    -0.766312
## 5           0      1.6931000     1.421450     0.000000
## 6           0      0.9447419     0.500220     0.000000
#mutate(as.factor(beauty[, 18:47]))
beaut.m.7<- lmer(courseevaluation ~ tenured + btystdave + (1 + female | profnumber), data = beauty)
library(ggplot2)
ggplot(beauty, aes(x = btystdave, y = courseevaluation, color = profnumber)) +
geom_point() +
geom_smooth(method="lm",se = TRUE, linetype = "dotted", formula = y ~ x, aes(group = profnumber), size=3) + labs(x = "Standard Beauty Average across Professors", y = "Average Course Evaluation across classes") +
theme_minimal()
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.

library(ggplot2)
as.factor(beauty$profnumber)
##   [1] 1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
##  [26] 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
##  [51] 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
##  [76] 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 1  1  1  2  2  3 
## [101] 4  4  4  4  4  4  4  5  5  5  5  5  6  6  6  6  6  6  7  7  7  7  8  8  8 
## [126] 8  8  8  9  9  9  9  9  9  10 10 10 10 10 10 10 10 10 11 11 12 12 12 12 13
## [151] 13 13 13 13 13 14 14 14 15 15 15 16 16 16 16 16 17 17 17 17 18 18 18 18 18
## [176] 18 18 19 19 19 19 19 19 19 19 20 20 20 20 20 20 20 20 20 21 21 21 21 21 23
## [201] 23 23 23 24 24 24 24 24 24 25 26 26 26 26 27 27 27 27 27 27 28 28 28 29 29
## [226] 29 31 31 31 31 31 31 32 32 33 33 33 33 34 34 34 34 34 34 34 34 34 34 34 34
## [251] 35 35 36 36 36 37 37 37 37 37 37 37 38 38 39 39 39 39 39 39 39 41 41 41 41
## [276] 42 42 42 43 43 43 44 44 45 45 45 46 46 48 48 49 49 49 49 49 49 50 50 50 50
## [301] 50 50 50 50 50 50 50 50 51 51 51 51 51 52 52 52 53 53 53 53 53 53 54 54 54
## [326] 54 54 55 55 56 56 56 56 57 58 58 58 58 58 58 58 58 58 59 60 60 63 64 64 65
## [351] 65 65 65 65 65 66 66 66 66 66 67 68 68 70 70 70 70 70 70 70 70 71 71 71 71
## [376] 71 71 71 71 71 72 72 72 72 72 73 73 73 73 74 74 74 75 76 77 77 77 77 77 78
## [401] 78 78 79 79 80 80 80 81 81 81 82 82 82 82 82 82 82 82 82 82 83 83 83 83 84
## [426] 84 84 84 85 85 85 85 85 85 85 86 86 87 88 88 88 88 88 88 89 89 90 91 91 92
## [451] 92 92 92 92 92 93 93 93 93 93 94 94 94
## 94 Levels: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 ... 94
ggplot(beauty, aes(x = btystdave, y = courseevaluation, color = profnumber)) +
  geom_point() +
  geom_smooth(method = "lm", se = TRUE, linetype = "dotted", formula = y ~ x, aes(group = profnumber), size = 3) +
  geom_smooth(method = "lm", se = TRUE, linetype = "solid", size = 1) +
  labs(x = "Standard Beauty Average across Professors", y = "Average Course Evaluation across classes") +
  theme_minimal()
## `geom_smooth()` using formula = 'y ~ x'
## Warning: The following aesthetics were dropped during statistical transformation: colour
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

library(ggplot2) library(lme4) library(broom.mixed)

Subsetting the necessary variables and removing any missing values

subset_data <- na.omit(beauty[, c(“minority”, “tenured”, “btystdave”, “female”, “courseevaluation”)])

Create a data frame with model predictions and variables of interest

plot_data <- data.frame( minority = unique(subset_data\(minority), tenured = unique(subset_data\)tenured), btystdave = unique(subset_data\(btystdave), female = unique(subset_data\)female), courseevaluation = predict(beaut.m.7) ) # Plot the dot plot ggplot(plot_data, aes(x = courseevaluation, y = minority)) + geom_point(aes(color = tenured), size = 3) + facet_grid(female ~ btystdave) + labs(x = “Course Evaluation”, y = “Minority”) + theme_minimal()

library(ggplot2)

library(lme4)

library(broom.mixed)

# Fit the linear mixed-effects model

model <- lmer(courseevaluation ~ minority + tenured + btystdave + female + (1 + female| profnumber), data = beauty)

# Extract fixed effects predictions and standard errors

model_predictions <- augment(model, type.predict = “response”)

as.factor(beauty\(color) # class(beauty\)color)

# Create the ggplot visualization

ggplot(beauty, aes(x = btystdave, y = courseevaluation, color = female)) +

geom_point() +

geom_smooth(data = model_predictions, method = “lm”, se = TRUE, aes(y = .fitted)) +

labs(x = “Beauty Standard Average”, y = “Course Evaluation”) +

scale_color_discrete(name = “Female”) +

theme_bw()

class(beauty)

library(ggplot2)

library(lme4)

# Fit the linear mixed-effects model

model <- lmer(courseevaluation ~ minority + tenured + btystdave + female + (1 + female| profnumber), data = beauty)

# Create the predictions data frame

predictions <- data.frame(profnumber = as.factor(beauty\(profnumber)) # # # Extract and store the predicted values for each profnumber # predictions\)courseevaluation <- predict(model, newdata = predictions)

# Create the plot

ggplot(data = beauty, aes(x = 1:3370, y = courseevaluation)) +

geom_jitter() +

stat_smooth(data = predictions, method = “lm”, aes(color = profnumber), se = FALSE) +

labs(x = “Observation Index”, y = “Course Evaluation”) +

scale_color_discrete(name = “Profnumber”)

library(lme4)

model <- lmer(courseevaluation ~ minority + tenured + btystdave + female + (1 + female| profnumber), data = beauty)

library(sjPlot)

model <- lmer(courseevaluation ~ minority + tenured + btystdave + female + (1 + female| profnumber), data = beauty)

# Plot the fixed effects with data points

plot_model(model, type = “pred”, terms = c(“minority”, “tenured”, “btystdave”, “female”), show.data = TRUE)

library(stats)

predict.stats.model<-predict(model)

predict.stats.model

library(ggplot2)

ggplot(beauty, aes(x = beauty\(btystdave, y = beauty\)courseevaluation, color = factor(beauty$female))) +

geom_point() +

geom_smooth(data = predict.stats.model, aes(x = x, y = predicted, color = female),

method = “lm”, se = TRUE) +

labs(x = “Beauty Standard Average”, y = “Course Evaluation”) +

scale_color_discrete(name = “Female”) +

theme_bw()