# VIDEO 2

# Read in data
baseball = read.csv("baseball.csv")
str(baseball)
## 'data.frame':    1232 obs. of  15 variables:
##  $ Team        : chr  "ARI" "ATL" "BAL" "BOS" ...
##  $ League      : chr  "NL" "NL" "AL" "AL" ...
##  $ Year        : int  2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 ...
##  $ RS          : int  734 700 712 734 613 748 669 667 758 726 ...
##  $ RA          : int  688 600 705 806 759 676 588 845 890 670 ...
##  $ W           : int  81 94 93 69 61 85 97 68 64 88 ...
##  $ OBP         : num  0.328 0.32 0.311 0.315 0.302 0.318 0.315 0.324 0.33 0.335 ...
##  $ SLG         : num  0.418 0.389 0.417 0.415 0.378 0.422 0.411 0.381 0.436 0.422 ...
##  $ BA          : num  0.259 0.247 0.247 0.26 0.24 0.255 0.251 0.251 0.274 0.268 ...
##  $ Playoffs    : int  0 1 1 0 0 0 1 0 0 1 ...
##  $ RankSeason  : int  NA 4 5 NA NA NA 2 NA NA 6 ...
##  $ RankPlayoffs: int  NA 5 4 NA NA NA 4 NA NA 2 ...
##  $ G           : int  162 162 162 162 162 162 162 162 162 162 ...
##  $ OOBP        : num  0.317 0.306 0.315 0.331 0.335 0.319 0.305 0.336 0.357 0.314 ...
##  $ OSLG        : num  0.415 0.378 0.403 0.428 0.424 0.405 0.39 0.43 0.47 0.402 ...
# Subset to only include moneyball years
moneyball = subset(baseball, Year < 2002)
str(moneyball)
## 'data.frame':    902 obs. of  15 variables:
##  $ Team        : chr  "ANA" "ARI" "ATL" "BAL" ...
##  $ League      : chr  "AL" "NL" "NL" "AL" ...
##  $ Year        : int  2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 ...
##  $ RS          : int  691 818 729 687 772 777 798 735 897 923 ...
##  $ RA          : int  730 677 643 829 745 701 795 850 821 906 ...
##  $ W           : int  75 92 88 63 82 88 83 66 91 73 ...
##  $ OBP         : num  0.327 0.341 0.324 0.319 0.334 0.336 0.334 0.324 0.35 0.354 ...
##  $ SLG         : num  0.405 0.442 0.412 0.38 0.439 0.43 0.451 0.419 0.458 0.483 ...
##  $ BA          : num  0.261 0.267 0.26 0.248 0.266 0.261 0.268 0.262 0.278 0.292 ...
##  $ Playoffs    : int  0 1 1 0 0 0 0 0 1 0 ...
##  $ RankSeason  : int  NA 5 7 NA NA NA NA NA 6 NA ...
##  $ RankPlayoffs: int  NA 1 3 NA NA NA NA NA 4 NA ...
##  $ G           : int  162 162 162 162 161 162 162 162 162 162 ...
##  $ OOBP        : num  0.331 0.311 0.314 0.337 0.329 0.321 0.334 0.341 0.341 0.35 ...
##  $ OSLG        : num  0.412 0.404 0.384 0.439 0.393 0.398 0.427 0.455 0.417 0.48 ...
# Compute Run Difference
moneyball$RD = moneyball$RS - moneyball$RA
str(moneyball)
## 'data.frame':    902 obs. of  16 variables:
##  $ Team        : chr  "ANA" "ARI" "ATL" "BAL" ...
##  $ League      : chr  "AL" "NL" "NL" "AL" ...
##  $ Year        : int  2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 ...
##  $ RS          : int  691 818 729 687 772 777 798 735 897 923 ...
##  $ RA          : int  730 677 643 829 745 701 795 850 821 906 ...
##  $ W           : int  75 92 88 63 82 88 83 66 91 73 ...
##  $ OBP         : num  0.327 0.341 0.324 0.319 0.334 0.336 0.334 0.324 0.35 0.354 ...
##  $ SLG         : num  0.405 0.442 0.412 0.38 0.439 0.43 0.451 0.419 0.458 0.483 ...
##  $ BA          : num  0.261 0.267 0.26 0.248 0.266 0.261 0.268 0.262 0.278 0.292 ...
##  $ Playoffs    : int  0 1 1 0 0 0 0 0 1 0 ...
##  $ RankSeason  : int  NA 5 7 NA NA NA NA NA 6 NA ...
##  $ RankPlayoffs: int  NA 1 3 NA NA NA NA NA 4 NA ...
##  $ G           : int  162 162 162 162 161 162 162 162 162 162 ...
##  $ OOBP        : num  0.331 0.311 0.314 0.337 0.329 0.321 0.334 0.341 0.341 0.35 ...
##  $ OSLG        : num  0.412 0.404 0.384 0.439 0.393 0.398 0.427 0.455 0.417 0.48 ...
##  $ RD          : int  -39 141 86 -142 27 76 3 -115 76 17 ...
# Scatterplot to check for linear relationship
plot(moneyball$RD, moneyball$W)

# Regression model to predict wins
WinsReg = lm(W ~ RD, data=moneyball)
summary(WinsReg)
## 
## Call:
## lm(formula = W ~ RD, data = moneyball)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -14.2662  -2.6509   0.1234   2.9364  11.6570 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 80.881375   0.131157  616.67   <2e-16 ***
## RD           0.105766   0.001297   81.55   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.939 on 900 degrees of freedom
## Multiple R-squared:  0.8808, Adjusted R-squared:  0.8807 
## F-statistic:  6651 on 1 and 900 DF,  p-value: < 2.2e-16
# VIDEO 3

str(moneyball)
## 'data.frame':    902 obs. of  16 variables:
##  $ Team        : chr  "ANA" "ARI" "ATL" "BAL" ...
##  $ League      : chr  "AL" "NL" "NL" "AL" ...
##  $ Year        : int  2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 ...
##  $ RS          : int  691 818 729 687 772 777 798 735 897 923 ...
##  $ RA          : int  730 677 643 829 745 701 795 850 821 906 ...
##  $ W           : int  75 92 88 63 82 88 83 66 91 73 ...
##  $ OBP         : num  0.327 0.341 0.324 0.319 0.334 0.336 0.334 0.324 0.35 0.354 ...
##  $ SLG         : num  0.405 0.442 0.412 0.38 0.439 0.43 0.451 0.419 0.458 0.483 ...
##  $ BA          : num  0.261 0.267 0.26 0.248 0.266 0.261 0.268 0.262 0.278 0.292 ...
##  $ Playoffs    : int  0 1 1 0 0 0 0 0 1 0 ...
##  $ RankSeason  : int  NA 5 7 NA NA NA NA NA 6 NA ...
##  $ RankPlayoffs: int  NA 1 3 NA NA NA NA NA 4 NA ...
##  $ G           : int  162 162 162 162 161 162 162 162 162 162 ...
##  $ OOBP        : num  0.331 0.311 0.314 0.337 0.329 0.321 0.334 0.341 0.341 0.35 ...
##  $ OSLG        : num  0.412 0.404 0.384 0.439 0.393 0.398 0.427 0.455 0.417 0.48 ...
##  $ RD          : int  -39 141 86 -142 27 76 3 -115 76 17 ...
# Regression model to predict runs scored
RunsReg = lm(RS ~ OBP + SLG + BA, data=moneyball)
summary(RunsReg)
## 
## Call:
## lm(formula = RS ~ OBP + SLG + BA, data = moneyball)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -70.941 -17.247  -0.621  16.754  90.998 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -788.46      19.70 -40.029  < 2e-16 ***
## OBP          2917.42     110.47  26.410  < 2e-16 ***
## SLG          1637.93      45.99  35.612  < 2e-16 ***
## BA           -368.97     130.58  -2.826  0.00482 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 24.69 on 898 degrees of freedom
## Multiple R-squared:  0.9302, Adjusted R-squared:   0.93 
## F-statistic:  3989 on 3 and 898 DF,  p-value: < 2.2e-16
# Regression model to predict runs scored again but removing the batting average
RunsReg = lm(RS ~ OBP + SLG, data=moneyball)
summary(RunsReg)
## 
## Call:
## lm(formula = RS ~ OBP + SLG, data = moneyball)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -70.838 -17.174  -1.108  16.770  90.036 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -804.63      18.92  -42.53   <2e-16 ***
## OBP          2737.77      90.68   30.19   <2e-16 ***
## SLG          1584.91      42.16   37.60   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 24.79 on 899 degrees of freedom
## Multiple R-squared:  0.9296, Adjusted R-squared:  0.9294 
## F-statistic:  5934 on 2 and 899 DF,  p-value: < 2.2e-16
str(moneyball)
## 'data.frame':    902 obs. of  16 variables:
##  $ Team        : chr  "ANA" "ARI" "ATL" "BAL" ...
##  $ League      : chr  "AL" "NL" "NL" "AL" ...
##  $ Year        : int  2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 ...
##  $ RS          : int  691 818 729 687 772 777 798 735 897 923 ...
##  $ RA          : int  730 677 643 829 745 701 795 850 821 906 ...
##  $ W           : int  75 92 88 63 82 88 83 66 91 73 ...
##  $ OBP         : num  0.327 0.341 0.324 0.319 0.334 0.336 0.334 0.324 0.35 0.354 ...
##  $ SLG         : num  0.405 0.442 0.412 0.38 0.439 0.43 0.451 0.419 0.458 0.483 ...
##  $ BA          : num  0.261 0.267 0.26 0.248 0.266 0.261 0.268 0.262 0.278 0.292 ...
##  $ Playoffs    : int  0 1 1 0 0 0 0 0 1 0 ...
##  $ RankSeason  : int  NA 5 7 NA NA NA NA NA 6 NA ...
##  $ RankPlayoffs: int  NA 1 3 NA NA NA NA NA 4 NA ...
##  $ G           : int  162 162 162 162 161 162 162 162 162 162 ...
##  $ OOBP        : num  0.331 0.311 0.314 0.337 0.329 0.321 0.334 0.341 0.341 0.35 ...
##  $ OSLG        : num  0.412 0.404 0.384 0.439 0.393 0.398 0.427 0.455 0.417 0.48 ...
##  $ RD          : int  -39 141 86 -142 27 76 3 -115 76 17 ...
# Regression model to predict runs allowed
RunsAllowedReg = lm(RA ~ OOBP + OSLG, data=moneyball)
summary(RunsAllowedReg)
## 
## Call:
## lm(formula = RA ~ OOBP + OSLG, data = moneyball)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -82.397 -15.178  -0.129  17.679  60.955 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -837.38      60.26 -13.897  < 2e-16 ***
## OOBP         2913.60     291.97   9.979 4.46e-16 ***
## OSLG         1514.29     175.43   8.632 2.55e-13 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 25.67 on 87 degrees of freedom
##   (812 observations deleted due to missingness)
## Multiple R-squared:  0.9073, Adjusted R-squared:  0.9052 
## F-statistic: 425.8 on 2 and 87 DF,  p-value: < 2.2e-16