library(readr)## Warning: package 'readr' was built under R version 4.2.3
library(broom)## Warning: package 'broom' was built under R version 4.2.3
library(tidyverse)## Warning: package 'tidyverse' was built under R version 4.2.3
## Warning: package 'ggplot2' was built under R version 4.2.3
## Warning: package 'tibble' was built under R version 4.2.3
## Warning: package 'tidyr' was built under R version 4.2.3
## Warning: package 'purrr' was built under R version 4.2.3
## Warning: package 'dplyr' was built under R version 4.2.3
## Warning: package 'forcats' was built under R version 4.2.3
## Warning: package 'lubridate' was built under R version 4.2.3
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.2 ✔ purrr 1.0.1
## ✔ forcats 1.0.0 ✔ stringr 1.5.0
## ✔ ggplot2 3.4.2 ✔ tibble 3.2.1
## ✔ lubridate 1.9.2 ✔ tidyr 1.3.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the ]8;;http://conflicted.r-lib.org/conflicted package]8;; to force all conflicts to become errors
datos <- read_csv("C:/Users/isra9/Downloads/cyclzyx.csv")## Rows: 38 Columns: 2
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## dbl (2): CCND3 Cyclin D3, Zyxin
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
View(datos)
getwd()## [1] "C:/Users/isra9/Desktop"
#REALIZAREMOS EL METODO DE CONGLOMERADOS CON NUESTRA BASE DE DATOS (K-MEDIAS)
cluster=kmeans(datos,2)
broom::tidy(cluster)## # A tibble: 2 × 5
## `CCND3 Cyclin D3` Zyxin size withinss cluster
## <dbl> <dbl> <int> <dbl> <fct>
## 1 0.636 1.59 11 4.73 1
## 2 1.89 -0.295 27 19.8 2
#centroides y numero de observaciones
En la tabla anterior nos muestra los centroides 1 y 2
el 1er centroide(0.6355,1.5866) de nuestro primer cluster contiene 11 observaciones
el 2do centroide(1.8938 -0.2947) de nuestro segundo cluster contiene 27 observaciones
broom::augment(cluster,datos)## # A tibble: 38 × 3
## `CCND3 Cyclin D3` Zyxin .cluster
## <dbl> <dbl> <fct>
## 1 2.11 -0.450 2
## 2 1.52 -0.401 2
## 3 1.96 -0.470 2
## 4 2.34 0.409 2
## 5 1.85 0.393 2
## 6 1.99 -0.378 2
## 7 2.07 -1.37 2
## 8 1.82 -1.37 2
## 9 2.18 -1.48 2
## 10 1.81 0.250 2
## # ℹ 28 more rows
En la tabla anterior podemos visualizar los individuos junto al cluster perteneciente y asi mismo sus cordenadas
broom::glance(cluster)## # A tibble: 1 × 4
## totss tot.withinss betweenss iter
## <dbl> <dbl> <dbl> <int>
## 1 64.6 24.6 40.0 1
broom::augment(cluster,datos)|>filter(.cluster==2)|> select("CCND3 Cyclin D3")|>unlist()|>boxplot()broom::augment(cluster,datos) |> filter((.cluster == 1)) |>
select('CCND3 Cyclin D3') |> boxplot()broom::augment(cluster,datos) |> filter((.cluster == 2)) |>
select('Zyxin') |> boxplot()broom::augment(cluster,datos) |> filter((.cluster == 1)) |>
select('Zyxin') |> boxplot()a <- broom::augment(cluster,datos)
plot(a$`CCND3 Cyclin D3`,a$Zyxin,col = a$.cluster)Sacamos el grafico de individuos de cada cluster