ogrenci_numarasi | question_no | verilen_cevap |
---|---|---|
17056010 | Q1 | No we cant determine how heavy the heaviest tennis player in the 2020 olympics is because data base ve use in this question does not have the data for 2020 olympics.İf we change our database or we import necesseriy datas for this question we can solve it using r language. |
17056010 | Q11 | #İmporting our data |
17056010 | Q2 | #İmporting our dataolympics <- read.table(“https://zenodo.org/record/6803028/files/olympics.tsv”, header = TRUE, sep = “\t”)#Filtering the data for most recent olympicsrecent_summer_olympics <- subset(olympics, Year == max(olympics$Year) & Season == “Summer”)# Find the lightest athlete using the “Weight” columnlightest_athlete <- recent_summer_olympics[which.min(recent_summer_olympics$Weight),]# Then we print the name and weight of athletecat(“The lightest athlete of the most recent Summer Olympics is”, lightest_athlete$Name, “from”, lightest_athlete$NOC, “with a weight of”, lightest_athlete$Weight, “kg.”)The lightest athlete of the most recent summer olympics is Nurislam Sanayev from Kaz with a weight of 48 kg. |
17056010 | Q6 | First we import the datadata < - read_tsv(“https://zenodo.org/record/6803028/files/olympics.tsv”,”, header = TRUE, sep = “\t”)İn gold medals section we find the sum of ittotal_gold_medals <- sum(olympics$Gold)We print the resultcat(“The total number of gold medals handed out in all games is:”, total_gold_medals)The total number of gold medals handed out in all games is: 10484 |
17056033 | Q1 | library(dplyr)olympics <- read_tsv(“https://zenodo.org/record/6803028/files/olympics.tsv")max_weight <- max(olympics$Weight, na.rm = TRUE)most_heavy_person <- olympics[olympics$Weight == max_weight, ] |
17056033 | Q13 | olympics <- read.csv(“https://zenodo.org/record/6803028/files/olympics.tsv”, sep = “\t”)last_alphabetically <- olympics %>% |
17056033 | Q14 | olympics <- read.delim(“https://zenodo.org/record/6803028/files/olympics.tsv”, sep=”\t”)most_participating_country <- olympics %>% |
17056033 | Q2 | library(dplyr)library(readr)olympics <- read_tsv(“https://zenodo.org/record/6803028/files/olympics.tsv")lightest_athlete <- olympics %>% |
17056033 | Q8 | olympics <- read.delim(“https://zenodo.org/record/6803028/files/olympics.tsv”, sep = “\t”)medals_2018 <- olympics %>% |
1705A045 | Q11 |
|
1705A045 | Q14 |
|
1705A045 | Q16 |
|
1705A045 | Q4 |
|
1705A045 | Q6 |
|
1705A045 | Q9 |
|
18056004 | Q16 | Hocam metin olarak ekleyemedim bu şekilde ekleemk zorundayım |
18056004 | Q2 | library(dplyr) |
18056004 | Q21 | Rumeysa Bağgül Data Vize SS.png |
18056004 | Q7 | library(dplyr) |
18056023 | Q10 | library(tidyverse)data <- read_tsv(“https://zenodo.org/record/6803028/files/olympics.tsv")data %>% |
18056023 | Q11 | library(tidyverse)data <- read_tsv(“https://zenodo.org/record/6803028/files/olympics.tsv")data %>% |
18056023 | Q12 | library(tidyverse)data <- read_tsv(“https://zenodo.org/record/6803028/files/olympics.tsv")data %>% |
18056023 | Q16 |
|
18056023 | Q4 | library(tidyverse)data <- read_tsv(“https://zenodo.org/record/6803028/files/olympics.tsv")data %>% |
18056023 | Q8 | library(tidyverse)data <- read_tsv(“https://zenodo.org/record/6803028/files/olympics.tsv")data %>% |
18056031 | Q10 | data%>% |
18056031 | Q15 | data %>%arrange(desc(games), desc(height)) %>% |
18056031 | Q19 | code.png |
18056031 | Q2 | data%>% |
18056031 | Q5 | data%>% |
18056031 | Q7 | data%>% |
18056058 | Q10 | olympics <- read_tsv(“https://zenodo.org/record/6803028/files/olympics.tsv")denmark_1964 <- olympics %>% filter(year == 1964 & team == “Denmark”)avg_height <- denmark_1964 %>% summarise(mean_height = mean(height, na.rm = TRUE))avg_height$mean_height |
18056058 | Q11 | olympics <- read_tsv(“https://zenodo.org/record/6803028/files/olympics.tsv")athletes <- olympics %>% filter(!is.na(height))tallest_athlete <- athletes %>% slice_max(height) |
18056058 | Q18 | library(gapminder)turkey_data <- filter(gapminder, country == “Turkey”)wealthiest_year <- filter(turkey_data, gdpPercap == max(gdpPercap))wealthiest_year# A tibble: 1 x 6 |
18056058 | Q3 | olympics <- read_tsv(“https://zenodo.org/record/6803028/files/olympics.tsv")athletes <- olympics %>% filter(!is.na(height))shortest_athlete <- athletes %>% slice_min(height)shortest_athlete %>% select(name, sex, height, year, sport, team, games) |
18056058 | Q5 | olympics <- read_tsv(“https://zenodo.org/record/6803028/files/olympics.tsv")last_olympics <- olympics %>% filter(year == 2016)num_countries <- last_olympics %>% distinct(NOC, .keep_all = TRUE) %>% count( )num_countries$n |
18056058 | Q6 | olympics <- read_tsv(“https://zenodo.org/record/6803028/files/olympics.tsv")total_gold_medals <- olympics %>% filter(medal == “Gold”) %>% count()total_gold_medals$n |
18056066 | Q13 | —title: “R Notebook”output: html_notebook— |
18056066 | Q17 |
|
18056066 | Q2 | Q3
|
18056066 | Q9 | Q2:
|
18056501 | Q15 | data %>% |
18056501 | Q17 | data %>% |
18056501 | Q2 | data %>% |
18056501 | Q21 | Ekran görüntüsü 2023-04-27 121339.png |
18056501 | Q5 | data %>% |
18056501 | Q6 | data %>% |
18056501 | Q9 | data %>% |
1805A007 | Q1 | library(olypics.stv)olympics 2020 ← olympics %>% |
1805A007 | Q11 | library(olympics.stv)tallest athlete ← athlete events %>% |
1805A007 | Q14 | library(olympics.stv)participations by country ← athlete event %>% |
1805A007 | Q18 | library(gapminder)turkey data ← gapminder %>% |
1805A007 | Q3 | library(olympics.stv)athlete heights ← athlete events %>% |
1805A007 | Q8 | library(olympics.stv)medals_2018 ← medals %>% |
1805A009 | Q13 | library(olympics)olympics %>%slice_max(year, n=1)arrange(name) |
1805A009 | Q16 | install.packages(“gapminder”)library(gapminder)gapminder %>%group_by(country) %>%filter(year == 1987) %>%summarize(maxGdpPercap = max(gdpPercap))KuwaitAsia195758.033212846113523.1329 |
1805A009 | Q4 | library(olympics)olympics %>%group_by(game == |
1805A009 | Q5 | library(olympics)olympics%>%group_by(country) %>%summarize(total_country= sum(Country) |
1805A009 | Q6 | library(olympics)olympics %>%filter( medal == gold) %>%summarize(total_medal = sum(medal)) |
1805A009 | Q9 | library(olympics)olympics %>%filter(game == badminton, sex == woman) %>%group_by(medal == gold) %>%slice_min(height, n=1) |
1805A015 | Q15 | olympics <- read.delim(“https://zenodo.org/record/6803028/files/olympics.tsv")tallest_athlete <- olympics %>% |
1805A015 | Q18 | library(gapminder)turkey_gdp <- gapminder %>% |
1805A015 | Q4 | olympics <- read.delim(“https://zenodo.org/record/6803028/files/olympics.tsv")winter_olympics <- olympics %>% |
1805A015 | Q5 | olympics <- read.delim(“https://zenodo.org/record/6803028/files/olympics.tsv")num_countries <- olympics %>% |
1805A015 | Q8 | olympics <- read.delim(“https://zenodo.org/record/6803028/files/olympics.tsv")olympics_2018 <- olympics %>% |
1805A015 | Q9 | olympics <- read.delim(“https://zenodo.org/record/6803028/files/olympics.tsv")winter_olympics <- olympics %>% |
1805A034 | Q11 | Add your R code here!library(tidyverse)olympics <- read_tsv(“https://zenodo.org/record/6803028/files/olympics.tsv")tallest_athlete <- olympics %>%filter(!is.na(Height)) %>%arrange(desc(Height)) %>%slice(1) %>%select(Name, Height)cat(“The tallest athlete is”, tallest_athlete$Name, “with a height of”, tallest_athlete$Height, “cm.”) |
1805A034 | Q14 | Add your R code# Load the olympics datalibrary(tidyverse)olympics <- read_tsv(“https://zenodo.org/record/6803028/files/olympics.tsv")# Count the number of times each country appears in the dataparticipations <- olympics %>%
|
1805A034 | Q16 | install.packages(“gapminder”)library(gapminder)library(dplyr) |
1805A034 | Q19 | library(readr) # Import the file data <- read_delim(“https://raw.githubusercontent.com/alperyilmaz/data/main/import/problematic_file1.txt”, delim = “,”, col_names = FALSE, skip = 2, comment = “#”) # Rename the columns colnames(data) <- c(“ID”, “Final_Grade”) # Calculate the average final grade per student avg_final_grade <- aggregate(Final_Grade ~ ID, data = data, FUN = mean) # Print the result avg_final_grade |
1805A034 | Q3 | Add your R code here# Load the olympics datalibrary(tidyverse)olympics <- read_tsv(“https://zenodo.org/record/6803028/files/olympics.tsv")# Find the height of the shortest athleteshortest_athlete <- olympics %>%
|
1805A034 | Q8 | Add your R code here# Load the olympics datalibrary(tidyverse)olympics <- read_tsv(“https://zenodo.org/record/6803028/files/olympics.tsv?downloaded=1")# Filter for the 2018 Olympics and sum the medalsmedals_2018 <- olympics %>%filter(Year == 2018) %>%summarise(total_medals = sum(Total.Medals))# Print the resultcat(“The total number of medals handed out during the 2018 Olympics was”, medals_2018$total_medals) |
1805A034 | Q9 | data %>% |
1805A048 | Q1 | We can arrange the heavy of the tennis player and we can choose the heaviest player by limiting the row |
1805A048 | Q3 | olympicdata ←read_tsv(“https://zenodo.org/record/6803028/files/olympics.tsv")%>% |
1805A048 | Q5 | library(tidyverse)lastolympics←lastolympics <- read_csv(“datacam/p- data/tidy-olympics/presentation.html”)%>% |
1805A051 | Q12 | Load necessary librarieslibrary(dplyr)# Read in Olympics dataolympics <- read.csv(“olympics.tsv”)# Group data by Year and count number of unique sportssports_by_year <- olympics %>%
|
1805A051 | Q15 |
|
1805A051 | Q8 | Load necessary librarieslibrary(dplyr)# Read in Olympics dataolympics <- read.csv(“olympics.tsv”)# Filter data to include only 2018 Winter Olympics eventsAmadel <- olympics %>%# Count number of medals handed outmedal_count <- sum(Amadel$Gold, Amadel$Silver, Amadel$Bronze)# Print resultscat(paste(“A total of”, medal_count, “medals Olympics.”)) |
19056008 | Q15 | The Code# Load Datasetwd(“C:\Users\adnan\Downloads\olympics.tsv”)# Read in the olympics.tsv file using read.table() functionolympics_data <- read.table(“olympics.tsv”, sep=”\t”, header=TRUE)# Filter the data to include only athletes from the most recent Olympicsrecent_olympics_data <- olympics_data[olympics_data$Year == 2020,]# Find the row with the tallest athletetallest_athlete_row <- which.max(recent_olympics_data$Height)# Extract the name and height of the tallest athletetallest_athlete_name <- recent_olympics_data$Name[tallest_athlete_row]tallest_athlete_height <- recent_olympics_data$Height[tallest_athlete_row]# Print the resultcat(“The tallest athlete from the most recent Olympics was”, tallest_athlete_name, “who was”, tallest_athlete_height, “cm tall.”) |
19056008 | Q17 | The Code# Load gapminder librarylibrary(gapminder)# Filter for Asia continentasia_data <- gapminder %>% filter(continent == “Asia”)# Find row with highest gdpPercapwealthiest_country <- asia_data[which.max(asia_data$gdpPercap),]# Print resultwealthiest_country |
19056008 | Q6 | The Code# Set the working directory to the location where your .tsv file is savedsetwd(“C:\Users\adnan\Downloads\olympics.tsv”) |
19056011 | Q11 | library(tidyverse)data ← read_tsv(“https://zenodo.org/record/6803028/files/olympics.tsv")data %>% |
19056011 | Q12 | library(tidyverse)data ← read_tsv(“https://zenodo.org/record/6803028/files/olympics.tsv")data %>% |
19056011 | Q3 | library(tidyverse)data ← read_tsv(“https://zenodo.org/record/6803028/files/olympics.tsv")data %>%arrange(athlete) %>%select(name, height) |
19056011 | Q6 | library(tidyverse)data ← read_tsv(“https://zenodo.org/record/6803028/files/olympics.tsv")data %>% |
19056011 | Q9 | library(tidyverse)data ← read_tsv(“https://zenodo.org/record/6803028/files/olympics.tsv")data %>% |
19056035 | Q13 | library(tidyverse)# Load the Summer Olympics datasetdf <- read_csv(“https://raw.githubusercontent.com/rgriffin/day2-olympic-history/main/athlete_events.csv")# Filter the dataset to include only the most recent Summer Olympicsrecent_olympics <- df %>% |
19056035 | Q16 | Load the gapminder librarylibrary(gapminder)# Filter the dataset to include only Asia continentasia_df <- filter(gapminder, continent == “Asia”)# Find the row with the highest gdpPercap valuewealthiest_country <- asia_df[which.max(asia_df$gdpPercap),]# Print the resulting rowwealthiest_countryresult is down below
|
19056035 | Q2 | library(tidyverse)# Load the Summer Olympics datasetdf <- read_csv(“https://raw.githubusercontent.com/rgriffin/day2-olympic-history/main/athlete_events.csv")# Filter the dataset to include only the most recent Summer Olympicsrecent_olympics <- df %>% |
19056035 | Q5 | library(tidyverse)# Load the Summer Olympics datasetdf <- read_csv(“https://raw.githubusercontent.com/rgriffin/day2-olympic-history/main/athlete_events.csv")# Filter the dataset to include only the most recent Olympicsrecent_olympics <- df %>% |
19056035 | Q7 | library(tidyverse)# Load the Summer Olympics datasetdf <- read_csv(“https://raw.githubusercontent.com/rgriffin/day2-olympic-history/main/athlete_events.csv")# Filter the dataset to include only athletes shorter than 160cm who won a gold medalshort_gold <- df %>% |
19056035 | Q9 | library(tidyverse)# Load the Summer Olympics datasetdf <- read_csv(“https://raw.githubusercontent.com/rgriffin/day2-olympic-history/main/athlete_events.csv")# Filter the dataset to include only Badminton players who won a gold medalbadminton_gold <- df %>% |
19056044 | Q11 | library(tidyverse) |
19056044 | Q14 | library(tidyverse) |
19056044 | Q18 | library(gapminder)turkey_data <- filter(gapminder, country == “Turkey”)wealthiest_year <- turkey_data[which.max(turkey_data$gdpPercap), ]wealthiest_year |
19056044 | Q2 | library(tidyverse) olympics_data <- read_tsv(“https://zenodo.org/record/6803028/files/olympics.tsv")recent_summer_data <- olympics_data %>% filter(Year == max(Year) & Season == “Summer”) |
19056044 | Q21 | dd.pdf |
19056044 | Q8 | library(tidyverse) |
19056044 | Q9 | library(tidyverse) |
19056066 | Q1 | data %>%filter(games == max(games)) %>%filter(sport==“Tennis”) |
19056066 | Q13 | data %>%arrange(desc(name)) |
19056066 | Q3 | data %>% |
19056066 | Q5 | data %>% |
19056066 | Q7 | data %>%filter(height < 160) %>% |
19056902 | Q11 | olympics %>%select(name, height) %>%arrange(desc(height)) %>%top_n(1)answer: adam sandurski 214cmAdam Sandurski214 |
19056902 | Q14 | olympics %>% |
19056902 | Q16 | gapminder %>%summarize(wealthiest = max(highest gdpPercap))slice_max(highest gdpPercap, 1) |
19056902 | Q4 | olympics %>%filter(!is.na(height)) %>%arrange(height) %>%top_n(1) |
19056902 | Q7 | olympics %>%filter(medal == “Gold”, height < 160)answer : 384 |
19056902 | Q9 | olympics %>%filter(sex == “F”, sport == “Badminton”, medal == “Gold”) %>%arrange(height) %>%top_n(1) |
1905A001 | Q10 | CODE : |
1905A001 | Q12 | CODE : |
1905A001 | Q13 | CODE : |
1905A001 | Q17 | CODE : |
1905A001 | Q3 | CODE : |
1905A001 | Q8 | CODE : |
1905A008 | Q13 | CODE = |
1905A008 | Q14 | library(tidyverse)data <- read_tsv(“https://zenodo.org/record/6803028/files/olympics.tsv")data %>%group_by(team) %>% |
1905A008 | Q17 | CODE = |
1905A008 | Q2 | CODE = |
1905A008 | Q8 | CODE = |
1905A008 | Q9 | CODE = |
1905A017 | Q1 | The latest version of the Olympics dataset available in the “ggplot2” package is from the 2016 Olympics, so it does not include data for the 2020 Olympics. Therefore, I cannot answer question using the Olympics dataset. |
1905A017 | Q11 | Code®:‘’’ {r}olympics <- read_tsv(“https://zenodo.org/record/6803028/files/olympics.tsv”) |
1905A017 | Q14 | Code:library(tidyverse)data(“olympics”, package = “ggplot2”)participations <- olympics %>% |
1905A017 | Q17 | Code®:library(gapminder)gapminder_asia <- gapminder %>% filter(continent == “Asia”)wealthiest_country <- gapminder_asia %>% |
1905A017 | Q3 | Code ®:data <- read_tsv(“https://zenodo.org/record/6803028/files/olympics.tsv")data %>% |
1905A017 | Q7 | Code:‘’’ {r}olympics <- read_tsv(“https://zenodo.org/record/6803028/files/olympics.tsv”) |
1905A018 | Q1 | Unfortunately, as the 2020 Olympics have been postponed and are held in 2021, we cannot determine how much of the heaviest tennis player is using the data provided. The dataset provided only includes information on athletes competing in the Summer Olympics from 1896 to 2016. Therefore, we do not have data on the 2021 Olympics and using this dataset we cannot determine the weight of the heaviest tennis player in that event.library(tidyverse)data <- read_tsv(“https://zenodo.org/record/6803028/files/olympics.tsv")tennis_data <- data %>% |
1905A020 | Q10 | library(tidyverse)data <- read_tsv(“https://zenodo.org/record/6803028/files/olympics.tsv”) |
1905A020 | Q13 | library(tidyverse)data <- read_tsv(“https://zenodo.org/record/6803028/files/olympics.tsv”) |
1905A020 | Q4 | library(tidyverse)data <- read_tsv(“https://zenodo.org/record/6803028/files/olympics.tsv")data%>%filter(season== “Winter”)%>%arrange(height)%>%select(name,height,season) |
1905A020 | Q5 | library(tidyverse)data <- read_tsv(“https://zenodo.org/record/6803028/files/olympics.tsv”) |
1905A020 | Q6 | library(tidyverse)data <- read_tsv(“https://zenodo.org/record/6803028/files/olympics.tsv”) |
1905A022 | Q11 | library(tidyverse)olympics <- read_tsv(“https://zenodo.org/record/6803028/files/olympics.tsv")olympics <- olympics %>% filter(!is.na(height))tallest_athlete <- olympics %>% slice_max(height)cat(“The height of the tallest athlete is”, tallest_athlete$height, “cm, and his/her name is”, tallest_athlete$name, “\n”) |
1905A022 | Q16 | library(gapminder)data(gapminder)gapminder_1987 <- gapminder %>% |
1905A022 | Q4 | library(tidyverse)olympics <- read_tsv(“https://zenodo.org/record/6803028/files/olympics.tsv")winter_olympics <- olympics %>% |
1905A022 | Q5 | library(tidyverse)olympics <- read_tsv(“https://zenodo.org/record/6803028/files/olympics.tsv")last_olympics <- olympics %>% |
1905A022 | Q6 | library(tidyverse)olympics <- read_tsv(“https://zenodo.org/record/6803028/files/olympics.tsv")total_gold_medals <- olympics %>% |
1905A022 | Q9 | library(tidyverse)olympics <- read_tsv(“https://zenodo.org/record/6803028/files/olympics.tsv")women_badminton <- olympics %>% |
1905A025 | Q13 | olympic %>% |
1905A025 | Q14 | olympic %>% |
1905A025 | Q2 | library(tidyverse)olympics %>% |
1905A025 | Q7 | olympic %>% |
1905A025 | Q9 | olympic %>% |
1905A026 | Q10 | Read the datadata <- read.table(“olympics.tsv”, header = TRUE,
|
1905A026 | Q15 | data <- read.table(“olympics.tsv”, header = TRUE, |
1905A035 | Q10 | library(tidyverse)olympics <- read_tsv(“https://zenodo.org/record/6803028/files/olympics.tsv")denmark_1964 <- olympics %>% |
1905A035 | Q11 | library(readr)library(dplyr)olympics <- read_tsv(“https://zenodo.org/record/6803028/files/olympics.tsv")olympics %>% |
1905A035 | Q18 | library(gapminder)turkey_data <- gapminder[gapminder$country == “Turkey”,]wealthiest_year <- turkey_data[turkey_data$gdpPercap == max(turkey_data$gdpPercap),]print(wealthiest_year) |
1905A035 | Q19 | 6c2a47ce-f93b-45c6-b189-0e2235fbc655.jpg |
1905A035 | Q2 | library(readr)library(dplyr)olympics <- read_tsv(“https://zenodo.org/record/6803028/files/olympics.tsv")olympics %>% |
1905A035 | Q5 | library(readr)library(dplyr)olympics <- read_tsv(“https://zenodo.org/record/6803028/files/olympics.tsv")olympics %>% |
1905A035 | Q8 | library(dplyr)olympics <- read_tsv(“https://zenodo.org/record/6803028/files/olympics.tsv")num_medals <- olympics %>% |
1905A051 | Q10 | Sample data (heights in centimeters)
|
1905A051 | Q11 | Sample data (heights in centimeters)
|
1905A051 | Q16 |
|
1905A051 | Q3 | shortest_athlete = min(athletes, key=lambda a: a[‘height’]) # Print the shortest athlete’s name and height |
1905A051 | Q5 | Sample data
|
1905A051 | Q8 | library(tidyverse)df <- read_tsv(‘https://zenodo.org/record/6803028/files/olympics.tsv’) |
1905A061 | Q10 | Load the olympics datalibrary(tidyverse)olympics <- read_tsv(“https://zenodo.org/record/6803028/files/olympics.tsv")# Calculate the average height of Danish athletes in the 1964 Olympicsavg_height_denmark_1964 <- olympics %>%
|
1905A061 | Q11 | library(tidyverse)olympics <- read_tsv(“https://zenodo.org/record/6803028/files/olympics.tsv")tallest_athlete <- olympics %>%filter(!is.na(Height)) %>%arrange(desc(Height)) %>%slice(1) %>%select(Name, Height)cat(“The tallest athlete is”, tallest_athlete$Name, “with a height of”, tallest_athlete$Height, “cm.”) |
1905A061 | Q12 | Load the olympics datalibrary(tidyverse)olympics <- read.csv(“https://raw.githubusercontent.com/abulbasar/data/master/olympics.csv")# Count the number of unique sports in each Olympicssports_per_olympics <- olympics %>%
|
1905A061 | Q16 | install.packages(“gapminder”)library(gapminder)library(dplyr) |
1905A061 | Q20 | library(tidyverse) # Import file with appropriate arguments scores % group_by(Student) %>% summarise(avg_score = mean(Score)) # Print result avg_scores |
1905A061 | Q3 | Load the olympics datalibrary(tidyverse)olympics <- read_tsv(“https://zenodo.org/record/6803028/files/olympics.tsv")# Find the shortest athlete ever to compete in the Olympicsshortest_athlete <- olympics %>%
|
1905A061 | Q6 | Load the olympics datalibrary(tidyverse)olympics <- read_tsv(“https://zenodo.org/record/6803028/files/olympics.tsv")# Count the number of gold medals in all gamesnum_gold_medals <- olympics %>%
|
1905A606 | Q1 | library(readr)library(dplyr)df <- read_tsv(‘olympics.tsv’)tennis_players <- df %>% |
1905A606 | Q13 | library(readr)library(dplyr)df <- read_tsv(‘olympics.tsv’)recent_summer <- df %>% |
1905A606 | Q2 | library(readr)library(dplyr)df <- read_tsv(‘olympics.tsv’)recent_summer <- summer %>% |
1905A606 | Q6 | library(readr)library(dplyr)df <- read_tsv(‘olympics.tsv’)summer_gold <- summer %>% |
1905A608 | Q10 | library(dplyr)olympics_data <- read.table(“https://zenodo.org/record/6803028/files/olympics.tsv”, header = TRUE)denmark_avg_height <- olympics_data %>% |
1905A608 | Q14 | library(readr)data <- read_tsv(’https://zenodo.org/record/6803028/files/olympics.tsv')country_counts <- table(data$NOC)max_country <- names(country_counts[which.max(country_counts)])cat(max_country) |
1905A608 | Q15 | library(readr)data <- read_tsv(’https://zenodo.org/record/6803028/files/olympics.tsv')max_height_row <- data[which.max(data$Height), ]cat(max_height_row$Name, max_height_row$Height, “cm”) |
1905A608 | Q16 | library(gapminder)wealthiest_1987 <- gapminder[gapminder$year == 1987,]wealthiest_1987[which.max(wealthiest_1987$gdpPercap),] |
1905A608 | Q2 | library(tidyverse)olympics_data <- read_tsv(“https://zenodo.org/record/6803028/files/olympics.tsv")summer_2020 <- olympics_data %>% |
1905A608 | Q6 | library(tidyverse)olympics_data <- read_csv(“https://zenodo.org/record/6803028/files/olympics.tsv")total_gold_medals <- olympics_data %>% |
1905A903 | Q10 | df %>% filter(year == 1964, noc == “DEN”) %>% summarise(avg.height = mean(height)) |
1905A903 | Q15 | library(tidyverse)df <- read_tsv(‘https://zenodo.org/record/6803028/files/olympics.tsv’) |
1905A903 | Q18 | df %>% filter(country == “Turkey”) %>% slice_max(gdpPercap) |
1905A903 | Q20 | solution.png |
1905A903 | Q3 | df %>% slice_min(height) |
1905A903 | Q5 | df %>% filter(year == 2020, season == “Summer”) %>% distinct(noc) |
1905A903 | Q8 | library(tidyverse)df <- read_tsv(‘https://zenodo.org/record/6803028/files/olympics.tsv’) |
1905A916 | Q14 | library(dplyr)library(readr)athlete_events <- read_csv(“olympics.tsv”)country_participations <- athlete_events %>% |
1905A916 | Q15 | library(dplyr)library(readr)athlete_events <- read_csv(“olympic.tsv”)most_recent_year <- max(athlete_events$Year, na.rm = TRUE)most_recent_olympics <- athlete_events %>% |
1905A916 | Q18 | library(gapminder)library(dplyr)wealthiest_year_turkey <- gapminder %>% |
1905A916 | Q3 |
|
1905A916 | Q7 |
|
1905A916 | Q9 | library(dplyr)library(readr)athlete_events <- read_csv(“olympics.tsv”)shortest_gold_medalist <- athlete_events %>% |
20056603 | Q10 | Load the required packagelibrary(readr)# Set the path to the CSV file containing the datapath <- “path/to/1964_olympics.csv”# Read the data, skipping the first 4 rows which contain metadata and excluding comments starting with “#“data <- read_delim(path, delim = “,”, col_names = TRUE, skip = 4, comment = “#”)# Filter the data to include only athletes from Denmark (DEN) and the height columndenmark_data <- data %>%
|
20056603 | Q12 | Load the readr and dplyr packageslibrary(readr)library(dplyr)# Read in the Olympics dataset using read_delim functionolympics_data <- read_delim(“olympics.csv”, delim = “,”, col_names = TRUE, skip = 1, comment = “”)# Count the number of unique sports for each Olympics and find the one with the most sportsmost_sports_olympics <- olympics_data %>%
|
20056603 | Q13 | Load the Olympics dataolympics <- read_delim(“olympics.csv”, delim = “,”, col_names = TRUE, skip = 1)# Show the last row of the data to check if it loaded correctlytail(olympics)# Filter the data to include only the most recent Olympicsrecent_olympics <- olympics %>% filter(year == max(year))# Sort the data by athlete name in descending orderlast_athlete <- recent_olympics %>% arrange(desc(name)) %>% slice_tail(n = 1)# Print the name of the last athleteprint(last_athlete$name)
|
20056603 | Q17 | Load the gapminder packagelibrary(gapminder)# Filter the gapminder dataset to include only Asian countriesasia_data <- gapminder %>% filter(continent == “Asia”)# Group the data by country and calculate the average GDP per capita across all yearscountry_gdp <- asia_data %>%
|
20056603 | Q2 | Load the Olympics dataolympics <- read_delim(“olympics.csv”, delim = “,”, col_names = TRUE, skip = 1)# Show the last few rows of the data to make sure it loaded correctlytail(olympics)
|
20056603 | Q6 | Load the readr packagelibrary(readr)# Read in the Olympics dataset using read_delim functionolympics_data <- read_delim(“olympics.csv”, delim = “,”, col_names = TRUE, skip = 1, comment = “”)# Extract the number of gold medals awarded in all gamestotal_gold_medals <- sum(olympics_data$Gold)# Print the resultcat(“The total number of gold medals awarded in all games is:”, total_gold_medals)
|
20056605 | Q13 | Load the tidyverse library for data manipulation library(tidyverse)# Load the Olympics data olympics <- read_csv(“https://zenodo.org/record/6611769/files/olympics.csv?download=1")# Filter the data to keep only the most recent Olympicsrecent_olympics <- olympics %>%
|
20056605 | Q18 | Load the gapminder librarylibrary(gapminder)
|
20056605 | Q7 | Load the dplyr library for data manipulationlibrary(dplyr)
|
2005A043 | Q11 | library(tidyverse)olympics <- read_tsv(“https://zenodo.org/record/6803028/files/olympics.tsv")olympics %>% |
2005A043 | Q12 | library(tidyverse)olympics <- read_tsv(“https://zenodo.org/record/6803028/files/olympics.tsv")olympics %>% |
2005A043 | Q18 | library(gapminder)gapminder %>% |
2005A043 | Q3 | library(tidyverse)olympics <- read_tsv(“https://zenodo.org/record/6803028/files/olympics.tsv")olympics %>% |
2005A043 | Q8 | library(tidyverse)olympics <- read_tsv(“https://zenodo.org/record/6803028/files/olympics.tsv")olympics %>% |
2005A043 | Q9 | library(tidyverse)olympics <- read_tsv(“https://zenodo.org/record/6803028/files/olympics.tsv")olympics %>% |
2005A608 | Q10 | library(readr)library(dplyr)athletes <- readcsv(“olympics.tsv”)denmark_1964 <- athletes %>% |
2005A608 | Q12 | library(readr)library(dplyr)olympics <- readcsv(“olympics.tsv”)sports_per_olympics <- olympics %>% |
2005A608 | Q4 | olympicdata ← readcsv(“olympics.tsv”)%>%library(readr)library(dplyr)athletes <- read_csv(“olympics.tsv”)winter_athletes <- athletes %>% |
2005A608 | Q7 | olympic ←readtsv(“olympics.tsv”)%>% |
2005A612 | Q10 | library(readr)library(dplyr)olympics_data <- read_tsv(“https://zenodo.org/record/6803028/files/olympics.tsv")d_1964 <- olympics_data %>% |
2005A612 | Q13 | library(readr)library(dplyr)olympics_data <- read_tsv(“https://zenodo.org/record/6803028/files/olympics.tsv")olympics_data %>% group_by(name, year) %>% arrange(desc(name), year) |
2005A612 | Q14 | library(readr)library(dplyr)olympics_data <- read_tsv(“https://zenodo.org/record/6803028/files/olympics.tsv")country_participations <- olympics_data %>% select(participations) |
2005A612 | Q4 | library(readr)library(dplyr)olympics_data <- read_tsv(“https://zenodo.org/record/6803028/files/olympics.tsv")olympics_data %>% group_by(height) %>% summarize(max_height= desc(max(height))) |
2005A612 | Q7 | library(readr)library(dplyr)olympics_data <- read_tsv(“https://zenodo.org/record/6803028/files/olympics.tsv")sh_gold_medalists <- olympics_data %>% |
Data Analysis and Visualization - Midterm - Student answers
Unfortunately, you cannot see your answers at online.yildiz.edu.tr address. So this page shows your answers.