knitr::opts_chunk$set(echo = TRUE)
library(readxl)
library(dplyr)
## Warning: package 'dplyr' was built under R version 4.2.3
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(MASS)
## 
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
## 
##     select
library(gtools)
library(gmodels)
## Warning: package 'gmodels' was built under R version 4.2.3
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.2.3
library(class)
library(tidyr)
## Warning: package 'tidyr' was built under R version 4.2.3

Memanggil Data dan Membentuk Data Frame

dt <- read_excel("D:/SEM 6/BISMILLAH LOMBA/SATDAT JUARA PART 2/Data fix/Data Cleaning_Hanung Safrizal.xlsx", 
                 sheet = "Data modif")
head(dt)
## # A tibble: 6 × 16
##   Target_PJK   Age   Sex GD_Puasa GD_PP Kolestrol   LDL   HDL Lipoprotein
##        <dbl> <dbl> <dbl>    <dbl> <dbl>     <dbl> <dbl> <dbl>       <dbl>
## 1          0    57     1       94   131       212   144    48        85  
## 2          0    57     2      112   242       266   159    64        95  
## 3          0    49     1       87    55       209   146    38        81  
## 4          0    46     2       99   106       227   137    57        91  
## 5          0    53     1       87   117       217   119    84        91  
## 6          0    32     1       84    85       174   103    46        70.8
## # ℹ 7 more variables: Berat_Badan <dbl>, Target_Hipertensi <dbl>,
## #   Nyeri_Dada <dbl>, Riwayat_Keluarga <dbl>, Sistolik <dbl>, Diastolik <dbl>,
## #   Merokok <dbl>
str(dt)
## tibble [5,327 × 16] (S3: tbl_df/tbl/data.frame)
##  $ Target_PJK       : num [1:5327] 0 0 0 0 0 0 0 0 0 0 ...
##  $ Age              : num [1:5327] 57 57 49 46 53 32 27 40 35 38 ...
##  $ Sex              : num [1:5327] 1 2 1 2 1 1 1 2 1 2 ...
##  $ GD_Puasa         : num [1:5327] 94 112 87 99 87 84 79 82 89 86 ...
##  $ GD_PP            : num [1:5327] 131 242 55 106 117 85 68 121 109 89 ...
##  $ Kolestrol        : num [1:5327] 212 266 209 227 217 174 159 170 184 119 ...
##  $ LDL              : num [1:5327] 144 159 146 137 119 103 101 107 124 76 ...
##  $ HDL              : num [1:5327] 48 64 38 57 84 46 50 38 52 51 ...
##  $ Lipoprotein      : num [1:5327] 85 95 81 91 91 ...
##  $ Berat_Badan      : num [1:5327] 70 61.4 53.3 66.7 67 ...
##  $ Target_Hipertensi: num [1:5327] 0 0 0 0 0 0 0 0 0 0 ...
##  $ Nyeri_Dada       : num [1:5327] 0 0 0 0 0 0 0 0 0 0 ...
##  $ Riwayat_Keluarga : num [1:5327] 0 0 0 0 0 0 0 0 0 0 ...
##  $ Sistolik         : num [1:5327] 100 118 86 120 126 108 100 102 82 114 ...
##  $ Diastolik        : num [1:5327] 66 63 57 83 69 67 62 80 77 70 ...
##  $ Merokok          : num [1:5327] 0 0 0 0 0 0 0 0 0 0 ...
hist(dt$Target_PJK)

# Create a contingency table of counts
count_data <- table(dt$Merokok, dt$Target_PJK)

# Define colors for each category
colors <- c("lightblue", "lightgreen", "pink", "orange", "yellow")

# Create stacked bar plot
barplot(count_data, beside = TRUE, legend = TRUE, col = colors,
        xlab = "Target_PJK", ylab = "Count", main = "Hubungan antara Merokok dan Target_PJK",
        args.legend = list(x = "topright", bty = "n", title = "Merokok"))

# Add legend
legend("topright", legend = c("Merokok 0", "Merokok 1", "Merokok 2", "Merokok 3", "Merokok 4"),
       fill = colors)

# Create a contingency table of counts
count_data <- table(dt$Merokok, dt$Target_PJK)

# Calculate the proportions for each category
prop_data <- prop.table(count_data, margin = 1) * 100

# Define colors for each category
colors <- c("lightblue", "lightgreen", "pink", "orange", "yellow")

# Create stacked bar plot with percentages
barplot(prop_data, beside = TRUE, legend = TRUE, col = colors,
        xlab = "Target_PJK", ylab = "Percentage", main = "Hubungan antara Merokok dan Target_PJK",
        args.legend = list(x = "topright", bty = "n", title = "Merokok"))

# Add legend
legend("topright", legend = c("Merokok 0", "Merokok 1", "Merokok 2", "Merokok 3", "Merokok 4"),
       fill = colors)

# Subset data for Target_PJK = 0
subset_data <- subset(dt, Target_PJK == 0)

# Calculate the percentage for each category
percentages <- prop.table(table(subset_data$Merokok)) * 100

# Create bar plot for percentages
barplot(percentages, col = c("lightblue", "lightgreen", "pink", "orange"),
        xlab = "Merokok", ylab = "Percentage", main = "Persentase Merokok pada Target_PJK = 0",
        ylim = c(0, max(percentages) + 10))

# Add text labels for percentages
text(x = 1:length(percentages), y = percentages, labels = paste0(round(percentages, 1), "%"), pos = 3)

# Subset data for Target_PJK = 0
subset_data <- subset(dt, Target_PJK == 1)

# Calculate the percentage for each category
percentages <- prop.table(table(subset_data$Merokok)) * 100

# Create bar plot for percentages
barplot(percentages, col = c("lightblue", "lightgreen", "pink", "orange"),
        xlab = "Merokok", ylab = "Percentage", main = "Persentase Merokok pada Target_PJK = 1",
        ylim = c(0, max(percentages) + 10))

# Add text labels for percentages
text(x = 1:length(percentages), y = percentages, labels = paste0(round(percentages, 1), "%"), pos = 3)

str(dt$Target_PJK)
##  num [1:5327] 0 0 0 0 0 0 0 0 0 0 ...
str(dt$Merokok)
##  num [1:5327] 0 0 0 0 0 0 0 0 0 0 ...
# Pastikan tidak ada nilai NA di setiap kolom
dt <- na.omit(dt)

# Membentuk Data Frame
dt$Sex <- as.factor(dt$Sex)
dt$Target_PJK <- as.factor(dt$Target_PJK)
dt$Target_Hipertensi<- as.factor(dt$Target_Hipertensi)
dt$Riwayat_Keluarga<- as.factor(dt$Riwayat_Keluarga)

# Periksa hasil
summary(dt)
##  Target_PJK      Age        Sex         GD_Puasa          GD_PP      
##  0:4855     Min.   :22.00   1:1787   Min.   : 49.00   Min.   : 28.0  
##  1: 472     1st Qu.:35.00   2:3540   1st Qu.: 77.00   1st Qu.: 91.0  
##             Median :44.00            Median : 83.00   Median :107.0  
##             Mean   :43.85            Mean   : 89.36   Mean   :121.4  
##             3rd Qu.:52.00            3rd Qu.: 90.25   3rd Qu.:131.0  
##             Max.   :99.00            Max.   :665.00   Max.   :677.0  
##    Kolestrol          LDL             HDL           Lipoprotein    
##  Min.   : 78.0   Min.   :  0.0   Min.   :  10.00   Min.   : 44.00  
##  1st Qu.:165.5   1st Qu.: 97.0   1st Qu.:  46.00   1st Qu.: 70.70  
##  Median :188.0   Median :116.0   Median :  53.00   Median : 80.00  
##  Mean   :191.6   Mean   :119.2   Mean   :  54.87   Mean   : 79.87  
##  3rd Qu.:213.0   3rd Qu.:137.5   3rd Qu.:  61.00   3rd Qu.: 88.00  
##  Max.   :474.0   Max.   :373.0   Max.   :3985.00   Max.   :169.00  
##   Berat_Badan    Target_Hipertensi   Nyeri_Dada      Riwayat_Keluarga
##  Min.   :  0.0   0:4700            Min.   :0.00000   0:5126          
##  1st Qu.: 49.8   1: 627            1st Qu.:0.00000   1: 201          
##  Median : 56.5                     Median :0.00000                   
##  Mean   : 57.8                     Mean   :0.06908                   
##  3rd Qu.: 64.8                     3rd Qu.:0.00000                   
##  Max.   :123.3                     Max.   :1.00000                   
##     Sistolik       Diastolik         Merokok      
##  Min.   : 58.0   Min.   : 35.00   Min.   :0.0000  
##  1st Qu.: 97.0   1st Qu.: 62.00   1st Qu.:0.0000  
##  Median :106.0   Median : 69.00   Median :0.0000  
##  Mean   :110.9   Mean   : 71.01   Mean   :0.2399  
##  3rd Qu.:118.0   3rd Qu.: 77.00   3rd Qu.:0.0000  
##  Max.   :269.0   Max.   :169.00   Max.   :1.0000
# Menampilkan struktur data frame
str(dt)
## tibble [5,327 × 16] (S3: tbl_df/tbl/data.frame)
##  $ Target_PJK       : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
##  $ Age              : num [1:5327] 57 57 49 46 53 32 27 40 35 38 ...
##  $ Sex              : Factor w/ 2 levels "1","2": 1 2 1 2 1 1 1 2 1 2 ...
##  $ GD_Puasa         : num [1:5327] 94 112 87 99 87 84 79 82 89 86 ...
##  $ GD_PP            : num [1:5327] 131 242 55 106 117 85 68 121 109 89 ...
##  $ Kolestrol        : num [1:5327] 212 266 209 227 217 174 159 170 184 119 ...
##  $ LDL              : num [1:5327] 144 159 146 137 119 103 101 107 124 76 ...
##  $ HDL              : num [1:5327] 48 64 38 57 84 46 50 38 52 51 ...
##  $ Lipoprotein      : num [1:5327] 85 95 81 91 91 ...
##  $ Berat_Badan      : num [1:5327] 70 61.4 53.3 66.7 67 ...
##  $ Target_Hipertensi: Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
##  $ Nyeri_Dada       : num [1:5327] 0 0 0 0 0 0 0 0 0 0 ...
##  $ Riwayat_Keluarga : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
##  $ Sistolik         : num [1:5327] 100 118 86 120 126 108 100 102 82 114 ...
##  $ Diastolik        : num [1:5327] 66 63 57 83 69 67 62 80 77 70 ...
##  $ Merokok          : num [1:5327] 0 0 0 0 0 0 0 0 0 0 ...

Data Proportion

pcheart <- table(dt$Target_PJK)
pcheart
## 
##    0    1 
## 4855  472
prop.table(table(dt$Target_PJK))
## 
##          0          1 
## 0.91139478 0.08860522

Splitting Data

library(caret)
## Loading required package: lattice
set.seed(45) # digunakan untuk menghasilkan hasil acak yang sama setiap kali dijalankan
train_index <- createDataPartition(y = dt$Target_PJK, p = .7, list = FALSE) # memilih indeks secara acak untuk set pelatihan
train_dt <- as.data.frame(dt[train_index, ]) # memilih data untuk set pelatihan
test_dt <- as.data.frame(dt[-train_index, ]) # memilih data untuk set pengujian
table(train_dt$Target_PJK)
## 
##    0    1 
## 3399  331
table(test_dt$Target_PJK)
## 
##    0    1 
## 1456  141

Balancing Data

Smote

library(UBL)
## Warning: package 'UBL' was built under R version 4.2.3
## Loading required package: MBA
## Warning: package 'MBA' was built under R version 4.2.3
## Loading required package: gstat
## Warning: package 'gstat' was built under R version 4.2.3
## Loading required package: automap
## Warning: package 'automap' was built under R version 4.2.3
## Loading required package: sp
## Warning: package 'sp' was built under R version 4.2.3
## Loading required package: randomForest
## Warning: package 'randomForest' was built under R version 4.2.3
## randomForest 4.7-1.1
## Type rfNews() to see new features/changes/bug fixes.
## 
## Attaching package: 'randomForest'
## The following object is masked from 'package:ggplot2':
## 
##     margin
## The following object is masked from 'package:dplyr':
## 
##     combine
set.seed(123)
smote_reglog <- SmoteClassif(form = Target_PJK ~ ., dat = train_dt, C.perc = list("1"=1500/331,"0"=1500/3398), dist = "HVDM")
prop_table <- prop.table(table(smote_reglog$Target_PJK))
print(prop_table)
## 
##   0   1 
## 0.5 0.5
table(smote_reglog$Target_PJK)
## 
##    0    1 
## 1500 1500

ROSE

library(ROSE)
## Warning: package 'ROSE' was built under R version 4.2.3
## Loaded ROSE 0.0-4
oversampling_reglog <- ROSE(Target_PJK ~ ., data = train_dt, seed = 123)$data

# Compute class proportions
prop_table <- prop.table(table(oversampling_reglog$Target_PJK))
print(prop_table)
## 
##         0         1 
## 0.5029491 0.4970509
table(oversampling_reglog$Target_PJK)
## 
##    0    1 
## 1876 1854

Undersampling

undersampled_reglog <- ovun.sample(Target_PJK ~ ., data = train_dt, method = "under")$data

# Melihat data yang telah diundersampling
print(undersampled_reglog)
##     Target_PJK Age Sex GD_Puasa GD_PP Kolestrol    LDL   HDL Lipoprotein
## 1            0  46   1    100.0 122.0    191.00 126.00 54.00        77.5
## 2            0  26   1     81.0 107.0    200.00 126.00 67.00        79.0
## 3            0  29   2     82.0  72.0    180.00 129.00 42.00        90.3
## 4            0  54   1     83.0 149.0    255.00 171.00 56.00        88.1
## 5            0  46   2     72.0 106.8    208.90 116.00 47.00        58.0
## 6            0  25   2     70.0 122.0    164.00  92.00 58.00        90.4
## 7            0  26   2     77.0 135.0    243.00 187.00 47.00        88.0
## 8            0  37   2     81.0  84.3    148.00  89.00 49.00        80.0
## 9            0  52   1     73.0  82.0    191.00 135.00 46.00        61.5
## 10           0  45   1     82.0 135.0    179.00 107.00 49.00        92.0
## 11           0  30   1     77.0  97.0    158.00  97.00 41.00        69.0
## 12           0  45   2     76.0  75.4    155.00  81.00 66.00        60.8
## 13           0  29   2     85.0  92.6    202.00 133.00 56.00        65.0
## 14           0  58   2     89.0  96.0    162.00  49.00 89.00        79.5
## 15           0  46   2     78.1  94.0    179.00 114.00 50.00       100.0
## 16           0  32   2     96.0 117.0    253.00 137.00 38.00        80.9
## 17           0  37   2     87.0 134.5     95.00  47.00 52.00        89.0
## 18           0  34   2     86.0 103.0    140.90  88.10 49.00        80.6
## 19           0  33   2     77.0 104.0    199.00 122.00 52.00        79.0
## 20           0  36   2     95.0  75.2    161.50  88.70 39.00        72.5
## 21           0  31   2     85.0  78.0    181.00 110.00 61.00        70.0
## 22           0  51   1     83.0  92.0    192.00 129.00 57.00        70.7
## 23           0  63   2    137.0 252.0    166.00 102.00 38.00        80.5
## 24           0  36   2     95.0 139.0    198.00 124.00 57.00       100.1
## 25           0  28   1     82.0  99.0    187.00 126.00 71.40        99.0
## 26           0  47   1     78.0  88.0    199.00 110.00 63.00        74.5
## 27           0  58   2     94.0  80.0    161.00  97.00 50.00        78.3
## 28           0  53   2     85.0  85.0    227.00 101.00 58.00        82.0
## 29           0  64   1     90.0 115.0    179.00 112.00 55.00        97.0
## 30           0  49   2     86.0 111.0    204.00 116.00 65.00        80.0
## 31           0  54   2     77.0 199.0    303.00 160.00 49.00       101.0
## 32           0  33   2     77.8  60.8    138.40  82.40 67.00        62.5
## 33           0  35   2     57.0 101.0    179.00 116.00 52.00        77.0
## 34           0  46   1     87.0  71.0    151.00  79.00 71.00        72.0
## 35           0  37   2     76.0 124.0    188.00 129.00 50.00        82.0
## 36           0  50   2     85.0  94.0    202.00 112.00 59.00        77.0
## 37           0  39   1     90.0  93.0    184.00 133.00 38.00        77.0
## 38           0  51   2     81.0 113.0    258.00 202.00 56.00        88.0
## 39           0  39   2     82.0 139.0    200.00 124.00 51.00        82.5
## 40           0  45   2     92.0  96.0    161.00  89.00 63.00        94.7
## 41           0  41   2     93.0 109.0    153.00 105.00 57.80        91.0
## 42           0  48   2     90.0  93.0    222.00 118.00 65.00        69.2
## 43           0  30   2     79.8 121.1    127.00  75.00 46.00        78.5
## 44           0  43   2     88.0  97.0    154.00  92.00 57.00        79.0
## 45           0  38   2     82.0  75.2    201.10 131.60 54.00        80.1
## 46           0  51   1     79.0  91.0    119.40  58.30 55.00        69.0
## 47           0  39   2     81.0 145.0    217.00 140.00 70.00        77.0
## 48           0  47   1     69.0 105.0    221.00 129.00 46.00        85.5
## 49           0  41   2     70.0  87.0    166.00 103.00 56.00        85.5
## 50           0  57   2     96.0 150.0    257.00 167.00 49.60        90.1
## 51           0  31   2     89.0 102.0    188.00 109.00 67.00        62.0
## 52           0  33   1    152.0 252.0    149.00 101.00 31.00        93.0
## 53           0  39   2     93.0  82.0    224.00 172.00 40.00        81.5
## 54           0  43   1     75.0  75.0    172.00 105.00 34.00        81.0
## 55           0  51   2     97.0 158.0    230.00 154.00 45.00        60.3
## 56           0  44   1     73.0  83.0    182.00  93.00 75.00        60.6
## 57           0  29   1     74.0  93.0    159.00  92.00 53.00        76.5
## 58           0  53   1     87.0  83.0    173.00 120.00 89.50        56.0
## 59           0  43   2     88.0  96.0    238.00 157.00 68.00        77.0
## 60           0  31   2     80.0 117.0    156.00  83.00 46.00        67.0
## 61           0  58   2     88.0 145.0    294.00 224.00 64.00       113.0
## 62           0  56   2     94.0 126.0    165.00  87.00 67.00        66.0
## 63           0  42   1     90.0 120.0    162.00  91.00 57.00        74.0
## 64           0  26   2     86.0  86.0    146.00  96.00 44.00        64.0
## 65           0  54   2     75.0  91.0    169.00 114.00 63.00        84.0
## 66           0  43   2     88.0 112.0    197.00 106.00 68.00        72.0
## 67           0  57   2     88.0  85.0    206.00 127.00 70.00        87.0
## 68           0  41   1     73.0 134.0    174.00 119.00 45.00        90.6
## 69           0  44   2     79.0  90.0    203.00  93.00 61.00        69.3
## 70           0  36   1     79.0 118.0    215.00 152.00 49.00        79.0
## 71           0  58   1     99.0 173.0    228.00 162.00 52.00        88.0
## 72           0  44   2     83.0 159.0    214.00 121.00 61.00        80.0
## 73           0  36   2     78.0 101.0    180.00 124.00 51.00        79.0
## 74           0  32   2     88.0 131.0    211.80 139.00 56.00        82.2
## 75           0  25   2     85.0 102.4    151.19  90.99 54.42        90.0
## 76           0  34   2     63.0  45.5    193.00 116.30 57.00        60.3
## 77           0  44   2     83.0 103.0    217.00 107.00 42.00        89.0
## 78           0  45   2    103.0 115.0    174.00  92.00 43.00        82.0
## 79           0  33   2     75.0  90.0    178.00 119.00 57.00        84.5
## 80           0  28   1     92.0 203.0    160.00  83.00 36.00        93.0
## 81           0  41   2     85.0  94.0    201.00 135.00 50.00        90.0
## 82           0  31   1     74.0  84.0    187.00 117.00 67.00        80.0
## 83           0  62   2     71.0 104.0    145.00  89.00 48.00        88.6
## 84           0  34   2     81.0 127.0    164.40 103.00 56.00        71.0
## 85           0  35   2     91.0  92.0    202.00 123.00 61.00        75.5
## 86           0  60   1    194.0 259.0    271.00 190.00 43.00        80.2
## 87           0  42   2    108.0 178.0    223.00 150.00 71.00        89.0
## 88           0  47   2     65.0  40.0    199.00 135.00 46.00        79.0
## 89           0  49   2     86.0  90.0    215.00 158.00 48.00        80.0
## 90           0  55   1     78.0 114.0    187.00  93.00 48.00        81.0
## 91           0  36   2     69.0  82.0    167.00 101.00 60.00        78.0
## 92           0  30   1     78.0 127.0    168.00 105.00 50.00        70.2
## 93           0  50   2    118.0 153.0    246.00 168.00 49.00        81.5
## 94           0  29   2     79.0  69.0    204.00 115.00 71.00        70.3
## 95           0  33   2     75.0  88.0    147.00  86.00 58.30        80.8
## 96           0  42   2     82.0 100.0    159.00  65.00 59.00        60.7
## 97           0  26   1     78.0  78.0    121.00  81.00 39.00        60.8
## 98           0  27   2     76.0  95.0    167.00 106.00 58.00        67.0
## 99           0  30   2     88.0 113.7    166.50 100.00 53.80        72.5
## 100          0  51   1    100.0  99.0    185.00 106.00 40.00        76.0
## 101          0  49   2     80.0 151.0    163.00 104.00 47.00        61.0
## 102          0  33   2     68.0  48.0    154.00  88.00 56.00        79.0
## 103          0  38   2     81.0 135.0    198.00 101.00 59.00        80.0
## 104          0  46   2    223.0 297.0    222.00 153.00 47.00       106.0
## 105          0  53   2     77.0  89.0    195.00 111.00 50.00        90.0
## 106          0  37   1    103.0 156.0    229.00 160.00 43.00        80.6
## 107          0  32   2     69.0  69.0    109.00  53.00 45.00        60.3
## 108          0  49   1     80.0  96.0    160.00 101.00 46.00        84.0
## 109          0  41   1     74.0 126.0    183.00 117.00 69.00        80.0
## 110          0  59   2     89.0 185.0    189.00 126.00 43.00        68.0
## 111          0  36   2     95.0 108.0    224.00 146.00 50.20        80.0
## 112          0  44   2     73.0  77.0    142.00  98.00 49.00        92.0
## 113          0  40   1     76.0  97.0    191.00 125.00 40.00        70.0
## 114          0  43   1     76.0  90.0    201.00 117.00 55.00       100.0
## 115          0  54   2    107.0 150.0    277.00 180.00 64.00        65.0
## 116          0  56   2    104.0 191.0    209.00 136.00 54.00        72.5
## 117          0  60   2     62.0  85.0    186.00 106.00 85.00        72.0
## 118          0  41   1     86.0 129.0    192.00 133.00 56.00       106.8
## 119          0  46   2     89.0  84.0    202.00 128.00 49.00        67.0
## 120          0  28   2     82.0  83.0    199.00 137.00 48.50        90.2
## 121          0  42   2     70.0  91.0    158.00 100.00 54.00        74.0
## 122          0  42   1     79.0 133.0    192.00 116.00 70.00        82.0
## 123          0  38   1     93.0 138.0    139.70  78.00 49.00        80.0
## 124          0  48   2     89.0  85.0    211.00 144.00 50.00        75.0
## 125          0  30   2     83.0 109.0    173.00  86.00 77.00        60.0
## 126          0  26   2     87.2  89.0    144.00  90.00 49.00        77.5
## 127          0  58   2    164.0 280.0    179.00 104.00 43.00        83.0
## 128          0  43   2     88.0 109.0    207.00 121.00 56.00        84.5
## 129          0  44   2     72.0 102.0    184.00 134.00 37.00        84.0
## 130          0  50   1     96.0  98.0    184.00 126.00 58.00        72.0
## 131          0  31   2     77.0 128.0    171.00  97.00 49.00        84.5
## 132          0  48   2    102.0 121.0    192.00  86.00 35.00        90.0
## 133          0  33   2     82.0 116.0    170.00 119.00 49.00        71.0
## 134          0  38   2     80.0  38.0    161.00  95.00 52.00        64.0
## 135          0  35   2     82.0  90.0    191.00 105.00 62.00        71.0
## 136          0  42   2     74.0  71.0    152.00  79.00 47.00        67.0
## 137          0  48   2     81.0 117.0    187.00 115.00 66.00        82.3
## 138          0  61   1     93.0  96.0    153.00  67.00 40.20        94.0
## 139          0  42   2     84.0  92.0    204.00 124.00 44.00        78.5
## 140          0  43   2     78.0 114.0    203.00 116.00 85.60        70.0
## 141          0  54   2     77.0 103.0    223.00 162.00 46.00        79.5
## 142          0  53   2     81.8  91.6    202.84 142.17 52.00        60.9
## 143          0  39   2     76.0  85.0    219.00 162.00 51.00        89.0
## 144          0  45   1     87.0  88.0    176.00 113.00 45.00        87.0
## 145          0  43   2     74.0 174.0    190.00 114.00 47.40        83.0
## 146          0  34   2     86.0 105.0    189.00 112.00 67.00        86.5
## 147          0  62   2     99.0 215.0    295.00 181.00 71.00        97.0
## 148          0  60   2     83.0 116.0    251.00 171.00 72.00        82.0
## 149          0  29   2     65.5  77.1    140.00  81.00 48.00        80.1
## 150          0  40   2     90.0 111.0    147.00  88.00 61.00        73.0
## 151          0  36   2    105.0 115.0    249.00 180.00 52.00       102.0
## 152          0  49   2     74.0  87.0    148.00  91.00 62.00        64.0
## 153          0  61   1     81.0  90.0    194.00 117.00 55.00        70.7
## 154          0  50   2     86.0 115.0    190.00 115.00 57.00        89.0
## 155          0  29   1     78.0  98.7    135.20  76.80 66.00        70.0
## 156          0  47   1    156.0 387.0    241.00 163.00 40.00        60.0
## 157          0  64   1     83.0  95.0    188.00 141.00 45.00        80.3
## 158          0  57   2     72.0  80.0    212.00 122.00 71.00        90.0
## 159          0  52   1     91.0 188.0    199.00 135.00 36.00        99.0
## 160          0  56   2     86.0 126.0    224.00 120.00 43.00        88.5
## 161          0  28   2     94.0 107.0    168.00 116.00 45.00        88.0
## 162          0  60   2     64.0 107.0    106.00  70.00 48.00        76.0
## 163          0  28   2     71.0  89.0    170.00 116.00 49.00        60.3
## 164          0  32   2     75.0 123.0    174.00 109.00 57.00        87.0
## 165          0  40   2     78.0 107.0    169.00  86.00 66.00        62.0
## 166          0  57   1     87.0  96.0    171.00 103.70 59.00        70.2
## 167          0  49   2     74.0 119.0    170.00 111.00 54.00        83.0
## 168          0  31   2     80.0  72.0    201.00 143.00 53.00        70.8
## 169          0  37   1     77.0 116.0    177.00 108.00 72.00        91.5
## 170          0  40   1     93.0  92.0    192.00 115.00 48.00        84.0
## 171          0  50   1     83.0 107.0    189.00   0.00 57.00        91.0
## 172          0  28   2     80.0  86.0    179.00 115.00 41.00        89.0
## 173          0  42   2     86.0 108.0    163.00 104.00 57.00        81.0
## 174          0  38   1     84.0  97.0    198.00 126.00 67.00        76.0
## 175          0  45   2     82.0  93.0    197.00  97.00 70.00        68.0
## 176          0  54   2     88.0 100.0    180.00 107.00 37.00       100.5
## 177          0  51   2     91.0  90.0    147.00  75.00 36.00        61.0
## 178          0  34   2     89.0 132.0    172.00 100.00 51.00        78.0
## 179          0  40   1     92.0  81.0    141.00 101.00 38.00        60.0
## 180          0  62   2     88.0 212.0    191.00 137.00 43.00        92.5
## 181          0  34   2     82.0  87.0    204.00 114.00 56.00        66.0
## 182          0  29   2     79.0 116.0    187.00 100.00 47.00        80.0
## 183          0  30   2     97.0  68.0    140.00  51.00 36.00        70.0
## 184          0  38   1     69.0  87.0    160.00  84.00 68.00        60.6
## 185          0  40   1     89.0 156.0    186.00 100.00 45.00        90.0
## 186          0  33   2     74.2  94.0    164.00 102.00 56.00        67.0
## 187          0  33   1     80.0 114.0    154.00  62.00 63.00        63.0
## 188          0  39   2     83.0  88.0    168.00 102.00 57.00        72.5
## 189          0  46   2     79.0  99.0    222.00 128.00 42.00        70.0
## 190          0  35   2     79.8 136.0    168.00 100.00 57.00        96.2
## 191          0  34   2     66.0  92.0    185.00 118.00 61.00        86.5
## 192          0  60   1    114.0 176.0    317.00 206.00 56.00        84.6
## 193          0  58   2     99.0 157.0    197.00  94.00 88.00        65.0
## 194          0  50   2     68.0  79.0    186.00 130.00 46.00        79.0
## 195          0  51   1     93.0  80.0    167.00 117.00 57.00        78.0
## 196          0  38   1     91.0  91.0    161.00  93.00 63.00        70.6
## 197          0  54   2     86.0  90.0    167.70 105.00 50.00        88.0
## 198          0  38   2     70.0 109.0    172.00  90.00 74.00        77.0
## 199          0  53   2     69.0  83.0    178.00 111.00 65.00        70.0
## 200          0  47   2     87.0 105.0    239.00 165.00 44.00        70.9
## 201          0  42   2     72.0  99.0    149.00 107.00 38.00        93.0
## 202          0  52   1    135.0 257.0    181.00 120.00 49.00        94.5
## 203          0  65   1     89.0  80.0    196.00 128.00 46.00        85.0
## 204          0  40   2     85.0  90.0    154.00  93.00 47.00        60.6
## 205          0  32   1     78.0  76.0    158.00  82.50 65.00        60.7
## 206          0  38   1     90.0 105.0    198.00 103.00 71.00        84.0
## 207          0  29   2     85.0  74.0    136.00  80.00 59.00        74.0
## 208          0  43   2     86.0  93.0    155.00  90.00 47.00        60.8
## 209          0  47   2     76.0  94.0    160.00 108.00 71.00        60.7
## 210          0  58   2    122.0 247.0    209.00 141.00 42.00       103.0
## 211          0  38   1     85.0  99.0    164.00 100.00 57.00        70.0
## 212          0  44   2     81.2 107.0    145.00  93.00 60.20        72.0
## 213          0  29   2     68.0 104.0    193.00 119.30 56.00        80.8
## 214          0  44   1     80.0  86.0    180.00 104.00 61.00        80.0
## 215          0  41   2     79.0  69.0    223.00 130.00 39.00        70.0
## 216          0  47   2    107.0 154.0    195.00 126.00 40.00        88.7
## 217          0  59   2     82.0 103.0    187.00 109.00 61.00        80.0
## 218          0  42   1     65.0  87.0    160.00  94.00 75.00        70.7
## 219          0  25   2     73.0  67.0    157.00  83.00 50.00        64.5
## 220          0  51   1     77.0 118.0    273.00 186.00 76.00        82.0
## 221          0  31   1     72.0  93.0    165.00  98.00 65.00        60.5
## 222          0  24   1     71.4  68.0    201.10 127.20 64.00        60.8
## 223          0  50   1     78.0 118.7    213.80 112.00 91.00        65.0
## 224          0  34   2     91.0  91.0    239.00 177.00 50.00        75.0
## 225          0  48   2    107.0 103.0    234.00 150.00 56.00        79.0
## 226          0  39   2     66.0 136.0    181.00 125.00 48.00        93.0
## 227          0  45   2     79.0  99.0    170.00  94.40 65.00        80.0
## 228          0  26   2     80.0  97.0    121.00  49.00 63.00        67.0
## 229          0  43   1     84.0  95.0    230.00 153.00 72.60        80.7
## 230          0  32   2     89.0 110.0    146.00  80.00 49.00        81.5
## 231          0  50   2     86.0 122.0    233.00 139.00 57.00        89.0
## 232          0  27   1     78.0  91.0    121.10  75.10 54.00        84.0
## 233          0  40   2     81.0 123.0    178.00 110.00 59.00        85.0
## 234          0  58   1     96.0 162.0    153.00  97.00 62.00        85.0
## 235          0  34   1     84.0 100.0    184.00 136.00 35.00        70.3
## 236          0  43   1     79.0  84.0    184.00 109.00 67.00        73.0
## 237          0  50   2    118.0 207.0    247.00 141.00 39.00        80.2
## 238          0  35   2     99.0 137.0    179.00 105.00 36.00        96.0
## 239          0  29   2     85.0 115.6    199.00 128.00 53.00        85.5
## 240          0  35   2     75.0  92.0    174.00 113.00 45.00        88.0
## 241          0  52   2     96.0 173.0    225.00 163.00 39.00        90.0
## 242          0  41   2     81.0 129.0    183.00 113.00 58.00        94.0
## 243          0  35   2     67.0 112.0    189.00 118.00 55.00        75.0
## 244          0  49   2     75.0  96.0    185.00  99.00 86.00        80.5
## 245          0  56   2     78.0  93.4    195.40 130.10 53.00        88.0
## 246          0  41   2     89.0  98.0    208.00 133.00 73.00        75.0
## 247          0  38   2     87.0  75.0    141.00  87.00 46.20        83.9
## 248          0  35   2     76.0  61.0    194.00 127.00 67.00        70.5
## 249          0  43   1     82.0 146.0    171.00  92.00 70.00        61.0
## 250          0  31   2     83.8  86.0    165.10  99.90 64.00        97.0
## 251          0  49   2     69.0  74.0    151.00  86.00 59.20        65.0
## 252          0  25   1     76.0 105.0    171.00  95.00 67.00        71.0
## 253          0  35   2     82.0  89.0    175.00  94.00 81.00        69.0
## 254          0  47   1     97.0  97.0    262.00 175.00 78.00        70.6
## 255          0  46   1     78.0  96.0    198.00 124.00 73.00        70.4
## 256          0  33   2     78.4  73.0    133.00  79.00 58.90        60.5
## 257          0  35   2     93.0 135.0    218.00 143.00 51.00        84.0
## 258          0  44   2     75.0 118.0    198.00 140.00 61.00       102.0
## 259          0  46   2     87.0 108.0    195.00 121.00 35.00        90.2
## 260          0  57   2     80.0  87.0    202.00 142.00 56.00        83.2
## 261          0  47   2     86.0  87.0    221.00 148.00 57.00        81.0
## 262          0  36   2     81.0  94.0    179.00 121.10 53.00        80.0
## 263          0  27   2     80.0  60.0    173.00  91.00 70.00        70.0
## 264          0  61   1     83.0  92.0    168.00 105.00 63.00        65.0
## 265          0  36   2     80.0 126.0    194.00 111.00 60.00        77.5
## 266          0  49   2     89.0  90.0    257.00 155.00 53.00        79.0
## 267          0  34   2     72.0 106.0    162.40  99.00 53.00       100.7
## 268          0  32   1     64.8  94.0    180.80 119.10 65.00        70.3
## 269          0  54   2     82.0 120.0    193.20 134.80 47.40        90.0
## 270          0  48   1     99.0 117.0    218.00 113.00 79.00        85.0
## 271          0  30   2     78.0 111.0    191.00 135.00 44.00        70.2
## 272          0  26   2     86.0  80.0    149.00  93.00 52.00        75.0
## 273          0  30   2     75.0  83.0    162.00  99.00 38.00        70.0
## 274          0  35   2     79.0  88.0    150.90  88.40 70.00        79.0
## 275          0  46   2     82.0  88.0    199.00 144.00 57.00        70.2
## 276          0  52   1     91.0 105.0    215.00 119.00 88.00        60.5
## 277          0  29   2     66.0 116.0    140.00  82.00 39.00        87.0
## 278          0  62   2    157.0 183.0    238.00 160.00 42.00        82.0
## 279          0  57   2     84.0 109.0    183.00 101.00 76.00        79.0
## 280          0  36   2     84.0  82.0    183.00 116.00 60.00        76.5
## 281          0  39   2     75.0  89.0    165.00  92.00 68.00        57.0
## 282          0  33   1     78.0  91.0    137.00  82.00 48.00        66.0
## 283          0  55   2     93.0  93.0    199.00 141.00 53.00        72.0
## 284          0  64   1     80.5 124.0    201.00 118.00 67.00        50.9
## 285          0  62   1     79.0 120.0    174.00 121.00 44.00       101.0
## 286          0  53   1     99.0 148.0    138.00  75.50 63.00        80.7
## 287          0  57   2     82.0 118.0    217.00 138.00 59.00        80.4
## 288          0  41   2     96.0 194.0    225.00 152.00 55.00        90.5
## 289          0  35   1     67.0  97.0    174.00 105.00 53.00        77.0
## 290          0  38   2     60.0  91.0    199.00 144.00 39.00        72.0
## 291          0  59   2     89.0  95.0    160.00 106.00 41.00        75.0
## 292          0  51   2     77.0  93.0    154.00  91.00 76.00        62.0
## 293          0  38   2     79.0 113.0    161.00 105.00 55.00        80.0
## 294          0  56   1     73.6  85.0    211.70 145.00 56.00        70.0
## 295          0  38   2    107.4 149.0    188.00 125.20 55.00        82.0
## 296          0  45   2     74.0  85.0    173.00 116.00 42.00        77.0
## 297          0  28   2     83.0  91.0    151.00  93.00 52.00        60.3
## 298          0  33   2     71.0  63.0    147.20  86.80 47.00        70.1
## 299          0  64   2    115.0 203.0    182.00 120.00 46.00        80.0
## 300          0  57   2     88.0 133.0    173.00 118.00 58.00        82.0
## 301          0  29   2     74.0  76.0    204.00 129.00 65.00        71.0
## 302          0  47   2     76.0 127.0    173.00 104.00 61.00        80.0
## 303          0  50   2     80.0 108.0    167.00 102.00 63.00        70.8
## 304          0  41   2     74.0 109.0    187.00 118.00 47.00        91.0
## 305          0  42   1     75.0 101.0    217.00 148.00 52.00        70.3
## 306          0  61   2     97.0  84.0    244.00 143.00 74.00        61.0
## 307          0  41   1     92.0 126.0    184.00 122.00 48.00        64.0
## 308          0  34   1     79.0  94.0    139.00  85.00 68.60        80.0
## 309          0  32   1     89.0 101.0    163.00 104.00 39.00        90.8
## 310          0  29   2     70.0  65.0    185.00 122.00 54.00        80.0
## 311          0  48   2     81.0  97.0    109.00  56.00 53.00        69.0
## 312          0  37   1     79.0 115.0    222.00 158.00 40.00        80.7
## 313          0  46   2     75.0  94.0    224.00 162.00 56.00        80.0
## 314          0  38   1     74.5  92.1    128.00 115.00 54.00        70.1
## 315          0  56   1     71.0  92.0     78.00  49.00 26.00        90.2
## 316          0  50   1     82.0 138.0    213.00 143.00 60.00        94.0
## 317          0  27   2     81.0  88.3    147.00  90.00 47.00       102.5
## 318          0  48   2     65.0 127.0    221.00 166.00 46.00        86.5
## 319          0  32   2     86.0 100.0    178.00 122.00 49.00        75.6
## 320          0  36   2     84.0  91.0    157.00  89.00 56.00        74.5
## 321          0  46   2     74.0  99.0    155.00  85.00 56.00        77.0
## 322          0  50   2     96.0 110.0    175.00 125.00 55.00        70.6
## 323          0  32   2     91.0 124.0    226.00 163.00 49.00        72.7
## 324          0  46   2     75.0 114.0    213.00 143.00 47.00        78.0
## 325          0  50   2     90.0 125.0    185.00 109.00 68.00        99.0
## 326          0  61   2     73.0  82.0    145.00 100.10 47.00        83.0
## 327          0  26   1     77.0  90.9    145.00  85.70 58.00        64.0
## 328          0  43   1     66.0 126.0    133.00  69.00 64.00        68.0
## 329          0  60   1     76.0 152.0    141.00  89.00 35.00        83.0
## 330          0  25   2     74.0  54.0    144.00  76.00 50.00        83.0
## 331          0  25   2     87.0 104.0    161.00 104.00 46.00        81.0
## 332          0  34   1     72.0  81.0    165.00  99.00 66.40        74.0
## 333          0  53   2     71.0  94.0    187.00  95.00 71.00        77.0
## 334          0  26   2     67.0 129.0    197.00 146.00 54.00        77.0
## 335          0  50   2     90.0  97.0    189.30  94.60 73.90        80.5
## 336          0  47   1     90.0 107.0    173.00 102.00 63.30        82.0
## 337          0  59   1    129.0 160.0    206.00 123.90 63.00        93.0
## 338          0  32   2     76.0  61.0    153.00  98.00 41.00        69.0
## 339          0  38   2     76.0  96.0    201.00 136.00 32.00        85.0
## 340          0  32   2     82.0  92.0    206.00 129.00 59.00        67.5
## 341          0  33   1     79.4  98.1    166.00 104.00 54.85        87.0
## 342          0  26   2     82.2 101.0    120.10  67.30 50.00        80.0
## 343          0  54   2    111.0 154.0    259.00 155.00 57.00       101.0
## 344          0  35   1     76.0  77.0    160.00  91.00 57.00        60.9
## 345          0  42   1     81.0 160.0    301.00 222.00 69.00        80.4
## 346          0  28   1     75.0 124.0    210.00 123.00 48.00        93.0
## 347          0  38   2    174.0 103.0    205.00 144.00 41.00        91.0
## 348          0  44   1     88.0  76.0    210.00 147.00 48.00        60.1
## 349          0  33   1     79.0 103.0    167.00  91.00 96.00        65.0
## 350          0  42   1     99.0 181.0    190.00 130.00 70.00        79.5
## 351          0  38   2     81.0  82.0    175.00 102.00 62.00        81.0
## 352          0  38   1     74.0 107.0    184.70 126.00 52.00        80.0
## 353          0  64   1    148.0 389.0    319.00 185.00 54.00        70.7
## 354          0  42   2     74.0 108.0    176.00 103.00 68.00        60.4
## 355          0  39   2     76.0 115.0    156.00  96.00 49.00        79.0
## 356          0  41   2     81.0  96.0    245.00 165.00 61.00        96.0
## 357          0  30   1     64.0 115.0    131.00  72.00 69.00        79.0
## 358          0  49   1     86.0 130.0    210.00 142.00 60.00        60.6
## 359          0  57   1     90.0  98.0    156.00 108.00 60.00        66.5
## 360          0  24   1     75.0  90.0    136.00  69.00 66.00        60.8
## 361          0  49   2     81.0 104.0    193.00  97.00 41.00        84.0
## 362          0  32   2     82.2  82.0    183.00 111.00 50.00        86.5
## 363          1  66   1    116.0 221.0    247.00 145.00 76.00        89.0
## 364          1  64   2     84.0 107.0    194.00 128.00 45.00        79.0
## 365          1  52   1    108.0 266.0    244.00 150.00 35.00        94.0
## 366          1  47   1    142.0 297.0    228.00 147.00 38.00       100.0
## 367          1  35   1    104.0 161.0    221.00 160.00 45.00        94.5
## 368          1  38   2    100.0 146.0    218.00 157.00 46.00        87.6
## 369          1  47   2    104.0 109.0    214.00  92.00 61.00        88.0
## 370          1  45   2     88.0 168.0    192.00 136.00 40.00        99.2
## 371          1  50   2     97.0 115.0    250.70 156.40 61.00        80.0
## 372          1  99   1    105.0 171.0    209.00 133.00 35.00        96.5
## 373          1  53   2    138.0 139.0    253.60 169.00 35.00        89.5
## 374          1  31   1     90.0 128.0    192.70 115.80 54.00        71.6
## 375          1  40   2    126.0 179.0    196.00 129.00 41.00        99.0
## 376          1  64   1    265.0 374.0    291.40 188.30 38.00       108.5
## 377          1  53   2    209.0 280.0    241.00 169.00 29.00        97.0
## 378          1  55   2     96.0 163.0    191.00 131.00 34.00        91.0
## 379          1  31   2    101.0 113.0    220.00 140.00 54.00        81.0
## 380          1  54   2     90.0 121.0    259.00 173.00 51.00        89.0
## 381          1  34   2     87.0 171.0    197.00 124.00 55.00        92.0
## 382          1  38   1     92.0 152.0    173.00 120.00 28.00        88.0
## 383          1  51   2     73.0 169.0    121.00  78.00 30.00        93.0
## 384          1  46   2     94.0 168.0    256.00 186.00 39.00        87.5
## 385          1  58   2    105.0 209.0    233.00 160.00 36.00        94.0
## 386          1  60   2    155.0 213.0    229.00 144.00 54.00       103.7
## 387          1  47   1     81.0 123.0    192.00 122.00 47.00        91.0
## 388          1  29   1    107.0 193.0    145.00  69.00 44.40        96.5
## 389          1  35   1    113.0 228.0    178.00 107.00 39.00        93.0
## 390          1  58   2    241.0 281.9    268.00 189.80 34.00       120.0
## 391          1  52   2     81.0 130.0    276.00 192.00 56.00        82.0
## 392          1  58   2    149.0 227.0    189.00 106.00 53.00       110.0
## 393          1  60   1    115.0 162.0    204.00 132.00 47.00       101.5
## 394          1  49   1    149.0 159.0    232.00 170.00 38.00       117.0
## 395          1  41   2     97.0 157.0    193.00 103.00 57.00        80.0
## 396          1  34   2     92.0 237.0    236.00 167.00 39.00        87.6
## 397          1  43   1    248.0 330.0    278.00 186.00 33.00       105.0
## 398          1  55   2    113.0 123.0    181.00 110.00 54.00        80.0
## 399          1  40   1    108.0 159.0    199.20 126.00 43.00        86.0
## 400          1  33   1    128.0 166.0    228.00 143.70 54.00        93.0
## 401          1  53   1     79.0 161.0    210.00 129.00 64.00        76.0
## 402          1  54   2    106.0 125.0    227.00 161.00 53.00        90.0
## 403          1  32   1     91.0 150.0    259.00 196.00 47.00        80.0
## 404          1  55   1    110.0 134.0    190.00  96.00 66.00        95.0
## 405          1  44   2     93.0 150.0    208.00 133.00 53.00        89.5
## 406          1  56   1    118.0 124.0    227.00 160.00 39.00        82.0
## 407          1  60   2     94.0 203.0    200.00 130.00 57.00        88.0
## 408          1  31   2    294.0 383.0    231.00 155.00 31.00       108.0
## 409          1  61   1    100.0 174.0    281.00 206.00 52.00        84.0
## 410          1  47   1    248.0 327.0    305.00 161.00 31.20        91.5
## 411          1  61   1     86.0 128.0    220.00 127.00 70.00        90.9
## 412          1  55   2     98.0 203.0    212.00 160.00 15.50        90.1
## 413          1  46   2     93.0  94.0    235.00 176.00 49.00        96.0
## 414          1  59   1    100.1 133.0    203.00 127.00 52.00        95.2
## 415          1  42   1     94.0 165.0    197.00 135.00 57.00        66.0
## 416          1  62   2    101.0 147.0    238.00 164.00 40.00       111.0
## 417          1  58   1    127.0 296.6    174.00 110.00 42.00        99.5
## 418          1  40   2    113.0 128.0    240.00 175.00 36.00        89.0
## 419          1  56   1     96.0 160.3    221.00 142.00 42.90        87.5
## 420          1  52   1     89.0 106.3    161.00 110.00 34.00       105.0
## 421          1  44   2     91.2 134.0    277.90 198.30 39.00        90.0
## 422          1  47   2     96.0 109.0    226.00 145.00 46.00        98.0
## 423          1  40   1     93.0 161.0    225.50 148.90 51.00        78.0
## 424          1  57   2     82.0 130.0    221.00 126.00 51.00        70.0
## 425          1  50   1    114.0 120.0    198.80 104.00 54.00        82.0
## 426          1  58   2     88.0 103.0    200.00 140.00 34.00        75.0
## 427          1  58   1    239.0 373.0    226.00 157.00 50.00        94.0
## 428          1  49   2    135.0 164.0    245.80 170.00 31.00        90.0
## 429          1  57   1     99.0 174.0    305.00 221.00 44.00        93.0
## 430          1  50   2    103.0 111.0    306.00 231.00 61.00        71.0
## 431          1  48   2     84.0 150.0    217.00 158.00 36.00        88.0
## 432          1  52   1    247.0 507.0    287.00 207.00 35.00       126.0
## 433          1  99   1     94.0 165.2    190.00 134.00 38.00       121.0
## 434          1  41   1     85.0 118.0    229.10 132.00 44.00        78.0
## 435          1  50   2    104.0 145.0    212.10 120.80 48.00        87.0
## 436          1  62   2     91.0 166.0    191.20 110.70 46.00        75.0
## 437          1  51   2    284.0 529.0    268.00 161.40 48.00       100.0
## 438          1  50   2     83.0 124.0    218.00 151.00 58.00        78.0
## 439          1  48   2    337.0 420.0    273.00 199.00 32.00        95.0
## 440          1  39   1     94.0 168.0    221.00 141.00 50.00       108.2
## 441          1  48   2     90.0 112.0    231.70 139.00 46.00        94.0
## 442          1  55   2    125.0 287.6    220.00 148.00 38.00       110.0
## 443          1  48   2     93.0 129.0    244.00 168.00 38.00        82.0
## 444          1  46   2     81.0 146.0    246.00 196.00 40.00        86.0
## 445          1  60   1    104.0 115.0    184.00 113.00 47.00        96.0
## 446          1  42   2    128.0 135.0    275.70 177.50 50.00       104.5
## 447          1  52   2    295.0 428.0    218.00 152.00 33.00        90.2
## 448          1  56   1    109.0 150.0    196.00 118.00 50.00        93.0
## 449          1  36   2     94.0 131.0    215.00 147.00 60.00        76.0
## 450          1  59   1    144.0 281.9    206.00 152.00 43.00       105.0
## 451          1  52   2    142.0 300.0    212.00 170.00 31.00       118.0
## 452          1  56   2    295.0 343.0    243.00 170.00 35.00       114.0
## 453          1  61   1    103.0 150.0    235.00 156.00 72.00        83.5
## 454          1  64   1     87.0 102.0    187.00 139.00 43.00        70.7
## 455          1  59   1    310.0 356.0    316.00 211.00 61.00        92.0
## 456          1  45   1     95.0 180.0    258.00 214.00 43.00       102.0
## 457          1  56   1    227.1 377.0    212.00 144.00 44.50        95.0
## 458          1  46   2     91.0 173.0    191.00 118.00 41.00        78.0
## 459          1  56   1     90.0 127.0    225.00 145.00 58.00        86.5
## 460          1  58   2    201.0 245.0    280.00 194.00 44.00        80.1
## 461          1  50   1    281.0 412.0    232.00 161.00 41.00        97.0
## 462          1  99   1     95.0 123.0    187.00 118.00 35.00        82.0
## 463          1  54   1     94.0 162.7    244.00 157.00 49.00       103.0
## 464          1  60   2    295.0 373.0    189.60 136.70 40.00       101.0
## 465          1  57   2    294.0 556.0    163.00 114.00 37.00        98.0
## 466          1  48   2    318.2 399.0    268.00 168.00 42.00        96.0
## 467          1  31   2    135.0 168.0    186.00 135.00 38.00        91.0
## 468          1  43   1    110.0 155.0    325.00 239.00 43.00       101.5
## 469          1  39   2    107.0 143.0    235.00  94.00 31.00        85.5
## 470          1  45   1     88.6 133.0    177.00 101.00 50.00       106.1
## 471          1  53   1    132.0 322.0     91.00  32.00 47.00        90.6
## 472          1  64   2     98.0 148.0    230.00 163.00 55.00        90.2
## 473          1  56   1     93.0 116.5    269.00 191.00 39.57        75.2
## 474          1  39   1    103.0 139.9    185.59 103.00 26.88        90.5
## 475          1  38   2     90.9 114.0    186.00 125.00 36.00        95.0
## 476          1  49   2    105.0 153.0    304.00 230.00 37.62        96.0
## 477          1  61   2     98.0 168.0    228.00 146.00 50.00        66.0
## 478          1  47   2    101.0 126.0    239.00 160.00 52.00        70.5
## 479          1  63   2    128.0 225.0    212.00 140.00 37.00        87.0
## 480          1  50   1    104.0 154.0    196.00 113.00 58.00        93.0
## 481          1  39   1     74.0 107.0    202.00 142.00 41.00        82.0
## 482          1  45   2     91.0 138.0    212.00 126.00 50.00        87.0
## 483          1  47   2    100.0 155.0    219.00 151.00 45.00        98.0
## 484          1  56   1    139.0 263.0    224.00 138.00 51.00        91.1
## 485          1  62   2    110.0 183.0    227.00 168.00 45.00        93.0
## 486          1  36   2     96.0 138.0    214.00 135.00 41.00       104.0
## 487          1  57   2    101.0 127.0    259.00 148.00 61.00       101.0
## 488          1  52   2     93.0 152.0    242.00 125.00 37.00        97.7
## 489          1  65   2    131.0 287.0    255.00 179.00 49.00       108.0
## 490          1  57   2    377.0 452.0    333.00 192.00 47.00        89.0
## 491          1  56   1    123.0 163.0    146.00  63.00 30.00        89.5
## 492          1  60   2     95.0 161.0    298.00 213.00 44.00        93.5
## 493          1  52   2    365.0 484.0    282.00 177.00 36.00        88.5
## 494          1  44   1    100.0 124.0    252.00 186.00 47.00        93.0
## 495          1  55   2    393.0 653.0    300.00 172.00 39.00        90.0
## 496          1  57   2    103.0 134.0    238.00 143.00 75.00        78.0
## 497          1  54   2    194.0 273.0    209.00 123.00 49.00       117.5
## 498          1  60   2    103.0 136.0    263.00 191.00 48.00       102.0
## 499          1  48   2     94.0 151.0    192.00 135.00 45.00        98.0
## 500          1  61   2    153.0 281.0    258.00 127.00 79.00       169.0
## 501          1  60   2     79.0 132.0    170.00 109.00 52.00        66.5
## 502          1  57   2    157.0 335.0    184.00 117.00 41.00        97.0
## 503          1  44   2     91.0 138.0    241.00 161.00 50.00        89.4
## 504          1  57   1    114.0 218.0    293.00 240.00 44.00       115.5
## 505          1  41   1     95.0 185.0    237.00 189.00 39.00        87.0
## 506          1  51   2    145.0 238.0    200.00 125.00 38.00       100.0
## 507          1  62   2    102.0 152.0    235.00 166.00 35.00       101.0
## 508          1  58   1    130.0 359.0    246.00 157.00 57.00        86.0
## 509          1  57   2    153.0 167.0    264.00 160.00 43.00        96.0
## 510          1  37   1     94.0 172.0    145.00  70.00 47.00        78.0
## 511          1  60   1    109.0 202.0    136.00  62.00 50.00       103.0
## 512          1  62   1     97.0 205.0    239.00 148.00 43.00        85.5
## 513          1  35   2     83.0 107.0    189.00 180.00 54.00        80.0
## 514          1  55   2    205.0 468.0    329.00 134.00 36.00        85.0
## 515          1  55   2    102.0 174.0    204.00 144.00 31.00       119.0
## 516          1  55   2     89.0 103.0    240.00 176.00 50.00        73.0
## 517          1  58   2     85.0 141.0    270.00 176.00 41.00       104.0
## 518          1  62   1     92.0 125.0    252.00 146.00 66.00        97.0
## 519          1  46   1    138.0 274.0    267.00 179.00 57.00        91.0
## 520          1  53   2    101.0 138.0    137.00 120.00 54.00        80.7
## 521          1  42   1     80.0 251.0    204.00 125.00 42.00        82.5
## 522          1  49   2     89.0 162.0    190.00 116.00 44.00        93.0
## 523          1  48   2     93.0 136.0    221.00 151.00 48.00        92.0
## 524          1  50   2    101.0 244.0    212.00 132.00 34.00        93.0
## 525          1  58   2    367.0 496.0    220.00 159.00 40.00       102.0
## 526          1  50   2     91.0 161.0    214.00 121.00 54.00        96.0
## 527          1  60   2     99.0 203.0    224.00 155.00 34.00        94.0
## 528          1  64   2     87.0 164.0    220.00 128.00 23.00        98.0
## 529          1  41   2     86.0 162.0    183.00 117.00 41.00        99.0
## 530          1  34   2     96.0 129.0    181.00  93.00 69.00        65.0
## 531          1  55   2    100.0 162.0    298.00 208.00 60.00        85.0
## 532          1  47   2     89.0 127.0    223.00 142.00 42.00        82.0
## 533          1  40   1     94.0 164.0    208.00 184.00 44.00       106.0
## 534          1  64   1    107.0 198.0    228.00 146.00 55.00        79.0
## 535          1  57   2     94.0 159.0    251.00 189.00 42.00       103.5
## 536          1  39   2     91.0 149.0    187.00 127.00 70.00        75.0
## 537          1  49   1    198.0 315.0    205.00 120.00 41.00       100.0
## 538          1  53   2     99.0 151.0    236.00 211.00 56.00       103.0
## 539          1  51   1     90.0  93.0    216.00 130.00 62.00        83.0
## 540          1  54   2     98.0 144.0    217.00 146.00 50.00        85.0
## 541          1  49   2    101.0 139.0    266.00 190.00 45.00        96.6
## 542          1  62   2     96.0 145.0    228.00 166.00 40.00        81.0
## 543          1  56   2    109.0 232.0    236.00 165.00 50.00        74.5
## 544          1  51   2    120.0 211.0    214.00 143.00 54.00       104.0
## 545          1  46   2     99.0 151.0    200.00 114.00 55.00        96.0
## 546          1  42   2    149.0 316.0    249.00 203.00 38.00        92.0
## 547          1  56   2     96.0 126.0    239.00 170.00 50.00        93.0
## 548          1  47   1    110.0 147.0    255.00 269.00 52.00        89.0
## 549          1  51   2     99.0 151.0    211.00 116.00 69.00        73.0
## 550          1  46   2     99.0 182.0    275.00 242.00 44.00        94.0
## 551          1  59   2     95.0 137.0    244.00 173.00 39.00        98.0
## 552          1  47   1    129.0 245.0    260.00 191.00 36.00       114.0
## 553          1  55   2     89.0 106.0    182.00 103.00 58.00        62.0
## 554          1  60   2     93.0 127.0    185.00 124.00 52.00        79.0
## 555          1  67   2     98.0 145.0    215.00 205.00 39.00       111.0
## 556          1  55   2     98.0 135.0    283.00 266.00 60.00        99.0
## 557          1  57   2    110.0 196.0    225.00 144.00 44.00        96.5
## 558          1  59   2     98.0 176.0    185.00 113.00 42.00        76.0
## 559          1  54   2     91.0 151.0    254.00 162.00 64.00        83.5
## 560          1  52   2    118.0 209.0    220.00 138.00 69.00        84.3
## 561          1  45   2    116.0 161.0    174.00 111.00 51.00        84.0
## 562          1  42   2    117.0 166.0    265.00 201.00 41.00        88.0
## 563          1  49   2    100.0 116.0    333.00 214.00 39.00       107.0
## 564          1  41   2     95.0 197.0    275.00 255.00 43.00        87.0
## 565          1  57   2     87.0 222.0    156.00  73.00 10.00        88.0
## 566          1  32   2    324.0 382.0    210.00 157.00 45.00        83.0
## 567          1  61   2    292.0 513.0    303.00 236.00 47.00        91.0
## 568          1  58   2    117.0 261.0    274.00 222.00 38.00        91.0
## 569          1  48   1    100.0 133.0    267.00 225.00 45.00        95.0
## 570          1  55   1    341.0 459.0    211.00 141.00 54.00       112.8
## 571          1  52   2     85.0 100.0    223.00 164.00 48.00        81.0
## 572          1  58   1     91.0  96.0    250.00 183.00 49.00       105.0
## 573          1  59   1    102.0 146.0    315.00 287.00 39.00       101.0
## 574          1  60   2     89.0 113.0    233.00 177.00 37.00        91.0
## 575          1  58   1    101.0 169.0    336.00 229.00 49.00        87.0
## 576          1  64   2     92.0 156.0    202.00 113.00 46.00        84.0
## 577          1  63   2     85.0 202.0    294.00 252.00 48.00        93.0
## 578          1  30   2     97.0 179.0    202.00 159.00 45.00       107.5
## 579          1  60   2     88.0 173.0    380.00 278.00 51.00        98.0
## 580          1  60   2    107.0 124.0    280.00 207.00 57.00        87.6
## 581          1  61   1    100.0 185.0    240.00 149.00 70.00        87.0
## 582          1  58   2    103.0 200.0    321.00 237.00 67.00        89.0
## 583          1  61   1     79.0 106.0    267.00 191.00 51.00        90.0
## 584          1  52   2     93.0 110.0    241.00 163.00 55.00        96.0
## 585          1  56   2    109.0 115.0    273.00 222.00 39.00        95.0
## 586          1  51   2    109.0 222.0    321.00 234.00 41.00        92.0
## 587          1  45   1     89.0 150.0    167.00  82.00 41.00        80.0
## 588          1  39   2    106.0 209.0    278.00 219.00 50.00        83.0
## 589          1  49   1    320.0 411.0    241.00 180.00 47.00        87.0
## 590          1  42   2    665.0 677.0    298.00 252.00 33.00        85.0
## 591          1  58   2    159.0 272.0    434.00 243.00 69.00       104.0
## 592          1  63   2    162.0 210.0    203.00 142.00 33.00        83.0
## 593          1  47   2     91.0 117.0    288.00 223.00 49.00        85.0
## 594          1  40   2    160.0 252.0    320.00 260.00 36.00        86.0
## 595          1  52   2     90.0 157.0    219.00 148.00 62.00        88.0
## 596          1  43   2    101.0 149.0    197.00 108.00 52.00        86.0
## 597          1  37   1    114.0 107.0    207.00 152.00 44.00        88.0
## 598          1  51   1    115.0 147.0    297.00 180.00 77.00        93.5
## 599          1  55   2    101.0 120.0    217.00 108.00 48.00        89.1
## 600          1  56   1    108.0 176.0    192.00 119.00 43.00        97.0
## 601          1  43   2    113.0 177.0    311.00 216.00 54.00        76.0
## 602          1  55   2    114.0 198.0    270.00 141.00 36.00        83.0
## 603          1  53   2    150.0 245.0    300.00 178.00 40.00       104.0
## 604          1  51   1     85.0 148.0    124.00  62.00 37.00        71.0
## 605          1  47   2    100.0 169.0    216.00 134.00 46.00        80.0
## 606          1  51   1     91.0 118.0    192.00 106.00 48.00        92.0
## 607          1  57   2    208.0 383.0    326.00 187.00 46.00        95.5
## 608          1  44   2    109.0 275.0    287.00 159.00 35.00        90.0
## 609          1  60   2    131.0 255.0    244.00 147.00 33.00       108.6
## 610          1  49   2     96.0 130.0    267.00 180.00 41.00        92.0
## 611          1  49   1    422.0 612.0    276.00 217.00 52.00        72.0
## 612          1  57   2     91.0 164.0    194.00 113.00 46.00        74.0
## 613          1  43   1     86.0 128.0    245.00 139.00 60.00        86.0
## 614          1  49   2    143.0 315.0    148.00  87.00 30.00        75.0
## 615          1  54   1     93.0 128.0    368.00 217.00 47.00       101.5
## 616          1  59   2    107.0 186.0    148.00  99.00 33.00        88.5
## 617          1  45   1    105.0 172.0    246.00 141.00 59.00        81.5
## 618          1  46   2    149.0 222.0    247.00 169.00 54.00        93.0
## 619          1  43   1     95.0 160.0    186.00 116.00 48.00       110.0
## 620          1  57   2     84.0 170.0    245.00 169.00 45.00        95.0
## 621          1  64   1    117.0 217.0    230.00 173.00 45.00        97.0
## 622          1  57   1     98.0 134.0    306.00 192.00 40.00        86.0
## 623          1  49   2     99.0 167.0    235.00 129.00 36.00        94.0
## 624          1  44   1    102.0 128.0    227.00 114.00 47.00        98.0
## 625          1  53   2     96.0 152.0    235.00 165.00 37.00        77.0
## 626          1  46   2     83.0  92.0    290.00 172.00 62.00        82.0
## 627          1  52   1    137.0 210.0    193.00 100.00 46.00        97.5
## 628          1  44   2    115.0 186.0    272.00 189.00 52.00        90.0
## 629          1  60   2     95.0 221.0    230.00 168.00 44.00        93.0
## 630          1  58   2    127.0 261.0    224.00 148.00 60.00        95.0
## 631          1  53   1    120.0 117.0    219.00 145.00 34.00        96.0
## 632          1  46   2    113.0 124.0    197.00  98.00 45.00        95.0
## 633          1  50   1     96.0 189.0    283.00 200.00 41.00       102.0
## 634          1  65   1    138.0 163.0    241.00 112.00 61.00        77.0
## 635          1  35   2    113.0 123.0    187.00 102.00 37.00        92.5
## 636          1  38   1    105.0 160.0    182.00 116.00 38.00        84.0
## 637          1  47   2     96.0 142.0    261.00 158.00 72.00        67.0
## 638          1  63   2    227.0 532.0    177.00 131.00 31.00       102.6
## 639          1  42   1     99.0 147.0    220.00 133.00 65.00        85.5
## 640          1  54   1     96.0 147.0    359.00 248.00 58.00        87.0
## 641          1  37   2    102.0 155.0    208.00 123.00 43.00        68.0
## 642          1  41   2     91.0 114.0    214.00 116.00 55.00        86.0
## 643          1  41   2     85.0 115.0    200.00 125.00 58.00        92.0
## 644          1  47   1    116.0 114.0    241.00 190.00 36.00        91.0
## 645          1  55   1     93.0 115.0    255.00 163.00 45.00       107.0
## 646          1  49   2    102.0 131.0    237.00 160.00 40.00       104.0
## 647          1  59   2    121.0 154.0    259.00 166.00 44.00       101.0
## 648          1  54   1     91.0 142.0    239.00 161.00 65.00        89.0
## 649          1  48   1     99.0 159.0    265.00 195.00 41.00        91.0
## 650          1  45   2    130.0 158.0    216.00  85.00 56.00        71.0
## 651          1  58   2    102.0 230.0    266.00 185.00 57.00        88.0
## 652          1  60   2    112.0 134.0    210.00 124.00 53.00        89.0
## 653          1  55   2    105.0 140.0    381.00 223.00 42.00        97.0
## 654          1  42   1     91.0 105.0    261.00 136.00 42.00        92.3
## 655          1  57   2     91.0 133.0    232.00 167.00 37.00        85.0
## 656          1  35   2     84.0 130.0    196.00 126.00 44.00        90.3
## 657          1  48   2    145.0 157.0    245.00 129.00 44.00        97.0
## 658          1  54   2    115.0 201.0    255.00 131.00 49.00        74.0
## 659          1  56   1    139.0 182.0    267.00 152.00 51.00        98.0
## 660          1  46   2    114.0 113.0    214.00 138.00 50.00        84.0
## 661          1  52   2    121.0 182.0    255.00 162.00 62.00        84.0
## 662          1  59   1    138.0 179.0    254.00 162.00 41.00        95.0
## 663          1  40   1     87.0 142.0    242.00 171.00 57.00        94.0
## 664          1  54   2    319.0 391.0    319.00 241.00 41.00       107.0
## 665          1  50   2    128.0 291.0    312.00 243.00 60.00        90.5
## 666          1  52   1    122.0 197.0    216.00 141.00 46.00        86.7
## 667          1  42   2     90.0 148.0    252.00 181.00 46.00        94.0
## 668          1  47   1    119.0 207.0    286.00 237.00 52.00        74.0
## 669          1  46   2    103.0 124.0    162.00 125.00 32.00        75.0
## 670          1  53   2    100.0 139.0    296.00 117.00 42.00        95.0
## 671          1  56   2     95.0 114.0    279.00 183.00 47.00        82.5
## 672          1  57   2    112.0 142.0    317.00 191.00 39.00        93.5
## 673          1  49   2    261.0 343.0    282.00 180.00 58.00       107.0
## 674          1  55   2    277.0 354.0    270.00 170.00 40.00        92.0
## 675          1  37   2     94.0 175.0    182.00 112.00 44.00        80.0
## 676          1  63   1    216.0 290.0    301.00 252.00 53.00       118.0
## 677          1  57   2    120.2 158.2    273.00 183.00 35.34        82.5
## 678          1  38   2     93.0 189.0    154.00  73.00 42.00        77.0
## 679          1  39   1    107.0 212.2    217.00 150.00 45.70       100.0
## 680          1  44   2     98.0 130.0    244.90 172.60 42.70        85.3
## 681          1  50   2     96.0 131.6    179.00 103.00 49.00       100.0
## 682          1  41   2    115.0 186.0    195.00 120.00 57.80        97.5
## 683          1  39   2     94.0 161.0    179.00 111.00 44.00        98.5
## 684          1  33   1     84.0 108.0    194.00 142.00 42.10        77.0
## 685          1  39   2     95.0 123.0    234.00 164.00 54.40        94.4
## 686          1  48   1    354.0 406.0    253.00 169.00 44.00        95.8
## 687          1  60   2     82.0 167.0    216.00 134.00 61.00        70.1
## 688          1  47   2     92.0 130.0    233.00 156.00 58.40        90.0
## 689          1  47   2     98.0 122.0    232.00 122.10 48.00        91.0
## 690          1  28   2    109.0 108.0    168.00 100.00 24.00       100.0
## 691          1  26   2     84.0  94.7    178.00 110.00 51.00        73.0
## 692          1  26   2     90.0 108.2    155.00 107.00 36.00        84.2
## 693          1  45   2    266.0 324.0    259.00 177.00 52.00        85.5
##     Berat_Badan Target_Hipertensi Nyeri_Dada Riwayat_Keluarga Sistolik
## 1          42.0                 0          0                0       82
## 2          51.9                 0          0                0       94
## 3          82.3                 0          0                0      116
## 4          60.2                 0          0                0      114
## 5          48.5                 0          0                0       86
## 6          67.0                 0          0                0       92
## 7          58.9                 0          0                0      106
## 8          50.2                 0          0                0      106
## 9          46.2                 0          0                0       90
## 10         65.0                 0          0                0      102
## 11         58.7                 0          0                0      107
## 12         47.4                 0          0                0       90
## 13         45.1                 0          0                0       94
## 14         63.2                 0          0                0      102
## 15         70.9                 0          0                0      120
## 16         77.5                 0          0                0      127
## 17         60.8                 0          0                0       99
## 18         68.1                 0          0                0      122
## 19         52.8                 0          0                0       84
## 20         56.6                 0          0                0      102
## 21         50.9                 0          0                0       97
## 22         48.3                 0          0                0      114
## 23         54.8                 1          1                0      145
## 24         77.0                 0          0                0      110
## 25         83.0                 0          0                0       91
## 26         52.2                 0          0                0      104
## 27         62.3                 0          0                0      108
## 28         53.6                 0          0                0      108
## 29         57.2                 1          0                0      154
## 30         55.5                 0          0                0       78
## 31         64.5                 0          0                0       89
## 32         39.8                 0          0                0      100
## 33         50.9                 0          0                0      105
## 34         54.3                 0          0                0       98
## 35         57.6                 1          0                0      131
## 36         57.8                 0          0                0      116
## 37         63.0                 0          0                0       90
## 38         62.1                 0          0                0       99
## 39         60.6                 0          0                0      108
## 40         67.7                 0          0                0      112
## 41         75.0                 0          0                0       99
## 42         48.1                 0          0                0       90
## 43         57.0                 0          0                0       98
## 44         51.8                 0          0                0       90
## 45         61.0                 0          0                0      102
## 46         46.4                 0          0                0      137
## 47         60.7                 0          0                0      122
## 48         60.7                 0          0                0      115
## 49         56.4                 0          0                0      104
## 50         58.7                 0          0                0      111
## 51         44.0                 0          0                0      116
## 52         76.2                 0          0                0      104
## 53         69.0                 0          0                0      110
## 54         62.3                 0          0                0      102
## 55         54.3                 0          0                0      105
## 56         45.3                 0          0                0       83
## 57         51.8                 0          0                0      109
## 58         36.5                 0          0                0      117
## 59         48.5                 0          0                0      111
## 60         47.9                 0          0                0       90
## 61         92.1                 0          0                0      108
## 62         42.9                 0          0                0      107
## 63         54.2                 0          0                0      125
## 64         42.7                 0          0                0       98
## 65         49.6                 0          0                0       92
## 66         40.2                 0          0                0       89
## 67         46.0                 0          0                0      112
## 68         79.1                 0          0                0      107
## 69         64.7                 0          0                0       92
## 70         54.0                 0          0                0      105
## 71         65.3                 0          0                0      116
## 72         54.9                 0          0                0      103
## 73         56.6                 0          0                0       92
## 74         61.5                 1          0                0      140
## 75         59.4                 0          0                0       99
## 76         46.3                 0          0                0       96
## 77         60.7                 0          0                0      117
## 78         62.7                 0          0                0      113
## 79         63.4                 0          0                0       92
## 80         78.6                 0          0                0       99
## 81         68.4                 0          0                0      123
## 82         55.2                 0          0                0       91
## 83         63.8                 0          0                0      118
## 84         48.0                 0          0                0       83
## 85         50.6                 0          0                0      109
## 86         53.0                 1          0                0      138
## 87         54.0                 0          0                0      122
## 88         50.4                 0          0                0      104
## 89         56.0                 0          0                0       90
## 90         55.0                 0          0                0      122
## 91         57.7                 0          0                0      102
## 92         54.1                 0          0                0      102
## 93         52.9                 0          0                0      113
## 94         52.5                 0          0                0       94
## 95         61.0                 0          0                0      104
## 96         48.4                 0          0                0       90
## 97         52.3                 0          0                0       74
## 98         37.2                 0          0                0       84
## 99         44.3                 0          0                0      107
## 100        44.3                 0          0                0      115
## 101        42.2                 0          0                0       93
## 102        57.6                 0          0                0       98
## 103        51.3                 0          0                0       97
## 104        73.9                 0          0                0      100
## 105        69.3                 0          0                0       97
## 106        67.8                 0          0                0      107
## 107        47.4                 0          0                0       92
## 108        63.8                 0          0                0       86
## 109        50.8                 0          0                0      123
## 110        39.4                 0          0                0       79
## 111        68.3                 0          0                0      103
## 112        72.2                 0          0                0       89
## 113        53.6                 1          0                0      138
## 114        72.4                 0          0                0      110
## 115        41.7                 0          1                0      126
## 116        47.9                 0          0                0      106
## 117        48.1                 1          0                0      144
## 118        93.5                 0          0                0      114
## 119        51.5                 0          0                0       78
## 120        76.5                 0          0                0      104
## 121        45.9                 0          0                0       88
## 122        58.8                 0          0                0       93
## 123        58.3                 0          0                0      106
## 124        59.7                 0          0                0      118
## 125        33.9                 0          0                0       94
## 126        52.6                 0          0                0      122
## 127        55.9                 0          0                0      123
## 128        62.2                 0          0                0      102
## 129        65.7                 0          0                0       97
## 130        62.4                 0          0                0      114
## 131        58.3                 0          0                0      114
## 132        73.1                 0          0                0      113
## 133        52.4                 0          0                0       98
## 134        53.8                 0          0                0       83
## 135        46.9                 0          0                0       90
## 136        45.6                 0          0                0      116
## 137        60.7                 0          0                0      100
## 138        55.0                 0          0                0      100
## 139        53.0                 0          0                0      110
## 140        50.0                 0          0                0      101
## 141        59.7                 0          0                0      127
## 142        47.3                 0          0                0      109
## 143        65.6                 0          0                0       99
## 144        74.6                 1          0                0      146
## 145        55.9                 0          0                0      100
## 146        59.8                 1          0                0      132
## 147        56.6                 0          0                0      118
## 148        53.2                 0          0                0      112
## 149        69.3                 1          0                0      138
## 150        49.7                 0          0                0      103
## 151        94.9                 0          0                0      117
## 152        44.0                 0          0                0       98
## 153        58.0                 0          0                0       96
## 154        60.0                 0          0                0       97
## 155        42.0                 0          0                0       85
## 156        42.7                 0          1                0      106
## 157        56.5                 0          0                0      107
## 158        58.6                 0          0                0      117
## 159        80.0                 1          0                0      140
## 160        64.0                 0          0                0      110
## 161        53.5                 0          0                0       98
## 162        56.0                 0          0                0       98
## 163        45.9                 0          0                0       87
## 164        61.3                 0          0                0      101
## 165        41.8                 0          0                0       99
## 166        51.4                 0          0                0      126
## 167        52.7                 0          0                0      115
## 168        60.4                 0          0                0       98
## 169        52.0                 0          0                0      102
## 170        69.0                 0          0                0      110
## 171        58.9                 1          0                0      147
## 172        78.1                 0          0                0      115
## 173        53.3                 0          0                0      104
## 174        57.9                 0          0                0       94
## 175        45.4                 0          0                0       92
## 176        85.6                 0          0                0       97
## 177        41.3                 0          0                0       72
## 178        54.4                 0          0                0      105
## 179        53.4                 0          0                0      121
## 180        73.4                 0          0                0      100
## 181        47.4                 0          0                0      102
## 182        60.1                 0          0                0      105
## 183        58.1                 0          0                0      107
## 184        44.4                 0          0                0       89
## 185        65.3                 0          0                0      109
## 186        47.1                 0          0                0       88
## 187        39.4                 0          0                0       89
## 188        49.5                 0          0                0       90
## 189        46.0                 0          0                0      127
## 190        75.4                 0          0                0       93
## 191        63.3                 0          0                0      100
## 192        49.3                 1          0                0      208
## 193        34.1                 0          0                0      100
## 194        57.5                 0          0                0       95
## 195        50.8                 0          0                0      105
## 196        54.4                 0          0                0       93
## 197        72.0                 0          0                0      105
## 198        56.3                 0          0                0       99
## 199        52.6                 0          0                0      118
## 200        57.7                 0          0                0      115
## 201        74.6                 0          0                0      126
## 202        81.1                 1          0                0      155
## 203        52.6                 0          0                0      114
## 204        47.0                 0          0                0      100
## 205        40.9                 0          0                0       90
## 206        62.4                 0          0                0       98
## 207        47.3                 0          0                0       93
## 208        51.4                 0          0                0      102
## 209        39.1                 0          0                0      117
## 210        73.9                 0          0                0      121
## 211        52.8                 0          0                0       95
## 212        51.8                 0          0                0      114
## 213        60.3                 0          0                0      104
## 214        55.9                 0          0                0       92
## 215        52.6                 0          0                0      104
## 216        76.3                 1          0                0      168
## 217        49.4                 0          0                0      130
## 218        50.2                 0          0                0       93
## 219        42.3                 0          1                0      101
## 220        65.2                 0          0                0      107
## 221        45.5                 0          0                0       88
## 222        39.1                 0          0                0       85
## 223        43.2                 0          0                0      114
## 224        54.0                 0          0                0      111
## 225        45.1                 0          0                0      122
## 226        75.5                 0          0                0      112
## 227        63.0                 0          0                0       95
## 228        47.2                 0          0                0       89
## 229        68.0                 0          0                0      126
## 230        64.6                 1          0                0      130
## 231        76.7                 0          0                0      114
## 232        67.5                 0          0                0       99
## 233        65.1                 0          0                0      108
## 234        57.6                 0          0                0      103
## 235        53.0                 0          1                0      111
## 236        41.9                 0          0                0       77
## 237        54.3                 0          0                0      138
## 238        78.6                 0          0                0      116
## 239        57.6                 0          0                0       80
## 240        71.4                 0          0                0       99
## 241        72.9                 1          0                0      147
## 242        71.0                 0          0                0      100
## 243        49.8                 0          0                0      117
## 244        47.5                 0          0                0       95
## 245        72.0                 0          0                0      100
## 246        50.3                 0          0                0       98
## 247        64.8                 0          0                0      100
## 248        46.0                 0          0                0       97
## 249        42.0                 0          0                0       93
## 250        70.2                 0          0                0       94
## 251        44.2                 0          0                0       84
## 252        46.3                 0          0                0       93
## 253        45.6                 0          0                0      108
## 254        48.3                 0          0                0      100
## 255        53.5                 0          0                0      114
## 256        38.5                 0          0                0       85
## 257        62.0                 0          0                0      123
## 258        78.2                 0          0                0      132
## 259        73.2                 0          0                0      114
## 260        50.8                 0          0                0      103
## 261        55.1                 0          0                0       92
## 262        53.2                 0          0                0       99
## 263        54.7                 0          0                0       97
## 264        45.7                 0          0                0      102
## 265        54.9                 0          0                0      102
## 266        46.0                 0          0                0       64
## 267        80.5                 0          0                0      110
## 268        47.8                 0          0                0       94
## 269        57.9                 0          0                0      118
## 270        66.8                 0          0                0      117
## 271        56.7                 0          1                0      107
## 272        55.5                 0          0                0       85
## 273        54.0                 0          0                0      106
## 274        58.6                 0          0                0      103
## 275        48.3                 0          0                0       88
## 276        38.6                 1          0                0      140
## 277        74.9                 0          0                0      113
## 278        57.7                 0          0                0      126
## 279        51.3                 0          0                0      105
## 280        55.7                 0          0                0      112
## 281        36.2                 0          0                0       87
## 282        50.4                 0          1                0       95
## 283        37.4                 0          0                0       93
## 284        34.4                 0          0                0      125
## 285        80.0                 0          0                0      114
## 286        57.2                 0          0                0       97
## 287        54.9                 0          0                0      122
## 288        73.6                 1          0                0      155
## 289        58.2                 0          0                0      102
## 290        62.9                 0          0                0      107
## 291        68.0                 0          0                0      122
## 292        42.3                 0          0                0       90
## 293        53.0                 0          0                0      112
## 294        54.5                 0          0                0       91
## 295        58.8                 0          0                0       98
## 296        65.0                 1          0                0      110
## 297        47.8                 0          0                0      108
## 298        56.4                 0          0                0       94
## 299        59.3                 0          0                0      118
## 300        64.7                 0          0                0      128
## 301        50.0                 0          0                0       94
## 302        53.0                 0          0                0      110
## 303        57.7                 0          0                0      102
## 304        76.1                 0          0                0      110
## 305        44.9                 0          0                0       90
## 306        36.6                 0          0                0       84
## 307        61.3                 0          0                0      118
## 308        50.0                 0          0                0      104
## 309        64.6                 0          0                0       97
## 310        61.3                 0          0                0       92
## 311        44.1                 0          0                0       94
## 312        61.3                 0          0                0      107
## 313        64.5                 0          0                0       96
## 314        47.9                 0          0                0       95
## 315        32.5                 0          1                0       90
## 316        80.8                 0          0                0      119
## 317        80.7                 0          0                0      104
## 318        57.5                 0          0                0       94
## 319        50.2                 0          0                0       94
## 320        45.5                 0          0                0       95
## 321        47.6                 0          0                0      104
## 322        58.4                 0          0                0       87
## 323        43.2                 0          0                0       97
## 324        55.7                 0          0                0      107
## 325        62.9                 0          0                0      127
## 326        70.1                 0          0                0      132
## 327        42.9                 0          0                0       79
## 328        53.7                 0          0                0       90
## 329        64.7                 0          1                0      132
## 330        54.8                 0          0                0       91
## 331        56.0                 0          1                0      110
## 332        47.5                 0          0                0       96
## 333        45.3                 0          0                0      126
## 334        62.2                 0          0                0      102
## 335        59.9                 0          0                0      127
## 336        61.0                 0          0                0       92
## 337        57.7                 0          0                0      115
## 338        47.5                 0          0                0       90
## 339        65.5                 0          0                0       95
## 340        53.2                 0          0                0      108
## 341        67.3                 0          0                0      101
## 342        60.3                 0          0                0       97
## 343        63.0                 0          0                0      130
## 344        49.7                 0          0                0      100
## 345        62.3                 0          0                0      105
## 346        84.5                 0          0                0       90
## 347        75.0                 0          1                0      120
## 348        50.4                 0          0                0      118
## 349        43.6                 0          0                0       88
## 350        59.7                 0          0                0      122
## 351        52.5                 0          0                0       97
## 352        55.4                 0          0                0      111
## 353        48.2                 1          0                0      172
## 354        39.0                 0          0                0       92
## 355        53.6                 0          0                0       90
## 356        64.9                 0          0                0       90
## 357        62.0                 0          0                0       98
## 358        52.2                 0          0                0       94
## 359        39.0                 0          0                0      114
## 360        43.0                 0          0                0      100
## 361        66.5                 1          0                0      162
## 362        62.5                 0          0                0       97
## 363        58.0                 1          1                1      185
## 364        45.0                 1          1                1      167
## 365        67.2                 1          0                1      140
## 366        71.0                 1          1                0      157
## 367        87.3                 1          1                1      154
## 368        63.9                 1          1                1      140
## 369        62.1                 1          0                1      147
## 370        84.8                 1          0                1      181
## 371        56.8                 0          1                0      125
## 372        57.4                 1          1                0      194
## 373        64.0                 1          1                0      181
## 374        44.2                 1          1                1      111
## 375        76.9                 1          1                0      125
## 376        68.9                 1          1                0      192
## 377        72.9                 1          1                0      163
## 378        71.1                 1          1                0      188
## 379        57.1                 1          0                1      146
## 380        52.0                 1          1                1      195
## 381        60.0                 1          1                0      125
## 382        69.3                 1          1                0      153
## 383        60.2                 1          0                0      126
## 384        61.3                 1          1                0      158
## 385        62.9                 1          1                0      183
## 386        74.0                 1          1                1      156
## 387        57.0                 1          1                1      155
## 388        79.2                 1          1                1      139
## 389        60.5                 1          1                1      132
## 390        83.0                 1          0                0      168
## 391        60.0                 1          1                1      162
## 392        91.4                 1          0                1      139
## 393        82.4                 1          1                1      158
## 394        82.0                 1          0                0      158
## 395        53.1                 1          0                0      148
## 396        63.8                 1          0                1      126
## 397        76.2                 1          1                1      144
## 398        58.7                 1          1                0      159
## 399        51.0                 0          0                1      119
## 400        70.5                 1          1                1      216
## 401        55.0                 1          1                0      169
## 402        64.7                 1          0                1      195
## 403        57.2                 1          1                0      154
## 404        61.3                 0          1                0      122
## 405        67.1                 0          1                1      120
## 406        63.8                 0          0                1      135
## 407        61.9                 1          1                1      180
## 408        84.7                 1          1                1      150
## 409        55.4                 1          0                0      168
## 410        69.7                 1          1                0      144
## 411        63.1                 1          1                1      173
## 412        67.1                 1          1                1      170
## 413        73.9                 1          1                1      190
## 414        73.0                 1          0                0      140
## 415        49.8                 1          0                0      176
## 416        86.9                 1          0                0      195
## 417        60.9                 1          1                1      203
## 418        60.9                 1          1                0      146
## 419        61.0                 1          1                1      169
## 420        74.0                 1          1                1      149
## 421        62.6                 1          1                0      163
## 422        69.2                 1          0                1      160
## 423        55.3                 0          0                0      126
## 424        52.0                 1          1                1      156
## 425        47.5                 1          0                1      185
## 426        55.5                 1          1                0      173
## 427        57.4                 1          1                1      217
## 428        60.0                 1          1                0      156
## 429        58.4                 1          1                0      149
## 430        50.8                 1          0                0      233
## 431        54.0                 1          0                0      133
## 432        81.7                 1          1                1      212
## 433        92.0                 1          0                0      126
## 434        56.2                 0          1                0      119
## 435        68.5                 1          0                0      179
## 436        49.2                 1          1                0      192
## 437        76.0                 1          0                1      203
## 438        58.9                 1          0                1      128
## 439        69.4                 0          0                0      131
## 440        68.0                 1          1                1      173
## 441        64.7                 0          1                1      116
## 442        80.6                 1          1                0      182
## 443        55.5                 0          0                0      138
## 444        64.8                 1          0                1      161
## 445        68.3                 1          1                0      158
## 446        77.2                 1          1                1      165
## 447        61.0                 1          1                0      156
## 448        63.7                 1          0                0      170
## 449        46.4                 0          1                0      114
## 450        81.7                 1          1                1      156
## 451        93.4                 1          1                0      158
## 452        95.2                 1          1                1      149
## 453        69.9                 1          0                0      172
## 454        54.0                 0          1                0      138
## 455        55.7                 1          1                1      210
## 456        76.8                 0          0                1      126
## 457        63.0                 1          1                0      156
## 458        54.0                 1          0                0      151
## 459        69.0                 1          0                0      176
## 460        48.8                 1          1                0      189
## 461        65.1                 1          1                1      207
## 462        61.6                 1          0                0      146
## 463        77.0                 1          0                0      191
## 464        85.8                 1          0                1      187
## 465        91.2                 1          0                1      173
## 466        66.1                 1          1                1      160
## 467        65.4                 1          1                0      133
## 468        81.0                 1          1                1      160
## 469        63.5                 1          0                0      145
## 470        86.0                 0          0                0      134
## 471        71.0                 0          1                0      107
## 472        74.6                 1          1                0      174
## 473        49.8                 0          0                1      128
## 474        66.0                 1          1                1      138
## 475        67.6                 1          0                0      192
## 476        54.2                 1          0                0      203
## 477        43.3                 1          0                1      191
## 478        40.3                 0          1                1      139
## 479        63.1                 1          0                1      158
## 480        64.8                 1          0                1      169
## 481        46.7                 1          1                1      170
## 482        56.0                 0          1                0      122
## 483        66.7                 1          1                0      144
## 484        51.1                 0          1                1      130
## 485        58.9                 1          1                0      175
## 486        85.7                 1          0                1      183
## 487        60.9                 1          0                0      165
## 488        69.6                 1          0                0      146
## 489        75.6                 1          0                1      175
## 490        53.6                 1          0                0      204
## 491        60.1                 1          1                0      142
## 492        73.2                 1          0                1      148
## 493        69.5                 1          1                0      175
## 494        60.1                 1          1                0      148
## 495        65.0                 1          0                1      162
## 496        49.0                 1          1                0      201
## 497        94.8                 1          0                0      152
## 498        74.4                 1          0                1      185
## 499        72.0                 1          1                1      182
## 500        46.0                 0          0                0      107
## 501        34.2                 1          1                0      210
## 502        74.0                 1          0                0      180
## 503        64.2                 1          0                0      138
## 504        96.3                 1          1                1      210
## 505        64.9                 1          0                0      157
## 506        73.0                 0          0                0      130
## 507        75.1                 1          1                1      155
## 508        66.7                 1          0                0      186
## 509        73.1                 1          1                1      162
## 510        44.9                 1          0                0      169
## 511        67.5                 1          0                0      163
## 512        56.5                 1          0                1      145
## 513         0.0                 0          1                0      107
## 514        62.0                 1          0                0      207
## 515       101.4                 1          0                0      172
## 516        45.3                 1          0                0      174
## 517        67.2                 1          0                0      215
## 518        63.6                 1          0                1      156
## 519        65.2                 1          0                1      168
## 520        70.3                 0          0                0      135
## 521        49.0                 0          0                1      120
## 522        61.0                 1          0                0      149
## 523        59.2                 1          1                0      177
## 524        57.7                 1          0                0      202
## 525        69.0                 1          0                0      190
## 526        59.0                 1          1                1      164
## 527        72.1                 1          0                1      168
## 528        68.5                 1          1                1      158
## 529        66.4                 1          0                0      156
## 530        41.9                 1          1                1      165
## 531        62.8                 1          1                0      186
## 532        54.2                 0          1                0      119
## 533        75.8                 1          1                0      130
## 534        44.2                 1          0                0      152
## 535        65.4                 1          0                1      176
## 536        44.3                 1          1                0      142
## 537        69.4                 1          0                1      180
## 538        71.7                 1          0                0      159
## 539        55.6                 1          1                0      140
## 540        71.6                 0          0                0      129
## 541        70.0                 1          0                0      187
## 542        61.7                 1          0                0      162
## 543        46.5                 1          0                1      189
## 544        64.4                 1          1                1      181
## 545        54.5                 1          0                0      160
## 546        60.7                 0          0                0      122
## 547        64.9                 1          0                1      166
## 548        56.4                 1          0                1      150
## 549        39.5                 0          0                0      122
## 550        60.8                 1          0                0      162
## 551        66.7                 1          0                0      178
## 552       102.2                 1          0                1      156
## 553        42.0                 1          1                0      159
## 554        46.7                 1          0                1      138
## 555        78.6                 1          0                0      175
## 556        65.5                 1          1                0      205
## 557        74.1                 1          0                1      163
## 558        51.1                 1          0                0      131
## 559        61.2                 1          0                0      158
## 560        56.2                 1          0                0      178
## 561        45.8                 1          0                0      186
## 562        58.0                 1          0                1      174
## 563        85.9                 1          0                1      269
## 564        54.1                 1          0                0      142
## 565        69.7                 0          1                0      123
## 566        58.3                 1          1                1      130
## 567        55.4                 1          1                0      195
## 568        65.6                 1          1                1      181
## 569        74.0                 1          0                0      142
## 570        85.9                 1          1                0      151
## 571        53.4                 1          0                0      146
## 572        79.7                 1          1                1      163
## 573        80.5                 1          0                0      160
## 574        72.6                 1          0                0      142
## 575        66.8                 1          1                1      157
## 576        54.5                 1          0                0      154
## 577        62.8                 1          0                1      168
## 578        84.4                 1          0                0      146
## 579        63.5                 0          1                0      123
## 580        53.3                 1          0                1      166
## 581        49.0                 0          0                0      123
## 582        60.9                 1          0                0      136
## 583        67.9                 1          1                1      152
## 584        72.6                 1          1                1      161
## 585        68.2                 1          0                1      172
## 586        69.2                 1          0                1      135
## 587        58.9                 0          1                0      134
## 588        64.6                 1          1                1      178
## 589        55.9                 1          1                1      156
## 590        59.1                 1          1                0      151
## 591        71.7                 1          0                0      225
## 592        62.1                 0          0                1      132
## 593        48.0                 1          0                0      161
## 594        56.4                 1          0                0      169
## 595        55.9                 1          0                1      200
## 596        62.5                 1          1                0      136
## 597        63.9                 1          0                0      157
## 598        68.7                 1          1                0      173
## 599        52.4                 1          0                0      151
## 600        68.5                 1          1                1      191
## 601        44.5                 1          0                0      194
## 602        46.3                 1          1                0      163
## 603        89.0                 1          1                0      198
## 604        51.1                 0          0                1      114
## 605        45.7                 1          0                0      194
## 606        73.8                 1          1                0      130
## 607        62.1                 1          0                1      146
## 608        61.9                 1          0                0      128
## 609        80.1                 1          0                0      163
## 610        64.1                 1          1                1      200
## 611        52.5                 1          0                0      142
## 612        44.6                 1          0                0      158
## 613        64.7                 1          0                0      140
## 614        57.4                 1          0                0      158
## 615        77.7                 1          1                0      207
## 616        53.3                 0          0                1      138
## 617        48.3                 0          1                0      121
## 618        59.2                 1          0                1      145
## 619        79.9                 1          0                1      147
## 620        67.5                 1          1                0      146
## 621        59.0                 1          0                1      156
## 622        52.7                 1          0                0      179
## 623        73.9                 1          1                0      126
## 624        69.6                 1          1                1      144
## 625        64.4                 1          0                1      132
## 626        55.9                 1          1                1      132
## 627        71.6                 0          0                0      134
## 628        64.1                 1          1                1      162
## 629        79.7                 1          0                0      159
## 630        67.6                 1          0                0      190
## 631        68.2                 1          0                0      160
## 632        67.2                 1          0                1      168
## 633        72.6                 1          1                1      145
## 634        61.0                 1          0                0      199
## 635        67.2                 0          0                0      138
## 636        69.5                 1          1                1      143
## 637        37.9                 1          0                0      144
## 638        76.6                 1          0                0      186
## 639        50.5                 1          0                1      191
## 640        47.2                 1          0                0      174
## 641        45.7                 1          0                0      168
## 642        57.1                 1          1                1      179
## 643        59.0                 1          0                0      165
## 644        61.3                 1          0                1      134
## 645        77.7                 1          1                0      185
## 646        79.1                 1          1                1      151
## 647        77.7                 1          0                1      199
## 648        71.3                 1          1                1      159
## 649        63.0                 1          1                0      166
## 650        49.4                 1          0                0      160
## 651        54.5                 1          0                1      180
## 652        48.2                 0          0                0      127
## 653        71.2                 1          1                1      190
## 654        61.0                 1          1                0      166
## 655        52.6                 1          0                0      167
## 656        62.2                 1          1                1      143
## 657        68.1                 1          0                1      225
## 658        40.5                 1          1                1      165
## 659        62.7                 1          0                0      200
## 660        50.2                 1          0                0      200
## 661        51.9                 1          0                0      179
## 662        63.7                 1          1                0      182
## 663        69.2                 1          1                0      132
## 664        82.6                 1          0                0      166
## 665        61.4                 1          0                0      205
## 666        61.8                 1          0                0      164
## 667        68.7                 1          0                0      149
## 668        45.4                 0          0                1      132
## 669        59.0                 1          1                1      150
## 670        67.2                 1          1                0      167
## 671        45.8                 0          1                0      125
## 672        69.1                 1          0                1      170
## 673        77.1                 1          1                1      152
## 674        60.8                 1          0                0      158
## 675        53.5                 1          1                1      192
## 676        80.8                 1          0                0      202
## 677        57.4                 1          1                0      179
## 678        54.1                 1          1                1      187
## 679        70.7                 1          0                1      178
## 680        50.4                 0          0                1      114
## 681        68.6                 1          1                0      190
## 682        71.0                 0          1                0      129
## 683        74.2                 1          0                0      164
## 684        53.1                 1          0                0      140
## 685        67.2                 1          1                1      156
## 686        64.6                 0          1                1      124
## 687        42.5                 1          0                0      153
## 688        65.8                 1          1                0      141
## 689        60.5                 0          1                1      114
## 690        88.5                 1          1                0      149
## 691        45.3                 0          0                1      128
## 692        52.1                 1          0                1      135
## 693        58.9                 1          0                1      164
##     Diastolik Merokok
## 1          61       0
## 2          57       0
## 3          69       1
## 4          77       1
## 5          62       0
## 6          53       0
## 7          63       0
## 8          73       0
## 9          53       1
## 10         73       0
## 11         69       1
## 12         57       1
## 13         55       0
## 14         67       0
## 15         77       1
## 16         80       1
## 17         72       0
## 18         79       0
## 19         61       0
## 20         62       1
## 21         62       1
## 22         79       0
## 23         69       1
## 24         62       0
## 25         60       0
## 26         62       0
## 27         67       0
## 28         58       0
## 29         85       0
## 30         51       0
## 31         70       0
## 32         68       0
## 33         78       0
## 34         60       1
## 35         93       0
## 36         82       0
## 37         61       1
## 38         68       0
## 39         82       0
## 40         75       0
## 41         59       0
## 42         59       0
## 43         66       0
## 44         65       0
## 45         66       0
## 46         89       0
## 47         74       0
## 48         73       0
## 49         76       0
## 50         65       1
## 51         82       0
## 52         68       0
## 53         68       0
## 54         61       0
## 55         75       0
## 56         56       0
## 57         62       0
## 58         68       0
## 59         75       0
## 60         54       1
## 61         70       0
## 62         72       0
## 63         82       0
## 64         63       1
## 65         63       0
## 66         61       1
## 67         67       0
## 68         69       0
## 69         54       0
## 70         68       0
## 71         70       1
## 72         74       0
## 73         58       0
## 74         85       0
## 75         66       0
## 76         62       1
## 77         78       0
## 78         73       0
## 79         66       0
## 80         68       1
## 81         80       1
## 82         63       0
## 83         73       0
## 84         57       0
## 85         59       0
## 86         90       0
## 87         76       0
## 88         68       1
## 89         57       0
## 90         80       1
## 91         65       1
## 92         70       0
## 93         70       0
## 94         52       1
## 95         63       0
## 96         49       0
## 97         61       1
## 98         56       0
## 99         72       0
## 100        82       1
## 101        66       1
## 102        58       0
## 103        54       0
## 104        73       0
## 105        62       0
## 106        69       1
## 107        58       1
## 108        58       1
## 109        86       0
## 110        58       0
## 111        69       0
## 112        50       0
## 113       104       1
## 114        62       0
## 115        69       0
## 116        57       0
## 117        90       0
## 118        79       0
## 119        61       1
## 120        69       0
## 121        52       0
## 122        62       0
## 123        72       0
## 124        86       0
## 125        42       0
## 126        86       0
## 127        77       0
## 128        67       0
## 129        72       0
## 130        72       0
## 131        79       0
## 132        72       0
## 133        67       0
## 134        49       1
## 135        56       0
## 136        74       1
## 137        61       0
## 138        70       0
## 139        80       0
## 140        60       0
## 141        86       0
## 142        69       0
## 143        66       0
## 144        93       1
## 145        66       0
## 146        91       0
## 147        64       0
## 148        75       0
## 149        91       1
## 150        72       0
## 151        80       1
## 152        49       1
## 153        62       0
## 154        64       0
## 155        50       0
## 156        62       0
## 157        69       0
## 158        66       0
## 159        70       0
## 160        80       0
## 161        62       0
## 162        57       1
## 163        64       1
## 164        73       0
## 165        64       0
## 166        62       0
## 167        72       0
## 168        61       1
## 169        64       0
## 170        78       1
## 171        92       0
## 172        69       0
## 173        59       0
## 174        64       0
## 175        49       0
## 176        62       1
## 177        54       1
## 178        68       0
## 179        82       1
## 180        62       1
## 181        69       1
## 182        71       0
## 183        69       1
## 184        54       0
## 185        60       1
## 186        52       0
## 187        57       0
## 188        66       0
## 189        81       0
## 190        66       0
## 191        69       0
## 192       128       0
## 193        66       0
## 194        66       0
## 195        72       0
## 196        63       0
## 197        66       0
## 198        74       0
## 199        68       0
## 200        70       1
## 201        86       0
## 202        78       1
## 203        66       1
## 204        56       0
## 205        58       1
## 206        70       0
## 207        60       0
## 208        58       1
## 209        81       0
## 210        70       0
## 211        47       0
## 212        75       0
## 213        68       0
## 214        61       0
## 215        70       1
## 216        81       0
## 217        78       0
## 218        48       0
## 219        66       0
## 220        67       0
## 221        58       0
## 222        41       0
## 223        70       0
## 224        68       0
## 225        89       0
## 226        67       0
## 227        61       0
## 228        63       0
## 229        81       0
## 230        92       0
## 231        82       0
## 232        62       0
## 233        68       0
## 234        74       0
## 235        78       1
## 236        50       0
## 237        83       0
## 238        74       0
## 239        35       0
## 240        63       1
## 241        96       0
## 242        66       0
## 243        81       0
## 244        62       0
## 245        60       1
## 246        62       0
## 247        58       1
## 248        56       0
## 249        62       0
## 250        61       0
## 251        45       0
## 252        57       0
## 253        63       0
## 254        61       0
## 255        86       0
## 256        54       0
## 257        81       1
## 258        65       0
## 259        78       1
## 260        70       0
## 261        59       0
## 262        63       0
## 263        52       1
## 264        54       0
## 265        70       0
## 266        43       1
## 267        82       0
## 268        55       0
## 269        76       0
## 270        77       0
## 271        69       1
## 272        50       0
## 273        64       1
## 274        69       0
## 275        59       1
## 276        81       0
## 277        70       1
## 278        62       0
## 279        70       0
## 280        74       1
## 281        51       0
## 282        55       1
## 283        56       0
## 284        50       0
## 285        66       1
## 286        53       0
## 287        75       0
## 288       103       0
## 289        75       0
## 290        64       1
## 291        78       1
## 292        58       0
## 293        58       0
## 294        58       1
## 295        64       0
## 296        90       1
## 297        66       1
## 298        59       1
## 299        67       1
## 300        74       0
## 301        58       0
## 302        77       0
## 303        50       0
## 304        78       0
## 305        75       1
## 306        40       0
## 307        73       0
## 308        71       0
## 309        65       0
## 310        50       0
## 311        63       0
## 312        77       1
## 313        66       0
## 314        61       0
## 315        40       0
## 316        79       0
## 317        69       0
## 318        55       0
## 319        59       0
## 320        65       0
## 321        66       0
## 322        55       0
## 323        59       0
## 324        69       0
## 325        81       0
## 326        82       1
## 327        54       0
## 328        58       0
## 329        73       0
## 330        55       0
## 331        74       0
## 332        60       0
## 333        66       0
## 334        68       0
## 335        82       0
## 336        65       0
## 337        73       0
## 338        62       1
## 339        66       1
## 340        71       0
## 341        63       0
## 342        59       0
## 343        78       0
## 344        62       1
## 345        76       0
## 346        62       0
## 347        70       1
## 348        80       1
## 349        46       0
## 350        74       0
## 351        64       0
## 352        68       0
## 353        69       1
## 354        52       0
## 355        58       0
## 356        59       1
## 357        63       0
## 358        52       0
## 359        71       0
## 360        71       0
## 361        85       1
## 362        66       0
## 363        96       0
## 364        95       0
## 365        99       0
## 366        98       0
## 367        98       1
## 368       102       0
## 369        93       0
## 370       114       1
## 371        86       0
## 372        95       1
## 373       134       1
## 374        95       1
## 375        94       1
## 376       118       1
## 377        96       1
## 378       110       1
## 379       100       1
## 380       114       1
## 381        92       1
## 382        99       1
## 383        96       1
## 384       106       1
## 385       108       1
## 386        90       0
## 387       102       0
## 388        99       0
## 389        90       0
## 390        96       0
## 391       120       0
## 392        94       1
## 393       108       0
## 394       114       0
## 395       101       1
## 396        90       1
## 397       103       0
## 398        94       1
## 399        80       1
## 400       138       1
## 401       121       1
## 402       119       0
## 403       109       0
## 404        87       0
## 405        79       1
## 406        83       1
## 407       114       0
## 408       106       1
## 409       103       0
## 410        94       0
## 411       114       0
## 412       107       1
## 413       100       1
## 414        77       0
## 415       106       0
## 416       112       0
## 417       110       0
## 418        97       0
## 419       103       0
## 420        97       0
## 421       106       1
## 422       102       0
## 423        77       0
## 424       102       1
## 425       105       1
## 426       121       1
## 427       124       0
## 428       102       1
## 429        91       0
## 430       114       0
## 431        91       1
## 432       105       1
## 433        99       0
## 434        89       1
## 435       114       1
## 436        96       1
## 437       129       0
## 438        95       1
## 439        81       1
## 440       122       0
## 441        83       0
## 442       114       1
## 443        83       1
## 444        92       1
## 445        90       0
## 446       105       1
## 447        89       0
## 448       101       0
## 449        89       1
## 450       106       1
## 451        96       0
## 452        99       1
## 453        95       0
## 454        88       0
## 455       105       0
## 456        89       1
## 457        85       0
## 458        99       1
## 459       115       0
## 460       102       1
## 461       112       0
## 462        99       1
## 463       120       0
## 464       129       0
## 465        97       1
## 466        94       1
## 467        90       0
## 468       104       0
## 469       100       1
## 470        84       0
## 471        69       0
## 472       104       0
## 473        84       1
## 474       115       1
## 475       100       1
## 476       113       0
## 477       107       1
## 478        84       0
## 479       110       0
## 480       101       1
## 481       120       1
## 482        86       0
## 483        95       0
## 484        85       0
## 485       110       0
## 486       123       0
## 487        93       0
## 488        90       0
## 489       112       1
## 490       118       0
## 491        90       0
## 492        99       0
## 493       111       1
## 494        99       0
## 495       101       0
## 496       112       0
## 497       106       0
## 498       122       1
## 499       117       1
## 500        69       0
## 501       104       0
## 502       106       0
## 503        91       0
## 504       106       0
## 505       101       0
## 506        85       0
## 507       101       0
## 508       124       0
## 509       102       0
## 510       102       1
## 511       110       0
## 512        80       0
## 513        69       0
## 514       111       0
## 515       114       1
## 516       112       1
## 517       129       0
## 518        87       0
## 519       112       0
## 520        89       0
## 521        76       0
## 522        86       0
## 523        97       0
## 524       115       0
## 525       120       0
## 526       149       0
## 527       104       0
## 528        85       0
## 529       109       0
## 530       122       0
## 531       114       0
## 532        84       0
## 533        93       0
## 534        93       0
## 535       121       0
## 536       109       0
## 537       122       0
## 538        96       0
## 539        98       0
## 540        82       1
## 541       116       0
## 542       102       0
## 543       114       1
## 544        99       0
## 545        87       0
## 546        84       0
## 547       109       0
## 548        97       0
## 549        64       0
## 550        98       1
## 551        97       0
## 552       103       0
## 553        94       0
## 554        92       0
## 555       101       1
## 556       141       1
## 557        95       0
## 558       103       0
## 559       101       0
## 560       104       0
## 561       110       0
## 562       110       0
## 563       169       1
## 564       100       0
## 565        72       0
## 566        97       0
## 567       134       0
## 568       113       0
## 569        89       0
## 570       104       0
## 571        76       0
## 572        94       0
## 573        90       0
## 574        86       1
## 575        95       1
## 576        93       0
## 577        84       0
## 578       101       1
## 579        86       1
## 580        97       0
## 581        88       1
## 582        96       0
## 583        90       0
## 584        92       1
## 585       110       0
## 586        91       1
## 587        86       0
## 588       104       0
## 589       104       0
## 590       100       0
## 591       110       1
## 592        79       1
## 593       102       1
## 594        98       1
## 595       124       0
## 596        93       0
## 597       107       0
## 598        95       0
## 599        92       0
## 600       137       0
## 601       110       0
## 602       105       0
## 603       132       1
## 604        80       1
## 605       110       0
## 606        94       0
## 607        97       0
## 608        91       0
## 609        93       0
## 610       150       0
## 611        98       1
## 612        99       0
## 613        86       1
## 614       108       0
## 615       113       0
## 616        84       1
## 617        85       0
## 618        91       0
## 619       110       0
## 620        76       0
## 621       102       0
## 622        98       1
## 623        91       1
## 624        89       1
## 625        90       1
## 626        92       0
## 627        86       0
## 628       109       0
## 629       102       0
## 630       101       0
## 631       100       1
## 632       107       0
## 633        93       1
## 634        94       1
## 635        86       0
## 636        97       1
## 637        85       0
## 638       110       0
## 639        99       0
## 640       106       0
## 641       105       0
## 642       111       0
## 643       114       0
## 644        92       0
## 645       120       1
## 646       110       0
## 647       102       0
## 648        85       0
## 649       105       1
## 650       102       0
## 651        98       0
## 652        82       0
## 653       120       1
## 654       107       1
## 655       145       1
## 656       102       1
## 657       142       0
## 658       103       0
## 659       102       0
## 660       113       0
## 661       107       0
## 662       102       0
## 663        90       1
## 664       111       0
## 665        98       0
## 666        92       0
## 667        91       0
## 668        82       0
## 669        82       1
## 670        96       1
## 671        82       1
## 672       107       1
## 673       100       1
## 674       105       0
## 675       141       0
## 676       114       0
## 677       114       1
## 678       126       0
## 679       122       1
## 680        76       0
## 681       113       0
## 682        83       1
## 683       112       0
## 684       101       0
## 685       114       0
## 686        89       0
## 687       132       1
## 688       108       0
## 689        75       0
## 690        98       1
## 691        81       0
## 692       108       0
## 693       100       0
# Menghitung proporsi kelas
prop_table <- prop.table(table(undersampled_reglog$Target_PJK))
print(prop_table)
## 
##         0         1 
## 0.5223665 0.4776335
table(undersampled_reglog$Target_PJK)
## 
##   0   1 
## 362 331

Regresi Logistik Biner

Signifikansi Peubah

Data Train

reglog_train <- glm(Target_PJK ~ ., data = train_dt, family = binomial(link = "logit"))
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
summ <- summary(reglog_train)
summ
## 
## Call:
## glm(formula = Target_PJK ~ ., family = binomial(link = "logit"), 
##     data = train_dt)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -3.6908  -0.0816  -0.0360  -0.0153   3.5565  
## 
## Coefficients:
##                      Estimate Std. Error z value Pr(>|z|)    
## (Intercept)        -22.708656   2.321765  -9.781  < 2e-16 ***
## Age                  0.019873   0.015249   1.303  0.19249    
## Sex2                -0.186401   0.300663  -0.620  0.53528    
## GD_Puasa             0.006173   0.006168   1.001  0.31686    
## GD_PP                0.001441   0.003515   0.410  0.68180    
## Kolestrol            0.003188   0.005677   0.562  0.57444    
## LDL                  0.002774   0.005905   0.470  0.63856    
## HDL                 -0.042548   0.015057  -2.826  0.00472 ** 
## Lipoprotein          0.120240   0.020606   5.835 5.37e-09 ***
## Berat_Badan         -0.098922   0.016420  -6.025 1.70e-09 ***
## Target_Hipertensi1   0.347922   0.457283   0.761  0.44675    
## Nyeri_Dada           3.002927   0.366520   8.193 2.55e-16 ***
## Riwayat_Keluarga1   20.101958 692.438431   0.029  0.97684    
## Sistolik             0.029913   0.011087   2.698  0.00697 ** 
## Diastolik            0.127375   0.019331   6.589 4.43e-11 ***
## Merokok              0.264505   0.337047   0.785  0.43259    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 2235.11  on 3729  degrees of freedom
## Residual deviance:  377.47  on 3714  degrees of freedom
## AIC: 409.47
## 
## Number of Fisher Scoring iterations: 18
# Mengimpor paket 'car'
library(car)
## Loading required package: carData
## 
## Attaching package: 'car'
## The following object is masked from 'package:gtools':
## 
##     logit
## The following object is masked from 'package:dplyr':
## 
##     recode
# Menghitung VIF
vif_model <- vif(reglog_train)
vif_model
##               Age               Sex          GD_Puasa             GD_PP 
##          1.151742          1.038072          3.961753          4.095025 
##         Kolestrol               LDL               HDL       Lipoprotein 
##          2.823979          2.675496          1.218576          2.307610 
##       Berat_Badan Target_Hipertensi        Nyeri_Dada  Riwayat_Keluarga 
##          2.411212          2.534642          1.140072          1.000000 
##          Sistolik         Diastolik           Merokok 
##          2.762148          2.314593          1.160728

Uji Parsial

Anova (reglog_train, type = 'II', test = 'Wald')
## Analysis of Deviance Table (Type II tests)
## 
## Response: Target_PJK
##                   Df   Chisq Pr(>Chisq)    
## Age                1  1.6984   0.192493    
## Sex                1  0.3844   0.535279    
## GD_Puasa           1  1.0019   0.316857    
## GD_PP              1  0.1681   0.681802    
## Kolestrol          1  0.3153   0.574438    
## LDL                1  0.2206   0.638559    
## HDL                1  7.9846   0.004718 ** 
## Lipoprotein        1 34.0514  5.368e-09 ***
## Berat_Badan        1 36.2949  1.696e-09 ***
## Target_Hipertensi  1  0.5789   0.446749    
## Nyeri_Dada         1 67.1265  2.546e-16 ***
## Riwayat_Keluarga   1  0.0008   0.976840    
## Sistolik           1  7.2798   0.006974 ** 
## Diastolik          1 43.4148  4.428e-11 ***
## Merokok            1  0.6159   0.432587    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

GOF

library(ResourceSelection)
## Warning: package 'ResourceSelection' was built under R version 4.2.3
## ResourceSelection 0.3-5   2019-07-22
hoslem.test(reglog_train$y, fitted(reglog_train))
## 
##  Hosmer and Lemeshow goodness of fit (GOF) test
## 
## data:  reglog_train$y, fitted(reglog_train)
## X-squared = 2.627, df = 8, p-value = 0.9555
pred1 <- predict(reglog_train, test_dt, type = "response")
predicted <- round(pred1)
tab <- table(Predicted = predicted, Reference = test_dt$Target_PJK)
tab
##          Reference
## Predicted    0    1
##         0 1435   20
##         1   21  121
confusionMatrix(as.factor(predicted), test_dt$Target_PJK)
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction    0    1
##          0 1435   20
##          1   21  121
##                                           
##                Accuracy : 0.9743          
##                  95% CI : (0.9653, 0.9815)
##     No Information Rate : 0.9117          
##     P-Value [Acc > NIR] : <2e-16          
##                                           
##                   Kappa : 0.841           
##                                           
##  Mcnemar's Test P-Value : 1               
##                                           
##             Sensitivity : 0.9856          
##             Specificity : 0.8582          
##          Pos Pred Value : 0.9863          
##          Neg Pred Value : 0.8521          
##              Prevalence : 0.9117          
##          Detection Rate : 0.8986          
##    Detection Prevalence : 0.9111          
##       Balanced Accuracy : 0.9219          
##                                           
##        'Positive' Class : 0               
## 

Smote

library(car)  
reglog_smote <- glm(Target_PJK ~ ., data = smote_reglog, family = binomial(link = "logit"))
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
summ <- summary(reglog_smote)
summ
## 
## Call:
## glm(formula = Target_PJK ~ ., family = binomial(link = "logit"), 
##     data = smote_reglog)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -3.8727  -0.0684  -0.0009   0.0092   2.9649  
## 
## Coefficients:
##                      Estimate Std. Error z value Pr(>|z|)    
## (Intercept)        -24.358355   2.197624 -11.084  < 2e-16 ***
## Age                  0.026741   0.015424   1.734    0.083 .  
## Sex2                -0.229395   0.267353  -0.858    0.391    
## GD_Puasa             0.008478   0.007060   1.201    0.230    
## GD_PP                0.003425   0.003440   0.995    0.320    
## Kolestrol            0.001436   0.007326   0.196    0.845    
## LDL                  0.008813   0.007414   1.189    0.235    
## HDL                 -0.051625   0.013162  -3.922 8.77e-05 ***
## Lipoprotein          0.138502   0.021033   6.585 4.55e-11 ***
## Berat_Badan         -0.139882   0.018056  -7.747 9.41e-15 ***
## Target_Hipertensi1   0.262414   0.349572   0.751    0.453    
## Nyeri_Dada           3.416428   0.373549   9.146  < 2e-16 ***
## Riwayat_Keluarga1   18.628288 514.833175   0.036    0.971    
## Sistolik             0.051658   0.012295   4.202 2.65e-05 ***
## Diastolik            0.138030   0.018957   7.281 3.31e-13 ***
## Merokok              0.368076   0.295485   1.246    0.213    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 4158.88  on 2999  degrees of freedom
## Residual deviance:  482.71  on 2984  degrees of freedom
## AIC: 514.71
## 
## Number of Fisher Scoring iterations: 19

GOF

library(ResourceSelection)
hoslem.test(reglog_smote$y, fitted(reglog_smote))
## 
##  Hosmer and Lemeshow goodness of fit (GOF) test
## 
## data:  reglog_smote$y, fitted(reglog_smote)
## X-squared = 6.7371, df = 8, p-value = 0.5652

Uji Simultan

library(pscl)
## Warning: package 'pscl' was built under R version 4.2.3
## Classes and Methods for R developed in the
## Political Science Computational Laboratory
## Department of Political Science
## Stanford University
## Simon Jackman
## hurdle and zeroinfl functions by Achim Zeileis
pR2(reglog_smote)
## fitting null model for pseudo-r2
##           llh       llhNull            G2      McFadden          r2ML 
##  -241.3547001 -2079.4415417  3676.1736831     0.8839329     0.7063572 
##          r2CU 
##     0.9418096
qchisq(0.95, 18)
## [1] 28.8693

Uji Parsial

Anova (reglog_smote, type = 'II', test = 'Wald')
## Analysis of Deviance Table (Type II tests)
## 
## Response: Target_PJK
##                   Df   Chisq Pr(>Chisq)    
## Age                1  3.0057    0.08297 .  
## Sex                1  0.7362    0.39088    
## GD_Puasa           1  1.4420    0.22981    
## GD_PP              1  0.9909    0.31951    
## Kolestrol          1  0.0384    0.84460    
## LDL                1  1.4128    0.23459    
## HDL                1 15.3849  8.769e-05 ***
## Lipoprotein        1 43.3616  4.550e-11 ***
## Berat_Badan        1 60.0166  9.406e-15 ***
## Target_Hipertensi  1  0.5635    0.45285    
## Nyeri_Dada         1 83.6469  < 2.2e-16 ***
## Riwayat_Keluarga   1  0.0013    0.97114    
## Sistolik           1 17.6537  2.650e-05 ***
## Diastolik          1 53.0162  3.308e-13 ***
## Merokok            1  1.5517    0.21289    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
options(digits = 3)
beta = coef(reglog_smote)
OR = exp(beta)
cbind(beta, OR)
##                         beta       OR
## (Intercept)        -24.35835 2.64e-11
## Age                  0.02674 1.03e+00
## Sex2                -0.22939 7.95e-01
## GD_Puasa             0.00848 1.01e+00
## GD_PP                0.00342 1.00e+00
## Kolestrol            0.00144 1.00e+00
## LDL                  0.00881 1.01e+00
## HDL                 -0.05163 9.50e-01
## Lipoprotein          0.13850 1.15e+00
## Berat_Badan         -0.13988 8.69e-01
## Target_Hipertensi1   0.26241 1.30e+00
## Nyeri_Dada           3.41643 3.05e+01
## Riwayat_Keluarga1   18.62829 1.23e+08
## Sistolik             0.05166 1.05e+00
## Diastolik            0.13803 1.15e+00
## Merokok              0.36808 1.44e+00
pred2 <- predict(reglog_smote, test_dt, type = "response")
predicted <- round(pred2)
tab <- table(Predicted = predicted, Reference = test_dt$Target_PJK)
tab
##          Reference
## Predicted    0    1
##         0 1403    8
##         1   53  133
confusionMatrix(as.factor(predicted), test_dt$Target_PJK)
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction    0    1
##          0 1403    8
##          1   53  133
##                                         
##                Accuracy : 0.962         
##                  95% CI : (0.951, 0.971)
##     No Information Rate : 0.912         
##     P-Value [Acc > NIR] : 2.87e-15      
##                                         
##                   Kappa : 0.793         
##                                         
##  Mcnemar's Test P-Value : 1.76e-08      
##                                         
##             Sensitivity : 0.964         
##             Specificity : 0.943         
##          Pos Pred Value : 0.994         
##          Neg Pred Value : 0.715         
##              Prevalence : 0.912         
##          Detection Rate : 0.879         
##    Detection Prevalence : 0.884         
##       Balanced Accuracy : 0.953         
##                                         
##        'Positive' Class : 0             
## 

Oversampling

library(car)  
reglog_over <- glm(Target_PJK ~ ., data = oversampling_reglog, family = binomial(link = "logit"))
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
summ <- summary(reglog_over)
summ
## 
## Call:
## glm(formula = Target_PJK ~ ., family = binomial(link = "logit"), 
##     data = oversampling_reglog)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -3.675  -0.171  -0.022   0.028   3.573  
## 
## Coefficients:
##                     Estimate Std. Error z value Pr(>|z|)    
## (Intercept)        -17.99342    1.13104  -15.91  < 2e-16 ***
## Age                  0.02135    0.00770    2.77  0.00555 ** 
## Sex2                 0.07862    0.19060    0.41  0.68000    
## GD_Puasa             0.00309    0.00201    1.54  0.12289    
## GD_PP                0.00207    0.00125    1.66  0.09756 .  
## Kolestrol            0.00247    0.00233    1.06  0.28850    
## LDL                  0.00958    0.00252    3.80  0.00015 ***
## HDL                 -0.00578    0.00301   -1.92  0.05489 .  
## Lipoprotein          0.04706    0.00762    6.18  6.5e-10 ***
## Berat_Badan         -0.03305    0.00682   -4.85  1.3e-06 ***
## Target_Hipertensi1   1.65530    0.23877    6.93  4.1e-12 ***
## Nyeri_Dada           2.42782    0.22328   10.87  < 2e-16 ***
## Riwayat_Keluarga1   20.20470  466.92758    0.04  0.96549    
## Sistolik             0.03622    0.00529    6.85  7.3e-12 ***
## Diastolik            0.07837    0.00874    8.96  < 2e-16 ***
## Merokok              0.31478    0.17546    1.79  0.07280 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 5170.75  on 3729  degrees of freedom
## Residual deviance:  926.08  on 3714  degrees of freedom
## AIC: 958.1
## 
## Number of Fisher Scoring iterations: 19

GOF

library(ResourceSelection)
hoslem.test(reglog_over$y, fitted(reglog_over))
## 
##  Hosmer and Lemeshow goodness of fit (GOF) test
## 
## data:  reglog_over$y, fitted(reglog_over)
## X-squared = 46, df = 8, p-value = 3e-07

Uji Simultan

library(pscl)
pR2(reglog_over)
## fitting null model for pseudo-r2
##       llh   llhNull        G2  McFadden      r2ML      r2CU 
##  -463.042 -2585.374  4244.665     0.821     0.680     0.906
qchisq(0.95, 18)
## [1] 28.9

Uji Parsial

Anova (reglog_over, type = 'II', test = 'Wald')
## Analysis of Deviance Table (Type II tests)
## 
## Response: Target_PJK
##                   Df  Chisq Pr(>Chisq)    
## Age                1   7.69    0.00555 ** 
## Sex                1   0.17    0.68000    
## GD_Puasa           1   2.38    0.12289    
## GD_PP              1   2.74    0.09756 .  
## Kolestrol          1   1.13    0.28850    
## LDL                1  14.42    0.00015 ***
## HDL                1   3.69    0.05489 .  
## Lipoprotein        1  38.17    6.5e-10 ***
## Berat_Badan        1  23.49    1.3e-06 ***
## Target_Hipertensi  1  48.06    4.1e-12 ***
## Nyeri_Dada         1 118.23    < 2e-16 ***
## Riwayat_Keluarga   1   0.00    0.96549    
## Sistolik           1  46.93    7.3e-12 ***
## Diastolik          1  80.31    < 2e-16 ***
## Merokok            1   3.22    0.07280 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
options(digits = 3)
beta = coef(reglog_over)
OR = exp(beta)
cbind(beta, OR)
##                         beta       OR
## (Intercept)        -17.99342 1.53e-08
## Age                  0.02135 1.02e+00
## Sex2                 0.07862 1.08e+00
## GD_Puasa             0.00309 1.00e+00
## GD_PP                0.00207 1.00e+00
## Kolestrol            0.00247 1.00e+00
## LDL                  0.00958 1.01e+00
## HDL                 -0.00578 9.94e-01
## Lipoprotein          0.04706 1.05e+00
## Berat_Badan         -0.03305 9.67e-01
## Target_Hipertensi1   1.65530 5.23e+00
## Nyeri_Dada           2.42782 1.13e+01
## Riwayat_Keluarga1   20.20470 5.95e+08
## Sistolik             0.03622 1.04e+00
## Diastolik            0.07837 1.08e+00
## Merokok              0.31478 1.37e+00
pred3 <- predict(reglog_over, test_dt, type = "response")
predicted <- round(pred3)
tab <- table(Predicted = predicted, Reference = test_dt$Target_PJK)
tab
##          Reference
## Predicted    0    1
##         0 1394    6
##         1   62  135
confusionMatrix(as.factor(predicted), test_dt$Target_PJK)
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction    0    1
##          0 1394    6
##          1   62  135
##                                         
##                Accuracy : 0.957         
##                  95% CI : (0.946, 0.967)
##     No Information Rate : 0.912         
##     P-Value [Acc > NIR] : 1.02e-12      
##                                         
##                   Kappa : 0.776         
##                                         
##  Mcnemar's Test P-Value : 2.56e-11      
##                                         
##             Sensitivity : 0.957         
##             Specificity : 0.957         
##          Pos Pred Value : 0.996         
##          Neg Pred Value : 0.685         
##              Prevalence : 0.912         
##          Detection Rate : 0.873         
##    Detection Prevalence : 0.877         
##       Balanced Accuracy : 0.957         
##                                         
##        'Positive' Class : 0             
## 

Undersampling

library(car)  
reglog_under <- glm(Target_PJK ~ ., data = undersampled_reglog, family = binomial(link = "logit"))
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
summ <- summary(reglog_under)
summ
## 
## Call:
## glm(formula = Target_PJK ~ ., family = binomial(link = "logit"), 
##     data = undersampled_reglog)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -4.598  -0.083  -0.007   0.009   3.078  
## 
## Coefficients:
##                     Estimate Std. Error z value Pr(>|z|)    
## (Intercept)        -2.80e+01   4.56e+00   -6.15  8.0e-10 ***
## Age                 1.87e-02   2.63e-02    0.71  0.47610    
## Sex2                1.93e-01   5.14e-01    0.37  0.70802    
## GD_Puasa           -4.82e-03   1.05e-02   -0.46  0.64524    
## GD_PP               8.73e-03   5.75e-03    1.52  0.12869    
## Kolestrol          -3.52e-03   1.05e-02   -0.34  0.73615    
## LDL                 1.19e-02   1.06e-02    1.13  0.25929    
## HDL                -1.92e-02   2.29e-02   -0.84  0.40075    
## Lipoprotein         1.33e-01   3.86e-02    3.44  0.00058 ***
## Berat_Badan        -8.33e-02   3.46e-02   -2.41  0.01611 *  
## Target_Hipertensi1 -4.50e-01   7.34e-01   -0.61  0.54007    
## Nyeri_Dada          3.23e+00   6.89e-01    4.69  2.8e-06 ***
## Riwayat_Keluarga1   1.94e+01   1.08e+03    0.02  0.98570    
## Sistolik            4.54e-02   2.12e-02    2.14  0.03232 *  
## Diastolik           1.57e-01   3.23e-02    4.86  1.2e-06 ***
## Merokok             1.76e-01   5.40e-01    0.33  0.74452    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 959.31  on 692  degrees of freedom
## Residual deviance: 135.54  on 677  degrees of freedom
## AIC: 167.5
## 
## Number of Fisher Scoring iterations: 19

GOF

library(ResourceSelection)
hoslem.test(reglog_under$y, fitted(reglog_under))
## 
##  Hosmer and Lemeshow goodness of fit (GOF) test
## 
## data:  reglog_under$y, fitted(reglog_under)
## X-squared = 38, df = 8, p-value = 8e-06

Uji Simultan

library(pscl)
pR2(reglog_under)
## fitting null model for pseudo-r2
##      llh  llhNull       G2 McFadden     r2ML     r2CU 
##  -67.769 -479.657  823.777    0.859    0.695    0.928
qchisq(0.95, 18)
## [1] 28.9

Uji Parsial

Anova (reglog_under, type = 'II', test = 'Wald')
## Analysis of Deviance Table (Type II tests)
## 
## Response: Target_PJK
##                   Df Chisq Pr(>Chisq)    
## Age                1  0.51    0.47610    
## Sex                1  0.14    0.70802    
## GD_Puasa           1  0.21    0.64524    
## GD_PP              1  2.31    0.12869    
## Kolestrol          1  0.11    0.73615    
## LDL                1  1.27    0.25929    
## HDL                1  0.71    0.40075    
## Lipoprotein        1 11.85    0.00058 ***
## Berat_Badan        1  5.79    0.01611 *  
## Target_Hipertensi  1  0.38    0.54007    
## Nyeri_Dada         1 21.97    2.8e-06 ***
## Riwayat_Keluarga   1  0.00    0.98570    
## Sistolik           1  4.58    0.03232 *  
## Diastolik          1 23.59    1.2e-06 ***
## Merokok            1  0.11    0.74452    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
options(digits = 3)
beta = coef(reglog_under)
OR = exp(beta)
cbind(beta, OR)
##                         beta       OR
## (Intercept)        -28.01413 6.82e-13
## Age                  0.01875 1.02e+00
## Sex2                 0.19253 1.21e+00
## GD_Puasa            -0.00482 9.95e-01
## GD_PP                0.00873 1.01e+00
## Kolestrol           -0.00352 9.96e-01
## LDL                  0.01193 1.01e+00
## HDL                 -0.01924 9.81e-01
## Lipoprotein          0.13273 1.14e+00
## Berat_Badan         -0.08331 9.20e-01
## Target_Hipertensi1  -0.44958 6.38e-01
## Nyeri_Dada           3.22906 2.53e+01
## Riwayat_Keluarga1   19.37001 2.58e+08
## Sistolik             0.04538 1.05e+00
## Diastolik            0.15701 1.17e+00
## Merokok              0.17587 1.19e+00
pred4 <- predict(reglog_under, test_dt, type = "response")
predicted <- round(pred4)
tab <- table(Predicted = predicted, Reference = test_dt$Target_PJK)
tab
##          Reference
## Predicted    0    1
##         0 1406    8
##         1   50  133
confusionMatrix(as.factor(predicted), test_dt$Target_PJK)
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction    0    1
##          0 1406    8
##          1   50  133
##                                         
##                Accuracy : 0.964         
##                  95% CI : (0.953, 0.972)
##     No Information Rate : 0.912         
##     P-Value [Acc > NIR] : < 2e-16       
##                                         
##                   Kappa : 0.801         
##                                         
##  Mcnemar's Test P-Value : 7.3e-08       
##                                         
##             Sensitivity : 0.966         
##             Specificity : 0.943         
##          Pos Pred Value : 0.994         
##          Neg Pred Value : 0.727         
##              Prevalence : 0.912         
##          Detection Rate : 0.880         
##    Detection Prevalence : 0.885         
##       Balanced Accuracy : 0.954         
##                                         
##        'Positive' Class : 0             
## 
# stepwise: automatic model selection method
options(warn=-1)
log_model_all <- glm(Target_PJK ~ ., family="binomial", data= train_dt)
log_model_nothing <- glm(Target_PJK ~ 1, family="binomial", data= train_dt)

log_model1 <- step(log_model_nothing, 
                 list(lower=formula(log_model_nothing),
                      upper=formula(log_model_all)),
                 direction="both", trace = F, test= "F")
formula(log_model1)
## Target_PJK ~ Diastolik + Riwayat_Keluarga + Nyeri_Dada + Sistolik + 
##     Lipoprotein + Berat_Badan + HDL + GD_Puasa + Kolestrol + 
##     Age
log_model1 <- glm(Target_PJK ~ Diastolik + Riwayat_Keluarga + Nyeri_Dada + Sistolik + 
    Lipoprotein + Berat_Badan + HDL + GD_Puasa + Kolestrol + 
    Age,
                  family = "binomial", data = train_dt)
summary(log_model1)
## 
## Call:
## glm(formula = Target_PJK ~ Diastolik + Riwayat_Keluarga + Nyeri_Dada + 
##     Sistolik + Lipoprotein + Berat_Badan + HDL + GD_Puasa + Kolestrol + 
##     Age, family = "binomial", data = train_dt)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -3.779  -0.082  -0.035  -0.014   3.539  
## 
## Coefficients:
##                    Estimate Std. Error z value Pr(>|z|)    
## (Intercept)       -23.66013    2.06329  -11.47  < 2e-16 ***
## Diastolik           0.13372    0.01845    7.25  4.2e-13 ***
## Riwayat_Keluarga1  20.10186  669.99104    0.03  0.97606    
## Nyeri_Dada          3.00152    0.35614    8.43  < 2e-16 ***
## Sistolik            0.03373    0.00999    3.38  0.00074 ***
## Lipoprotein         0.11963    0.02035    5.88  4.2e-09 ***
## Berat_Badan        -0.09727    0.01636   -5.94  2.8e-09 ***
## HDL                -0.04693    0.01446   -3.25  0.00117 ** 
## GD_Puasa            0.00838    0.00317    2.64  0.00819 ** 
## Kolestrol           0.00546    0.00357    1.53  0.12549    
## Age                 0.02141    0.01505    1.42  0.15492    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 2235.11  on 3729  degrees of freedom
## Residual deviance:  379.38  on 3719  degrees of freedom
## AIC: 401.4
## 
## Number of Fisher Scoring iterations: 18
log_model1 <- update(log_model1, .~. -Riwayat_Keluarga)
summary(log_model1)
## 
## Call:
## glm(formula = Target_PJK ~ Diastolik + Nyeri_Dada + Sistolik + 
##     Lipoprotein + Berat_Badan + HDL + GD_Puasa + Kolestrol + 
##     Age, family = "binomial", data = train_dt)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -3.992  -0.098  -0.041  -0.016   3.466  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -22.60617    1.74020  -12.99  < 2e-16 ***
## Diastolik     0.13770    0.01622    8.49  < 2e-16 ***
## Nyeri_Dada    2.93876    0.31402    9.36  < 2e-16 ***
## Sistolik      0.03207    0.00884    3.63  0.00029 ***
## Lipoprotein   0.11754    0.01830    6.42  1.3e-10 ***
## Berat_Badan  -0.10288    0.01494   -6.89  5.7e-12 ***
## HDL          -0.06236    0.01285   -4.85  1.2e-06 ***
## GD_Puasa      0.00796    0.00288    2.77  0.00568 ** 
## Kolestrol     0.00888    0.00307    2.90  0.00379 ** 
## Age           0.01962    0.01368    1.43  0.15150    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 2235.11  on 3729  degrees of freedom
## Residual deviance:  500.29  on 3720  degrees of freedom
## AIC: 520.3
## 
## Number of Fisher Scoring iterations: 8

GOF

library(ResourceSelection)
hoslem.test(log_model1$y, fitted(log_model1))
## 
##  Hosmer and Lemeshow goodness of fit (GOF) test
## 
## data:  log_model1$y, fitted(log_model1)
## X-squared = 3, df = 8, p-value = 0.9

Uji Simultan

library(pscl)
pR2(log_model1)
## fitting null model for pseudo-r2
##       llh   llhNull        G2  McFadden      r2ML      r2CU 
##  -250.144 -1117.556  1734.824     0.776     0.372     0.825
qchisq(0.95, 18)
## [1] 28.9

Uji Parsial

Anova (log_model1, type = 'II', test = 'Wald')
## Analysis of Deviance Table (Type II tests)
## 
## Response: Target_PJK
##             Df Chisq Pr(>Chisq)    
## Diastolik    1 72.03    < 2e-16 ***
## Nyeri_Dada   1 87.58    < 2e-16 ***
## Sistolik     1 13.15    0.00029 ***
## Lipoprotein  1 41.25    1.3e-10 ***
## Berat_Badan  1 47.44    5.7e-12 ***
## HDL          1 23.56    1.2e-06 ***
## GD_Puasa     1  7.65    0.00568 ** 
## Kolestrol    1  8.38    0.00379 ** 
## Age          1  2.06    0.15150    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
options(digits = 3)
beta = coef(log_model1)
OR = exp(beta)
cbind(beta, OR)
##                  beta       OR
## (Intercept) -22.60617 1.52e-10
## Diastolik     0.13770 1.15e+00
## Nyeri_Dada    2.93876 1.89e+01
## Sistolik      0.03207 1.03e+00
## Lipoprotein   0.11754 1.12e+00
## Berat_Badan  -0.10288 9.02e-01
## HDL          -0.06236 9.40e-01
## GD_Puasa      0.00796 1.01e+00
## Kolestrol     0.00888 1.01e+00
## Age           0.01962 1.02e+00
pred5 <- predict(log_model1, test_dt, type = "response")
predicted <- round(pred5)
tab <- table(Predicted = predicted, Reference = test_dt$Target_PJK)
tab
##          Reference
## Predicted    0    1
##         0 1429   25
##         1   27  116
confusionMatrix(as.factor(predicted), test_dt$Target_PJK)
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction    0    1
##          0 1429   25
##          1   27  116
##                                         
##                Accuracy : 0.967         
##                  95% CI : (0.958, 0.976)
##     No Information Rate : 0.912         
##     P-Value [Acc > NIR] : <2e-16        
##                                         
##                   Kappa : 0.799         
##                                         
##  Mcnemar's Test P-Value : 0.89          
##                                         
##             Sensitivity : 0.981         
##             Specificity : 0.823         
##          Pos Pred Value : 0.983         
##          Neg Pred Value : 0.811         
##              Prevalence : 0.912         
##          Detection Rate : 0.895         
##    Detection Prevalence : 0.910         
##       Balanced Accuracy : 0.902         
##                                         
##        'Positive' Class : 0             
## 
# stepwise: automatic model selection method
options(warn=-1)
log_model_all <- glm(Target_PJK ~ ., family="binomial", data= smote_reglog)
log_model_nothing <- glm(Target_PJK ~ 1, family="binomial", data= smote_reglog)

log_model2 <- step(log_model_nothing, 
                 list(lower=formula(log_model_nothing),
                      upper=formula(log_model_all)),
                 direction="both", trace = F, test= "F")
formula(log_model2)
## Target_PJK ~ Diastolik + Riwayat_Keluarga + Nyeri_Dada + Sistolik + 
##     GD_PP + Berat_Badan + Lipoprotein + HDL + LDL + Age + Merokok
log_model2 <- glm(Target_PJK ~ Diastolik + Riwayat_Keluarga + Nyeri_Dada + Sistolik + 
    GD_PP + Berat_Badan + Lipoprotein + HDL + LDL + Age + Merokok,
                  family = "binomial", data = smote_reglog)
summary(log_model2)
## 
## Call:
## glm(formula = Target_PJK ~ Diastolik + Riwayat_Keluarga + Nyeri_Dada + 
##     Sistolik + GD_PP + Berat_Badan + Lipoprotein + HDL + LDL + 
##     Age + Merokok, family = "binomial", data = smote_reglog)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -3.879  -0.067  -0.001   0.009   2.935  
## 
## Coefficients:
##                    Estimate Std. Error z value Pr(>|z|)    
## (Intercept)       -24.97253    1.95399  -12.78  < 2e-16 ***
## Diastolik           0.14126    0.01871    7.55  4.3e-14 ***
## Riwayat_Keluarga1  19.57719  826.69837    0.02  0.98111    
## Nyeri_Dada          3.41526    0.37020    9.23  < 2e-16 ***
## Sistolik            0.05544    0.01099    5.05  4.5e-07 ***
## GD_PP               0.00691    0.00216    3.20  0.00136 ** 
## Berat_Badan        -0.13994    0.01789   -7.82  5.1e-15 ***
## Lipoprotein         0.13972    0.02084    6.70  2.0e-11 ***
## HDL                -0.04850    0.01265   -3.83  0.00013 ***
## LDL                 0.01000    0.00363    2.75  0.00590 ** 
## Age                 0.02637    0.01526    1.73  0.08408 .  
## Merokok             0.41872    0.29307    1.43  0.15308    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 4158.88  on 2999  degrees of freedom
## Residual deviance:  485.33  on 2988  degrees of freedom
## AIC: 509.3
## 
## Number of Fisher Scoring iterations: 20
log_model2 <- update(log_model2, .~. -Riwayat_Keluarga)
summary(log_model2)
## 
## Call:
## glm(formula = Target_PJK ~ Diastolik + Nyeri_Dada + Sistolik + 
##     GD_PP + Berat_Badan + Lipoprotein + HDL + LDL + Age + Merokok, 
##     family = "binomial", data = smote_reglog)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -4.108  -0.074  -0.001   0.066   2.893  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -23.97114    1.68886  -14.19  < 2e-16 ***
## Diastolik     0.15416    0.01786    8.63  < 2e-16 ***
## Nyeri_Dada    3.20557    0.33882    9.46  < 2e-16 ***
## Sistolik      0.05379    0.01042    5.16  2.5e-07 ***
## GD_PP         0.00779    0.00209    3.72   0.0002 ***
## Berat_Badan  -0.15026    0.01689   -8.90  < 2e-16 ***
## Lipoprotein   0.13493    0.01921    7.02  2.2e-12 ***
## HDL          -0.06409    0.01196   -5.36  8.4e-08 ***
## LDL           0.01133    0.00326    3.48   0.0005 ***
## Age           0.02724    0.01413    1.93   0.0538 .  
## Merokok       0.76164    0.26528    2.87   0.0041 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 4158.88  on 2999  degrees of freedom
## Residual deviance:  599.49  on 2989  degrees of freedom
## AIC: 621.5
## 
## Number of Fisher Scoring iterations: 8

GOF

library(ResourceSelection)
hoslem.test(log_model2$y, fitted(log_model2))
## 
##  Hosmer and Lemeshow goodness of fit (GOF) test
## 
## data:  log_model2$y, fitted(log_model2)
## X-squared = 14, df = 8, p-value = 0.08

Uji Simultan

library(pscl)
pR2(log_model2)
## fitting null model for pseudo-r2
##       llh   llhNull        G2  McFadden      r2ML      r2CU 
##  -299.743 -2079.442  3559.398     0.856     0.695     0.926
qchisq(0.95, 18)
## [1] 28.9

Uji Parsial

Anova (log_model2, type = 'II', test = 'Wald')
## Analysis of Deviance Table (Type II tests)
## 
## Response: Target_PJK
##             Df Chisq Pr(>Chisq)    
## Diastolik    1 74.48    < 2e-16 ***
## Nyeri_Dada   1 89.51    < 2e-16 ***
## Sistolik     1 26.64    2.5e-07 ***
## GD_PP        1 13.86     0.0002 ***
## Berat_Badan  1 79.14    < 2e-16 ***
## Lipoprotein  1 49.32    2.2e-12 ***
## HDL          1 28.72    8.4e-08 ***
## LDL          1 12.11     0.0005 ***
## Age          1  3.72     0.0538 .  
## Merokok      1  8.24     0.0041 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
options(digits = 3)
beta = coef(log_model2)
OR = exp(beta)
cbind(beta, OR)
##                  beta       OR
## (Intercept) -23.97114 3.89e-11
## Diastolik     0.15416 1.17e+00
## Nyeri_Dada    3.20557 2.47e+01
## Sistolik      0.05379 1.06e+00
## GD_PP         0.00779 1.01e+00
## Berat_Badan  -0.15026 8.60e-01
## Lipoprotein   0.13493 1.14e+00
## HDL          -0.06409 9.38e-01
## LDL           0.01133 1.01e+00
## Age           0.02724 1.03e+00
## Merokok       0.76164 2.14e+00
pred6 <- predict(log_model2, test_dt, type = "response")
predicted <- round(pred6)
tab <- table(Predicted = predicted, Reference = test_dt$Target_PJK)
tab
##          Reference
## Predicted    0    1
##         0 1398    8
##         1   58  133
confusionMatrix(as.factor(predicted), test_dt$Target_PJK)
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction    0    1
##          0 1398    8
##          1   58  133
##                                         
##                Accuracy : 0.959         
##                  95% CI : (0.948, 0.968)
##     No Information Rate : 0.912         
##     P-Value [Acc > NIR] : 2.05e-13      
##                                         
##                   Kappa : 0.779         
##                                         
##  Mcnemar's Test P-Value : 1.62e-09      
##                                         
##             Sensitivity : 0.960         
##             Specificity : 0.943         
##          Pos Pred Value : 0.994         
##          Neg Pred Value : 0.696         
##              Prevalence : 0.912         
##          Detection Rate : 0.875         
##    Detection Prevalence : 0.880         
##       Balanced Accuracy : 0.952         
##                                         
##        'Positive' Class : 0             
## 
# stepwise: automatic model selection method
options(warn=-1)
log_model_all <- glm(Target_PJK ~ ., family="binomial", data= oversampling_reglog)
log_model_nothing <- glm(Target_PJK ~ 1, family="binomial", data= oversampling_reglog)

log_model3 <- step(log_model_nothing, 
                 list(lower=formula(log_model_nothing),
                      upper=formula(log_model_all)),
                 direction="both", trace = F, test= "F")
formula(log_model3)
## Target_PJK ~ Diastolik + Riwayat_Keluarga + Sistolik + Nyeri_Dada + 
##     LDL + Target_Hipertensi + Lipoprotein + Berat_Badan + GD_PP + 
##     Age + Merokok + HDL + GD_Puasa
log_model3 <- glm(Target_PJK ~ Diastolik + Riwayat_Keluarga + Sistolik + Nyeri_Dada + 
    LDL + Target_Hipertensi + Lipoprotein + Berat_Badan + GD_PP + 
    Age + Merokok + HDL + GD_Puasa,
                  family = "binomial", data = oversampling_reglog)
summary(log_model3)
## 
## Call:
## glm(formula = Target_PJK ~ Diastolik + Riwayat_Keluarga + Sistolik + 
##     Nyeri_Dada + LDL + Target_Hipertensi + Lipoprotein + Berat_Badan + 
##     GD_PP + Age + Merokok + HDL + GD_Puasa, family = "binomial", 
##     data = oversampling_reglog)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -3.658  -0.172  -0.023   0.029   3.624  
## 
## Coefficients:
##                     Estimate Std. Error z value Pr(>|z|)    
## (Intercept)        -17.73524    1.09663  -16.17  < 2e-16 ***
## Diastolik            0.07793    0.00871    8.95  < 2e-16 ***
## Riwayat_Keluarga1   20.16382  469.14090    0.04   0.9657    
## Sistolik             0.03672    0.00527    6.97  3.1e-12 ***
## Nyeri_Dada           2.42049    0.22322   10.84  < 2e-16 ***
## LDL                  0.01108    0.00211    5.24  1.6e-07 ***
## Target_Hipertensi1   1.64761    0.23830    6.91  4.7e-12 ***
## Lipoprotein          0.04792    0.00753    6.36  2.0e-10 ***
## Berat_Badan         -0.03341    0.00679   -4.92  8.7e-07 ***
## GD_PP                0.00216    0.00125    1.73   0.0829 .  
## Age                  0.02118    0.00766    2.76   0.0057 ** 
## Merokok              0.32463    0.17520    1.85   0.0639 .  
## HDL                 -0.00559    0.00301   -1.86   0.0632 .  
## GD_Puasa             0.00322    0.00200    1.61   0.1075    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 5170.75  on 3729  degrees of freedom
## Residual deviance:  927.39  on 3716  degrees of freedom
## AIC: 955.4
## 
## Number of Fisher Scoring iterations: 19
log_model3 <- update(log_model3, .~. -Riwayat_Keluarga)
summary(log_model3)
## 
## Call:
## glm(formula = Target_PJK ~ Diastolik + Sistolik + Nyeri_Dada + 
##     LDL + Target_Hipertensi + Lipoprotein + Berat_Badan + GD_PP + 
##     Age + Merokok + HDL + GD_Puasa, family = "binomial", data = oversampling_reglog)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -3.831  -0.223  -0.031   0.117   3.489  
## 
## Coefficients:
##                     Estimate Std. Error z value Pr(>|z|)    
## (Intercept)        -17.04280    0.94236  -18.09  < 2e-16 ***
## Diastolik            0.08210    0.00766   10.71  < 2e-16 ***
## Sistolik             0.03702    0.00444    8.33  < 2e-16 ***
## Nyeri_Dada           2.20807    0.19391   11.39  < 2e-16 ***
## LDL                  0.01184    0.00184    6.42  1.4e-10 ***
## Target_Hipertensi1   1.53198    0.20862    7.34  2.1e-13 ***
## Lipoprotein          0.04267    0.00667    6.40  1.6e-10 ***
## Berat_Badan         -0.03538    0.00612   -5.78  7.5e-09 ***
## GD_PP                0.00314    0.00111    2.84   0.0045 ** 
## Age                  0.01781    0.00674    2.64   0.0082 ** 
## Merokok              0.62949    0.14813    4.25  2.1e-05 ***
## HDL                 -0.00672    0.00261   -2.58   0.0099 ** 
## GD_Puasa             0.00307    0.00177    1.73   0.0833 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 5170.7  on 3729  degrees of freedom
## Residual deviance: 1230.5  on 3717  degrees of freedom
## AIC: 1257
## 
## Number of Fisher Scoring iterations: 7

GOF

library(ResourceSelection)
hoslem.test(log_model3$y, fitted(log_model3))
## 
##  Hosmer and Lemeshow goodness of fit (GOF) test
## 
## data:  log_model3$y, fitted(log_model3)
## X-squared = 26, df = 8, p-value = 9e-04

Uji Simultan

library(pscl)
pR2(log_model3)
## fitting null model for pseudo-r2
##       llh   llhNull        G2  McFadden      r2ML      r2CU 
##  -615.254 -2585.374  3940.241     0.762     0.652     0.870
qchisq(0.95, 18)
## [1] 28.9

Uji Parsial

Anova (log_model3, type = 'II', test = 'Wald')
## Analysis of Deviance Table (Type II tests)
## 
## Response: Target_PJK
##                   Df  Chisq Pr(>Chisq)    
## Diastolik          1 114.77    < 2e-16 ***
## Sistolik           1  69.46    < 2e-16 ***
## Nyeri_Dada         1 129.67    < 2e-16 ***
## LDL                1  41.23    1.4e-10 ***
## Target_Hipertensi  1  53.93    2.1e-13 ***
## Lipoprotein        1  40.90    1.6e-10 ***
## Berat_Badan        1  33.39    7.5e-09 ***
## GD_PP              1   8.08     0.0045 ** 
## Age                1   6.99     0.0082 ** 
## Merokok            1  18.06    2.1e-05 ***
## HDL                1   6.65     0.0099 ** 
## GD_Puasa           1   3.00     0.0833 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
options(digits = 3)
beta = coef(log_model3)
OR = exp(beta)
cbind(beta, OR)
##                         beta       OR
## (Intercept)        -17.04280 3.97e-08
## Diastolik            0.08210 1.09e+00
## Sistolik             0.03702 1.04e+00
## Nyeri_Dada           2.20807 9.10e+00
## LDL                  0.01184 1.01e+00
## Target_Hipertensi1   1.53198 4.63e+00
## Lipoprotein          0.04267 1.04e+00
## Berat_Badan         -0.03538 9.65e-01
## GD_PP                0.00314 1.00e+00
## Age                  0.01781 1.02e+00
## Merokok              0.62949 1.88e+00
## HDL                 -0.00672 9.93e-01
## GD_Puasa             0.00307 1.00e+00
pred7 <- predict(log_model3, test_dt, type = "response")
predicted <- round(pred7)
tab <- table(Predicted = predicted, Reference = test_dt$Target_PJK)
tab
##          Reference
## Predicted    0    1
##         0 1384    7
##         1   72  134
confusionMatrix(as.factor(predicted), test_dt$Target_PJK)
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction    0    1
##          0 1384    7
##          1   72  134
##                                         
##                Accuracy : 0.951         
##                  95% CI : (0.939, 0.961)
##     No Information Rate : 0.912         
##     P-Value [Acc > NIR] : 2.37e-09      
##                                         
##                   Kappa : 0.746         
##                                         
##  Mcnemar's Test P-Value : 6.00e-13      
##                                         
##             Sensitivity : 0.951         
##             Specificity : 0.950         
##          Pos Pred Value : 0.995         
##          Neg Pred Value : 0.650         
##              Prevalence : 0.912         
##          Detection Rate : 0.867         
##    Detection Prevalence : 0.871         
##       Balanced Accuracy : 0.950         
##                                         
##        'Positive' Class : 0             
## 
# Assuming you have the accuracy, sensitivity, specificity, and AIC values for each model

# Create a data frame to store the results
model_comparison <- data.frame(
  Model = c("reglog_smote", "reglog_over", "reglog_under", "log_model1", "log_model2", "log_model3"),
  Accuracy = c(0.962, 0.957, 0.966, 0.967, 0.959 , 0.951),
  Sensitivity = c(0.964, 0.957, 0.966, 0.981, 0.960, 0.951),
  Specificity = c(0.943, 0.957, 0.943, 0.823, 0.943, 0.950),
  AIC = c(514.7, 958.1, 167.5, 401.4, 509.3, 1257)
)

# Fill in the AIC values for the models that have AIC available
model_comparison$AIC[6] <- AIC(log_model3)

# Print the model comparison table
print(model_comparison)
##          Model Accuracy Sensitivity Specificity  AIC
## 1 reglog_smote    0.962       0.964       0.943  515
## 2  reglog_over    0.957       0.957       0.957  958
## 3 reglog_under    0.966       0.966       0.943  168
## 4   log_model1    0.967       0.981       0.823  401
## 5   log_model2    0.959       0.960       0.943  509
## 6   log_model3    0.951       0.951       0.950 1257