knitr::opts_chunk$set(echo = TRUE)
library(readxl)
library(dplyr)
## Warning: package 'dplyr' was built under R version 4.2.3
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(MASS)
##
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
##
## select
library(gtools)
library(gmodels)
## Warning: package 'gmodels' was built under R version 4.2.3
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.2.3
library(class)
library(tidyr)
## Warning: package 'tidyr' was built under R version 4.2.3
Memanggil Data dan Membentuk Data Frame
dt <- read_excel("D:/SEM 6/BISMILLAH LOMBA/SATDAT JUARA PART 2/Data fix/Data Cleaning_Hanung Safrizal.xlsx",
sheet = "Data modif")
head(dt)
## # A tibble: 6 × 16
## Target_PJK Age Sex GD_Puasa GD_PP Kolestrol LDL HDL Lipoprotein
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0 57 1 94 131 212 144 48 85
## 2 0 57 2 112 242 266 159 64 95
## 3 0 49 1 87 55 209 146 38 81
## 4 0 46 2 99 106 227 137 57 91
## 5 0 53 1 87 117 217 119 84 91
## 6 0 32 1 84 85 174 103 46 70.8
## # ℹ 7 more variables: Berat_Badan <dbl>, Target_Hipertensi <dbl>,
## # Nyeri_Dada <dbl>, Riwayat_Keluarga <dbl>, Sistolik <dbl>, Diastolik <dbl>,
## # Merokok <dbl>
str(dt)
## tibble [5,327 × 16] (S3: tbl_df/tbl/data.frame)
## $ Target_PJK : num [1:5327] 0 0 0 0 0 0 0 0 0 0 ...
## $ Age : num [1:5327] 57 57 49 46 53 32 27 40 35 38 ...
## $ Sex : num [1:5327] 1 2 1 2 1 1 1 2 1 2 ...
## $ GD_Puasa : num [1:5327] 94 112 87 99 87 84 79 82 89 86 ...
## $ GD_PP : num [1:5327] 131 242 55 106 117 85 68 121 109 89 ...
## $ Kolestrol : num [1:5327] 212 266 209 227 217 174 159 170 184 119 ...
## $ LDL : num [1:5327] 144 159 146 137 119 103 101 107 124 76 ...
## $ HDL : num [1:5327] 48 64 38 57 84 46 50 38 52 51 ...
## $ Lipoprotein : num [1:5327] 85 95 81 91 91 ...
## $ Berat_Badan : num [1:5327] 70 61.4 53.3 66.7 67 ...
## $ Target_Hipertensi: num [1:5327] 0 0 0 0 0 0 0 0 0 0 ...
## $ Nyeri_Dada : num [1:5327] 0 0 0 0 0 0 0 0 0 0 ...
## $ Riwayat_Keluarga : num [1:5327] 0 0 0 0 0 0 0 0 0 0 ...
## $ Sistolik : num [1:5327] 100 118 86 120 126 108 100 102 82 114 ...
## $ Diastolik : num [1:5327] 66 63 57 83 69 67 62 80 77 70 ...
## $ Merokok : num [1:5327] 0 0 0 0 0 0 0 0 0 0 ...
hist(dt$Target_PJK)

# Create a contingency table of counts
count_data <- table(dt$Merokok, dt$Target_PJK)
# Define colors for each category
colors <- c("lightblue", "lightgreen", "pink", "orange", "yellow")
# Create stacked bar plot
barplot(count_data, beside = TRUE, legend = TRUE, col = colors,
xlab = "Target_PJK", ylab = "Count", main = "Hubungan antara Merokok dan Target_PJK",
args.legend = list(x = "topright", bty = "n", title = "Merokok"))
# Add legend
legend("topright", legend = c("Merokok 0", "Merokok 1", "Merokok 2", "Merokok 3", "Merokok 4"),
fill = colors)

# Create a contingency table of counts
count_data <- table(dt$Merokok, dt$Target_PJK)
# Calculate the proportions for each category
prop_data <- prop.table(count_data, margin = 1) * 100
# Define colors for each category
colors <- c("lightblue", "lightgreen", "pink", "orange", "yellow")
# Create stacked bar plot with percentages
barplot(prop_data, beside = TRUE, legend = TRUE, col = colors,
xlab = "Target_PJK", ylab = "Percentage", main = "Hubungan antara Merokok dan Target_PJK",
args.legend = list(x = "topright", bty = "n", title = "Merokok"))
# Add legend
legend("topright", legend = c("Merokok 0", "Merokok 1", "Merokok 2", "Merokok 3", "Merokok 4"),
fill = colors)

# Subset data for Target_PJK = 0
subset_data <- subset(dt, Target_PJK == 0)
# Calculate the percentage for each category
percentages <- prop.table(table(subset_data$Merokok)) * 100
# Create bar plot for percentages
barplot(percentages, col = c("lightblue", "lightgreen", "pink", "orange"),
xlab = "Merokok", ylab = "Percentage", main = "Persentase Merokok pada Target_PJK = 0",
ylim = c(0, max(percentages) + 10))
# Add text labels for percentages
text(x = 1:length(percentages), y = percentages, labels = paste0(round(percentages, 1), "%"), pos = 3)

# Subset data for Target_PJK = 0
subset_data <- subset(dt, Target_PJK == 1)
# Calculate the percentage for each category
percentages <- prop.table(table(subset_data$Merokok)) * 100
# Create bar plot for percentages
barplot(percentages, col = c("lightblue", "lightgreen", "pink", "orange"),
xlab = "Merokok", ylab = "Percentage", main = "Persentase Merokok pada Target_PJK = 1",
ylim = c(0, max(percentages) + 10))
# Add text labels for percentages
text(x = 1:length(percentages), y = percentages, labels = paste0(round(percentages, 1), "%"), pos = 3)

str(dt$Target_PJK)
## num [1:5327] 0 0 0 0 0 0 0 0 0 0 ...
str(dt$Merokok)
## num [1:5327] 0 0 0 0 0 0 0 0 0 0 ...
# Pastikan tidak ada nilai NA di setiap kolom
dt <- na.omit(dt)
# Membentuk Data Frame
dt$Sex <- as.factor(dt$Sex)
dt$Target_PJK <- as.factor(dt$Target_PJK)
dt$Target_Hipertensi<- as.factor(dt$Target_Hipertensi)
dt$Riwayat_Keluarga<- as.factor(dt$Riwayat_Keluarga)
# Periksa hasil
summary(dt)
## Target_PJK Age Sex GD_Puasa GD_PP
## 0:4855 Min. :22.00 1:1787 Min. : 49.00 Min. : 28.0
## 1: 472 1st Qu.:35.00 2:3540 1st Qu.: 77.00 1st Qu.: 91.0
## Median :44.00 Median : 83.00 Median :107.0
## Mean :43.85 Mean : 89.36 Mean :121.4
## 3rd Qu.:52.00 3rd Qu.: 90.25 3rd Qu.:131.0
## Max. :99.00 Max. :665.00 Max. :677.0
## Kolestrol LDL HDL Lipoprotein
## Min. : 78.0 Min. : 0.0 Min. : 10.00 Min. : 44.00
## 1st Qu.:165.5 1st Qu.: 97.0 1st Qu.: 46.00 1st Qu.: 70.70
## Median :188.0 Median :116.0 Median : 53.00 Median : 80.00
## Mean :191.6 Mean :119.2 Mean : 54.87 Mean : 79.87
## 3rd Qu.:213.0 3rd Qu.:137.5 3rd Qu.: 61.00 3rd Qu.: 88.00
## Max. :474.0 Max. :373.0 Max. :3985.00 Max. :169.00
## Berat_Badan Target_Hipertensi Nyeri_Dada Riwayat_Keluarga
## Min. : 0.0 0:4700 Min. :0.00000 0:5126
## 1st Qu.: 49.8 1: 627 1st Qu.:0.00000 1: 201
## Median : 56.5 Median :0.00000
## Mean : 57.8 Mean :0.06908
## 3rd Qu.: 64.8 3rd Qu.:0.00000
## Max. :123.3 Max. :1.00000
## Sistolik Diastolik Merokok
## Min. : 58.0 Min. : 35.00 Min. :0.0000
## 1st Qu.: 97.0 1st Qu.: 62.00 1st Qu.:0.0000
## Median :106.0 Median : 69.00 Median :0.0000
## Mean :110.9 Mean : 71.01 Mean :0.2399
## 3rd Qu.:118.0 3rd Qu.: 77.00 3rd Qu.:0.0000
## Max. :269.0 Max. :169.00 Max. :1.0000
# Menampilkan struktur data frame
str(dt)
## tibble [5,327 × 16] (S3: tbl_df/tbl/data.frame)
## $ Target_PJK : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ Age : num [1:5327] 57 57 49 46 53 32 27 40 35 38 ...
## $ Sex : Factor w/ 2 levels "1","2": 1 2 1 2 1 1 1 2 1 2 ...
## $ GD_Puasa : num [1:5327] 94 112 87 99 87 84 79 82 89 86 ...
## $ GD_PP : num [1:5327] 131 242 55 106 117 85 68 121 109 89 ...
## $ Kolestrol : num [1:5327] 212 266 209 227 217 174 159 170 184 119 ...
## $ LDL : num [1:5327] 144 159 146 137 119 103 101 107 124 76 ...
## $ HDL : num [1:5327] 48 64 38 57 84 46 50 38 52 51 ...
## $ Lipoprotein : num [1:5327] 85 95 81 91 91 ...
## $ Berat_Badan : num [1:5327] 70 61.4 53.3 66.7 67 ...
## $ Target_Hipertensi: Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ Nyeri_Dada : num [1:5327] 0 0 0 0 0 0 0 0 0 0 ...
## $ Riwayat_Keluarga : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ Sistolik : num [1:5327] 100 118 86 120 126 108 100 102 82 114 ...
## $ Diastolik : num [1:5327] 66 63 57 83 69 67 62 80 77 70 ...
## $ Merokok : num [1:5327] 0 0 0 0 0 0 0 0 0 0 ...
Data Proportion
pcheart <- table(dt$Target_PJK)
pcheart
##
## 0 1
## 4855 472
prop.table(table(dt$Target_PJK))
##
## 0 1
## 0.91139478 0.08860522
Splitting Data
library(caret)
## Loading required package: lattice
set.seed(45) # digunakan untuk menghasilkan hasil acak yang sama setiap kali dijalankan
train_index <- createDataPartition(y = dt$Target_PJK, p = .7, list = FALSE) # memilih indeks secara acak untuk set pelatihan
train_dt <- as.data.frame(dt[train_index, ]) # memilih data untuk set pelatihan
test_dt <- as.data.frame(dt[-train_index, ]) # memilih data untuk set pengujian
table(train_dt$Target_PJK)
##
## 0 1
## 3399 331
table(test_dt$Target_PJK)
##
## 0 1
## 1456 141
Balancing Data
Smote
library(UBL)
## Warning: package 'UBL' was built under R version 4.2.3
## Loading required package: MBA
## Warning: package 'MBA' was built under R version 4.2.3
## Loading required package: gstat
## Warning: package 'gstat' was built under R version 4.2.3
## Loading required package: automap
## Warning: package 'automap' was built under R version 4.2.3
## Loading required package: sp
## Warning: package 'sp' was built under R version 4.2.3
## Loading required package: randomForest
## Warning: package 'randomForest' was built under R version 4.2.3
## randomForest 4.7-1.1
## Type rfNews() to see new features/changes/bug fixes.
##
## Attaching package: 'randomForest'
## The following object is masked from 'package:ggplot2':
##
## margin
## The following object is masked from 'package:dplyr':
##
## combine
set.seed(123)
smote_reglog <- SmoteClassif(form = Target_PJK ~ ., dat = train_dt, C.perc = list("1"=1500/331,"0"=1500/3398), dist = "HVDM")
prop_table <- prop.table(table(smote_reglog$Target_PJK))
print(prop_table)
##
## 0 1
## 0.5 0.5
table(smote_reglog$Target_PJK)
##
## 0 1
## 1500 1500
ROSE
library(ROSE)
## Warning: package 'ROSE' was built under R version 4.2.3
## Loaded ROSE 0.0-4
oversampling_reglog <- ROSE(Target_PJK ~ ., data = train_dt, seed = 123)$data
# Compute class proportions
prop_table <- prop.table(table(oversampling_reglog$Target_PJK))
print(prop_table)
##
## 0 1
## 0.5029491 0.4970509
table(oversampling_reglog$Target_PJK)
##
## 0 1
## 1876 1854
Undersampling
undersampled_reglog <- ovun.sample(Target_PJK ~ ., data = train_dt, method = "under")$data
# Melihat data yang telah diundersampling
print(undersampled_reglog)
## Target_PJK Age Sex GD_Puasa GD_PP Kolestrol LDL HDL Lipoprotein
## 1 0 46 1 100.0 122.0 191.00 126.00 54.00 77.5
## 2 0 26 1 81.0 107.0 200.00 126.00 67.00 79.0
## 3 0 29 2 82.0 72.0 180.00 129.00 42.00 90.3
## 4 0 54 1 83.0 149.0 255.00 171.00 56.00 88.1
## 5 0 46 2 72.0 106.8 208.90 116.00 47.00 58.0
## 6 0 25 2 70.0 122.0 164.00 92.00 58.00 90.4
## 7 0 26 2 77.0 135.0 243.00 187.00 47.00 88.0
## 8 0 37 2 81.0 84.3 148.00 89.00 49.00 80.0
## 9 0 52 1 73.0 82.0 191.00 135.00 46.00 61.5
## 10 0 45 1 82.0 135.0 179.00 107.00 49.00 92.0
## 11 0 30 1 77.0 97.0 158.00 97.00 41.00 69.0
## 12 0 45 2 76.0 75.4 155.00 81.00 66.00 60.8
## 13 0 29 2 85.0 92.6 202.00 133.00 56.00 65.0
## 14 0 58 2 89.0 96.0 162.00 49.00 89.00 79.5
## 15 0 46 2 78.1 94.0 179.00 114.00 50.00 100.0
## 16 0 32 2 96.0 117.0 253.00 137.00 38.00 80.9
## 17 0 37 2 87.0 134.5 95.00 47.00 52.00 89.0
## 18 0 34 2 86.0 103.0 140.90 88.10 49.00 80.6
## 19 0 33 2 77.0 104.0 199.00 122.00 52.00 79.0
## 20 0 36 2 95.0 75.2 161.50 88.70 39.00 72.5
## 21 0 31 2 85.0 78.0 181.00 110.00 61.00 70.0
## 22 0 51 1 83.0 92.0 192.00 129.00 57.00 70.7
## 23 0 63 2 137.0 252.0 166.00 102.00 38.00 80.5
## 24 0 36 2 95.0 139.0 198.00 124.00 57.00 100.1
## 25 0 28 1 82.0 99.0 187.00 126.00 71.40 99.0
## 26 0 47 1 78.0 88.0 199.00 110.00 63.00 74.5
## 27 0 58 2 94.0 80.0 161.00 97.00 50.00 78.3
## 28 0 53 2 85.0 85.0 227.00 101.00 58.00 82.0
## 29 0 64 1 90.0 115.0 179.00 112.00 55.00 97.0
## 30 0 49 2 86.0 111.0 204.00 116.00 65.00 80.0
## 31 0 54 2 77.0 199.0 303.00 160.00 49.00 101.0
## 32 0 33 2 77.8 60.8 138.40 82.40 67.00 62.5
## 33 0 35 2 57.0 101.0 179.00 116.00 52.00 77.0
## 34 0 46 1 87.0 71.0 151.00 79.00 71.00 72.0
## 35 0 37 2 76.0 124.0 188.00 129.00 50.00 82.0
## 36 0 50 2 85.0 94.0 202.00 112.00 59.00 77.0
## 37 0 39 1 90.0 93.0 184.00 133.00 38.00 77.0
## 38 0 51 2 81.0 113.0 258.00 202.00 56.00 88.0
## 39 0 39 2 82.0 139.0 200.00 124.00 51.00 82.5
## 40 0 45 2 92.0 96.0 161.00 89.00 63.00 94.7
## 41 0 41 2 93.0 109.0 153.00 105.00 57.80 91.0
## 42 0 48 2 90.0 93.0 222.00 118.00 65.00 69.2
## 43 0 30 2 79.8 121.1 127.00 75.00 46.00 78.5
## 44 0 43 2 88.0 97.0 154.00 92.00 57.00 79.0
## 45 0 38 2 82.0 75.2 201.10 131.60 54.00 80.1
## 46 0 51 1 79.0 91.0 119.40 58.30 55.00 69.0
## 47 0 39 2 81.0 145.0 217.00 140.00 70.00 77.0
## 48 0 47 1 69.0 105.0 221.00 129.00 46.00 85.5
## 49 0 41 2 70.0 87.0 166.00 103.00 56.00 85.5
## 50 0 57 2 96.0 150.0 257.00 167.00 49.60 90.1
## 51 0 31 2 89.0 102.0 188.00 109.00 67.00 62.0
## 52 0 33 1 152.0 252.0 149.00 101.00 31.00 93.0
## 53 0 39 2 93.0 82.0 224.00 172.00 40.00 81.5
## 54 0 43 1 75.0 75.0 172.00 105.00 34.00 81.0
## 55 0 51 2 97.0 158.0 230.00 154.00 45.00 60.3
## 56 0 44 1 73.0 83.0 182.00 93.00 75.00 60.6
## 57 0 29 1 74.0 93.0 159.00 92.00 53.00 76.5
## 58 0 53 1 87.0 83.0 173.00 120.00 89.50 56.0
## 59 0 43 2 88.0 96.0 238.00 157.00 68.00 77.0
## 60 0 31 2 80.0 117.0 156.00 83.00 46.00 67.0
## 61 0 58 2 88.0 145.0 294.00 224.00 64.00 113.0
## 62 0 56 2 94.0 126.0 165.00 87.00 67.00 66.0
## 63 0 42 1 90.0 120.0 162.00 91.00 57.00 74.0
## 64 0 26 2 86.0 86.0 146.00 96.00 44.00 64.0
## 65 0 54 2 75.0 91.0 169.00 114.00 63.00 84.0
## 66 0 43 2 88.0 112.0 197.00 106.00 68.00 72.0
## 67 0 57 2 88.0 85.0 206.00 127.00 70.00 87.0
## 68 0 41 1 73.0 134.0 174.00 119.00 45.00 90.6
## 69 0 44 2 79.0 90.0 203.00 93.00 61.00 69.3
## 70 0 36 1 79.0 118.0 215.00 152.00 49.00 79.0
## 71 0 58 1 99.0 173.0 228.00 162.00 52.00 88.0
## 72 0 44 2 83.0 159.0 214.00 121.00 61.00 80.0
## 73 0 36 2 78.0 101.0 180.00 124.00 51.00 79.0
## 74 0 32 2 88.0 131.0 211.80 139.00 56.00 82.2
## 75 0 25 2 85.0 102.4 151.19 90.99 54.42 90.0
## 76 0 34 2 63.0 45.5 193.00 116.30 57.00 60.3
## 77 0 44 2 83.0 103.0 217.00 107.00 42.00 89.0
## 78 0 45 2 103.0 115.0 174.00 92.00 43.00 82.0
## 79 0 33 2 75.0 90.0 178.00 119.00 57.00 84.5
## 80 0 28 1 92.0 203.0 160.00 83.00 36.00 93.0
## 81 0 41 2 85.0 94.0 201.00 135.00 50.00 90.0
## 82 0 31 1 74.0 84.0 187.00 117.00 67.00 80.0
## 83 0 62 2 71.0 104.0 145.00 89.00 48.00 88.6
## 84 0 34 2 81.0 127.0 164.40 103.00 56.00 71.0
## 85 0 35 2 91.0 92.0 202.00 123.00 61.00 75.5
## 86 0 60 1 194.0 259.0 271.00 190.00 43.00 80.2
## 87 0 42 2 108.0 178.0 223.00 150.00 71.00 89.0
## 88 0 47 2 65.0 40.0 199.00 135.00 46.00 79.0
## 89 0 49 2 86.0 90.0 215.00 158.00 48.00 80.0
## 90 0 55 1 78.0 114.0 187.00 93.00 48.00 81.0
## 91 0 36 2 69.0 82.0 167.00 101.00 60.00 78.0
## 92 0 30 1 78.0 127.0 168.00 105.00 50.00 70.2
## 93 0 50 2 118.0 153.0 246.00 168.00 49.00 81.5
## 94 0 29 2 79.0 69.0 204.00 115.00 71.00 70.3
## 95 0 33 2 75.0 88.0 147.00 86.00 58.30 80.8
## 96 0 42 2 82.0 100.0 159.00 65.00 59.00 60.7
## 97 0 26 1 78.0 78.0 121.00 81.00 39.00 60.8
## 98 0 27 2 76.0 95.0 167.00 106.00 58.00 67.0
## 99 0 30 2 88.0 113.7 166.50 100.00 53.80 72.5
## 100 0 51 1 100.0 99.0 185.00 106.00 40.00 76.0
## 101 0 49 2 80.0 151.0 163.00 104.00 47.00 61.0
## 102 0 33 2 68.0 48.0 154.00 88.00 56.00 79.0
## 103 0 38 2 81.0 135.0 198.00 101.00 59.00 80.0
## 104 0 46 2 223.0 297.0 222.00 153.00 47.00 106.0
## 105 0 53 2 77.0 89.0 195.00 111.00 50.00 90.0
## 106 0 37 1 103.0 156.0 229.00 160.00 43.00 80.6
## 107 0 32 2 69.0 69.0 109.00 53.00 45.00 60.3
## 108 0 49 1 80.0 96.0 160.00 101.00 46.00 84.0
## 109 0 41 1 74.0 126.0 183.00 117.00 69.00 80.0
## 110 0 59 2 89.0 185.0 189.00 126.00 43.00 68.0
## 111 0 36 2 95.0 108.0 224.00 146.00 50.20 80.0
## 112 0 44 2 73.0 77.0 142.00 98.00 49.00 92.0
## 113 0 40 1 76.0 97.0 191.00 125.00 40.00 70.0
## 114 0 43 1 76.0 90.0 201.00 117.00 55.00 100.0
## 115 0 54 2 107.0 150.0 277.00 180.00 64.00 65.0
## 116 0 56 2 104.0 191.0 209.00 136.00 54.00 72.5
## 117 0 60 2 62.0 85.0 186.00 106.00 85.00 72.0
## 118 0 41 1 86.0 129.0 192.00 133.00 56.00 106.8
## 119 0 46 2 89.0 84.0 202.00 128.00 49.00 67.0
## 120 0 28 2 82.0 83.0 199.00 137.00 48.50 90.2
## 121 0 42 2 70.0 91.0 158.00 100.00 54.00 74.0
## 122 0 42 1 79.0 133.0 192.00 116.00 70.00 82.0
## 123 0 38 1 93.0 138.0 139.70 78.00 49.00 80.0
## 124 0 48 2 89.0 85.0 211.00 144.00 50.00 75.0
## 125 0 30 2 83.0 109.0 173.00 86.00 77.00 60.0
## 126 0 26 2 87.2 89.0 144.00 90.00 49.00 77.5
## 127 0 58 2 164.0 280.0 179.00 104.00 43.00 83.0
## 128 0 43 2 88.0 109.0 207.00 121.00 56.00 84.5
## 129 0 44 2 72.0 102.0 184.00 134.00 37.00 84.0
## 130 0 50 1 96.0 98.0 184.00 126.00 58.00 72.0
## 131 0 31 2 77.0 128.0 171.00 97.00 49.00 84.5
## 132 0 48 2 102.0 121.0 192.00 86.00 35.00 90.0
## 133 0 33 2 82.0 116.0 170.00 119.00 49.00 71.0
## 134 0 38 2 80.0 38.0 161.00 95.00 52.00 64.0
## 135 0 35 2 82.0 90.0 191.00 105.00 62.00 71.0
## 136 0 42 2 74.0 71.0 152.00 79.00 47.00 67.0
## 137 0 48 2 81.0 117.0 187.00 115.00 66.00 82.3
## 138 0 61 1 93.0 96.0 153.00 67.00 40.20 94.0
## 139 0 42 2 84.0 92.0 204.00 124.00 44.00 78.5
## 140 0 43 2 78.0 114.0 203.00 116.00 85.60 70.0
## 141 0 54 2 77.0 103.0 223.00 162.00 46.00 79.5
## 142 0 53 2 81.8 91.6 202.84 142.17 52.00 60.9
## 143 0 39 2 76.0 85.0 219.00 162.00 51.00 89.0
## 144 0 45 1 87.0 88.0 176.00 113.00 45.00 87.0
## 145 0 43 2 74.0 174.0 190.00 114.00 47.40 83.0
## 146 0 34 2 86.0 105.0 189.00 112.00 67.00 86.5
## 147 0 62 2 99.0 215.0 295.00 181.00 71.00 97.0
## 148 0 60 2 83.0 116.0 251.00 171.00 72.00 82.0
## 149 0 29 2 65.5 77.1 140.00 81.00 48.00 80.1
## 150 0 40 2 90.0 111.0 147.00 88.00 61.00 73.0
## 151 0 36 2 105.0 115.0 249.00 180.00 52.00 102.0
## 152 0 49 2 74.0 87.0 148.00 91.00 62.00 64.0
## 153 0 61 1 81.0 90.0 194.00 117.00 55.00 70.7
## 154 0 50 2 86.0 115.0 190.00 115.00 57.00 89.0
## 155 0 29 1 78.0 98.7 135.20 76.80 66.00 70.0
## 156 0 47 1 156.0 387.0 241.00 163.00 40.00 60.0
## 157 0 64 1 83.0 95.0 188.00 141.00 45.00 80.3
## 158 0 57 2 72.0 80.0 212.00 122.00 71.00 90.0
## 159 0 52 1 91.0 188.0 199.00 135.00 36.00 99.0
## 160 0 56 2 86.0 126.0 224.00 120.00 43.00 88.5
## 161 0 28 2 94.0 107.0 168.00 116.00 45.00 88.0
## 162 0 60 2 64.0 107.0 106.00 70.00 48.00 76.0
## 163 0 28 2 71.0 89.0 170.00 116.00 49.00 60.3
## 164 0 32 2 75.0 123.0 174.00 109.00 57.00 87.0
## 165 0 40 2 78.0 107.0 169.00 86.00 66.00 62.0
## 166 0 57 1 87.0 96.0 171.00 103.70 59.00 70.2
## 167 0 49 2 74.0 119.0 170.00 111.00 54.00 83.0
## 168 0 31 2 80.0 72.0 201.00 143.00 53.00 70.8
## 169 0 37 1 77.0 116.0 177.00 108.00 72.00 91.5
## 170 0 40 1 93.0 92.0 192.00 115.00 48.00 84.0
## 171 0 50 1 83.0 107.0 189.00 0.00 57.00 91.0
## 172 0 28 2 80.0 86.0 179.00 115.00 41.00 89.0
## 173 0 42 2 86.0 108.0 163.00 104.00 57.00 81.0
## 174 0 38 1 84.0 97.0 198.00 126.00 67.00 76.0
## 175 0 45 2 82.0 93.0 197.00 97.00 70.00 68.0
## 176 0 54 2 88.0 100.0 180.00 107.00 37.00 100.5
## 177 0 51 2 91.0 90.0 147.00 75.00 36.00 61.0
## 178 0 34 2 89.0 132.0 172.00 100.00 51.00 78.0
## 179 0 40 1 92.0 81.0 141.00 101.00 38.00 60.0
## 180 0 62 2 88.0 212.0 191.00 137.00 43.00 92.5
## 181 0 34 2 82.0 87.0 204.00 114.00 56.00 66.0
## 182 0 29 2 79.0 116.0 187.00 100.00 47.00 80.0
## 183 0 30 2 97.0 68.0 140.00 51.00 36.00 70.0
## 184 0 38 1 69.0 87.0 160.00 84.00 68.00 60.6
## 185 0 40 1 89.0 156.0 186.00 100.00 45.00 90.0
## 186 0 33 2 74.2 94.0 164.00 102.00 56.00 67.0
## 187 0 33 1 80.0 114.0 154.00 62.00 63.00 63.0
## 188 0 39 2 83.0 88.0 168.00 102.00 57.00 72.5
## 189 0 46 2 79.0 99.0 222.00 128.00 42.00 70.0
## 190 0 35 2 79.8 136.0 168.00 100.00 57.00 96.2
## 191 0 34 2 66.0 92.0 185.00 118.00 61.00 86.5
## 192 0 60 1 114.0 176.0 317.00 206.00 56.00 84.6
## 193 0 58 2 99.0 157.0 197.00 94.00 88.00 65.0
## 194 0 50 2 68.0 79.0 186.00 130.00 46.00 79.0
## 195 0 51 1 93.0 80.0 167.00 117.00 57.00 78.0
## 196 0 38 1 91.0 91.0 161.00 93.00 63.00 70.6
## 197 0 54 2 86.0 90.0 167.70 105.00 50.00 88.0
## 198 0 38 2 70.0 109.0 172.00 90.00 74.00 77.0
## 199 0 53 2 69.0 83.0 178.00 111.00 65.00 70.0
## 200 0 47 2 87.0 105.0 239.00 165.00 44.00 70.9
## 201 0 42 2 72.0 99.0 149.00 107.00 38.00 93.0
## 202 0 52 1 135.0 257.0 181.00 120.00 49.00 94.5
## 203 0 65 1 89.0 80.0 196.00 128.00 46.00 85.0
## 204 0 40 2 85.0 90.0 154.00 93.00 47.00 60.6
## 205 0 32 1 78.0 76.0 158.00 82.50 65.00 60.7
## 206 0 38 1 90.0 105.0 198.00 103.00 71.00 84.0
## 207 0 29 2 85.0 74.0 136.00 80.00 59.00 74.0
## 208 0 43 2 86.0 93.0 155.00 90.00 47.00 60.8
## 209 0 47 2 76.0 94.0 160.00 108.00 71.00 60.7
## 210 0 58 2 122.0 247.0 209.00 141.00 42.00 103.0
## 211 0 38 1 85.0 99.0 164.00 100.00 57.00 70.0
## 212 0 44 2 81.2 107.0 145.00 93.00 60.20 72.0
## 213 0 29 2 68.0 104.0 193.00 119.30 56.00 80.8
## 214 0 44 1 80.0 86.0 180.00 104.00 61.00 80.0
## 215 0 41 2 79.0 69.0 223.00 130.00 39.00 70.0
## 216 0 47 2 107.0 154.0 195.00 126.00 40.00 88.7
## 217 0 59 2 82.0 103.0 187.00 109.00 61.00 80.0
## 218 0 42 1 65.0 87.0 160.00 94.00 75.00 70.7
## 219 0 25 2 73.0 67.0 157.00 83.00 50.00 64.5
## 220 0 51 1 77.0 118.0 273.00 186.00 76.00 82.0
## 221 0 31 1 72.0 93.0 165.00 98.00 65.00 60.5
## 222 0 24 1 71.4 68.0 201.10 127.20 64.00 60.8
## 223 0 50 1 78.0 118.7 213.80 112.00 91.00 65.0
## 224 0 34 2 91.0 91.0 239.00 177.00 50.00 75.0
## 225 0 48 2 107.0 103.0 234.00 150.00 56.00 79.0
## 226 0 39 2 66.0 136.0 181.00 125.00 48.00 93.0
## 227 0 45 2 79.0 99.0 170.00 94.40 65.00 80.0
## 228 0 26 2 80.0 97.0 121.00 49.00 63.00 67.0
## 229 0 43 1 84.0 95.0 230.00 153.00 72.60 80.7
## 230 0 32 2 89.0 110.0 146.00 80.00 49.00 81.5
## 231 0 50 2 86.0 122.0 233.00 139.00 57.00 89.0
## 232 0 27 1 78.0 91.0 121.10 75.10 54.00 84.0
## 233 0 40 2 81.0 123.0 178.00 110.00 59.00 85.0
## 234 0 58 1 96.0 162.0 153.00 97.00 62.00 85.0
## 235 0 34 1 84.0 100.0 184.00 136.00 35.00 70.3
## 236 0 43 1 79.0 84.0 184.00 109.00 67.00 73.0
## 237 0 50 2 118.0 207.0 247.00 141.00 39.00 80.2
## 238 0 35 2 99.0 137.0 179.00 105.00 36.00 96.0
## 239 0 29 2 85.0 115.6 199.00 128.00 53.00 85.5
## 240 0 35 2 75.0 92.0 174.00 113.00 45.00 88.0
## 241 0 52 2 96.0 173.0 225.00 163.00 39.00 90.0
## 242 0 41 2 81.0 129.0 183.00 113.00 58.00 94.0
## 243 0 35 2 67.0 112.0 189.00 118.00 55.00 75.0
## 244 0 49 2 75.0 96.0 185.00 99.00 86.00 80.5
## 245 0 56 2 78.0 93.4 195.40 130.10 53.00 88.0
## 246 0 41 2 89.0 98.0 208.00 133.00 73.00 75.0
## 247 0 38 2 87.0 75.0 141.00 87.00 46.20 83.9
## 248 0 35 2 76.0 61.0 194.00 127.00 67.00 70.5
## 249 0 43 1 82.0 146.0 171.00 92.00 70.00 61.0
## 250 0 31 2 83.8 86.0 165.10 99.90 64.00 97.0
## 251 0 49 2 69.0 74.0 151.00 86.00 59.20 65.0
## 252 0 25 1 76.0 105.0 171.00 95.00 67.00 71.0
## 253 0 35 2 82.0 89.0 175.00 94.00 81.00 69.0
## 254 0 47 1 97.0 97.0 262.00 175.00 78.00 70.6
## 255 0 46 1 78.0 96.0 198.00 124.00 73.00 70.4
## 256 0 33 2 78.4 73.0 133.00 79.00 58.90 60.5
## 257 0 35 2 93.0 135.0 218.00 143.00 51.00 84.0
## 258 0 44 2 75.0 118.0 198.00 140.00 61.00 102.0
## 259 0 46 2 87.0 108.0 195.00 121.00 35.00 90.2
## 260 0 57 2 80.0 87.0 202.00 142.00 56.00 83.2
## 261 0 47 2 86.0 87.0 221.00 148.00 57.00 81.0
## 262 0 36 2 81.0 94.0 179.00 121.10 53.00 80.0
## 263 0 27 2 80.0 60.0 173.00 91.00 70.00 70.0
## 264 0 61 1 83.0 92.0 168.00 105.00 63.00 65.0
## 265 0 36 2 80.0 126.0 194.00 111.00 60.00 77.5
## 266 0 49 2 89.0 90.0 257.00 155.00 53.00 79.0
## 267 0 34 2 72.0 106.0 162.40 99.00 53.00 100.7
## 268 0 32 1 64.8 94.0 180.80 119.10 65.00 70.3
## 269 0 54 2 82.0 120.0 193.20 134.80 47.40 90.0
## 270 0 48 1 99.0 117.0 218.00 113.00 79.00 85.0
## 271 0 30 2 78.0 111.0 191.00 135.00 44.00 70.2
## 272 0 26 2 86.0 80.0 149.00 93.00 52.00 75.0
## 273 0 30 2 75.0 83.0 162.00 99.00 38.00 70.0
## 274 0 35 2 79.0 88.0 150.90 88.40 70.00 79.0
## 275 0 46 2 82.0 88.0 199.00 144.00 57.00 70.2
## 276 0 52 1 91.0 105.0 215.00 119.00 88.00 60.5
## 277 0 29 2 66.0 116.0 140.00 82.00 39.00 87.0
## 278 0 62 2 157.0 183.0 238.00 160.00 42.00 82.0
## 279 0 57 2 84.0 109.0 183.00 101.00 76.00 79.0
## 280 0 36 2 84.0 82.0 183.00 116.00 60.00 76.5
## 281 0 39 2 75.0 89.0 165.00 92.00 68.00 57.0
## 282 0 33 1 78.0 91.0 137.00 82.00 48.00 66.0
## 283 0 55 2 93.0 93.0 199.00 141.00 53.00 72.0
## 284 0 64 1 80.5 124.0 201.00 118.00 67.00 50.9
## 285 0 62 1 79.0 120.0 174.00 121.00 44.00 101.0
## 286 0 53 1 99.0 148.0 138.00 75.50 63.00 80.7
## 287 0 57 2 82.0 118.0 217.00 138.00 59.00 80.4
## 288 0 41 2 96.0 194.0 225.00 152.00 55.00 90.5
## 289 0 35 1 67.0 97.0 174.00 105.00 53.00 77.0
## 290 0 38 2 60.0 91.0 199.00 144.00 39.00 72.0
## 291 0 59 2 89.0 95.0 160.00 106.00 41.00 75.0
## 292 0 51 2 77.0 93.0 154.00 91.00 76.00 62.0
## 293 0 38 2 79.0 113.0 161.00 105.00 55.00 80.0
## 294 0 56 1 73.6 85.0 211.70 145.00 56.00 70.0
## 295 0 38 2 107.4 149.0 188.00 125.20 55.00 82.0
## 296 0 45 2 74.0 85.0 173.00 116.00 42.00 77.0
## 297 0 28 2 83.0 91.0 151.00 93.00 52.00 60.3
## 298 0 33 2 71.0 63.0 147.20 86.80 47.00 70.1
## 299 0 64 2 115.0 203.0 182.00 120.00 46.00 80.0
## 300 0 57 2 88.0 133.0 173.00 118.00 58.00 82.0
## 301 0 29 2 74.0 76.0 204.00 129.00 65.00 71.0
## 302 0 47 2 76.0 127.0 173.00 104.00 61.00 80.0
## 303 0 50 2 80.0 108.0 167.00 102.00 63.00 70.8
## 304 0 41 2 74.0 109.0 187.00 118.00 47.00 91.0
## 305 0 42 1 75.0 101.0 217.00 148.00 52.00 70.3
## 306 0 61 2 97.0 84.0 244.00 143.00 74.00 61.0
## 307 0 41 1 92.0 126.0 184.00 122.00 48.00 64.0
## 308 0 34 1 79.0 94.0 139.00 85.00 68.60 80.0
## 309 0 32 1 89.0 101.0 163.00 104.00 39.00 90.8
## 310 0 29 2 70.0 65.0 185.00 122.00 54.00 80.0
## 311 0 48 2 81.0 97.0 109.00 56.00 53.00 69.0
## 312 0 37 1 79.0 115.0 222.00 158.00 40.00 80.7
## 313 0 46 2 75.0 94.0 224.00 162.00 56.00 80.0
## 314 0 38 1 74.5 92.1 128.00 115.00 54.00 70.1
## 315 0 56 1 71.0 92.0 78.00 49.00 26.00 90.2
## 316 0 50 1 82.0 138.0 213.00 143.00 60.00 94.0
## 317 0 27 2 81.0 88.3 147.00 90.00 47.00 102.5
## 318 0 48 2 65.0 127.0 221.00 166.00 46.00 86.5
## 319 0 32 2 86.0 100.0 178.00 122.00 49.00 75.6
## 320 0 36 2 84.0 91.0 157.00 89.00 56.00 74.5
## 321 0 46 2 74.0 99.0 155.00 85.00 56.00 77.0
## 322 0 50 2 96.0 110.0 175.00 125.00 55.00 70.6
## 323 0 32 2 91.0 124.0 226.00 163.00 49.00 72.7
## 324 0 46 2 75.0 114.0 213.00 143.00 47.00 78.0
## 325 0 50 2 90.0 125.0 185.00 109.00 68.00 99.0
## 326 0 61 2 73.0 82.0 145.00 100.10 47.00 83.0
## 327 0 26 1 77.0 90.9 145.00 85.70 58.00 64.0
## 328 0 43 1 66.0 126.0 133.00 69.00 64.00 68.0
## 329 0 60 1 76.0 152.0 141.00 89.00 35.00 83.0
## 330 0 25 2 74.0 54.0 144.00 76.00 50.00 83.0
## 331 0 25 2 87.0 104.0 161.00 104.00 46.00 81.0
## 332 0 34 1 72.0 81.0 165.00 99.00 66.40 74.0
## 333 0 53 2 71.0 94.0 187.00 95.00 71.00 77.0
## 334 0 26 2 67.0 129.0 197.00 146.00 54.00 77.0
## 335 0 50 2 90.0 97.0 189.30 94.60 73.90 80.5
## 336 0 47 1 90.0 107.0 173.00 102.00 63.30 82.0
## 337 0 59 1 129.0 160.0 206.00 123.90 63.00 93.0
## 338 0 32 2 76.0 61.0 153.00 98.00 41.00 69.0
## 339 0 38 2 76.0 96.0 201.00 136.00 32.00 85.0
## 340 0 32 2 82.0 92.0 206.00 129.00 59.00 67.5
## 341 0 33 1 79.4 98.1 166.00 104.00 54.85 87.0
## 342 0 26 2 82.2 101.0 120.10 67.30 50.00 80.0
## 343 0 54 2 111.0 154.0 259.00 155.00 57.00 101.0
## 344 0 35 1 76.0 77.0 160.00 91.00 57.00 60.9
## 345 0 42 1 81.0 160.0 301.00 222.00 69.00 80.4
## 346 0 28 1 75.0 124.0 210.00 123.00 48.00 93.0
## 347 0 38 2 174.0 103.0 205.00 144.00 41.00 91.0
## 348 0 44 1 88.0 76.0 210.00 147.00 48.00 60.1
## 349 0 33 1 79.0 103.0 167.00 91.00 96.00 65.0
## 350 0 42 1 99.0 181.0 190.00 130.00 70.00 79.5
## 351 0 38 2 81.0 82.0 175.00 102.00 62.00 81.0
## 352 0 38 1 74.0 107.0 184.70 126.00 52.00 80.0
## 353 0 64 1 148.0 389.0 319.00 185.00 54.00 70.7
## 354 0 42 2 74.0 108.0 176.00 103.00 68.00 60.4
## 355 0 39 2 76.0 115.0 156.00 96.00 49.00 79.0
## 356 0 41 2 81.0 96.0 245.00 165.00 61.00 96.0
## 357 0 30 1 64.0 115.0 131.00 72.00 69.00 79.0
## 358 0 49 1 86.0 130.0 210.00 142.00 60.00 60.6
## 359 0 57 1 90.0 98.0 156.00 108.00 60.00 66.5
## 360 0 24 1 75.0 90.0 136.00 69.00 66.00 60.8
## 361 0 49 2 81.0 104.0 193.00 97.00 41.00 84.0
## 362 0 32 2 82.2 82.0 183.00 111.00 50.00 86.5
## 363 1 66 1 116.0 221.0 247.00 145.00 76.00 89.0
## 364 1 64 2 84.0 107.0 194.00 128.00 45.00 79.0
## 365 1 52 1 108.0 266.0 244.00 150.00 35.00 94.0
## 366 1 47 1 142.0 297.0 228.00 147.00 38.00 100.0
## 367 1 35 1 104.0 161.0 221.00 160.00 45.00 94.5
## 368 1 38 2 100.0 146.0 218.00 157.00 46.00 87.6
## 369 1 47 2 104.0 109.0 214.00 92.00 61.00 88.0
## 370 1 45 2 88.0 168.0 192.00 136.00 40.00 99.2
## 371 1 50 2 97.0 115.0 250.70 156.40 61.00 80.0
## 372 1 99 1 105.0 171.0 209.00 133.00 35.00 96.5
## 373 1 53 2 138.0 139.0 253.60 169.00 35.00 89.5
## 374 1 31 1 90.0 128.0 192.70 115.80 54.00 71.6
## 375 1 40 2 126.0 179.0 196.00 129.00 41.00 99.0
## 376 1 64 1 265.0 374.0 291.40 188.30 38.00 108.5
## 377 1 53 2 209.0 280.0 241.00 169.00 29.00 97.0
## 378 1 55 2 96.0 163.0 191.00 131.00 34.00 91.0
## 379 1 31 2 101.0 113.0 220.00 140.00 54.00 81.0
## 380 1 54 2 90.0 121.0 259.00 173.00 51.00 89.0
## 381 1 34 2 87.0 171.0 197.00 124.00 55.00 92.0
## 382 1 38 1 92.0 152.0 173.00 120.00 28.00 88.0
## 383 1 51 2 73.0 169.0 121.00 78.00 30.00 93.0
## 384 1 46 2 94.0 168.0 256.00 186.00 39.00 87.5
## 385 1 58 2 105.0 209.0 233.00 160.00 36.00 94.0
## 386 1 60 2 155.0 213.0 229.00 144.00 54.00 103.7
## 387 1 47 1 81.0 123.0 192.00 122.00 47.00 91.0
## 388 1 29 1 107.0 193.0 145.00 69.00 44.40 96.5
## 389 1 35 1 113.0 228.0 178.00 107.00 39.00 93.0
## 390 1 58 2 241.0 281.9 268.00 189.80 34.00 120.0
## 391 1 52 2 81.0 130.0 276.00 192.00 56.00 82.0
## 392 1 58 2 149.0 227.0 189.00 106.00 53.00 110.0
## 393 1 60 1 115.0 162.0 204.00 132.00 47.00 101.5
## 394 1 49 1 149.0 159.0 232.00 170.00 38.00 117.0
## 395 1 41 2 97.0 157.0 193.00 103.00 57.00 80.0
## 396 1 34 2 92.0 237.0 236.00 167.00 39.00 87.6
## 397 1 43 1 248.0 330.0 278.00 186.00 33.00 105.0
## 398 1 55 2 113.0 123.0 181.00 110.00 54.00 80.0
## 399 1 40 1 108.0 159.0 199.20 126.00 43.00 86.0
## 400 1 33 1 128.0 166.0 228.00 143.70 54.00 93.0
## 401 1 53 1 79.0 161.0 210.00 129.00 64.00 76.0
## 402 1 54 2 106.0 125.0 227.00 161.00 53.00 90.0
## 403 1 32 1 91.0 150.0 259.00 196.00 47.00 80.0
## 404 1 55 1 110.0 134.0 190.00 96.00 66.00 95.0
## 405 1 44 2 93.0 150.0 208.00 133.00 53.00 89.5
## 406 1 56 1 118.0 124.0 227.00 160.00 39.00 82.0
## 407 1 60 2 94.0 203.0 200.00 130.00 57.00 88.0
## 408 1 31 2 294.0 383.0 231.00 155.00 31.00 108.0
## 409 1 61 1 100.0 174.0 281.00 206.00 52.00 84.0
## 410 1 47 1 248.0 327.0 305.00 161.00 31.20 91.5
## 411 1 61 1 86.0 128.0 220.00 127.00 70.00 90.9
## 412 1 55 2 98.0 203.0 212.00 160.00 15.50 90.1
## 413 1 46 2 93.0 94.0 235.00 176.00 49.00 96.0
## 414 1 59 1 100.1 133.0 203.00 127.00 52.00 95.2
## 415 1 42 1 94.0 165.0 197.00 135.00 57.00 66.0
## 416 1 62 2 101.0 147.0 238.00 164.00 40.00 111.0
## 417 1 58 1 127.0 296.6 174.00 110.00 42.00 99.5
## 418 1 40 2 113.0 128.0 240.00 175.00 36.00 89.0
## 419 1 56 1 96.0 160.3 221.00 142.00 42.90 87.5
## 420 1 52 1 89.0 106.3 161.00 110.00 34.00 105.0
## 421 1 44 2 91.2 134.0 277.90 198.30 39.00 90.0
## 422 1 47 2 96.0 109.0 226.00 145.00 46.00 98.0
## 423 1 40 1 93.0 161.0 225.50 148.90 51.00 78.0
## 424 1 57 2 82.0 130.0 221.00 126.00 51.00 70.0
## 425 1 50 1 114.0 120.0 198.80 104.00 54.00 82.0
## 426 1 58 2 88.0 103.0 200.00 140.00 34.00 75.0
## 427 1 58 1 239.0 373.0 226.00 157.00 50.00 94.0
## 428 1 49 2 135.0 164.0 245.80 170.00 31.00 90.0
## 429 1 57 1 99.0 174.0 305.00 221.00 44.00 93.0
## 430 1 50 2 103.0 111.0 306.00 231.00 61.00 71.0
## 431 1 48 2 84.0 150.0 217.00 158.00 36.00 88.0
## 432 1 52 1 247.0 507.0 287.00 207.00 35.00 126.0
## 433 1 99 1 94.0 165.2 190.00 134.00 38.00 121.0
## 434 1 41 1 85.0 118.0 229.10 132.00 44.00 78.0
## 435 1 50 2 104.0 145.0 212.10 120.80 48.00 87.0
## 436 1 62 2 91.0 166.0 191.20 110.70 46.00 75.0
## 437 1 51 2 284.0 529.0 268.00 161.40 48.00 100.0
## 438 1 50 2 83.0 124.0 218.00 151.00 58.00 78.0
## 439 1 48 2 337.0 420.0 273.00 199.00 32.00 95.0
## 440 1 39 1 94.0 168.0 221.00 141.00 50.00 108.2
## 441 1 48 2 90.0 112.0 231.70 139.00 46.00 94.0
## 442 1 55 2 125.0 287.6 220.00 148.00 38.00 110.0
## 443 1 48 2 93.0 129.0 244.00 168.00 38.00 82.0
## 444 1 46 2 81.0 146.0 246.00 196.00 40.00 86.0
## 445 1 60 1 104.0 115.0 184.00 113.00 47.00 96.0
## 446 1 42 2 128.0 135.0 275.70 177.50 50.00 104.5
## 447 1 52 2 295.0 428.0 218.00 152.00 33.00 90.2
## 448 1 56 1 109.0 150.0 196.00 118.00 50.00 93.0
## 449 1 36 2 94.0 131.0 215.00 147.00 60.00 76.0
## 450 1 59 1 144.0 281.9 206.00 152.00 43.00 105.0
## 451 1 52 2 142.0 300.0 212.00 170.00 31.00 118.0
## 452 1 56 2 295.0 343.0 243.00 170.00 35.00 114.0
## 453 1 61 1 103.0 150.0 235.00 156.00 72.00 83.5
## 454 1 64 1 87.0 102.0 187.00 139.00 43.00 70.7
## 455 1 59 1 310.0 356.0 316.00 211.00 61.00 92.0
## 456 1 45 1 95.0 180.0 258.00 214.00 43.00 102.0
## 457 1 56 1 227.1 377.0 212.00 144.00 44.50 95.0
## 458 1 46 2 91.0 173.0 191.00 118.00 41.00 78.0
## 459 1 56 1 90.0 127.0 225.00 145.00 58.00 86.5
## 460 1 58 2 201.0 245.0 280.00 194.00 44.00 80.1
## 461 1 50 1 281.0 412.0 232.00 161.00 41.00 97.0
## 462 1 99 1 95.0 123.0 187.00 118.00 35.00 82.0
## 463 1 54 1 94.0 162.7 244.00 157.00 49.00 103.0
## 464 1 60 2 295.0 373.0 189.60 136.70 40.00 101.0
## 465 1 57 2 294.0 556.0 163.00 114.00 37.00 98.0
## 466 1 48 2 318.2 399.0 268.00 168.00 42.00 96.0
## 467 1 31 2 135.0 168.0 186.00 135.00 38.00 91.0
## 468 1 43 1 110.0 155.0 325.00 239.00 43.00 101.5
## 469 1 39 2 107.0 143.0 235.00 94.00 31.00 85.5
## 470 1 45 1 88.6 133.0 177.00 101.00 50.00 106.1
## 471 1 53 1 132.0 322.0 91.00 32.00 47.00 90.6
## 472 1 64 2 98.0 148.0 230.00 163.00 55.00 90.2
## 473 1 56 1 93.0 116.5 269.00 191.00 39.57 75.2
## 474 1 39 1 103.0 139.9 185.59 103.00 26.88 90.5
## 475 1 38 2 90.9 114.0 186.00 125.00 36.00 95.0
## 476 1 49 2 105.0 153.0 304.00 230.00 37.62 96.0
## 477 1 61 2 98.0 168.0 228.00 146.00 50.00 66.0
## 478 1 47 2 101.0 126.0 239.00 160.00 52.00 70.5
## 479 1 63 2 128.0 225.0 212.00 140.00 37.00 87.0
## 480 1 50 1 104.0 154.0 196.00 113.00 58.00 93.0
## 481 1 39 1 74.0 107.0 202.00 142.00 41.00 82.0
## 482 1 45 2 91.0 138.0 212.00 126.00 50.00 87.0
## 483 1 47 2 100.0 155.0 219.00 151.00 45.00 98.0
## 484 1 56 1 139.0 263.0 224.00 138.00 51.00 91.1
## 485 1 62 2 110.0 183.0 227.00 168.00 45.00 93.0
## 486 1 36 2 96.0 138.0 214.00 135.00 41.00 104.0
## 487 1 57 2 101.0 127.0 259.00 148.00 61.00 101.0
## 488 1 52 2 93.0 152.0 242.00 125.00 37.00 97.7
## 489 1 65 2 131.0 287.0 255.00 179.00 49.00 108.0
## 490 1 57 2 377.0 452.0 333.00 192.00 47.00 89.0
## 491 1 56 1 123.0 163.0 146.00 63.00 30.00 89.5
## 492 1 60 2 95.0 161.0 298.00 213.00 44.00 93.5
## 493 1 52 2 365.0 484.0 282.00 177.00 36.00 88.5
## 494 1 44 1 100.0 124.0 252.00 186.00 47.00 93.0
## 495 1 55 2 393.0 653.0 300.00 172.00 39.00 90.0
## 496 1 57 2 103.0 134.0 238.00 143.00 75.00 78.0
## 497 1 54 2 194.0 273.0 209.00 123.00 49.00 117.5
## 498 1 60 2 103.0 136.0 263.00 191.00 48.00 102.0
## 499 1 48 2 94.0 151.0 192.00 135.00 45.00 98.0
## 500 1 61 2 153.0 281.0 258.00 127.00 79.00 169.0
## 501 1 60 2 79.0 132.0 170.00 109.00 52.00 66.5
## 502 1 57 2 157.0 335.0 184.00 117.00 41.00 97.0
## 503 1 44 2 91.0 138.0 241.00 161.00 50.00 89.4
## 504 1 57 1 114.0 218.0 293.00 240.00 44.00 115.5
## 505 1 41 1 95.0 185.0 237.00 189.00 39.00 87.0
## 506 1 51 2 145.0 238.0 200.00 125.00 38.00 100.0
## 507 1 62 2 102.0 152.0 235.00 166.00 35.00 101.0
## 508 1 58 1 130.0 359.0 246.00 157.00 57.00 86.0
## 509 1 57 2 153.0 167.0 264.00 160.00 43.00 96.0
## 510 1 37 1 94.0 172.0 145.00 70.00 47.00 78.0
## 511 1 60 1 109.0 202.0 136.00 62.00 50.00 103.0
## 512 1 62 1 97.0 205.0 239.00 148.00 43.00 85.5
## 513 1 35 2 83.0 107.0 189.00 180.00 54.00 80.0
## 514 1 55 2 205.0 468.0 329.00 134.00 36.00 85.0
## 515 1 55 2 102.0 174.0 204.00 144.00 31.00 119.0
## 516 1 55 2 89.0 103.0 240.00 176.00 50.00 73.0
## 517 1 58 2 85.0 141.0 270.00 176.00 41.00 104.0
## 518 1 62 1 92.0 125.0 252.00 146.00 66.00 97.0
## 519 1 46 1 138.0 274.0 267.00 179.00 57.00 91.0
## 520 1 53 2 101.0 138.0 137.00 120.00 54.00 80.7
## 521 1 42 1 80.0 251.0 204.00 125.00 42.00 82.5
## 522 1 49 2 89.0 162.0 190.00 116.00 44.00 93.0
## 523 1 48 2 93.0 136.0 221.00 151.00 48.00 92.0
## 524 1 50 2 101.0 244.0 212.00 132.00 34.00 93.0
## 525 1 58 2 367.0 496.0 220.00 159.00 40.00 102.0
## 526 1 50 2 91.0 161.0 214.00 121.00 54.00 96.0
## 527 1 60 2 99.0 203.0 224.00 155.00 34.00 94.0
## 528 1 64 2 87.0 164.0 220.00 128.00 23.00 98.0
## 529 1 41 2 86.0 162.0 183.00 117.00 41.00 99.0
## 530 1 34 2 96.0 129.0 181.00 93.00 69.00 65.0
## 531 1 55 2 100.0 162.0 298.00 208.00 60.00 85.0
## 532 1 47 2 89.0 127.0 223.00 142.00 42.00 82.0
## 533 1 40 1 94.0 164.0 208.00 184.00 44.00 106.0
## 534 1 64 1 107.0 198.0 228.00 146.00 55.00 79.0
## 535 1 57 2 94.0 159.0 251.00 189.00 42.00 103.5
## 536 1 39 2 91.0 149.0 187.00 127.00 70.00 75.0
## 537 1 49 1 198.0 315.0 205.00 120.00 41.00 100.0
## 538 1 53 2 99.0 151.0 236.00 211.00 56.00 103.0
## 539 1 51 1 90.0 93.0 216.00 130.00 62.00 83.0
## 540 1 54 2 98.0 144.0 217.00 146.00 50.00 85.0
## 541 1 49 2 101.0 139.0 266.00 190.00 45.00 96.6
## 542 1 62 2 96.0 145.0 228.00 166.00 40.00 81.0
## 543 1 56 2 109.0 232.0 236.00 165.00 50.00 74.5
## 544 1 51 2 120.0 211.0 214.00 143.00 54.00 104.0
## 545 1 46 2 99.0 151.0 200.00 114.00 55.00 96.0
## 546 1 42 2 149.0 316.0 249.00 203.00 38.00 92.0
## 547 1 56 2 96.0 126.0 239.00 170.00 50.00 93.0
## 548 1 47 1 110.0 147.0 255.00 269.00 52.00 89.0
## 549 1 51 2 99.0 151.0 211.00 116.00 69.00 73.0
## 550 1 46 2 99.0 182.0 275.00 242.00 44.00 94.0
## 551 1 59 2 95.0 137.0 244.00 173.00 39.00 98.0
## 552 1 47 1 129.0 245.0 260.00 191.00 36.00 114.0
## 553 1 55 2 89.0 106.0 182.00 103.00 58.00 62.0
## 554 1 60 2 93.0 127.0 185.00 124.00 52.00 79.0
## 555 1 67 2 98.0 145.0 215.00 205.00 39.00 111.0
## 556 1 55 2 98.0 135.0 283.00 266.00 60.00 99.0
## 557 1 57 2 110.0 196.0 225.00 144.00 44.00 96.5
## 558 1 59 2 98.0 176.0 185.00 113.00 42.00 76.0
## 559 1 54 2 91.0 151.0 254.00 162.00 64.00 83.5
## 560 1 52 2 118.0 209.0 220.00 138.00 69.00 84.3
## 561 1 45 2 116.0 161.0 174.00 111.00 51.00 84.0
## 562 1 42 2 117.0 166.0 265.00 201.00 41.00 88.0
## 563 1 49 2 100.0 116.0 333.00 214.00 39.00 107.0
## 564 1 41 2 95.0 197.0 275.00 255.00 43.00 87.0
## 565 1 57 2 87.0 222.0 156.00 73.00 10.00 88.0
## 566 1 32 2 324.0 382.0 210.00 157.00 45.00 83.0
## 567 1 61 2 292.0 513.0 303.00 236.00 47.00 91.0
## 568 1 58 2 117.0 261.0 274.00 222.00 38.00 91.0
## 569 1 48 1 100.0 133.0 267.00 225.00 45.00 95.0
## 570 1 55 1 341.0 459.0 211.00 141.00 54.00 112.8
## 571 1 52 2 85.0 100.0 223.00 164.00 48.00 81.0
## 572 1 58 1 91.0 96.0 250.00 183.00 49.00 105.0
## 573 1 59 1 102.0 146.0 315.00 287.00 39.00 101.0
## 574 1 60 2 89.0 113.0 233.00 177.00 37.00 91.0
## 575 1 58 1 101.0 169.0 336.00 229.00 49.00 87.0
## 576 1 64 2 92.0 156.0 202.00 113.00 46.00 84.0
## 577 1 63 2 85.0 202.0 294.00 252.00 48.00 93.0
## 578 1 30 2 97.0 179.0 202.00 159.00 45.00 107.5
## 579 1 60 2 88.0 173.0 380.00 278.00 51.00 98.0
## 580 1 60 2 107.0 124.0 280.00 207.00 57.00 87.6
## 581 1 61 1 100.0 185.0 240.00 149.00 70.00 87.0
## 582 1 58 2 103.0 200.0 321.00 237.00 67.00 89.0
## 583 1 61 1 79.0 106.0 267.00 191.00 51.00 90.0
## 584 1 52 2 93.0 110.0 241.00 163.00 55.00 96.0
## 585 1 56 2 109.0 115.0 273.00 222.00 39.00 95.0
## 586 1 51 2 109.0 222.0 321.00 234.00 41.00 92.0
## 587 1 45 1 89.0 150.0 167.00 82.00 41.00 80.0
## 588 1 39 2 106.0 209.0 278.00 219.00 50.00 83.0
## 589 1 49 1 320.0 411.0 241.00 180.00 47.00 87.0
## 590 1 42 2 665.0 677.0 298.00 252.00 33.00 85.0
## 591 1 58 2 159.0 272.0 434.00 243.00 69.00 104.0
## 592 1 63 2 162.0 210.0 203.00 142.00 33.00 83.0
## 593 1 47 2 91.0 117.0 288.00 223.00 49.00 85.0
## 594 1 40 2 160.0 252.0 320.00 260.00 36.00 86.0
## 595 1 52 2 90.0 157.0 219.00 148.00 62.00 88.0
## 596 1 43 2 101.0 149.0 197.00 108.00 52.00 86.0
## 597 1 37 1 114.0 107.0 207.00 152.00 44.00 88.0
## 598 1 51 1 115.0 147.0 297.00 180.00 77.00 93.5
## 599 1 55 2 101.0 120.0 217.00 108.00 48.00 89.1
## 600 1 56 1 108.0 176.0 192.00 119.00 43.00 97.0
## 601 1 43 2 113.0 177.0 311.00 216.00 54.00 76.0
## 602 1 55 2 114.0 198.0 270.00 141.00 36.00 83.0
## 603 1 53 2 150.0 245.0 300.00 178.00 40.00 104.0
## 604 1 51 1 85.0 148.0 124.00 62.00 37.00 71.0
## 605 1 47 2 100.0 169.0 216.00 134.00 46.00 80.0
## 606 1 51 1 91.0 118.0 192.00 106.00 48.00 92.0
## 607 1 57 2 208.0 383.0 326.00 187.00 46.00 95.5
## 608 1 44 2 109.0 275.0 287.00 159.00 35.00 90.0
## 609 1 60 2 131.0 255.0 244.00 147.00 33.00 108.6
## 610 1 49 2 96.0 130.0 267.00 180.00 41.00 92.0
## 611 1 49 1 422.0 612.0 276.00 217.00 52.00 72.0
## 612 1 57 2 91.0 164.0 194.00 113.00 46.00 74.0
## 613 1 43 1 86.0 128.0 245.00 139.00 60.00 86.0
## 614 1 49 2 143.0 315.0 148.00 87.00 30.00 75.0
## 615 1 54 1 93.0 128.0 368.00 217.00 47.00 101.5
## 616 1 59 2 107.0 186.0 148.00 99.00 33.00 88.5
## 617 1 45 1 105.0 172.0 246.00 141.00 59.00 81.5
## 618 1 46 2 149.0 222.0 247.00 169.00 54.00 93.0
## 619 1 43 1 95.0 160.0 186.00 116.00 48.00 110.0
## 620 1 57 2 84.0 170.0 245.00 169.00 45.00 95.0
## 621 1 64 1 117.0 217.0 230.00 173.00 45.00 97.0
## 622 1 57 1 98.0 134.0 306.00 192.00 40.00 86.0
## 623 1 49 2 99.0 167.0 235.00 129.00 36.00 94.0
## 624 1 44 1 102.0 128.0 227.00 114.00 47.00 98.0
## 625 1 53 2 96.0 152.0 235.00 165.00 37.00 77.0
## 626 1 46 2 83.0 92.0 290.00 172.00 62.00 82.0
## 627 1 52 1 137.0 210.0 193.00 100.00 46.00 97.5
## 628 1 44 2 115.0 186.0 272.00 189.00 52.00 90.0
## 629 1 60 2 95.0 221.0 230.00 168.00 44.00 93.0
## 630 1 58 2 127.0 261.0 224.00 148.00 60.00 95.0
## 631 1 53 1 120.0 117.0 219.00 145.00 34.00 96.0
## 632 1 46 2 113.0 124.0 197.00 98.00 45.00 95.0
## 633 1 50 1 96.0 189.0 283.00 200.00 41.00 102.0
## 634 1 65 1 138.0 163.0 241.00 112.00 61.00 77.0
## 635 1 35 2 113.0 123.0 187.00 102.00 37.00 92.5
## 636 1 38 1 105.0 160.0 182.00 116.00 38.00 84.0
## 637 1 47 2 96.0 142.0 261.00 158.00 72.00 67.0
## 638 1 63 2 227.0 532.0 177.00 131.00 31.00 102.6
## 639 1 42 1 99.0 147.0 220.00 133.00 65.00 85.5
## 640 1 54 1 96.0 147.0 359.00 248.00 58.00 87.0
## 641 1 37 2 102.0 155.0 208.00 123.00 43.00 68.0
## 642 1 41 2 91.0 114.0 214.00 116.00 55.00 86.0
## 643 1 41 2 85.0 115.0 200.00 125.00 58.00 92.0
## 644 1 47 1 116.0 114.0 241.00 190.00 36.00 91.0
## 645 1 55 1 93.0 115.0 255.00 163.00 45.00 107.0
## 646 1 49 2 102.0 131.0 237.00 160.00 40.00 104.0
## 647 1 59 2 121.0 154.0 259.00 166.00 44.00 101.0
## 648 1 54 1 91.0 142.0 239.00 161.00 65.00 89.0
## 649 1 48 1 99.0 159.0 265.00 195.00 41.00 91.0
## 650 1 45 2 130.0 158.0 216.00 85.00 56.00 71.0
## 651 1 58 2 102.0 230.0 266.00 185.00 57.00 88.0
## 652 1 60 2 112.0 134.0 210.00 124.00 53.00 89.0
## 653 1 55 2 105.0 140.0 381.00 223.00 42.00 97.0
## 654 1 42 1 91.0 105.0 261.00 136.00 42.00 92.3
## 655 1 57 2 91.0 133.0 232.00 167.00 37.00 85.0
## 656 1 35 2 84.0 130.0 196.00 126.00 44.00 90.3
## 657 1 48 2 145.0 157.0 245.00 129.00 44.00 97.0
## 658 1 54 2 115.0 201.0 255.00 131.00 49.00 74.0
## 659 1 56 1 139.0 182.0 267.00 152.00 51.00 98.0
## 660 1 46 2 114.0 113.0 214.00 138.00 50.00 84.0
## 661 1 52 2 121.0 182.0 255.00 162.00 62.00 84.0
## 662 1 59 1 138.0 179.0 254.00 162.00 41.00 95.0
## 663 1 40 1 87.0 142.0 242.00 171.00 57.00 94.0
## 664 1 54 2 319.0 391.0 319.00 241.00 41.00 107.0
## 665 1 50 2 128.0 291.0 312.00 243.00 60.00 90.5
## 666 1 52 1 122.0 197.0 216.00 141.00 46.00 86.7
## 667 1 42 2 90.0 148.0 252.00 181.00 46.00 94.0
## 668 1 47 1 119.0 207.0 286.00 237.00 52.00 74.0
## 669 1 46 2 103.0 124.0 162.00 125.00 32.00 75.0
## 670 1 53 2 100.0 139.0 296.00 117.00 42.00 95.0
## 671 1 56 2 95.0 114.0 279.00 183.00 47.00 82.5
## 672 1 57 2 112.0 142.0 317.00 191.00 39.00 93.5
## 673 1 49 2 261.0 343.0 282.00 180.00 58.00 107.0
## 674 1 55 2 277.0 354.0 270.00 170.00 40.00 92.0
## 675 1 37 2 94.0 175.0 182.00 112.00 44.00 80.0
## 676 1 63 1 216.0 290.0 301.00 252.00 53.00 118.0
## 677 1 57 2 120.2 158.2 273.00 183.00 35.34 82.5
## 678 1 38 2 93.0 189.0 154.00 73.00 42.00 77.0
## 679 1 39 1 107.0 212.2 217.00 150.00 45.70 100.0
## 680 1 44 2 98.0 130.0 244.90 172.60 42.70 85.3
## 681 1 50 2 96.0 131.6 179.00 103.00 49.00 100.0
## 682 1 41 2 115.0 186.0 195.00 120.00 57.80 97.5
## 683 1 39 2 94.0 161.0 179.00 111.00 44.00 98.5
## 684 1 33 1 84.0 108.0 194.00 142.00 42.10 77.0
## 685 1 39 2 95.0 123.0 234.00 164.00 54.40 94.4
## 686 1 48 1 354.0 406.0 253.00 169.00 44.00 95.8
## 687 1 60 2 82.0 167.0 216.00 134.00 61.00 70.1
## 688 1 47 2 92.0 130.0 233.00 156.00 58.40 90.0
## 689 1 47 2 98.0 122.0 232.00 122.10 48.00 91.0
## 690 1 28 2 109.0 108.0 168.00 100.00 24.00 100.0
## 691 1 26 2 84.0 94.7 178.00 110.00 51.00 73.0
## 692 1 26 2 90.0 108.2 155.00 107.00 36.00 84.2
## 693 1 45 2 266.0 324.0 259.00 177.00 52.00 85.5
## Berat_Badan Target_Hipertensi Nyeri_Dada Riwayat_Keluarga Sistolik
## 1 42.0 0 0 0 82
## 2 51.9 0 0 0 94
## 3 82.3 0 0 0 116
## 4 60.2 0 0 0 114
## 5 48.5 0 0 0 86
## 6 67.0 0 0 0 92
## 7 58.9 0 0 0 106
## 8 50.2 0 0 0 106
## 9 46.2 0 0 0 90
## 10 65.0 0 0 0 102
## 11 58.7 0 0 0 107
## 12 47.4 0 0 0 90
## 13 45.1 0 0 0 94
## 14 63.2 0 0 0 102
## 15 70.9 0 0 0 120
## 16 77.5 0 0 0 127
## 17 60.8 0 0 0 99
## 18 68.1 0 0 0 122
## 19 52.8 0 0 0 84
## 20 56.6 0 0 0 102
## 21 50.9 0 0 0 97
## 22 48.3 0 0 0 114
## 23 54.8 1 1 0 145
## 24 77.0 0 0 0 110
## 25 83.0 0 0 0 91
## 26 52.2 0 0 0 104
## 27 62.3 0 0 0 108
## 28 53.6 0 0 0 108
## 29 57.2 1 0 0 154
## 30 55.5 0 0 0 78
## 31 64.5 0 0 0 89
## 32 39.8 0 0 0 100
## 33 50.9 0 0 0 105
## 34 54.3 0 0 0 98
## 35 57.6 1 0 0 131
## 36 57.8 0 0 0 116
## 37 63.0 0 0 0 90
## 38 62.1 0 0 0 99
## 39 60.6 0 0 0 108
## 40 67.7 0 0 0 112
## 41 75.0 0 0 0 99
## 42 48.1 0 0 0 90
## 43 57.0 0 0 0 98
## 44 51.8 0 0 0 90
## 45 61.0 0 0 0 102
## 46 46.4 0 0 0 137
## 47 60.7 0 0 0 122
## 48 60.7 0 0 0 115
## 49 56.4 0 0 0 104
## 50 58.7 0 0 0 111
## 51 44.0 0 0 0 116
## 52 76.2 0 0 0 104
## 53 69.0 0 0 0 110
## 54 62.3 0 0 0 102
## 55 54.3 0 0 0 105
## 56 45.3 0 0 0 83
## 57 51.8 0 0 0 109
## 58 36.5 0 0 0 117
## 59 48.5 0 0 0 111
## 60 47.9 0 0 0 90
## 61 92.1 0 0 0 108
## 62 42.9 0 0 0 107
## 63 54.2 0 0 0 125
## 64 42.7 0 0 0 98
## 65 49.6 0 0 0 92
## 66 40.2 0 0 0 89
## 67 46.0 0 0 0 112
## 68 79.1 0 0 0 107
## 69 64.7 0 0 0 92
## 70 54.0 0 0 0 105
## 71 65.3 0 0 0 116
## 72 54.9 0 0 0 103
## 73 56.6 0 0 0 92
## 74 61.5 1 0 0 140
## 75 59.4 0 0 0 99
## 76 46.3 0 0 0 96
## 77 60.7 0 0 0 117
## 78 62.7 0 0 0 113
## 79 63.4 0 0 0 92
## 80 78.6 0 0 0 99
## 81 68.4 0 0 0 123
## 82 55.2 0 0 0 91
## 83 63.8 0 0 0 118
## 84 48.0 0 0 0 83
## 85 50.6 0 0 0 109
## 86 53.0 1 0 0 138
## 87 54.0 0 0 0 122
## 88 50.4 0 0 0 104
## 89 56.0 0 0 0 90
## 90 55.0 0 0 0 122
## 91 57.7 0 0 0 102
## 92 54.1 0 0 0 102
## 93 52.9 0 0 0 113
## 94 52.5 0 0 0 94
## 95 61.0 0 0 0 104
## 96 48.4 0 0 0 90
## 97 52.3 0 0 0 74
## 98 37.2 0 0 0 84
## 99 44.3 0 0 0 107
## 100 44.3 0 0 0 115
## 101 42.2 0 0 0 93
## 102 57.6 0 0 0 98
## 103 51.3 0 0 0 97
## 104 73.9 0 0 0 100
## 105 69.3 0 0 0 97
## 106 67.8 0 0 0 107
## 107 47.4 0 0 0 92
## 108 63.8 0 0 0 86
## 109 50.8 0 0 0 123
## 110 39.4 0 0 0 79
## 111 68.3 0 0 0 103
## 112 72.2 0 0 0 89
## 113 53.6 1 0 0 138
## 114 72.4 0 0 0 110
## 115 41.7 0 1 0 126
## 116 47.9 0 0 0 106
## 117 48.1 1 0 0 144
## 118 93.5 0 0 0 114
## 119 51.5 0 0 0 78
## 120 76.5 0 0 0 104
## 121 45.9 0 0 0 88
## 122 58.8 0 0 0 93
## 123 58.3 0 0 0 106
## 124 59.7 0 0 0 118
## 125 33.9 0 0 0 94
## 126 52.6 0 0 0 122
## 127 55.9 0 0 0 123
## 128 62.2 0 0 0 102
## 129 65.7 0 0 0 97
## 130 62.4 0 0 0 114
## 131 58.3 0 0 0 114
## 132 73.1 0 0 0 113
## 133 52.4 0 0 0 98
## 134 53.8 0 0 0 83
## 135 46.9 0 0 0 90
## 136 45.6 0 0 0 116
## 137 60.7 0 0 0 100
## 138 55.0 0 0 0 100
## 139 53.0 0 0 0 110
## 140 50.0 0 0 0 101
## 141 59.7 0 0 0 127
## 142 47.3 0 0 0 109
## 143 65.6 0 0 0 99
## 144 74.6 1 0 0 146
## 145 55.9 0 0 0 100
## 146 59.8 1 0 0 132
## 147 56.6 0 0 0 118
## 148 53.2 0 0 0 112
## 149 69.3 1 0 0 138
## 150 49.7 0 0 0 103
## 151 94.9 0 0 0 117
## 152 44.0 0 0 0 98
## 153 58.0 0 0 0 96
## 154 60.0 0 0 0 97
## 155 42.0 0 0 0 85
## 156 42.7 0 1 0 106
## 157 56.5 0 0 0 107
## 158 58.6 0 0 0 117
## 159 80.0 1 0 0 140
## 160 64.0 0 0 0 110
## 161 53.5 0 0 0 98
## 162 56.0 0 0 0 98
## 163 45.9 0 0 0 87
## 164 61.3 0 0 0 101
## 165 41.8 0 0 0 99
## 166 51.4 0 0 0 126
## 167 52.7 0 0 0 115
## 168 60.4 0 0 0 98
## 169 52.0 0 0 0 102
## 170 69.0 0 0 0 110
## 171 58.9 1 0 0 147
## 172 78.1 0 0 0 115
## 173 53.3 0 0 0 104
## 174 57.9 0 0 0 94
## 175 45.4 0 0 0 92
## 176 85.6 0 0 0 97
## 177 41.3 0 0 0 72
## 178 54.4 0 0 0 105
## 179 53.4 0 0 0 121
## 180 73.4 0 0 0 100
## 181 47.4 0 0 0 102
## 182 60.1 0 0 0 105
## 183 58.1 0 0 0 107
## 184 44.4 0 0 0 89
## 185 65.3 0 0 0 109
## 186 47.1 0 0 0 88
## 187 39.4 0 0 0 89
## 188 49.5 0 0 0 90
## 189 46.0 0 0 0 127
## 190 75.4 0 0 0 93
## 191 63.3 0 0 0 100
## 192 49.3 1 0 0 208
## 193 34.1 0 0 0 100
## 194 57.5 0 0 0 95
## 195 50.8 0 0 0 105
## 196 54.4 0 0 0 93
## 197 72.0 0 0 0 105
## 198 56.3 0 0 0 99
## 199 52.6 0 0 0 118
## 200 57.7 0 0 0 115
## 201 74.6 0 0 0 126
## 202 81.1 1 0 0 155
## 203 52.6 0 0 0 114
## 204 47.0 0 0 0 100
## 205 40.9 0 0 0 90
## 206 62.4 0 0 0 98
## 207 47.3 0 0 0 93
## 208 51.4 0 0 0 102
## 209 39.1 0 0 0 117
## 210 73.9 0 0 0 121
## 211 52.8 0 0 0 95
## 212 51.8 0 0 0 114
## 213 60.3 0 0 0 104
## 214 55.9 0 0 0 92
## 215 52.6 0 0 0 104
## 216 76.3 1 0 0 168
## 217 49.4 0 0 0 130
## 218 50.2 0 0 0 93
## 219 42.3 0 1 0 101
## 220 65.2 0 0 0 107
## 221 45.5 0 0 0 88
## 222 39.1 0 0 0 85
## 223 43.2 0 0 0 114
## 224 54.0 0 0 0 111
## 225 45.1 0 0 0 122
## 226 75.5 0 0 0 112
## 227 63.0 0 0 0 95
## 228 47.2 0 0 0 89
## 229 68.0 0 0 0 126
## 230 64.6 1 0 0 130
## 231 76.7 0 0 0 114
## 232 67.5 0 0 0 99
## 233 65.1 0 0 0 108
## 234 57.6 0 0 0 103
## 235 53.0 0 1 0 111
## 236 41.9 0 0 0 77
## 237 54.3 0 0 0 138
## 238 78.6 0 0 0 116
## 239 57.6 0 0 0 80
## 240 71.4 0 0 0 99
## 241 72.9 1 0 0 147
## 242 71.0 0 0 0 100
## 243 49.8 0 0 0 117
## 244 47.5 0 0 0 95
## 245 72.0 0 0 0 100
## 246 50.3 0 0 0 98
## 247 64.8 0 0 0 100
## 248 46.0 0 0 0 97
## 249 42.0 0 0 0 93
## 250 70.2 0 0 0 94
## 251 44.2 0 0 0 84
## 252 46.3 0 0 0 93
## 253 45.6 0 0 0 108
## 254 48.3 0 0 0 100
## 255 53.5 0 0 0 114
## 256 38.5 0 0 0 85
## 257 62.0 0 0 0 123
## 258 78.2 0 0 0 132
## 259 73.2 0 0 0 114
## 260 50.8 0 0 0 103
## 261 55.1 0 0 0 92
## 262 53.2 0 0 0 99
## 263 54.7 0 0 0 97
## 264 45.7 0 0 0 102
## 265 54.9 0 0 0 102
## 266 46.0 0 0 0 64
## 267 80.5 0 0 0 110
## 268 47.8 0 0 0 94
## 269 57.9 0 0 0 118
## 270 66.8 0 0 0 117
## 271 56.7 0 1 0 107
## 272 55.5 0 0 0 85
## 273 54.0 0 0 0 106
## 274 58.6 0 0 0 103
## 275 48.3 0 0 0 88
## 276 38.6 1 0 0 140
## 277 74.9 0 0 0 113
## 278 57.7 0 0 0 126
## 279 51.3 0 0 0 105
## 280 55.7 0 0 0 112
## 281 36.2 0 0 0 87
## 282 50.4 0 1 0 95
## 283 37.4 0 0 0 93
## 284 34.4 0 0 0 125
## 285 80.0 0 0 0 114
## 286 57.2 0 0 0 97
## 287 54.9 0 0 0 122
## 288 73.6 1 0 0 155
## 289 58.2 0 0 0 102
## 290 62.9 0 0 0 107
## 291 68.0 0 0 0 122
## 292 42.3 0 0 0 90
## 293 53.0 0 0 0 112
## 294 54.5 0 0 0 91
## 295 58.8 0 0 0 98
## 296 65.0 1 0 0 110
## 297 47.8 0 0 0 108
## 298 56.4 0 0 0 94
## 299 59.3 0 0 0 118
## 300 64.7 0 0 0 128
## 301 50.0 0 0 0 94
## 302 53.0 0 0 0 110
## 303 57.7 0 0 0 102
## 304 76.1 0 0 0 110
## 305 44.9 0 0 0 90
## 306 36.6 0 0 0 84
## 307 61.3 0 0 0 118
## 308 50.0 0 0 0 104
## 309 64.6 0 0 0 97
## 310 61.3 0 0 0 92
## 311 44.1 0 0 0 94
## 312 61.3 0 0 0 107
## 313 64.5 0 0 0 96
## 314 47.9 0 0 0 95
## 315 32.5 0 1 0 90
## 316 80.8 0 0 0 119
## 317 80.7 0 0 0 104
## 318 57.5 0 0 0 94
## 319 50.2 0 0 0 94
## 320 45.5 0 0 0 95
## 321 47.6 0 0 0 104
## 322 58.4 0 0 0 87
## 323 43.2 0 0 0 97
## 324 55.7 0 0 0 107
## 325 62.9 0 0 0 127
## 326 70.1 0 0 0 132
## 327 42.9 0 0 0 79
## 328 53.7 0 0 0 90
## 329 64.7 0 1 0 132
## 330 54.8 0 0 0 91
## 331 56.0 0 1 0 110
## 332 47.5 0 0 0 96
## 333 45.3 0 0 0 126
## 334 62.2 0 0 0 102
## 335 59.9 0 0 0 127
## 336 61.0 0 0 0 92
## 337 57.7 0 0 0 115
## 338 47.5 0 0 0 90
## 339 65.5 0 0 0 95
## 340 53.2 0 0 0 108
## 341 67.3 0 0 0 101
## 342 60.3 0 0 0 97
## 343 63.0 0 0 0 130
## 344 49.7 0 0 0 100
## 345 62.3 0 0 0 105
## 346 84.5 0 0 0 90
## 347 75.0 0 1 0 120
## 348 50.4 0 0 0 118
## 349 43.6 0 0 0 88
## 350 59.7 0 0 0 122
## 351 52.5 0 0 0 97
## 352 55.4 0 0 0 111
## 353 48.2 1 0 0 172
## 354 39.0 0 0 0 92
## 355 53.6 0 0 0 90
## 356 64.9 0 0 0 90
## 357 62.0 0 0 0 98
## 358 52.2 0 0 0 94
## 359 39.0 0 0 0 114
## 360 43.0 0 0 0 100
## 361 66.5 1 0 0 162
## 362 62.5 0 0 0 97
## 363 58.0 1 1 1 185
## 364 45.0 1 1 1 167
## 365 67.2 1 0 1 140
## 366 71.0 1 1 0 157
## 367 87.3 1 1 1 154
## 368 63.9 1 1 1 140
## 369 62.1 1 0 1 147
## 370 84.8 1 0 1 181
## 371 56.8 0 1 0 125
## 372 57.4 1 1 0 194
## 373 64.0 1 1 0 181
## 374 44.2 1 1 1 111
## 375 76.9 1 1 0 125
## 376 68.9 1 1 0 192
## 377 72.9 1 1 0 163
## 378 71.1 1 1 0 188
## 379 57.1 1 0 1 146
## 380 52.0 1 1 1 195
## 381 60.0 1 1 0 125
## 382 69.3 1 1 0 153
## 383 60.2 1 0 0 126
## 384 61.3 1 1 0 158
## 385 62.9 1 1 0 183
## 386 74.0 1 1 1 156
## 387 57.0 1 1 1 155
## 388 79.2 1 1 1 139
## 389 60.5 1 1 1 132
## 390 83.0 1 0 0 168
## 391 60.0 1 1 1 162
## 392 91.4 1 0 1 139
## 393 82.4 1 1 1 158
## 394 82.0 1 0 0 158
## 395 53.1 1 0 0 148
## 396 63.8 1 0 1 126
## 397 76.2 1 1 1 144
## 398 58.7 1 1 0 159
## 399 51.0 0 0 1 119
## 400 70.5 1 1 1 216
## 401 55.0 1 1 0 169
## 402 64.7 1 0 1 195
## 403 57.2 1 1 0 154
## 404 61.3 0 1 0 122
## 405 67.1 0 1 1 120
## 406 63.8 0 0 1 135
## 407 61.9 1 1 1 180
## 408 84.7 1 1 1 150
## 409 55.4 1 0 0 168
## 410 69.7 1 1 0 144
## 411 63.1 1 1 1 173
## 412 67.1 1 1 1 170
## 413 73.9 1 1 1 190
## 414 73.0 1 0 0 140
## 415 49.8 1 0 0 176
## 416 86.9 1 0 0 195
## 417 60.9 1 1 1 203
## 418 60.9 1 1 0 146
## 419 61.0 1 1 1 169
## 420 74.0 1 1 1 149
## 421 62.6 1 1 0 163
## 422 69.2 1 0 1 160
## 423 55.3 0 0 0 126
## 424 52.0 1 1 1 156
## 425 47.5 1 0 1 185
## 426 55.5 1 1 0 173
## 427 57.4 1 1 1 217
## 428 60.0 1 1 0 156
## 429 58.4 1 1 0 149
## 430 50.8 1 0 0 233
## 431 54.0 1 0 0 133
## 432 81.7 1 1 1 212
## 433 92.0 1 0 0 126
## 434 56.2 0 1 0 119
## 435 68.5 1 0 0 179
## 436 49.2 1 1 0 192
## 437 76.0 1 0 1 203
## 438 58.9 1 0 1 128
## 439 69.4 0 0 0 131
## 440 68.0 1 1 1 173
## 441 64.7 0 1 1 116
## 442 80.6 1 1 0 182
## 443 55.5 0 0 0 138
## 444 64.8 1 0 1 161
## 445 68.3 1 1 0 158
## 446 77.2 1 1 1 165
## 447 61.0 1 1 0 156
## 448 63.7 1 0 0 170
## 449 46.4 0 1 0 114
## 450 81.7 1 1 1 156
## 451 93.4 1 1 0 158
## 452 95.2 1 1 1 149
## 453 69.9 1 0 0 172
## 454 54.0 0 1 0 138
## 455 55.7 1 1 1 210
## 456 76.8 0 0 1 126
## 457 63.0 1 1 0 156
## 458 54.0 1 0 0 151
## 459 69.0 1 0 0 176
## 460 48.8 1 1 0 189
## 461 65.1 1 1 1 207
## 462 61.6 1 0 0 146
## 463 77.0 1 0 0 191
## 464 85.8 1 0 1 187
## 465 91.2 1 0 1 173
## 466 66.1 1 1 1 160
## 467 65.4 1 1 0 133
## 468 81.0 1 1 1 160
## 469 63.5 1 0 0 145
## 470 86.0 0 0 0 134
## 471 71.0 0 1 0 107
## 472 74.6 1 1 0 174
## 473 49.8 0 0 1 128
## 474 66.0 1 1 1 138
## 475 67.6 1 0 0 192
## 476 54.2 1 0 0 203
## 477 43.3 1 0 1 191
## 478 40.3 0 1 1 139
## 479 63.1 1 0 1 158
## 480 64.8 1 0 1 169
## 481 46.7 1 1 1 170
## 482 56.0 0 1 0 122
## 483 66.7 1 1 0 144
## 484 51.1 0 1 1 130
## 485 58.9 1 1 0 175
## 486 85.7 1 0 1 183
## 487 60.9 1 0 0 165
## 488 69.6 1 0 0 146
## 489 75.6 1 0 1 175
## 490 53.6 1 0 0 204
## 491 60.1 1 1 0 142
## 492 73.2 1 0 1 148
## 493 69.5 1 1 0 175
## 494 60.1 1 1 0 148
## 495 65.0 1 0 1 162
## 496 49.0 1 1 0 201
## 497 94.8 1 0 0 152
## 498 74.4 1 0 1 185
## 499 72.0 1 1 1 182
## 500 46.0 0 0 0 107
## 501 34.2 1 1 0 210
## 502 74.0 1 0 0 180
## 503 64.2 1 0 0 138
## 504 96.3 1 1 1 210
## 505 64.9 1 0 0 157
## 506 73.0 0 0 0 130
## 507 75.1 1 1 1 155
## 508 66.7 1 0 0 186
## 509 73.1 1 1 1 162
## 510 44.9 1 0 0 169
## 511 67.5 1 0 0 163
## 512 56.5 1 0 1 145
## 513 0.0 0 1 0 107
## 514 62.0 1 0 0 207
## 515 101.4 1 0 0 172
## 516 45.3 1 0 0 174
## 517 67.2 1 0 0 215
## 518 63.6 1 0 1 156
## 519 65.2 1 0 1 168
## 520 70.3 0 0 0 135
## 521 49.0 0 0 1 120
## 522 61.0 1 0 0 149
## 523 59.2 1 1 0 177
## 524 57.7 1 0 0 202
## 525 69.0 1 0 0 190
## 526 59.0 1 1 1 164
## 527 72.1 1 0 1 168
## 528 68.5 1 1 1 158
## 529 66.4 1 0 0 156
## 530 41.9 1 1 1 165
## 531 62.8 1 1 0 186
## 532 54.2 0 1 0 119
## 533 75.8 1 1 0 130
## 534 44.2 1 0 0 152
## 535 65.4 1 0 1 176
## 536 44.3 1 1 0 142
## 537 69.4 1 0 1 180
## 538 71.7 1 0 0 159
## 539 55.6 1 1 0 140
## 540 71.6 0 0 0 129
## 541 70.0 1 0 0 187
## 542 61.7 1 0 0 162
## 543 46.5 1 0 1 189
## 544 64.4 1 1 1 181
## 545 54.5 1 0 0 160
## 546 60.7 0 0 0 122
## 547 64.9 1 0 1 166
## 548 56.4 1 0 1 150
## 549 39.5 0 0 0 122
## 550 60.8 1 0 0 162
## 551 66.7 1 0 0 178
## 552 102.2 1 0 1 156
## 553 42.0 1 1 0 159
## 554 46.7 1 0 1 138
## 555 78.6 1 0 0 175
## 556 65.5 1 1 0 205
## 557 74.1 1 0 1 163
## 558 51.1 1 0 0 131
## 559 61.2 1 0 0 158
## 560 56.2 1 0 0 178
## 561 45.8 1 0 0 186
## 562 58.0 1 0 1 174
## 563 85.9 1 0 1 269
## 564 54.1 1 0 0 142
## 565 69.7 0 1 0 123
## 566 58.3 1 1 1 130
## 567 55.4 1 1 0 195
## 568 65.6 1 1 1 181
## 569 74.0 1 0 0 142
## 570 85.9 1 1 0 151
## 571 53.4 1 0 0 146
## 572 79.7 1 1 1 163
## 573 80.5 1 0 0 160
## 574 72.6 1 0 0 142
## 575 66.8 1 1 1 157
## 576 54.5 1 0 0 154
## 577 62.8 1 0 1 168
## 578 84.4 1 0 0 146
## 579 63.5 0 1 0 123
## 580 53.3 1 0 1 166
## 581 49.0 0 0 0 123
## 582 60.9 1 0 0 136
## 583 67.9 1 1 1 152
## 584 72.6 1 1 1 161
## 585 68.2 1 0 1 172
## 586 69.2 1 0 1 135
## 587 58.9 0 1 0 134
## 588 64.6 1 1 1 178
## 589 55.9 1 1 1 156
## 590 59.1 1 1 0 151
## 591 71.7 1 0 0 225
## 592 62.1 0 0 1 132
## 593 48.0 1 0 0 161
## 594 56.4 1 0 0 169
## 595 55.9 1 0 1 200
## 596 62.5 1 1 0 136
## 597 63.9 1 0 0 157
## 598 68.7 1 1 0 173
## 599 52.4 1 0 0 151
## 600 68.5 1 1 1 191
## 601 44.5 1 0 0 194
## 602 46.3 1 1 0 163
## 603 89.0 1 1 0 198
## 604 51.1 0 0 1 114
## 605 45.7 1 0 0 194
## 606 73.8 1 1 0 130
## 607 62.1 1 0 1 146
## 608 61.9 1 0 0 128
## 609 80.1 1 0 0 163
## 610 64.1 1 1 1 200
## 611 52.5 1 0 0 142
## 612 44.6 1 0 0 158
## 613 64.7 1 0 0 140
## 614 57.4 1 0 0 158
## 615 77.7 1 1 0 207
## 616 53.3 0 0 1 138
## 617 48.3 0 1 0 121
## 618 59.2 1 0 1 145
## 619 79.9 1 0 1 147
## 620 67.5 1 1 0 146
## 621 59.0 1 0 1 156
## 622 52.7 1 0 0 179
## 623 73.9 1 1 0 126
## 624 69.6 1 1 1 144
## 625 64.4 1 0 1 132
## 626 55.9 1 1 1 132
## 627 71.6 0 0 0 134
## 628 64.1 1 1 1 162
## 629 79.7 1 0 0 159
## 630 67.6 1 0 0 190
## 631 68.2 1 0 0 160
## 632 67.2 1 0 1 168
## 633 72.6 1 1 1 145
## 634 61.0 1 0 0 199
## 635 67.2 0 0 0 138
## 636 69.5 1 1 1 143
## 637 37.9 1 0 0 144
## 638 76.6 1 0 0 186
## 639 50.5 1 0 1 191
## 640 47.2 1 0 0 174
## 641 45.7 1 0 0 168
## 642 57.1 1 1 1 179
## 643 59.0 1 0 0 165
## 644 61.3 1 0 1 134
## 645 77.7 1 1 0 185
## 646 79.1 1 1 1 151
## 647 77.7 1 0 1 199
## 648 71.3 1 1 1 159
## 649 63.0 1 1 0 166
## 650 49.4 1 0 0 160
## 651 54.5 1 0 1 180
## 652 48.2 0 0 0 127
## 653 71.2 1 1 1 190
## 654 61.0 1 1 0 166
## 655 52.6 1 0 0 167
## 656 62.2 1 1 1 143
## 657 68.1 1 0 1 225
## 658 40.5 1 1 1 165
## 659 62.7 1 0 0 200
## 660 50.2 1 0 0 200
## 661 51.9 1 0 0 179
## 662 63.7 1 1 0 182
## 663 69.2 1 1 0 132
## 664 82.6 1 0 0 166
## 665 61.4 1 0 0 205
## 666 61.8 1 0 0 164
## 667 68.7 1 0 0 149
## 668 45.4 0 0 1 132
## 669 59.0 1 1 1 150
## 670 67.2 1 1 0 167
## 671 45.8 0 1 0 125
## 672 69.1 1 0 1 170
## 673 77.1 1 1 1 152
## 674 60.8 1 0 0 158
## 675 53.5 1 1 1 192
## 676 80.8 1 0 0 202
## 677 57.4 1 1 0 179
## 678 54.1 1 1 1 187
## 679 70.7 1 0 1 178
## 680 50.4 0 0 1 114
## 681 68.6 1 1 0 190
## 682 71.0 0 1 0 129
## 683 74.2 1 0 0 164
## 684 53.1 1 0 0 140
## 685 67.2 1 1 1 156
## 686 64.6 0 1 1 124
## 687 42.5 1 0 0 153
## 688 65.8 1 1 0 141
## 689 60.5 0 1 1 114
## 690 88.5 1 1 0 149
## 691 45.3 0 0 1 128
## 692 52.1 1 0 1 135
## 693 58.9 1 0 1 164
## Diastolik Merokok
## 1 61 0
## 2 57 0
## 3 69 1
## 4 77 1
## 5 62 0
## 6 53 0
## 7 63 0
## 8 73 0
## 9 53 1
## 10 73 0
## 11 69 1
## 12 57 1
## 13 55 0
## 14 67 0
## 15 77 1
## 16 80 1
## 17 72 0
## 18 79 0
## 19 61 0
## 20 62 1
## 21 62 1
## 22 79 0
## 23 69 1
## 24 62 0
## 25 60 0
## 26 62 0
## 27 67 0
## 28 58 0
## 29 85 0
## 30 51 0
## 31 70 0
## 32 68 0
## 33 78 0
## 34 60 1
## 35 93 0
## 36 82 0
## 37 61 1
## 38 68 0
## 39 82 0
## 40 75 0
## 41 59 0
## 42 59 0
## 43 66 0
## 44 65 0
## 45 66 0
## 46 89 0
## 47 74 0
## 48 73 0
## 49 76 0
## 50 65 1
## 51 82 0
## 52 68 0
## 53 68 0
## 54 61 0
## 55 75 0
## 56 56 0
## 57 62 0
## 58 68 0
## 59 75 0
## 60 54 1
## 61 70 0
## 62 72 0
## 63 82 0
## 64 63 1
## 65 63 0
## 66 61 1
## 67 67 0
## 68 69 0
## 69 54 0
## 70 68 0
## 71 70 1
## 72 74 0
## 73 58 0
## 74 85 0
## 75 66 0
## 76 62 1
## 77 78 0
## 78 73 0
## 79 66 0
## 80 68 1
## 81 80 1
## 82 63 0
## 83 73 0
## 84 57 0
## 85 59 0
## 86 90 0
## 87 76 0
## 88 68 1
## 89 57 0
## 90 80 1
## 91 65 1
## 92 70 0
## 93 70 0
## 94 52 1
## 95 63 0
## 96 49 0
## 97 61 1
## 98 56 0
## 99 72 0
## 100 82 1
## 101 66 1
## 102 58 0
## 103 54 0
## 104 73 0
## 105 62 0
## 106 69 1
## 107 58 1
## 108 58 1
## 109 86 0
## 110 58 0
## 111 69 0
## 112 50 0
## 113 104 1
## 114 62 0
## 115 69 0
## 116 57 0
## 117 90 0
## 118 79 0
## 119 61 1
## 120 69 0
## 121 52 0
## 122 62 0
## 123 72 0
## 124 86 0
## 125 42 0
## 126 86 0
## 127 77 0
## 128 67 0
## 129 72 0
## 130 72 0
## 131 79 0
## 132 72 0
## 133 67 0
## 134 49 1
## 135 56 0
## 136 74 1
## 137 61 0
## 138 70 0
## 139 80 0
## 140 60 0
## 141 86 0
## 142 69 0
## 143 66 0
## 144 93 1
## 145 66 0
## 146 91 0
## 147 64 0
## 148 75 0
## 149 91 1
## 150 72 0
## 151 80 1
## 152 49 1
## 153 62 0
## 154 64 0
## 155 50 0
## 156 62 0
## 157 69 0
## 158 66 0
## 159 70 0
## 160 80 0
## 161 62 0
## 162 57 1
## 163 64 1
## 164 73 0
## 165 64 0
## 166 62 0
## 167 72 0
## 168 61 1
## 169 64 0
## 170 78 1
## 171 92 0
## 172 69 0
## 173 59 0
## 174 64 0
## 175 49 0
## 176 62 1
## 177 54 1
## 178 68 0
## 179 82 1
## 180 62 1
## 181 69 1
## 182 71 0
## 183 69 1
## 184 54 0
## 185 60 1
## 186 52 0
## 187 57 0
## 188 66 0
## 189 81 0
## 190 66 0
## 191 69 0
## 192 128 0
## 193 66 0
## 194 66 0
## 195 72 0
## 196 63 0
## 197 66 0
## 198 74 0
## 199 68 0
## 200 70 1
## 201 86 0
## 202 78 1
## 203 66 1
## 204 56 0
## 205 58 1
## 206 70 0
## 207 60 0
## 208 58 1
## 209 81 0
## 210 70 0
## 211 47 0
## 212 75 0
## 213 68 0
## 214 61 0
## 215 70 1
## 216 81 0
## 217 78 0
## 218 48 0
## 219 66 0
## 220 67 0
## 221 58 0
## 222 41 0
## 223 70 0
## 224 68 0
## 225 89 0
## 226 67 0
## 227 61 0
## 228 63 0
## 229 81 0
## 230 92 0
## 231 82 0
## 232 62 0
## 233 68 0
## 234 74 0
## 235 78 1
## 236 50 0
## 237 83 0
## 238 74 0
## 239 35 0
## 240 63 1
## 241 96 0
## 242 66 0
## 243 81 0
## 244 62 0
## 245 60 1
## 246 62 0
## 247 58 1
## 248 56 0
## 249 62 0
## 250 61 0
## 251 45 0
## 252 57 0
## 253 63 0
## 254 61 0
## 255 86 0
## 256 54 0
## 257 81 1
## 258 65 0
## 259 78 1
## 260 70 0
## 261 59 0
## 262 63 0
## 263 52 1
## 264 54 0
## 265 70 0
## 266 43 1
## 267 82 0
## 268 55 0
## 269 76 0
## 270 77 0
## 271 69 1
## 272 50 0
## 273 64 1
## 274 69 0
## 275 59 1
## 276 81 0
## 277 70 1
## 278 62 0
## 279 70 0
## 280 74 1
## 281 51 0
## 282 55 1
## 283 56 0
## 284 50 0
## 285 66 1
## 286 53 0
## 287 75 0
## 288 103 0
## 289 75 0
## 290 64 1
## 291 78 1
## 292 58 0
## 293 58 0
## 294 58 1
## 295 64 0
## 296 90 1
## 297 66 1
## 298 59 1
## 299 67 1
## 300 74 0
## 301 58 0
## 302 77 0
## 303 50 0
## 304 78 0
## 305 75 1
## 306 40 0
## 307 73 0
## 308 71 0
## 309 65 0
## 310 50 0
## 311 63 0
## 312 77 1
## 313 66 0
## 314 61 0
## 315 40 0
## 316 79 0
## 317 69 0
## 318 55 0
## 319 59 0
## 320 65 0
## 321 66 0
## 322 55 0
## 323 59 0
## 324 69 0
## 325 81 0
## 326 82 1
## 327 54 0
## 328 58 0
## 329 73 0
## 330 55 0
## 331 74 0
## 332 60 0
## 333 66 0
## 334 68 0
## 335 82 0
## 336 65 0
## 337 73 0
## 338 62 1
## 339 66 1
## 340 71 0
## 341 63 0
## 342 59 0
## 343 78 0
## 344 62 1
## 345 76 0
## 346 62 0
## 347 70 1
## 348 80 1
## 349 46 0
## 350 74 0
## 351 64 0
## 352 68 0
## 353 69 1
## 354 52 0
## 355 58 0
## 356 59 1
## 357 63 0
## 358 52 0
## 359 71 0
## 360 71 0
## 361 85 1
## 362 66 0
## 363 96 0
## 364 95 0
## 365 99 0
## 366 98 0
## 367 98 1
## 368 102 0
## 369 93 0
## 370 114 1
## 371 86 0
## 372 95 1
## 373 134 1
## 374 95 1
## 375 94 1
## 376 118 1
## 377 96 1
## 378 110 1
## 379 100 1
## 380 114 1
## 381 92 1
## 382 99 1
## 383 96 1
## 384 106 1
## 385 108 1
## 386 90 0
## 387 102 0
## 388 99 0
## 389 90 0
## 390 96 0
## 391 120 0
## 392 94 1
## 393 108 0
## 394 114 0
## 395 101 1
## 396 90 1
## 397 103 0
## 398 94 1
## 399 80 1
## 400 138 1
## 401 121 1
## 402 119 0
## 403 109 0
## 404 87 0
## 405 79 1
## 406 83 1
## 407 114 0
## 408 106 1
## 409 103 0
## 410 94 0
## 411 114 0
## 412 107 1
## 413 100 1
## 414 77 0
## 415 106 0
## 416 112 0
## 417 110 0
## 418 97 0
## 419 103 0
## 420 97 0
## 421 106 1
## 422 102 0
## 423 77 0
## 424 102 1
## 425 105 1
## 426 121 1
## 427 124 0
## 428 102 1
## 429 91 0
## 430 114 0
## 431 91 1
## 432 105 1
## 433 99 0
## 434 89 1
## 435 114 1
## 436 96 1
## 437 129 0
## 438 95 1
## 439 81 1
## 440 122 0
## 441 83 0
## 442 114 1
## 443 83 1
## 444 92 1
## 445 90 0
## 446 105 1
## 447 89 0
## 448 101 0
## 449 89 1
## 450 106 1
## 451 96 0
## 452 99 1
## 453 95 0
## 454 88 0
## 455 105 0
## 456 89 1
## 457 85 0
## 458 99 1
## 459 115 0
## 460 102 1
## 461 112 0
## 462 99 1
## 463 120 0
## 464 129 0
## 465 97 1
## 466 94 1
## 467 90 0
## 468 104 0
## 469 100 1
## 470 84 0
## 471 69 0
## 472 104 0
## 473 84 1
## 474 115 1
## 475 100 1
## 476 113 0
## 477 107 1
## 478 84 0
## 479 110 0
## 480 101 1
## 481 120 1
## 482 86 0
## 483 95 0
## 484 85 0
## 485 110 0
## 486 123 0
## 487 93 0
## 488 90 0
## 489 112 1
## 490 118 0
## 491 90 0
## 492 99 0
## 493 111 1
## 494 99 0
## 495 101 0
## 496 112 0
## 497 106 0
## 498 122 1
## 499 117 1
## 500 69 0
## 501 104 0
## 502 106 0
## 503 91 0
## 504 106 0
## 505 101 0
## 506 85 0
## 507 101 0
## 508 124 0
## 509 102 0
## 510 102 1
## 511 110 0
## 512 80 0
## 513 69 0
## 514 111 0
## 515 114 1
## 516 112 1
## 517 129 0
## 518 87 0
## 519 112 0
## 520 89 0
## 521 76 0
## 522 86 0
## 523 97 0
## 524 115 0
## 525 120 0
## 526 149 0
## 527 104 0
## 528 85 0
## 529 109 0
## 530 122 0
## 531 114 0
## 532 84 0
## 533 93 0
## 534 93 0
## 535 121 0
## 536 109 0
## 537 122 0
## 538 96 0
## 539 98 0
## 540 82 1
## 541 116 0
## 542 102 0
## 543 114 1
## 544 99 0
## 545 87 0
## 546 84 0
## 547 109 0
## 548 97 0
## 549 64 0
## 550 98 1
## 551 97 0
## 552 103 0
## 553 94 0
## 554 92 0
## 555 101 1
## 556 141 1
## 557 95 0
## 558 103 0
## 559 101 0
## 560 104 0
## 561 110 0
## 562 110 0
## 563 169 1
## 564 100 0
## 565 72 0
## 566 97 0
## 567 134 0
## 568 113 0
## 569 89 0
## 570 104 0
## 571 76 0
## 572 94 0
## 573 90 0
## 574 86 1
## 575 95 1
## 576 93 0
## 577 84 0
## 578 101 1
## 579 86 1
## 580 97 0
## 581 88 1
## 582 96 0
## 583 90 0
## 584 92 1
## 585 110 0
## 586 91 1
## 587 86 0
## 588 104 0
## 589 104 0
## 590 100 0
## 591 110 1
## 592 79 1
## 593 102 1
## 594 98 1
## 595 124 0
## 596 93 0
## 597 107 0
## 598 95 0
## 599 92 0
## 600 137 0
## 601 110 0
## 602 105 0
## 603 132 1
## 604 80 1
## 605 110 0
## 606 94 0
## 607 97 0
## 608 91 0
## 609 93 0
## 610 150 0
## 611 98 1
## 612 99 0
## 613 86 1
## 614 108 0
## 615 113 0
## 616 84 1
## 617 85 0
## 618 91 0
## 619 110 0
## 620 76 0
## 621 102 0
## 622 98 1
## 623 91 1
## 624 89 1
## 625 90 1
## 626 92 0
## 627 86 0
## 628 109 0
## 629 102 0
## 630 101 0
## 631 100 1
## 632 107 0
## 633 93 1
## 634 94 1
## 635 86 0
## 636 97 1
## 637 85 0
## 638 110 0
## 639 99 0
## 640 106 0
## 641 105 0
## 642 111 0
## 643 114 0
## 644 92 0
## 645 120 1
## 646 110 0
## 647 102 0
## 648 85 0
## 649 105 1
## 650 102 0
## 651 98 0
## 652 82 0
## 653 120 1
## 654 107 1
## 655 145 1
## 656 102 1
## 657 142 0
## 658 103 0
## 659 102 0
## 660 113 0
## 661 107 0
## 662 102 0
## 663 90 1
## 664 111 0
## 665 98 0
## 666 92 0
## 667 91 0
## 668 82 0
## 669 82 1
## 670 96 1
## 671 82 1
## 672 107 1
## 673 100 1
## 674 105 0
## 675 141 0
## 676 114 0
## 677 114 1
## 678 126 0
## 679 122 1
## 680 76 0
## 681 113 0
## 682 83 1
## 683 112 0
## 684 101 0
## 685 114 0
## 686 89 0
## 687 132 1
## 688 108 0
## 689 75 0
## 690 98 1
## 691 81 0
## 692 108 0
## 693 100 0
# Menghitung proporsi kelas
prop_table <- prop.table(table(undersampled_reglog$Target_PJK))
print(prop_table)
##
## 0 1
## 0.5223665 0.4776335
table(undersampled_reglog$Target_PJK)
##
## 0 1
## 362 331
Regresi Logistik Biner
Signifikansi Peubah
Data Train
reglog_train <- glm(Target_PJK ~ ., data = train_dt, family = binomial(link = "logit"))
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
summ <- summary(reglog_train)
summ
##
## Call:
## glm(formula = Target_PJK ~ ., family = binomial(link = "logit"),
## data = train_dt)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -3.6908 -0.0816 -0.0360 -0.0153 3.5565
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -22.708656 2.321765 -9.781 < 2e-16 ***
## Age 0.019873 0.015249 1.303 0.19249
## Sex2 -0.186401 0.300663 -0.620 0.53528
## GD_Puasa 0.006173 0.006168 1.001 0.31686
## GD_PP 0.001441 0.003515 0.410 0.68180
## Kolestrol 0.003188 0.005677 0.562 0.57444
## LDL 0.002774 0.005905 0.470 0.63856
## HDL -0.042548 0.015057 -2.826 0.00472 **
## Lipoprotein 0.120240 0.020606 5.835 5.37e-09 ***
## Berat_Badan -0.098922 0.016420 -6.025 1.70e-09 ***
## Target_Hipertensi1 0.347922 0.457283 0.761 0.44675
## Nyeri_Dada 3.002927 0.366520 8.193 2.55e-16 ***
## Riwayat_Keluarga1 20.101958 692.438431 0.029 0.97684
## Sistolik 0.029913 0.011087 2.698 0.00697 **
## Diastolik 0.127375 0.019331 6.589 4.43e-11 ***
## Merokok 0.264505 0.337047 0.785 0.43259
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 2235.11 on 3729 degrees of freedom
## Residual deviance: 377.47 on 3714 degrees of freedom
## AIC: 409.47
##
## Number of Fisher Scoring iterations: 18
# Mengimpor paket 'car'
library(car)
## Loading required package: carData
##
## Attaching package: 'car'
## The following object is masked from 'package:gtools':
##
## logit
## The following object is masked from 'package:dplyr':
##
## recode
# Menghitung VIF
vif_model <- vif(reglog_train)
vif_model
## Age Sex GD_Puasa GD_PP
## 1.151742 1.038072 3.961753 4.095025
## Kolestrol LDL HDL Lipoprotein
## 2.823979 2.675496 1.218576 2.307610
## Berat_Badan Target_Hipertensi Nyeri_Dada Riwayat_Keluarga
## 2.411212 2.534642 1.140072 1.000000
## Sistolik Diastolik Merokok
## 2.762148 2.314593 1.160728
Uji Parsial
Anova (reglog_train, type = 'II', test = 'Wald')
## Analysis of Deviance Table (Type II tests)
##
## Response: Target_PJK
## Df Chisq Pr(>Chisq)
## Age 1 1.6984 0.192493
## Sex 1 0.3844 0.535279
## GD_Puasa 1 1.0019 0.316857
## GD_PP 1 0.1681 0.681802
## Kolestrol 1 0.3153 0.574438
## LDL 1 0.2206 0.638559
## HDL 1 7.9846 0.004718 **
## Lipoprotein 1 34.0514 5.368e-09 ***
## Berat_Badan 1 36.2949 1.696e-09 ***
## Target_Hipertensi 1 0.5789 0.446749
## Nyeri_Dada 1 67.1265 2.546e-16 ***
## Riwayat_Keluarga 1 0.0008 0.976840
## Sistolik 1 7.2798 0.006974 **
## Diastolik 1 43.4148 4.428e-11 ***
## Merokok 1 0.6159 0.432587
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
GOF
library(ResourceSelection)
## Warning: package 'ResourceSelection' was built under R version 4.2.3
## ResourceSelection 0.3-5 2019-07-22
hoslem.test(reglog_train$y, fitted(reglog_train))
##
## Hosmer and Lemeshow goodness of fit (GOF) test
##
## data: reglog_train$y, fitted(reglog_train)
## X-squared = 2.627, df = 8, p-value = 0.9555
pred1 <- predict(reglog_train, test_dt, type = "response")
predicted <- round(pred1)
tab <- table(Predicted = predicted, Reference = test_dt$Target_PJK)
tab
## Reference
## Predicted 0 1
## 0 1435 20
## 1 21 121
confusionMatrix(as.factor(predicted), test_dt$Target_PJK)
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 1435 20
## 1 21 121
##
## Accuracy : 0.9743
## 95% CI : (0.9653, 0.9815)
## No Information Rate : 0.9117
## P-Value [Acc > NIR] : <2e-16
##
## Kappa : 0.841
##
## Mcnemar's Test P-Value : 1
##
## Sensitivity : 0.9856
## Specificity : 0.8582
## Pos Pred Value : 0.9863
## Neg Pred Value : 0.8521
## Prevalence : 0.9117
## Detection Rate : 0.8986
## Detection Prevalence : 0.9111
## Balanced Accuracy : 0.9219
##
## 'Positive' Class : 0
##
Smote
library(car)
reglog_smote <- glm(Target_PJK ~ ., data = smote_reglog, family = binomial(link = "logit"))
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
summ <- summary(reglog_smote)
summ
##
## Call:
## glm(formula = Target_PJK ~ ., family = binomial(link = "logit"),
## data = smote_reglog)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -3.8727 -0.0684 -0.0009 0.0092 2.9649
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -24.358355 2.197624 -11.084 < 2e-16 ***
## Age 0.026741 0.015424 1.734 0.083 .
## Sex2 -0.229395 0.267353 -0.858 0.391
## GD_Puasa 0.008478 0.007060 1.201 0.230
## GD_PP 0.003425 0.003440 0.995 0.320
## Kolestrol 0.001436 0.007326 0.196 0.845
## LDL 0.008813 0.007414 1.189 0.235
## HDL -0.051625 0.013162 -3.922 8.77e-05 ***
## Lipoprotein 0.138502 0.021033 6.585 4.55e-11 ***
## Berat_Badan -0.139882 0.018056 -7.747 9.41e-15 ***
## Target_Hipertensi1 0.262414 0.349572 0.751 0.453
## Nyeri_Dada 3.416428 0.373549 9.146 < 2e-16 ***
## Riwayat_Keluarga1 18.628288 514.833175 0.036 0.971
## Sistolik 0.051658 0.012295 4.202 2.65e-05 ***
## Diastolik 0.138030 0.018957 7.281 3.31e-13 ***
## Merokok 0.368076 0.295485 1.246 0.213
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 4158.88 on 2999 degrees of freedom
## Residual deviance: 482.71 on 2984 degrees of freedom
## AIC: 514.71
##
## Number of Fisher Scoring iterations: 19
GOF
library(ResourceSelection)
hoslem.test(reglog_smote$y, fitted(reglog_smote))
##
## Hosmer and Lemeshow goodness of fit (GOF) test
##
## data: reglog_smote$y, fitted(reglog_smote)
## X-squared = 6.7371, df = 8, p-value = 0.5652
Uji Simultan
library(pscl)
## Warning: package 'pscl' was built under R version 4.2.3
## Classes and Methods for R developed in the
## Political Science Computational Laboratory
## Department of Political Science
## Stanford University
## Simon Jackman
## hurdle and zeroinfl functions by Achim Zeileis
pR2(reglog_smote)
## fitting null model for pseudo-r2
## llh llhNull G2 McFadden r2ML
## -241.3547001 -2079.4415417 3676.1736831 0.8839329 0.7063572
## r2CU
## 0.9418096
qchisq(0.95, 18)
## [1] 28.8693
Uji Parsial
Anova (reglog_smote, type = 'II', test = 'Wald')
## Analysis of Deviance Table (Type II tests)
##
## Response: Target_PJK
## Df Chisq Pr(>Chisq)
## Age 1 3.0057 0.08297 .
## Sex 1 0.7362 0.39088
## GD_Puasa 1 1.4420 0.22981
## GD_PP 1 0.9909 0.31951
## Kolestrol 1 0.0384 0.84460
## LDL 1 1.4128 0.23459
## HDL 1 15.3849 8.769e-05 ***
## Lipoprotein 1 43.3616 4.550e-11 ***
## Berat_Badan 1 60.0166 9.406e-15 ***
## Target_Hipertensi 1 0.5635 0.45285
## Nyeri_Dada 1 83.6469 < 2.2e-16 ***
## Riwayat_Keluarga 1 0.0013 0.97114
## Sistolik 1 17.6537 2.650e-05 ***
## Diastolik 1 53.0162 3.308e-13 ***
## Merokok 1 1.5517 0.21289
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
options(digits = 3)
beta = coef(reglog_smote)
OR = exp(beta)
cbind(beta, OR)
## beta OR
## (Intercept) -24.35835 2.64e-11
## Age 0.02674 1.03e+00
## Sex2 -0.22939 7.95e-01
## GD_Puasa 0.00848 1.01e+00
## GD_PP 0.00342 1.00e+00
## Kolestrol 0.00144 1.00e+00
## LDL 0.00881 1.01e+00
## HDL -0.05163 9.50e-01
## Lipoprotein 0.13850 1.15e+00
## Berat_Badan -0.13988 8.69e-01
## Target_Hipertensi1 0.26241 1.30e+00
## Nyeri_Dada 3.41643 3.05e+01
## Riwayat_Keluarga1 18.62829 1.23e+08
## Sistolik 0.05166 1.05e+00
## Diastolik 0.13803 1.15e+00
## Merokok 0.36808 1.44e+00
pred2 <- predict(reglog_smote, test_dt, type = "response")
predicted <- round(pred2)
tab <- table(Predicted = predicted, Reference = test_dt$Target_PJK)
tab
## Reference
## Predicted 0 1
## 0 1403 8
## 1 53 133
confusionMatrix(as.factor(predicted), test_dt$Target_PJK)
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 1403 8
## 1 53 133
##
## Accuracy : 0.962
## 95% CI : (0.951, 0.971)
## No Information Rate : 0.912
## P-Value [Acc > NIR] : 2.87e-15
##
## Kappa : 0.793
##
## Mcnemar's Test P-Value : 1.76e-08
##
## Sensitivity : 0.964
## Specificity : 0.943
## Pos Pred Value : 0.994
## Neg Pred Value : 0.715
## Prevalence : 0.912
## Detection Rate : 0.879
## Detection Prevalence : 0.884
## Balanced Accuracy : 0.953
##
## 'Positive' Class : 0
##
Oversampling
library(car)
reglog_over <- glm(Target_PJK ~ ., data = oversampling_reglog, family = binomial(link = "logit"))
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
summ <- summary(reglog_over)
summ
##
## Call:
## glm(formula = Target_PJK ~ ., family = binomial(link = "logit"),
## data = oversampling_reglog)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -3.675 -0.171 -0.022 0.028 3.573
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -17.99342 1.13104 -15.91 < 2e-16 ***
## Age 0.02135 0.00770 2.77 0.00555 **
## Sex2 0.07862 0.19060 0.41 0.68000
## GD_Puasa 0.00309 0.00201 1.54 0.12289
## GD_PP 0.00207 0.00125 1.66 0.09756 .
## Kolestrol 0.00247 0.00233 1.06 0.28850
## LDL 0.00958 0.00252 3.80 0.00015 ***
## HDL -0.00578 0.00301 -1.92 0.05489 .
## Lipoprotein 0.04706 0.00762 6.18 6.5e-10 ***
## Berat_Badan -0.03305 0.00682 -4.85 1.3e-06 ***
## Target_Hipertensi1 1.65530 0.23877 6.93 4.1e-12 ***
## Nyeri_Dada 2.42782 0.22328 10.87 < 2e-16 ***
## Riwayat_Keluarga1 20.20470 466.92758 0.04 0.96549
## Sistolik 0.03622 0.00529 6.85 7.3e-12 ***
## Diastolik 0.07837 0.00874 8.96 < 2e-16 ***
## Merokok 0.31478 0.17546 1.79 0.07280 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 5170.75 on 3729 degrees of freedom
## Residual deviance: 926.08 on 3714 degrees of freedom
## AIC: 958.1
##
## Number of Fisher Scoring iterations: 19
GOF
library(ResourceSelection)
hoslem.test(reglog_over$y, fitted(reglog_over))
##
## Hosmer and Lemeshow goodness of fit (GOF) test
##
## data: reglog_over$y, fitted(reglog_over)
## X-squared = 46, df = 8, p-value = 3e-07
Uji Simultan
library(pscl)
pR2(reglog_over)
## fitting null model for pseudo-r2
## llh llhNull G2 McFadden r2ML r2CU
## -463.042 -2585.374 4244.665 0.821 0.680 0.906
qchisq(0.95, 18)
## [1] 28.9
Uji Parsial
Anova (reglog_over, type = 'II', test = 'Wald')
## Analysis of Deviance Table (Type II tests)
##
## Response: Target_PJK
## Df Chisq Pr(>Chisq)
## Age 1 7.69 0.00555 **
## Sex 1 0.17 0.68000
## GD_Puasa 1 2.38 0.12289
## GD_PP 1 2.74 0.09756 .
## Kolestrol 1 1.13 0.28850
## LDL 1 14.42 0.00015 ***
## HDL 1 3.69 0.05489 .
## Lipoprotein 1 38.17 6.5e-10 ***
## Berat_Badan 1 23.49 1.3e-06 ***
## Target_Hipertensi 1 48.06 4.1e-12 ***
## Nyeri_Dada 1 118.23 < 2e-16 ***
## Riwayat_Keluarga 1 0.00 0.96549
## Sistolik 1 46.93 7.3e-12 ***
## Diastolik 1 80.31 < 2e-16 ***
## Merokok 1 3.22 0.07280 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
options(digits = 3)
beta = coef(reglog_over)
OR = exp(beta)
cbind(beta, OR)
## beta OR
## (Intercept) -17.99342 1.53e-08
## Age 0.02135 1.02e+00
## Sex2 0.07862 1.08e+00
## GD_Puasa 0.00309 1.00e+00
## GD_PP 0.00207 1.00e+00
## Kolestrol 0.00247 1.00e+00
## LDL 0.00958 1.01e+00
## HDL -0.00578 9.94e-01
## Lipoprotein 0.04706 1.05e+00
## Berat_Badan -0.03305 9.67e-01
## Target_Hipertensi1 1.65530 5.23e+00
## Nyeri_Dada 2.42782 1.13e+01
## Riwayat_Keluarga1 20.20470 5.95e+08
## Sistolik 0.03622 1.04e+00
## Diastolik 0.07837 1.08e+00
## Merokok 0.31478 1.37e+00
pred3 <- predict(reglog_over, test_dt, type = "response")
predicted <- round(pred3)
tab <- table(Predicted = predicted, Reference = test_dt$Target_PJK)
tab
## Reference
## Predicted 0 1
## 0 1394 6
## 1 62 135
confusionMatrix(as.factor(predicted), test_dt$Target_PJK)
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 1394 6
## 1 62 135
##
## Accuracy : 0.957
## 95% CI : (0.946, 0.967)
## No Information Rate : 0.912
## P-Value [Acc > NIR] : 1.02e-12
##
## Kappa : 0.776
##
## Mcnemar's Test P-Value : 2.56e-11
##
## Sensitivity : 0.957
## Specificity : 0.957
## Pos Pred Value : 0.996
## Neg Pred Value : 0.685
## Prevalence : 0.912
## Detection Rate : 0.873
## Detection Prevalence : 0.877
## Balanced Accuracy : 0.957
##
## 'Positive' Class : 0
##
Undersampling
library(car)
reglog_under <- glm(Target_PJK ~ ., data = undersampled_reglog, family = binomial(link = "logit"))
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
summ <- summary(reglog_under)
summ
##
## Call:
## glm(formula = Target_PJK ~ ., family = binomial(link = "logit"),
## data = undersampled_reglog)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -4.598 -0.083 -0.007 0.009 3.078
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.80e+01 4.56e+00 -6.15 8.0e-10 ***
## Age 1.87e-02 2.63e-02 0.71 0.47610
## Sex2 1.93e-01 5.14e-01 0.37 0.70802
## GD_Puasa -4.82e-03 1.05e-02 -0.46 0.64524
## GD_PP 8.73e-03 5.75e-03 1.52 0.12869
## Kolestrol -3.52e-03 1.05e-02 -0.34 0.73615
## LDL 1.19e-02 1.06e-02 1.13 0.25929
## HDL -1.92e-02 2.29e-02 -0.84 0.40075
## Lipoprotein 1.33e-01 3.86e-02 3.44 0.00058 ***
## Berat_Badan -8.33e-02 3.46e-02 -2.41 0.01611 *
## Target_Hipertensi1 -4.50e-01 7.34e-01 -0.61 0.54007
## Nyeri_Dada 3.23e+00 6.89e-01 4.69 2.8e-06 ***
## Riwayat_Keluarga1 1.94e+01 1.08e+03 0.02 0.98570
## Sistolik 4.54e-02 2.12e-02 2.14 0.03232 *
## Diastolik 1.57e-01 3.23e-02 4.86 1.2e-06 ***
## Merokok 1.76e-01 5.40e-01 0.33 0.74452
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 959.31 on 692 degrees of freedom
## Residual deviance: 135.54 on 677 degrees of freedom
## AIC: 167.5
##
## Number of Fisher Scoring iterations: 19
GOF
library(ResourceSelection)
hoslem.test(reglog_under$y, fitted(reglog_under))
##
## Hosmer and Lemeshow goodness of fit (GOF) test
##
## data: reglog_under$y, fitted(reglog_under)
## X-squared = 38, df = 8, p-value = 8e-06
Uji Simultan
library(pscl)
pR2(reglog_under)
## fitting null model for pseudo-r2
## llh llhNull G2 McFadden r2ML r2CU
## -67.769 -479.657 823.777 0.859 0.695 0.928
qchisq(0.95, 18)
## [1] 28.9
Uji Parsial
Anova (reglog_under, type = 'II', test = 'Wald')
## Analysis of Deviance Table (Type II tests)
##
## Response: Target_PJK
## Df Chisq Pr(>Chisq)
## Age 1 0.51 0.47610
## Sex 1 0.14 0.70802
## GD_Puasa 1 0.21 0.64524
## GD_PP 1 2.31 0.12869
## Kolestrol 1 0.11 0.73615
## LDL 1 1.27 0.25929
## HDL 1 0.71 0.40075
## Lipoprotein 1 11.85 0.00058 ***
## Berat_Badan 1 5.79 0.01611 *
## Target_Hipertensi 1 0.38 0.54007
## Nyeri_Dada 1 21.97 2.8e-06 ***
## Riwayat_Keluarga 1 0.00 0.98570
## Sistolik 1 4.58 0.03232 *
## Diastolik 1 23.59 1.2e-06 ***
## Merokok 1 0.11 0.74452
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
options(digits = 3)
beta = coef(reglog_under)
OR = exp(beta)
cbind(beta, OR)
## beta OR
## (Intercept) -28.01413 6.82e-13
## Age 0.01875 1.02e+00
## Sex2 0.19253 1.21e+00
## GD_Puasa -0.00482 9.95e-01
## GD_PP 0.00873 1.01e+00
## Kolestrol -0.00352 9.96e-01
## LDL 0.01193 1.01e+00
## HDL -0.01924 9.81e-01
## Lipoprotein 0.13273 1.14e+00
## Berat_Badan -0.08331 9.20e-01
## Target_Hipertensi1 -0.44958 6.38e-01
## Nyeri_Dada 3.22906 2.53e+01
## Riwayat_Keluarga1 19.37001 2.58e+08
## Sistolik 0.04538 1.05e+00
## Diastolik 0.15701 1.17e+00
## Merokok 0.17587 1.19e+00
pred4 <- predict(reglog_under, test_dt, type = "response")
predicted <- round(pred4)
tab <- table(Predicted = predicted, Reference = test_dt$Target_PJK)
tab
## Reference
## Predicted 0 1
## 0 1406 8
## 1 50 133
confusionMatrix(as.factor(predicted), test_dt$Target_PJK)
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 1406 8
## 1 50 133
##
## Accuracy : 0.964
## 95% CI : (0.953, 0.972)
## No Information Rate : 0.912
## P-Value [Acc > NIR] : < 2e-16
##
## Kappa : 0.801
##
## Mcnemar's Test P-Value : 7.3e-08
##
## Sensitivity : 0.966
## Specificity : 0.943
## Pos Pred Value : 0.994
## Neg Pred Value : 0.727
## Prevalence : 0.912
## Detection Rate : 0.880
## Detection Prevalence : 0.885
## Balanced Accuracy : 0.954
##
## 'Positive' Class : 0
##
# stepwise: automatic model selection method
options(warn=-1)
log_model_all <- glm(Target_PJK ~ ., family="binomial", data= train_dt)
log_model_nothing <- glm(Target_PJK ~ 1, family="binomial", data= train_dt)
log_model1 <- step(log_model_nothing,
list(lower=formula(log_model_nothing),
upper=formula(log_model_all)),
direction="both", trace = F, test= "F")
formula(log_model1)
## Target_PJK ~ Diastolik + Riwayat_Keluarga + Nyeri_Dada + Sistolik +
## Lipoprotein + Berat_Badan + HDL + GD_Puasa + Kolestrol +
## Age
log_model1 <- glm(Target_PJK ~ Diastolik + Riwayat_Keluarga + Nyeri_Dada + Sistolik +
Lipoprotein + Berat_Badan + HDL + GD_Puasa + Kolestrol +
Age,
family = "binomial", data = train_dt)
summary(log_model1)
##
## Call:
## glm(formula = Target_PJK ~ Diastolik + Riwayat_Keluarga + Nyeri_Dada +
## Sistolik + Lipoprotein + Berat_Badan + HDL + GD_Puasa + Kolestrol +
## Age, family = "binomial", data = train_dt)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -3.779 -0.082 -0.035 -0.014 3.539
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -23.66013 2.06329 -11.47 < 2e-16 ***
## Diastolik 0.13372 0.01845 7.25 4.2e-13 ***
## Riwayat_Keluarga1 20.10186 669.99104 0.03 0.97606
## Nyeri_Dada 3.00152 0.35614 8.43 < 2e-16 ***
## Sistolik 0.03373 0.00999 3.38 0.00074 ***
## Lipoprotein 0.11963 0.02035 5.88 4.2e-09 ***
## Berat_Badan -0.09727 0.01636 -5.94 2.8e-09 ***
## HDL -0.04693 0.01446 -3.25 0.00117 **
## GD_Puasa 0.00838 0.00317 2.64 0.00819 **
## Kolestrol 0.00546 0.00357 1.53 0.12549
## Age 0.02141 0.01505 1.42 0.15492
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 2235.11 on 3729 degrees of freedom
## Residual deviance: 379.38 on 3719 degrees of freedom
## AIC: 401.4
##
## Number of Fisher Scoring iterations: 18
log_model1 <- update(log_model1, .~. -Riwayat_Keluarga)
summary(log_model1)
##
## Call:
## glm(formula = Target_PJK ~ Diastolik + Nyeri_Dada + Sistolik +
## Lipoprotein + Berat_Badan + HDL + GD_Puasa + Kolestrol +
## Age, family = "binomial", data = train_dt)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -3.992 -0.098 -0.041 -0.016 3.466
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -22.60617 1.74020 -12.99 < 2e-16 ***
## Diastolik 0.13770 0.01622 8.49 < 2e-16 ***
## Nyeri_Dada 2.93876 0.31402 9.36 < 2e-16 ***
## Sistolik 0.03207 0.00884 3.63 0.00029 ***
## Lipoprotein 0.11754 0.01830 6.42 1.3e-10 ***
## Berat_Badan -0.10288 0.01494 -6.89 5.7e-12 ***
## HDL -0.06236 0.01285 -4.85 1.2e-06 ***
## GD_Puasa 0.00796 0.00288 2.77 0.00568 **
## Kolestrol 0.00888 0.00307 2.90 0.00379 **
## Age 0.01962 0.01368 1.43 0.15150
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 2235.11 on 3729 degrees of freedom
## Residual deviance: 500.29 on 3720 degrees of freedom
## AIC: 520.3
##
## Number of Fisher Scoring iterations: 8
GOF
library(ResourceSelection)
hoslem.test(log_model1$y, fitted(log_model1))
##
## Hosmer and Lemeshow goodness of fit (GOF) test
##
## data: log_model1$y, fitted(log_model1)
## X-squared = 3, df = 8, p-value = 0.9
Uji Simultan
library(pscl)
pR2(log_model1)
## fitting null model for pseudo-r2
## llh llhNull G2 McFadden r2ML r2CU
## -250.144 -1117.556 1734.824 0.776 0.372 0.825
qchisq(0.95, 18)
## [1] 28.9
Uji Parsial
Anova (log_model1, type = 'II', test = 'Wald')
## Analysis of Deviance Table (Type II tests)
##
## Response: Target_PJK
## Df Chisq Pr(>Chisq)
## Diastolik 1 72.03 < 2e-16 ***
## Nyeri_Dada 1 87.58 < 2e-16 ***
## Sistolik 1 13.15 0.00029 ***
## Lipoprotein 1 41.25 1.3e-10 ***
## Berat_Badan 1 47.44 5.7e-12 ***
## HDL 1 23.56 1.2e-06 ***
## GD_Puasa 1 7.65 0.00568 **
## Kolestrol 1 8.38 0.00379 **
## Age 1 2.06 0.15150
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
options(digits = 3)
beta = coef(log_model1)
OR = exp(beta)
cbind(beta, OR)
## beta OR
## (Intercept) -22.60617 1.52e-10
## Diastolik 0.13770 1.15e+00
## Nyeri_Dada 2.93876 1.89e+01
## Sistolik 0.03207 1.03e+00
## Lipoprotein 0.11754 1.12e+00
## Berat_Badan -0.10288 9.02e-01
## HDL -0.06236 9.40e-01
## GD_Puasa 0.00796 1.01e+00
## Kolestrol 0.00888 1.01e+00
## Age 0.01962 1.02e+00
pred5 <- predict(log_model1, test_dt, type = "response")
predicted <- round(pred5)
tab <- table(Predicted = predicted, Reference = test_dt$Target_PJK)
tab
## Reference
## Predicted 0 1
## 0 1429 25
## 1 27 116
confusionMatrix(as.factor(predicted), test_dt$Target_PJK)
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 1429 25
## 1 27 116
##
## Accuracy : 0.967
## 95% CI : (0.958, 0.976)
## No Information Rate : 0.912
## P-Value [Acc > NIR] : <2e-16
##
## Kappa : 0.799
##
## Mcnemar's Test P-Value : 0.89
##
## Sensitivity : 0.981
## Specificity : 0.823
## Pos Pred Value : 0.983
## Neg Pred Value : 0.811
## Prevalence : 0.912
## Detection Rate : 0.895
## Detection Prevalence : 0.910
## Balanced Accuracy : 0.902
##
## 'Positive' Class : 0
##
# stepwise: automatic model selection method
options(warn=-1)
log_model_all <- glm(Target_PJK ~ ., family="binomial", data= smote_reglog)
log_model_nothing <- glm(Target_PJK ~ 1, family="binomial", data= smote_reglog)
log_model2 <- step(log_model_nothing,
list(lower=formula(log_model_nothing),
upper=formula(log_model_all)),
direction="both", trace = F, test= "F")
formula(log_model2)
## Target_PJK ~ Diastolik + Riwayat_Keluarga + Nyeri_Dada + Sistolik +
## GD_PP + Berat_Badan + Lipoprotein + HDL + LDL + Age + Merokok
log_model2 <- glm(Target_PJK ~ Diastolik + Riwayat_Keluarga + Nyeri_Dada + Sistolik +
GD_PP + Berat_Badan + Lipoprotein + HDL + LDL + Age + Merokok,
family = "binomial", data = smote_reglog)
summary(log_model2)
##
## Call:
## glm(formula = Target_PJK ~ Diastolik + Riwayat_Keluarga + Nyeri_Dada +
## Sistolik + GD_PP + Berat_Badan + Lipoprotein + HDL + LDL +
## Age + Merokok, family = "binomial", data = smote_reglog)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -3.879 -0.067 -0.001 0.009 2.935
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -24.97253 1.95399 -12.78 < 2e-16 ***
## Diastolik 0.14126 0.01871 7.55 4.3e-14 ***
## Riwayat_Keluarga1 19.57719 826.69837 0.02 0.98111
## Nyeri_Dada 3.41526 0.37020 9.23 < 2e-16 ***
## Sistolik 0.05544 0.01099 5.05 4.5e-07 ***
## GD_PP 0.00691 0.00216 3.20 0.00136 **
## Berat_Badan -0.13994 0.01789 -7.82 5.1e-15 ***
## Lipoprotein 0.13972 0.02084 6.70 2.0e-11 ***
## HDL -0.04850 0.01265 -3.83 0.00013 ***
## LDL 0.01000 0.00363 2.75 0.00590 **
## Age 0.02637 0.01526 1.73 0.08408 .
## Merokok 0.41872 0.29307 1.43 0.15308
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 4158.88 on 2999 degrees of freedom
## Residual deviance: 485.33 on 2988 degrees of freedom
## AIC: 509.3
##
## Number of Fisher Scoring iterations: 20
log_model2 <- update(log_model2, .~. -Riwayat_Keluarga)
summary(log_model2)
##
## Call:
## glm(formula = Target_PJK ~ Diastolik + Nyeri_Dada + Sistolik +
## GD_PP + Berat_Badan + Lipoprotein + HDL + LDL + Age + Merokok,
## family = "binomial", data = smote_reglog)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -4.108 -0.074 -0.001 0.066 2.893
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -23.97114 1.68886 -14.19 < 2e-16 ***
## Diastolik 0.15416 0.01786 8.63 < 2e-16 ***
## Nyeri_Dada 3.20557 0.33882 9.46 < 2e-16 ***
## Sistolik 0.05379 0.01042 5.16 2.5e-07 ***
## GD_PP 0.00779 0.00209 3.72 0.0002 ***
## Berat_Badan -0.15026 0.01689 -8.90 < 2e-16 ***
## Lipoprotein 0.13493 0.01921 7.02 2.2e-12 ***
## HDL -0.06409 0.01196 -5.36 8.4e-08 ***
## LDL 0.01133 0.00326 3.48 0.0005 ***
## Age 0.02724 0.01413 1.93 0.0538 .
## Merokok 0.76164 0.26528 2.87 0.0041 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 4158.88 on 2999 degrees of freedom
## Residual deviance: 599.49 on 2989 degrees of freedom
## AIC: 621.5
##
## Number of Fisher Scoring iterations: 8
GOF
library(ResourceSelection)
hoslem.test(log_model2$y, fitted(log_model2))
##
## Hosmer and Lemeshow goodness of fit (GOF) test
##
## data: log_model2$y, fitted(log_model2)
## X-squared = 14, df = 8, p-value = 0.08
Uji Simultan
library(pscl)
pR2(log_model2)
## fitting null model for pseudo-r2
## llh llhNull G2 McFadden r2ML r2CU
## -299.743 -2079.442 3559.398 0.856 0.695 0.926
qchisq(0.95, 18)
## [1] 28.9
Uji Parsial
Anova (log_model2, type = 'II', test = 'Wald')
## Analysis of Deviance Table (Type II tests)
##
## Response: Target_PJK
## Df Chisq Pr(>Chisq)
## Diastolik 1 74.48 < 2e-16 ***
## Nyeri_Dada 1 89.51 < 2e-16 ***
## Sistolik 1 26.64 2.5e-07 ***
## GD_PP 1 13.86 0.0002 ***
## Berat_Badan 1 79.14 < 2e-16 ***
## Lipoprotein 1 49.32 2.2e-12 ***
## HDL 1 28.72 8.4e-08 ***
## LDL 1 12.11 0.0005 ***
## Age 1 3.72 0.0538 .
## Merokok 1 8.24 0.0041 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
options(digits = 3)
beta = coef(log_model2)
OR = exp(beta)
cbind(beta, OR)
## beta OR
## (Intercept) -23.97114 3.89e-11
## Diastolik 0.15416 1.17e+00
## Nyeri_Dada 3.20557 2.47e+01
## Sistolik 0.05379 1.06e+00
## GD_PP 0.00779 1.01e+00
## Berat_Badan -0.15026 8.60e-01
## Lipoprotein 0.13493 1.14e+00
## HDL -0.06409 9.38e-01
## LDL 0.01133 1.01e+00
## Age 0.02724 1.03e+00
## Merokok 0.76164 2.14e+00
pred6 <- predict(log_model2, test_dt, type = "response")
predicted <- round(pred6)
tab <- table(Predicted = predicted, Reference = test_dt$Target_PJK)
tab
## Reference
## Predicted 0 1
## 0 1398 8
## 1 58 133
confusionMatrix(as.factor(predicted), test_dt$Target_PJK)
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 1398 8
## 1 58 133
##
## Accuracy : 0.959
## 95% CI : (0.948, 0.968)
## No Information Rate : 0.912
## P-Value [Acc > NIR] : 2.05e-13
##
## Kappa : 0.779
##
## Mcnemar's Test P-Value : 1.62e-09
##
## Sensitivity : 0.960
## Specificity : 0.943
## Pos Pred Value : 0.994
## Neg Pred Value : 0.696
## Prevalence : 0.912
## Detection Rate : 0.875
## Detection Prevalence : 0.880
## Balanced Accuracy : 0.952
##
## 'Positive' Class : 0
##
# stepwise: automatic model selection method
options(warn=-1)
log_model_all <- glm(Target_PJK ~ ., family="binomial", data= oversampling_reglog)
log_model_nothing <- glm(Target_PJK ~ 1, family="binomial", data= oversampling_reglog)
log_model3 <- step(log_model_nothing,
list(lower=formula(log_model_nothing),
upper=formula(log_model_all)),
direction="both", trace = F, test= "F")
formula(log_model3)
## Target_PJK ~ Diastolik + Riwayat_Keluarga + Sistolik + Nyeri_Dada +
## LDL + Target_Hipertensi + Lipoprotein + Berat_Badan + GD_PP +
## Age + Merokok + HDL + GD_Puasa
log_model3 <- glm(Target_PJK ~ Diastolik + Riwayat_Keluarga + Sistolik + Nyeri_Dada +
LDL + Target_Hipertensi + Lipoprotein + Berat_Badan + GD_PP +
Age + Merokok + HDL + GD_Puasa,
family = "binomial", data = oversampling_reglog)
summary(log_model3)
##
## Call:
## glm(formula = Target_PJK ~ Diastolik + Riwayat_Keluarga + Sistolik +
## Nyeri_Dada + LDL + Target_Hipertensi + Lipoprotein + Berat_Badan +
## GD_PP + Age + Merokok + HDL + GD_Puasa, family = "binomial",
## data = oversampling_reglog)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -3.658 -0.172 -0.023 0.029 3.624
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -17.73524 1.09663 -16.17 < 2e-16 ***
## Diastolik 0.07793 0.00871 8.95 < 2e-16 ***
## Riwayat_Keluarga1 20.16382 469.14090 0.04 0.9657
## Sistolik 0.03672 0.00527 6.97 3.1e-12 ***
## Nyeri_Dada 2.42049 0.22322 10.84 < 2e-16 ***
## LDL 0.01108 0.00211 5.24 1.6e-07 ***
## Target_Hipertensi1 1.64761 0.23830 6.91 4.7e-12 ***
## Lipoprotein 0.04792 0.00753 6.36 2.0e-10 ***
## Berat_Badan -0.03341 0.00679 -4.92 8.7e-07 ***
## GD_PP 0.00216 0.00125 1.73 0.0829 .
## Age 0.02118 0.00766 2.76 0.0057 **
## Merokok 0.32463 0.17520 1.85 0.0639 .
## HDL -0.00559 0.00301 -1.86 0.0632 .
## GD_Puasa 0.00322 0.00200 1.61 0.1075
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 5170.75 on 3729 degrees of freedom
## Residual deviance: 927.39 on 3716 degrees of freedom
## AIC: 955.4
##
## Number of Fisher Scoring iterations: 19
log_model3 <- update(log_model3, .~. -Riwayat_Keluarga)
summary(log_model3)
##
## Call:
## glm(formula = Target_PJK ~ Diastolik + Sistolik + Nyeri_Dada +
## LDL + Target_Hipertensi + Lipoprotein + Berat_Badan + GD_PP +
## Age + Merokok + HDL + GD_Puasa, family = "binomial", data = oversampling_reglog)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -3.831 -0.223 -0.031 0.117 3.489
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -17.04280 0.94236 -18.09 < 2e-16 ***
## Diastolik 0.08210 0.00766 10.71 < 2e-16 ***
## Sistolik 0.03702 0.00444 8.33 < 2e-16 ***
## Nyeri_Dada 2.20807 0.19391 11.39 < 2e-16 ***
## LDL 0.01184 0.00184 6.42 1.4e-10 ***
## Target_Hipertensi1 1.53198 0.20862 7.34 2.1e-13 ***
## Lipoprotein 0.04267 0.00667 6.40 1.6e-10 ***
## Berat_Badan -0.03538 0.00612 -5.78 7.5e-09 ***
## GD_PP 0.00314 0.00111 2.84 0.0045 **
## Age 0.01781 0.00674 2.64 0.0082 **
## Merokok 0.62949 0.14813 4.25 2.1e-05 ***
## HDL -0.00672 0.00261 -2.58 0.0099 **
## GD_Puasa 0.00307 0.00177 1.73 0.0833 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 5170.7 on 3729 degrees of freedom
## Residual deviance: 1230.5 on 3717 degrees of freedom
## AIC: 1257
##
## Number of Fisher Scoring iterations: 7
GOF
library(ResourceSelection)
hoslem.test(log_model3$y, fitted(log_model3))
##
## Hosmer and Lemeshow goodness of fit (GOF) test
##
## data: log_model3$y, fitted(log_model3)
## X-squared = 26, df = 8, p-value = 9e-04
Uji Simultan
library(pscl)
pR2(log_model3)
## fitting null model for pseudo-r2
## llh llhNull G2 McFadden r2ML r2CU
## -615.254 -2585.374 3940.241 0.762 0.652 0.870
qchisq(0.95, 18)
## [1] 28.9
Uji Parsial
Anova (log_model3, type = 'II', test = 'Wald')
## Analysis of Deviance Table (Type II tests)
##
## Response: Target_PJK
## Df Chisq Pr(>Chisq)
## Diastolik 1 114.77 < 2e-16 ***
## Sistolik 1 69.46 < 2e-16 ***
## Nyeri_Dada 1 129.67 < 2e-16 ***
## LDL 1 41.23 1.4e-10 ***
## Target_Hipertensi 1 53.93 2.1e-13 ***
## Lipoprotein 1 40.90 1.6e-10 ***
## Berat_Badan 1 33.39 7.5e-09 ***
## GD_PP 1 8.08 0.0045 **
## Age 1 6.99 0.0082 **
## Merokok 1 18.06 2.1e-05 ***
## HDL 1 6.65 0.0099 **
## GD_Puasa 1 3.00 0.0833 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
options(digits = 3)
beta = coef(log_model3)
OR = exp(beta)
cbind(beta, OR)
## beta OR
## (Intercept) -17.04280 3.97e-08
## Diastolik 0.08210 1.09e+00
## Sistolik 0.03702 1.04e+00
## Nyeri_Dada 2.20807 9.10e+00
## LDL 0.01184 1.01e+00
## Target_Hipertensi1 1.53198 4.63e+00
## Lipoprotein 0.04267 1.04e+00
## Berat_Badan -0.03538 9.65e-01
## GD_PP 0.00314 1.00e+00
## Age 0.01781 1.02e+00
## Merokok 0.62949 1.88e+00
## HDL -0.00672 9.93e-01
## GD_Puasa 0.00307 1.00e+00
pred7 <- predict(log_model3, test_dt, type = "response")
predicted <- round(pred7)
tab <- table(Predicted = predicted, Reference = test_dt$Target_PJK)
tab
## Reference
## Predicted 0 1
## 0 1384 7
## 1 72 134
confusionMatrix(as.factor(predicted), test_dt$Target_PJK)
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 1384 7
## 1 72 134
##
## Accuracy : 0.951
## 95% CI : (0.939, 0.961)
## No Information Rate : 0.912
## P-Value [Acc > NIR] : 2.37e-09
##
## Kappa : 0.746
##
## Mcnemar's Test P-Value : 6.00e-13
##
## Sensitivity : 0.951
## Specificity : 0.950
## Pos Pred Value : 0.995
## Neg Pred Value : 0.650
## Prevalence : 0.912
## Detection Rate : 0.867
## Detection Prevalence : 0.871
## Balanced Accuracy : 0.950
##
## 'Positive' Class : 0
##
# Assuming you have the accuracy, sensitivity, specificity, and AIC values for each model
# Create a data frame to store the results
model_comparison <- data.frame(
Model = c("reglog_smote", "reglog_over", "reglog_under", "log_model1", "log_model2", "log_model3"),
Accuracy = c(0.962, 0.957, 0.966, 0.967, 0.959 , 0.951),
Sensitivity = c(0.964, 0.957, 0.966, 0.981, 0.960, 0.951),
Specificity = c(0.943, 0.957, 0.943, 0.823, 0.943, 0.950),
AIC = c(514.7, 958.1, 167.5, 401.4, 509.3, 1257)
)
# Fill in the AIC values for the models that have AIC available
model_comparison$AIC[6] <- AIC(log_model3)
# Print the model comparison table
print(model_comparison)
## Model Accuracy Sensitivity Specificity AIC
## 1 reglog_smote 0.962 0.964 0.943 515
## 2 reglog_over 0.957 0.957 0.957 958
## 3 reglog_under 0.966 0.966 0.943 168
## 4 log_model1 0.967 0.981 0.823 401
## 5 log_model2 0.959 0.960 0.943 509
## 6 log_model3 0.951 0.951 0.950 1257