carregar pacotes

# devtools::install_github("cidedson/ahpgaussian")
library(AHPGaussian)

carregar dados

warships
##            criteria model_1 model_2 model_3 min_max
## 1     Action Radius    4000    9330   10660     max
## 2    Fuel Endurance      11      26      30     max
## 3          Autonomy      30      25      35     max
## 4    Primary Cannon      25      25     120     max
## 5  Secondary Cannon       1       2       2     max
## 6      AAW Missiles       0       1       1     max
## 7      Initial Cost     290     310     310     min
## 8   Life Cycle Cost     592     633     633     min
## 9 Construction Time       6       8       8     min

aplicar o metodo ahpgassiano na matriz de decisão

ws <-  ahpgaussian(warships)

extrair os resultados em 3 tabelas

summary(ws)
## Table1 :
##             criteria min_max variable        value          sum      norm
## 1      Action Radius     max  model_1 4.000000e+03 2.399000e+04 0.1667361
## 2     Fuel Endurance     max  model_1 1.100000e+01 6.700000e+01 0.1641791
## 3           Autonomy     max  model_1 3.000000e+01 9.000000e+01 0.3333333
## 4     Primary Cannon     max  model_1 2.500000e+01 1.700000e+02 0.1470588
## 5   Secondary Cannon     max  model_1 1.000000e+00 5.000000e+00 0.2000000
## 6       AAW Missiles     max  model_1 0.000000e+00 2.000000e+00 0.0000000
## 7       Initial Cost     min  model_1 3.448276e-03 9.899889e-03 0.3483146
## 8    Life Cycle Cost     min  model_1 1.689189e-03 4.848747e-03 0.3483764
## 9  Construction Time     min  model_1 1.666667e-01 4.166667e-01 0.4000000
## 10     Action Radius     max  model_2 9.330000e+03 2.399000e+04 0.3889120
## 11    Fuel Endurance     max  model_2 2.600000e+01 6.700000e+01 0.3880597
## 12          Autonomy     max  model_2 2.500000e+01 9.000000e+01 0.2777778
## 13    Primary Cannon     max  model_2 2.500000e+01 1.700000e+02 0.1470588
## 14  Secondary Cannon     max  model_2 2.000000e+00 5.000000e+00 0.4000000
## 15      AAW Missiles     max  model_2 1.000000e+00 2.000000e+00 0.5000000
## 16      Initial Cost     min  model_2 3.225806e-03 9.899889e-03 0.3258427
## 17   Life Cycle Cost     min  model_2 1.579779e-03 4.848747e-03 0.3258118
## 18 Construction Time     min  model_2 1.250000e-01 4.166667e-01 0.3000000
## 19     Action Radius     max  model_3 1.066000e+04 2.399000e+04 0.4443518
## 20    Fuel Endurance     max  model_3 3.000000e+01 6.700000e+01 0.4477612
## 21          Autonomy     max  model_3 3.500000e+01 9.000000e+01 0.3888889
## 22    Primary Cannon     max  model_3 1.200000e+02 1.700000e+02 0.7058824
## 23  Secondary Cannon     max  model_3 2.000000e+00 5.000000e+00 0.4000000
## 24      AAW Missiles     max  model_3 1.000000e+00 2.000000e+00 0.5000000
## 25      Initial Cost     min  model_3 3.225806e-03 9.899889e-03 0.3258427
## 26   Life Cycle Cost     min  model_3 1.579779e-03 4.848747e-03 0.3258118
## 27 Construction Time     min  model_3 1.250000e-01 4.166667e-01 0.3000000
##         mean         sd     factor
## 1  0.3333333 0.14691617 0.44074851
## 2  0.3333333 0.14950228 0.44850684
## 3  0.3333333 0.05555556 0.16666667
## 4  0.3333333 0.32263692 0.96791075
## 5  0.3333333 0.11547005 0.34641016
## 6  0.3333333 0.28867513 0.86602540
## 7  0.3333333 0.01297416 0.03892249
## 8  0.3333333 0.01302772 0.03908315
## 9  0.3333333 0.05773503 0.17320508
## 10 0.3333333 0.14691617 0.44074851
## 11 0.3333333 0.14950228 0.44850684
## 12 0.3333333 0.05555556 0.16666667
## 13 0.3333333 0.32263692 0.96791075
## 14 0.3333333 0.11547005 0.34641016
## 15 0.3333333 0.28867513 0.86602540
## 16 0.3333333 0.01297416 0.03892249
## 17 0.3333333 0.01302772 0.03908315
## 18 0.3333333 0.05773503 0.17320508
## 19 0.3333333 0.14691617 0.44074851
## 20 0.3333333 0.14950228 0.44850684
## 21 0.3333333 0.05555556 0.16666667
## 22 0.3333333 0.32263692 0.96791075
## 23 0.3333333 0.11547005 0.34641016
## 24 0.3333333 0.28867513 0.86602540
## 25 0.3333333 0.01297416 0.03892249
## 26 0.3333333 0.01302772 0.03908315
## 27 0.3333333 0.05773503 0.17320508
## 
## Table2 :
##            criteria     factor
## 1     Action Radius 0.12638026
## 2    Fuel Endurance 0.12860489
## 3          Autonomy 0.04779001
## 4    Primary Cannon 0.27753880
## 5  Secondary Cannon 0.09932968
## 6      AAW Missiles 0.24832419
## 7      Initial Cost 0.01116064
## 8   Life Cycle Cost 0.01120671
## 9 Construction Time 0.04966484
## 
## Table3 :
##    variable punctuation rank
## 19  model_3   0.5143176    1
## 10  model_2   0.3392280    2
## 1   model_1   0.1464544    3

plotar o resultado final

plot(ws)

carregar dados 2

cellphones
##       criteria Xiaomi Samsung iPhone min_max
## 1        Price   1500    1800   5000     min
## 2       Camera     12      12     20     max
## 3      Storage     64     128    128     max
## 4 Battery Life     24      18     10     max
## 5       Weight     94     120    117     min

aplicar o metodo ahpgassiano a outra matriz de decisão

cp <-  ahpgaussian(cellphones)

extrair os resultados em 3 tabelas do outro banco de dados

summary(cp)
## Table1 :
##        criteria min_max variable        value          sum      norm      mean
## 1         Price     min   Xiaomi 6.666667e-04 1.422222e-03 0.4687500 0.3333333
## 2        Camera     max   Xiaomi 1.200000e+01 4.400000e+01 0.2727273 0.3333333
## 3       Storage     max   Xiaomi 6.400000e+01 3.200000e+02 0.2000000 0.3333333
## 4  Battery Life     max   Xiaomi 2.400000e+01 5.200000e+01 0.4615385 0.3333333
## 5        Weight     min   Xiaomi 1.063830e-02 2.751864e-02 0.3865852 0.3333333
## 6         Price     min  Samsung 5.555556e-04 1.422222e-03 0.3906250 0.3333333
## 7        Camera     max  Samsung 1.200000e+01 4.400000e+01 0.2727273 0.3333333
## 8       Storage     max  Samsung 1.280000e+02 3.200000e+02 0.4000000 0.3333333
## 9  Battery Life     max  Samsung 1.800000e+01 5.200000e+01 0.3461538 0.3333333
## 10       Weight     min  Samsung 8.333333e-03 2.751864e-02 0.3028250 0.3333333
## 11        Price     min   iPhone 2.000000e-04 1.422222e-03 0.1406250 0.3333333
## 12       Camera     max   iPhone 2.000000e+01 4.400000e+01 0.4545455 0.3333333
## 13      Storage     max   iPhone 1.280000e+02 3.200000e+02 0.4000000 0.3333333
## 14 Battery Life     max   iPhone 1.000000e+01 5.200000e+01 0.1923077 0.3333333
## 15       Weight     min   iPhone 8.547009e-03 2.751864e-02 0.3105898 0.3333333
##            sd    factor
## 1  0.17140086 0.5142026
## 2  0.10497278 0.3149183
## 3  0.11547005 0.3464102
## 4  0.13507248 0.4052175
## 5  0.04628057 0.1388417
## 6  0.17140086 0.5142026
## 7  0.10497278 0.3149183
## 8  0.11547005 0.3464102
## 9  0.13507248 0.4052175
## 10 0.04628057 0.1388417
## 11 0.17140086 0.5142026
## 12 0.10497278 0.3149183
## 13 0.11547005 0.3464102
## 14 0.13507248 0.4052175
## 15 0.04628057 0.1388417
## 
## Table2 :
##       criteria     factor
## 1        Price 0.29902623
## 2       Camera 0.18313568
## 3      Storage 0.20144925
## 4 Battery Life 0.23564768
## 5       Weight 0.08074116
## 
## Table3 :
##    variable punctuation rank
## 1    Xiaomi   0.3703783    1
## 6   Samsung   0.3533537    2
## 11   iPhone   0.2762680    3

plotar o resultado final

plot(cp)

banco de dados extra

df <- tibble(
  criteria = c("Price", "Camera", "Storage", "Battery Life", "Weight"),
  model_1 = c(1500L, 12L, 64L, 24L, 94L),
  model_2 = c(1800L, 12L, 128L, 18L, 120L),
  model_3 = c(5000L, 20L, 128L, 10L, 117L),
  model_4 = c(1200L, 16L, 64L, 20L, 110L),
  model_5 = c(2000L, 20L, 256L, 14L, 140L),
  model_6 = c(1700L, 16L, 128L, 22L, 130L),
  model_7 = c(1500L, 12L, 64L, 24L, 105L),
  model_8 = c(1600L, 16L, 128L, 16L, 125L),
  model_9 = c(1900L, 16L, 256L, 18L, 135L),
  model_10 = c(2200L, 20L, 256L, 20L, 150L),
  min_max = c("min", "max", "max", "max", "min"))
df
## # A tibble: 5 × 12
##   criteria     model_1 model_2 model_3 model_4 model_5 model_6 model_7 model_8
##   <chr>          <int>   <int>   <int>   <int>   <int>   <int>   <int>   <int>
## 1 Price           1500    1800    5000    1200    2000    1700    1500    1600
## 2 Camera            12      12      20      16      20      16      12      16
## 3 Storage           64     128     128      64     256     128      64     128
## 4 Battery Life      24      18      10      20      14      22      24      16
## 5 Weight            94     120     117     110     140     130     105     125
## # ℹ 3 more variables: model_9 <int>, model_10 <int>, min_max <chr>

aplicar o metodo ahpgassiano

out <- ahpgaussian(df)

summary(out)
## Table1 :
##        criteria min_max variable        value          sum       norm mean
## 1         Price     min  model_1 6.666667e-04 5.616319e-03 0.11870171  0.1
## 2        Camera     max  model_1 1.200000e+01 1.600000e+02 0.07500000  0.1
## 3       Storage     max  model_1 6.400000e+01 1.472000e+03 0.04347826  0.1
## 4  Battery Life     max  model_1 2.400000e+01 1.860000e+02 0.12903226  0.1
## 5        Weight     min  model_1 1.063830e-02 8.304260e-02 0.12810652  0.1
## 6         Price     min  model_2 5.555556e-04 5.616319e-03 0.09891810  0.1
## 7        Camera     max  model_2 1.200000e+01 1.600000e+02 0.07500000  0.1
## 8       Storage     max  model_2 1.280000e+02 1.472000e+03 0.08695652  0.1
## 9  Battery Life     max  model_2 1.800000e+01 1.860000e+02 0.09677419  0.1
## 10       Weight     min  model_2 8.333333e-03 8.304260e-02 0.10035010  0.1
## 11        Price     min  model_3 2.000000e-04 5.616319e-03 0.03561051  0.1
## 12       Camera     max  model_3 2.000000e+01 1.600000e+02 0.12500000  0.1
## 13      Storage     max  model_3 1.280000e+02 1.472000e+03 0.08695652  0.1
## 14 Battery Life     max  model_3 1.000000e+01 1.860000e+02 0.05376344  0.1
## 15       Weight     min  model_3 8.547009e-03 8.304260e-02 0.10292318  0.1
## 16        Price     min  model_4 8.333333e-04 5.616319e-03 0.14837714  0.1
## 17       Camera     max  model_4 1.600000e+01 1.600000e+02 0.10000000  0.1
## 18      Storage     max  model_4 6.400000e+01 1.472000e+03 0.04347826  0.1
## 19 Battery Life     max  model_4 2.000000e+01 1.860000e+02 0.10752688  0.1
## 20       Weight     min  model_4 9.090909e-03 8.304260e-02 0.10947284  0.1
## 21        Price     min  model_5 5.000000e-04 5.616319e-03 0.08902629  0.1
## 22       Camera     max  model_5 2.000000e+01 1.600000e+02 0.12500000  0.1
## 23      Storage     max  model_5 2.560000e+02 1.472000e+03 0.17391304  0.1
## 24 Battery Life     max  model_5 1.400000e+01 1.860000e+02 0.07526882  0.1
## 25       Weight     min  model_5 7.142857e-03 8.304260e-02 0.08601438  0.1
## 26        Price     min  model_6 5.882353e-04 5.616319e-03 0.10473681  0.1
## 27       Camera     max  model_6 1.600000e+01 1.600000e+02 0.10000000  0.1
## 28      Storage     max  model_6 1.280000e+02 1.472000e+03 0.08695652  0.1
## 29 Battery Life     max  model_6 2.200000e+01 1.860000e+02 0.11827957  0.1
## 30       Weight     min  model_6 7.692308e-03 8.304260e-02 0.09263087  0.1
## 31        Price     min  model_7 6.666667e-04 5.616319e-03 0.11870171  0.1
## 32       Camera     max  model_7 1.200000e+01 1.600000e+02 0.07500000  0.1
## 33      Storage     max  model_7 6.400000e+01 1.472000e+03 0.04347826  0.1
## 34 Battery Life     max  model_7 2.400000e+01 1.860000e+02 0.12903226  0.1
## 35       Weight     min  model_7 9.523810e-03 8.304260e-02 0.11468583  0.1
## 36        Price     min  model_8 6.250000e-04 5.616319e-03 0.11128286  0.1
## 37       Camera     max  model_8 1.600000e+01 1.600000e+02 0.10000000  0.1
## 38      Storage     max  model_8 1.280000e+02 1.472000e+03 0.08695652  0.1
## 39 Battery Life     max  model_8 1.600000e+01 1.860000e+02 0.08602151  0.1
## 40       Weight     min  model_8 8.000000e-03 8.304260e-02 0.09633610  0.1
## 41        Price     min  model_9 5.263158e-04 5.616319e-03 0.09371188  0.1
## 42       Camera     max  model_9 1.600000e+01 1.600000e+02 0.10000000  0.1
## 43      Storage     max  model_9 2.560000e+02 1.472000e+03 0.17391304  0.1
## 44 Battery Life     max  model_9 1.800000e+01 1.860000e+02 0.09677419  0.1
## 45       Weight     min  model_9 7.407407e-03 8.304260e-02 0.08920009  0.1
## 46        Price     min model_10 4.545455e-04 5.616319e-03 0.08093299  0.1
## 47       Camera     max model_10 2.000000e+01 1.600000e+02 0.12500000  0.1
## 48      Storage     max model_10 2.560000e+02 1.472000e+03 0.17391304  0.1
## 49 Battery Life     max model_10 2.000000e+01 1.860000e+02 0.10752688  0.1
## 50       Weight     min model_10 6.666667e-03 8.304260e-02 0.08028008  0.1
##            sd    factor
## 1  0.02955275 0.2955275
## 2  0.02041241 0.2041241
## 3  0.05442024 0.5442024
## 4  0.02380209 0.2380209
## 5  0.01442564 0.1442564
## 6  0.02955275 0.2955275
## 7  0.02041241 0.2041241
## 8  0.05442024 0.5442024
## 9  0.02380209 0.2380209
## 10 0.01442564 0.1442564
## 11 0.02955275 0.2955275
## 12 0.02041241 0.2041241
## 13 0.05442024 0.5442024
## 14 0.02380209 0.2380209
## 15 0.01442564 0.1442564
## 16 0.02955275 0.2955275
## 17 0.02041241 0.2041241
## 18 0.05442024 0.5442024
## 19 0.02380209 0.2380209
## 20 0.01442564 0.1442564
## 21 0.02955275 0.2955275
## 22 0.02041241 0.2041241
## 23 0.05442024 0.5442024
## 24 0.02380209 0.2380209
## 25 0.01442564 0.1442564
## 26 0.02955275 0.2955275
## 27 0.02041241 0.2041241
## 28 0.05442024 0.5442024
## 29 0.02380209 0.2380209
## 30 0.01442564 0.1442564
## 31 0.02955275 0.2955275
## 32 0.02041241 0.2041241
## 33 0.05442024 0.5442024
## 34 0.02380209 0.2380209
## 35 0.01442564 0.1442564
## 36 0.02955275 0.2955275
## 37 0.02041241 0.2041241
## 38 0.05442024 0.5442024
## 39 0.02380209 0.2380209
## 40 0.01442564 0.1442564
## 41 0.02955275 0.2955275
## 42 0.02041241 0.2041241
## 43 0.05442024 0.5442024
## 44 0.02380209 0.2380209
## 45 0.01442564 0.1442564
## 46 0.02955275 0.2955275
## 47 0.02041241 0.2041241
## 48 0.05442024 0.5442024
## 49 0.02380209 0.2380209
## 50 0.01442564 0.1442564
## 
## Table2 :
##       criteria    factor
## 1        Price 0.2072232
## 2       Camera 0.1431314
## 3      Storage 0.3815935
## 4 Battery Life 0.1668997
## 5       Weight 0.1011522
## 
## Table3 :
##    variable punctuation rank
## 46 model_10  0.12709341    1
## 41  model_9  0.12527087    2
## 21  model_5  0.12396671    3
## 26  model_6  0.09830972    4
## 36  model_8  0.09465715    5
## 6   model_2  0.09071724    6
## 16  model_4  0.09067097    7
## 1   model_1  0.08641733    8
## 31  model_7  0.08505980    9
## 11  model_3  0.07783680   10
plot(out)