knitr::opts_chunk$set(warning = FALSE, message = FALSE)
Mypackages <-
c("lme4","tidyverse","effects","ggplot2","psych",
"MASS","Rmisc","lmerTest","ggthemes", "knitr",
"lsmeans","pastecs","sjstats","car","ordinal",
"Rcpp","corrplot", "ggpubr", "EnvStats",
"easyStats", "cowplot","see","datawizard", "ggcorrplot")
# install.packages(Mypackages) #you must remove the # in this comment if you need to install the packages!
lapply(Mypackages,
require,
character.only = TRUE)
options(knitr.kable.NA = '—')
set.seed(1)
# read in data files
setwd("~/Desktop")
gjg_raw <-read.csv("/Users/mtrenfield17/Desktop/Research/Boston College Research/Intergenerational Reciprocity/Intergenerational Reciprocity Pilot 2.csv")
plot_cooker <- function(data, iv, dv) {
part1 <- ggplot(data, aes(x = {{iv}}, y = {{dv}}, fill = {{iv}})) +
geom_violin(alpha = 0.3, scale = "count") +
stat_summary(fun = "mean", geom = "point", size = 3, color = "black") +
stat_summary(fun.data = mean_cl_normal, geom = "errorbar", width = 0.2,
size = 1.5, color = "black") +
scale_fill_manual(values = c("control" = "blue", "assuredSuccess" = "red", "uncertainSuccess" = "green")) +
theme_classic()
ggpar(part1, legend = "none")
}
pol_line <- function(data, iv, dv) {
ggplot(data, aes(x = {{iv}}, y = {{dv}}, color = condition)) +
stat_summary(fun.data = "mean_cl_normal", geom = "line") +
geom_point(position = position_jitter(width = 0.1, height = 0.1), alpha = 0.5) +
labs(x = "Political Leaning", color = "Condition")
}
lizy_cooker <- function(dv, iv, Title, x_axis_labs, y_label, sample_size, coln, rown) {
part1 <- ggviolin(gjg, x = dv, y = iv, color = dv,
alpha = 0.1, fill = dv, xlab = "Motive",
trim = TRUE, ylab = y_label) +
stat_summary(fun.data = "mean_cl_normal", geom = "crossbar", fatten = 1) +
scale_y_continuous(breaks = c(1:7)) +
labs(title = paste0(Title, " (n = ", sample_size, ")")) +
theme(panel.background = element_rect(fill = "transparent"),
legend.position = "right", ## Consider “gray97” for fill
plot.title = element_text(face = "bold", hjust = 0.5, size = 16),
plot.subtitle = element_text(hjust = 0.5),
panel.grid.major.y = element_line(color='grey75'),
axis.text.x = element_text(face = "plain", size = 13, color = "black"),
axis.text.y = element_text(face = "plain", size = 13, color = "black"),
axis.title.y = element_text(face = "plain", size = 13, color = "black",
margin = margin(t = 0, r = 10, b = 0, l = 0)), ## lower X axis title
panel.border = element_rect(color = "black", fill = NA, size = 1)) +
scale_color_discrete(name = "Condition") +
facet_wrap(~ vignette, ncol = coln, nrow = rown, scales = "free", as.table = TRUE)
ggpar(part1, legend = "none")
}
#POL_gjg_long <- filter(gjg_long, political_overall %in% c("Democrat", "Republican"))
#gjg_long$political_overall
#ggplot(gjg_long, aes(x = condition, y = p_approve, color = condition)) +
#geom_point(stat="summary", fun="mean", size = 2) +
#facet_wrap(~political_overall) +
#scale_x_discrete(labels = NULL)
gjg_raw %>%
group_by(attentionCheck) %>%
dplyr::summarise(n = n()) %>%
mutate(freq = n / sum(n))
0 participants failed the attention check.
#### filtering people who failed the attn check ####
gjg <- gjg_raw %>% filter(attentionCheck == 3)
## changing condition to factor and reordering ##
gjg$condition <- as.factor(gjg$condition)
gjg$condition <- factor(gjg$condition, levels = c("control", "assuredSuccess", "uncertainSuccess"))
## Changing clicked to factor
gjg$clicked <- as.factor(gjg$clicked)
# changing numeric DVs to numeric
gjg <- gjg %>% mutate_at(vars(certaintyCheck1, certaintyCheck2, sacrificeCheck1, sacrificeCheck2, effortCheck1, effortCheck2, taxForFuture, renewableElectric, lifestylePG, thankfulPG, sacrificesPG, gratitudePG, futureImpact, futureSacrifice, futureResponsibility, moralMitigate, moralProtect, moralCollective, effortEfficacy, dayToDayEfficacyR, americansEfficacy1, americansEfficacy2, optimism, hope, intergenerational1, intergenerational2, american1, american2, pol, pid, edu, inc), as.numeric)
gjg_dem <- gjg %>% filter(gjg$pid_text == "Democrat")
# Subset your data frame to include only the demographic columns
demo_gjg <- gjg[, c("gen", "race", "inc_text", "edu_text", "pol_text", "pid_text", "area")]
# Age
mean(gjg$age, na.rm=TRUE)
## [1] 38.94667
sd(gjg$age, na.rm=TRUE)
## [1] 14.00444
# Loop through each demographic column and calculate frequency counts
freq_tables <- list()
for (col in names(demo_gjg)) {
{
freq_table <- as.data.frame(table(demo_gjg[[col]]))
freq_table$Percent <- round(freq_table$Freq / sum(freq_table$Freq) * 100, 2)
freq_tables[[col]] <- freq_table
}
}
# Print the frequency tables
for (i in seq_along(freq_tables)) {
if (!is.null(freq_tables[[i]])) {
cat("\nTable of frequencies for", names(freq_tables)[i], ":\n")
print(freq_tables[[i]])
}
}
##
## Table of frequencies for gen :
## Var1 Freq Percent
## 1 I identify as: 8 2.67
## 2 Man 144 48.00
## 3 Woman 148 49.33
##
## Table of frequencies for race :
## Var1 Freq Percent
## 1 American Indian and Native Alaskan 1 0.33
## 2 American Indian and Native Alaskan,Black 1 0.33
## 3 American Indian and Native Alaskan,Hispanic or Latino/a/x,White 1 0.33
## 4 American Indian and Native Alaskan,White 4 1.33
## 5 Black 22 7.33
## 6 Black,Hispanic or Latino/a/x 2 0.67
## 7 Black,Hispanic or Latino/a/x,White 1 0.33
## 8 East Asian 8 2.67
## 9 East Asian,White 3 1.00
## 10 Hispanic or Latino/a/x 15 5.00
## 11 Hispanic or Latino/a/x,Middle Eastern and North African,White 1 0.33
## 12 Hispanic or Latino/a/x,White 7 2.33
## 13 Middle Eastern and North African,White 1 0.33
## 14 South Asian 4 1.33
## 15 Southeast Asian 3 1.00
## 16 Southeast Asian,White 1 0.33
## 17 White 225 75.00
##
## Table of frequencies for inc_text :
## Var1 Freq Percent
## 1 $100,000 - $149,999 41 13.67
## 2 $150,000 - $199,999 17 5.67
## 3 $25,000 - $49,999 58 19.33
## 4 $50,000 - $74,999 56 18.67
## 5 $75,000 - $99,999 54 18.00
## 6 less than $25,000 63 21.00
## 7 more than $200,000 11 3.67
##
## Table of frequencies for edu_text :
## Var1 Freq Percent
## 1 Bachelor's degree 105 35.00
## 2 Graduate degree (Masters, PhD, etc) 57 19.00
## 3 High school diploma or GED 40 13.33
## 4 Some college, Technical degree, or Associates degree 93 31.00
## 5 Some schooling, but no high school diploma or degree 5 1.67
##
## Table of frequencies for pol_text :
## Var1 Freq Percent
## 1 Conservative 29 9.67
## 2 Liberal 67 22.33
## 3 Moderate 66 22.00
## 4 Somewhat Conservative 27 9.00
## 5 Somewhat Liberal 48 16.00
## 6 Very Conservative 15 5.00
## 7 Very Liberal 48 16.00
##
## Table of frequencies for pid_text :
## Var1 Freq Percent
## 1 Democrat 142 47.33
## 2 Independent / Other 103 34.33
## 3 Republican 55 18.33
##
## Table of frequencies for area :
## Var1 Freq Percent
## 1 Rural 46 15.33
## 2 Suburban 157 52.33
## 3 Urban 97 32.33
gjg$clickedNum <- as.numeric(gjg$clicked)
DVs <- gjg[c("clickedNum", "certaintyCheck1","certaintyCheck2","sacrificeCheck1","sacrificeCheck2","effortCheck1", "effortCheck2","taxForFuture","renewableElectric","lifestylePG","thankfulPG", "sacrificesPG","gratitudePG","futureImpact","futureSacrifice","futureResponsibility","moralMitigate", "moralProtect","moralCollective","effortEfficacy","dayToDayEfficacyR", "americansEfficacy1","americansEfficacy2","optimism","hope","intergenerational1", "intergenerational2", "american1", "american2", "pol", "pid", "edu", "inc")]
# Compute pairwise correlations
corr_DVs <- cor(DVs, use = "complete.obs")
# Plot the correlation matrix
corrplot(corr_DVs, is.corr = TRUE, type = "lower", lower = "circle", tl.cex = 0.7, insig = "label_sig", diag = FALSE)
levels(gjg$condition)
## [1] "control" "assuredSuccess" "uncertainSuccess"
gjgU <- gjg %>% filter(condition == "uncertainSuccess")
cor.test(gjgU$moralMitigate, gjgU$taxForFuture)
##
## Pearson's product-moment correlation
##
## data: gjgU$moralMitigate and gjgU$taxForFuture
## t = 7.3901, df = 100, p-value = 4.539e-11
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.4521088 0.7070776
## sample estimates:
## cor
## 0.5943281
gjgC <- gjg %>% filter(condition == "control")
cor.test(gjgC$moralMitigate, gjgC$taxForFuture)
##
## Pearson's product-moment correlation
##
## data: gjgC$moralMitigate and gjgC$taxForFuture
## t = 6.3452, df = 96, p-value = 7.302e-09
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.3868838 0.6697591
## sample estimates:
## cor
## 0.5435765
DVs <- gjgU[c("certaintyCheck1","certaintyCheck2","sacrificeCheck1","sacrificeCheck2","effortCheck1", "effortCheck2","taxForFuture","renewableElectric","lifestylePG","thankfulPG", "sacrificesPG","gratitudePG","futureImpact","futureSacrifice","futureResponsibility","moralMitigate", "moralProtect","moralCollective","effortEfficacy","dayToDayEfficacyR", "americansEfficacy1","americansEfficacy2","optimism","hope","intergenerational1", "intergenerational2", "american1", "american2", "pol", "pid", "edu", "inc")]
# Compute pairwise correlations
Ccorr_DVs <- cor(DVs, use = "complete.obs")
# Plot the correlation matrix
corrplot(corr_DVs, is.corr = TRUE, type = "lower", lower = "circle", tl.cex = 0.7, insig = "label_sig", diag = FALSE)
percep_plot_list <- list(plot_cooker(gjg, condition, certaintyCheck1),
plot_cooker(gjg, condition, certaintyCheck2),
plot_cooker(gjg, condition, effortCheck1),
plot_cooker(gjg, condition, effortCheck2),
plot_cooker(gjg, condition, sacrificeCheck1),
plot_cooker(gjg, condition, sacrificeCheck2))
percep_plot_arranged <- ggarrange(plotlist = percep_plot_list, ncol = 3, nrow = 2)
overall_percep_title <- ggdraw() +
draw_label("Manipulation Check DVs", fontface = "bold")
plot_grid(overall_percep_title, percep_plot_arranged, ncol = 1, rel_heights = c(0.1, 0.9))
pol_line(gjg, pol, certaintyCheck1)
pol_line(gjg, pol, certaintyCheck2)
pol_line(gjg, pol, effortCheck1)
pol_line(gjg, pol, effortCheck2)
pol_line(gjg, pol, sacrificeCheck1)
pol_line(gjg, pol, sacrificeCheck2)
gjg$condition <- relevel(gjg$condition, ref = "control")
mod_certaintyCheck1 <- lm(certaintyCheck1 ~ condition, data = gjg)
summary(mod_certaintyCheck1)
##
## Call:
## lm(formula = certaintyCheck1 ~ condition, data = gjg)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3300 -0.8776 -0.2745 0.7255 3.1224
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.8776 0.1117 25.768 <2e-16 ***
## conditionassuredSuccess 1.4524 0.1571 9.243 <2e-16 ***
## conditionuncertainSuccess 0.3970 0.1564 2.539 0.0116 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.105 on 297 degrees of freedom
## Multiple R-squared: 0.2359, Adjusted R-squared: 0.2307
## F-statistic: 45.84 on 2 and 297 DF, p-value: < 2.2e-16
gjg_aRef <- gjg
gjg_aRef$condition <- relevel(gjg_aRef$condition, ref = "assuredSuccess")
mod_aCertaintyCheck1 <- lm(certaintyCheck1 ~ condition, data = gjg_aRef)
summary(mod_aCertaintyCheck1)
##
## Call:
## lm(formula = certaintyCheck1 ~ condition, data = gjg_aRef)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3300 -0.8776 -0.2745 0.7255 3.1224
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.3300 0.1105 39.169 < 2e-16 ***
## conditioncontrol -1.4524 0.1571 -9.243 < 2e-16 ***
## conditionuncertainSuccess -1.0555 0.1556 -6.785 6.3e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.105 on 297 degrees of freedom
## Multiple R-squared: 0.2359, Adjusted R-squared: 0.2307
## F-statistic: 45.84 on 2 and 297 DF, p-value: < 2.2e-16
mod_certaintyCheck2 <- lm(certaintyCheck2 ~ condition, data = gjg)
summary(mod_certaintyCheck2)
##
## Call:
## lm(formula = certaintyCheck2 ~ condition, data = gjg)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3600 -1.0918 -0.0918 0.6863 2.9082
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.0918 0.1165 26.535 < 2e-16 ***
## conditionassuredSuccess 1.2682 0.1640 7.735 1.63e-13 ***
## conditionuncertainSuccess 0.2219 0.1632 1.360 0.175
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.153 on 297 degrees of freedom
## Multiple R-squared: 0.1878, Adjusted R-squared: 0.1824
## F-statistic: 34.35 on 2 and 297 DF, p-value: 3.82e-14
mod_aCertaintyCheck2 <- lm(certaintyCheck2 ~ condition, data = gjg_aRef)
summary(mod_aCertaintyCheck2)
##
## Call:
## lm(formula = certaintyCheck2 ~ condition, data = gjg_aRef)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3600 -1.0918 -0.0918 0.6863 2.9082
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.3600 0.1153 37.798 < 2e-16 ***
## conditioncontrol -1.2682 0.1640 -7.735 1.63e-13 ***
## conditionuncertainSuccess -1.0463 0.1623 -6.445 4.65e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.153 on 297 degrees of freedom
## Multiple R-squared: 0.1878, Adjusted R-squared: 0.1824
## F-statistic: 34.35 on 2 and 297 DF, p-value: 3.82e-14
mod_effortCheck1 <- lm(effortCheck1 ~ condition, data = gjg)
summary(mod_effortCheck1)
##
## Call:
## lm(formula = effortCheck1 ~ condition, data = gjg)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.9000 -0.8137 0.1000 0.8469 2.8469
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.15306 0.09509 22.64 <2e-16 ***
## conditionassuredSuccess 1.74694 0.13380 13.06 <2e-16 ***
## conditionuncertainSuccess 1.66066 0.13315 12.47 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9413 on 297 degrees of freedom
## Multiple R-squared: 0.4216, Adjusted R-squared: 0.4177
## F-statistic: 108.2 on 2 and 297 DF, p-value: < 2.2e-16
mod_aeffortCheck1 <- lm(effortCheck1 ~ condition, data = gjg_aRef)
summary(mod_aeffortCheck1)
##
## Call:
## lm(formula = effortCheck1 ~ condition, data = gjg_aRef)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.9000 -0.8137 0.1000 0.8469 2.8469
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.90000 0.09413 41.431 <2e-16 ***
## conditioncontrol -1.74694 0.13380 -13.056 <2e-16 ***
## conditionuncertainSuccess -0.08627 0.13247 -0.651 0.515
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9413 on 297 degrees of freedom
## Multiple R-squared: 0.4216, Adjusted R-squared: 0.4177
## F-statistic: 108.2 on 2 and 297 DF, p-value: < 2.2e-16
mod_effortCheck2 <- lm(effortCheck2 ~ condition, data = gjg)
summary(mod_effortCheck2)
##
## Call:
## lm(formula = effortCheck2 ~ condition, data = gjg)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.7300 -0.7300 0.1961 0.7041 2.7041
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.29592 0.09309 24.66 <2e-16 ***
## conditionassuredSuccess 1.43408 0.13098 10.95 <2e-16 ***
## conditionuncertainSuccess 1.50800 0.13035 11.57 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9215 on 297 degrees of freedom
## Multiple R-squared: 0.3621, Adjusted R-squared: 0.3578
## F-statistic: 84.28 on 2 and 297 DF, p-value: < 2.2e-16
mod_aeffortCheck2 <- lm(effortCheck2 ~ condition, data = gjg_aRef)
summary(mod_aeffortCheck2)
##
## Call:
## lm(formula = effortCheck2 ~ condition, data = gjg_aRef)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.7300 -0.7300 0.1961 0.7041 2.7041
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.73000 0.09215 40.48 <2e-16 ***
## conditioncontrol -1.43408 0.13098 -10.95 <2e-16 ***
## conditionuncertainSuccess 0.07392 0.12968 0.57 0.569
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9215 on 297 degrees of freedom
## Multiple R-squared: 0.3621, Adjusted R-squared: 0.3578
## F-statistic: 84.28 on 2 and 297 DF, p-value: < 2.2e-16
mod_sacrificeCheck1 <- lm(sacrificeCheck1 ~ condition, data = gjg)
summary(mod_sacrificeCheck1)
##
## Call:
## lm(formula = sacrificeCheck1 ~ condition, data = gjg)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.2647 -1.0102 -0.0102 0.7353 1.9898
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.01020 0.09463 21.243 < 2e-16 ***
## conditionassuredSuccess 1.09980 0.13315 8.260 4.88e-15 ***
## conditionuncertainSuccess 1.25450 0.13251 9.467 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9368 on 297 degrees of freedom
## Multiple R-squared: 0.2625, Adjusted R-squared: 0.2575
## F-statistic: 52.85 on 2 and 297 DF, p-value: < 2.2e-16
mod_asacrificeCheck1 <- lm(sacrificeCheck1 ~ condition, data = gjg_aRef)
summary(mod_asacrificeCheck1)
##
## Call:
## lm(formula = sacrificeCheck1 ~ condition, data = gjg_aRef)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.2647 -1.0102 -0.0102 0.7353 1.9898
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.11000 0.09368 33.199 < 2e-16 ***
## conditioncontrol -1.09980 0.13315 -8.260 4.88e-15 ***
## conditionuncertainSuccess 0.15471 0.13183 1.174 0.242
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9368 on 297 degrees of freedom
## Multiple R-squared: 0.2625, Adjusted R-squared: 0.2575
## F-statistic: 52.85 on 2 and 297 DF, p-value: < 2.2e-16
mod_sacrificeCheck2 <- lm(sacrificeCheck2 ~ condition, data = gjg)
summary(mod_sacrificeCheck2)
##
## Call:
## lm(formula = sacrificeCheck2 ~ condition, data = gjg)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.2941 -0.2941 -0.1225 0.7059 1.8776
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.12245 0.09496 22.351 < 2e-16 ***
## conditionassuredSuccess 1.05755 0.13362 7.914 4.97e-14 ***
## conditionuncertainSuccess 1.17167 0.13297 8.811 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9401 on 297 degrees of freedom
## Multiple R-squared: 0.2396, Adjusted R-squared: 0.2345
## F-statistic: 46.8 on 2 and 297 DF, p-value: < 2.2e-16
mod_asacrificeCheck2 <- lm(sacrificeCheck2 ~ condition, data = gjg_aRef)
summary(mod_asacrificeCheck2)
##
## Call:
## lm(formula = sacrificeCheck2 ~ condition, data = gjg_aRef)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.2941 -0.2941 -0.1225 0.7059 1.8776
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.18000 0.09401 33.827 < 2e-16 ***
## conditioncontrol -1.05755 0.13362 -7.914 4.97e-14 ***
## conditionuncertainSuccess 0.11412 0.13229 0.863 0.389
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9401 on 297 degrees of freedom
## Multiple R-squared: 0.2396, Adjusted R-squared: 0.2345
## F-statistic: 46.8 on 2 and 297 DF, p-value: < 2.2e-16
percep_plot_list <- list(plot_cooker(gjg, condition, taxForFuture),
plot_cooker(gjg, condition, renewableElectric))
percep_plot_arranged <- ggarrange(plotlist = percep_plot_list, ncol = 2, nrow = 1)
ggplot(gjg, aes(x = clicked, fill = condition)) +
geom_bar(position = "dodge") +
labs(title = "Frequency of 'clicked' by condition", x = "Clicked", y = "Frequency") +
scale_fill_manual(values = c("control" = "blue", "assuredSuccess" = "red", "uncertainSuccess" = "green"))
overall_percep_title <- ggdraw() +
draw_label("Behavioral DVs", fontface = "bold")
plot_grid(overall_percep_title, percep_plot_arranged, ncol = 1, rel_heights = c(0.1, 0.9))
pol_line(gjg, pol, taxForFuture)
pol_line(gjg, pol, renewableElectric)
pol_line(gjg, pol, clicked)
gjg$renewableElectric
## [1] 4 5 3 5 6 7 4 7 5 7 5 7 6 6 4 3 6 6 5 6 7 3 6 3 1 3 1 5 1 6 3 5 7 4 4 5 5
## [38] 6 3 6 6 4 6 7 3 4 4 6 1 7 6 6 5 6 2 6 4 7 1 3 7 5 4 5 6 5 7 3 7 4 7 7 6 4
## [75] 6 5 5 7 3 6 7 7 3 6 6 4 6 6 7 3 7 6 4 1 5 5 1 4 6 6 7 2 7 6 6 1 5 1 6 1 3
## [112] 5 5 7 6 5 3 7 2 4 7 5 1 5 6 7 7 3 6 4 4 5 7 5 7 6 7 3 6 7 2 7 5 4 7 1 1 4
## [149] 5 3 5 7 7 7 2 6 7 6 5 4 7 7 5 6 6 7 6 3 2 6 5 6 2 5 1 6 1 7 5 2 4 7 2 6 2
## [186] 6 3 5 7 5 5 7 6 5 5 6 7 4 2 7 7 5 6 7 5 7 6 6 6 5 6 7 1 7 3 7 5 5 5 4 6 5
## [223] 7 7 1 1 4 7 3 5 6 7 7 1 6 2 6 7 7 4 2 4 7 5 3 3 7 4 7 3 2 1 7 6 6 6 5 6 4
## [260] 7 4 6 1 6 4 7 3 6 3 5 6 5 2 2 7 1 7 7 5 2 6 1 2 1 7 4 3 7 5 7 6 6 5 2 6 1
## [297] 5 7 1 4
gjg$pid
## [1] 1 1 1 1 1 3 2 1 1 1 1 1 1 3 3 1 2 1 1 1 1 1 1 2 2 1 3 3 2 3 1 1 1 3 1 3 3
## [38] 2 3 1 1 3 1 1 1 1 1 1 2 3 1 3 3 1 2 1 1 1 3 1 2 1 1 2 3 1 3 3 3 2 1 1 1 1
## [75] 3 1 3 1 1 3 1 1 3 1 1 1 3 3 1 3 1 3 1 2 1 1 3 2 1 1 3 2 1 1 1 2 2 3 3 2 3
## [112] 3 1 1 1 3 3 1 3 3 1 3 1 3 1 1 1 1 3 2 3 1 1 3 3 3 1 2 1 1 2 1 3 3 1 3 1 1
## [149] 2 3 3 3 1 1 1 1 3 3 1 1 3 1 1 1 1 1 2 3 2 2 1 3 2 3 3 3 2 1 3 1 3 3 2 3 2
## [186] 1 2 3 3 3 3 3 1 2 2 1 3 3 2 1 1 1 1 3 1 1 1 1 1 1 3 3 2 2 1 1 1 2 1 1 3 3
## [223] 1 3 3 3 1 3 3 2 1 1 3 2 2 2 3 1 1 3 2 3 3 2 3 3 1 2 1 2 3 2 3 3 1 1 1 1 2
## [260] 1 3 1 3 1 2 3 1 3 1 1 1 1 2 2 3 3 3 3 2 3 1 2 3 2 1 3 3 1 1 1 3 1 1 2 3 2
## [297] 1 1 2 2
mod_taxForFuture <- lm(taxForFuture ~ condition*pol, data = gjg)
summary(mod_taxForFuture)
##
## Call:
## lm(formula = taxForFuture ~ condition * pol, data = gjg)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4642 -1.0075 0.3201 0.9925 3.6943
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.445085 0.434820 3.323 0.001 **
## conditionassuredSuccess 0.527714 0.632273 0.835 0.405
## conditionuncertainSuccess 0.597195 0.624262 0.957 0.340
## pol 0.682365 0.088476 7.712 1.93e-13 ***
## conditionassuredSuccess:pol -0.009923 0.127407 -0.078 0.938
## conditionuncertainSuccess:pol -0.050668 0.126289 -0.401 0.689
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.557 on 294 degrees of freedom
## Multiple R-squared: 0.3657, Adjusted R-squared: 0.3549
## F-statistic: 33.9 on 5 and 294 DF, p-value: < 2.2e-16
mod_ataxForFuture <- lm(taxForFuture ~ condition, data = gjg_aRef)
summary(mod_ataxForFuture)
##
## Call:
## lm(formula = taxForFuture ~ condition, data = gjg_aRef)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1400 -1.1400 0.4286 1.4286 2.4286
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.1400 0.1931 26.623 <2e-16 ***
## conditioncontrol -0.5686 0.2744 -2.072 0.0391 *
## conditionuncertainSuccess -0.1498 0.2717 -0.551 0.5818
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.931 on 297 degrees of freedom
## Multiple R-squared: 0.01527, Adjusted R-squared: 0.008639
## F-statistic: 2.303 on 2 and 297 DF, p-value: 0.1018
mod_renewableElectric <- lm(renewableElectric ~ condition*pol, data = gjg)
summary(mod_renewableElectric)
##
## Call:
## lm(formula = renewableElectric ~ condition * pol, data = gjg)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4609 -1.2868 0.2757 1.1781 3.6091
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.95715 0.44432 4.405 1.48e-05 ***
## conditionassuredSuccess 0.20200 0.64609 0.313 0.755
## conditionuncertainSuccess 0.11086 0.63790 0.174 0.862
## pol 0.58396 0.09041 6.459 4.35e-10 ***
## conditionassuredSuccess:pol 0.03193 0.13019 0.245 0.806
## conditionuncertainSuccess:pol 0.02541 0.12905 0.197 0.844
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.591 on 294 degrees of freedom
## Multiple R-squared: 0.3105, Adjusted R-squared: 0.2988
## F-statistic: 26.48 on 5 and 294 DF, p-value: < 2.2e-16
mod_arenewableElectric <- lm(renewableElectric ~ condition, data = gjg_aRef)
summary(mod_arenewableElectric)
##
## Call:
## lm(formula = renewableElectric ~ condition, data = gjg_aRef)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.0600 -1.0600 0.3673 1.3673 2.3673
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.0600 0.1899 26.651 <2e-16 ***
## conditioncontrol -0.4273 0.2699 -1.584 0.114
## conditionuncertainSuccess -0.1482 0.2672 -0.555 0.579
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.899 on 297 degrees of freedom
## Multiple R-squared: 0.00862, Adjusted R-squared: 0.001944
## F-statistic: 1.291 on 2 and 297 DF, p-value: 0.2765
# Fit regression model
mod_clicked <- glm(clicked ~ condition, data = gjg, family = binomial)
summary(mod_clicked)
##
## Call:
## glm(formula = clicked ~ condition, family = binomial, data = gjg)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.4828 -0.4828 -0.4543 -0.4389 2.1853
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.29141 0.34978 -6.551 5.72e-11 ***
## conditionassuredSuccess 0.20067 0.47381 0.424 0.672
## conditionuncertainSuccess 0.07221 0.48293 0.150 0.881
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 195.05 on 299 degrees of freedom
## Residual deviance: 194.86 on 297 degrees of freedom
## AIC: 200.86
##
## Number of Fisher Scoring iterations: 5
mod_aclicked <- glm(clicked ~ condition, data = gjg_aRef, family = binomial)
summary(mod_aclicked)
##
## Call:
## glm(formula = clicked ~ condition, family = binomial, data = gjg_aRef)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.4828 -0.4828 -0.4543 -0.4389 2.1853
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.0907 0.3196 -6.542 6.08e-11 ***
## conditioncontrol -0.2007 0.4738 -0.424 0.672
## conditionuncertainSuccess -0.1285 0.4615 -0.278 0.781
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 195.05 on 299 degrees of freedom
## Residual deviance: 194.86 on 297 degrees of freedom
## AIC: 200.86
##
## Number of Fisher Scoring iterations: 5
percep_plot_list <- list(plot_cooker(gjg, condition, lifestylePG),
plot_cooker(gjg, condition, thankfulPG),
plot_cooker(gjg, condition, sacrificesPG),
plot_cooker(gjg, condition, gratitudePG) )
percep_plot_arranged <- ggarrange(plotlist = percep_plot_list, ncol = 2, nrow = 2)
plot_grid(percep_plot_arranged, ncol = 1, rel_heights = c(0.1, 0.9))
pol_line(gjg, pol, lifestylePG)
pol_line(gjg, pol, thankfulPG)
pol_line(gjg, pol, sacrificesPG)
pol_line(gjg, pol, gratitudePG)
mod_lifestylePG <- lm(lifestylePG ~ condition, data = gjg)
summary(mod_lifestylePG)
##
## Call:
## lm(formula = lifestylePG ~ condition, data = gjg)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.9804 -0.9804 0.2300 1.2300 3.3061
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.6939 0.1580 23.381 < 2e-16 ***
## conditionassuredSuccess 1.0761 0.2223 4.841 2.08e-06 ***
## conditionuncertainSuccess 1.2865 0.2212 5.815 1.56e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.564 on 297 degrees of freedom
## Multiple R-squared: 0.1151, Adjusted R-squared: 0.1091
## F-statistic: 19.31 on 2 and 297 DF, p-value: 1.302e-08
mod_alifestylePG <- lm(lifestylePG ~ condition, data = gjg_aRef)
summary(mod_alifestylePG)
##
## Call:
## lm(formula = lifestylePG ~ condition, data = gjg_aRef)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.9804 -0.9804 0.2300 1.2300 3.3061
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.7700 0.1564 30.499 < 2e-16 ***
## conditioncontrol -1.0761 0.2223 -4.841 2.08e-06 ***
## conditionuncertainSuccess 0.2104 0.2201 0.956 0.34
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.564 on 297 degrees of freedom
## Multiple R-squared: 0.1151, Adjusted R-squared: 0.1091
## F-statistic: 19.31 on 2 and 297 DF, p-value: 1.302e-08
mod_thankfulPG <- lm(thankfulPG ~ condition, data = gjg)
summary(mod_thankfulPG)
##
## Call:
## lm(formula = thankfulPG ~ condition, data = gjg)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4300 -0.6373 0.3627 0.8776 2.8776
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.1224 0.1427 28.891 < 2e-16 ***
## conditionassuredSuccess 1.3076 0.2008 6.512 3.16e-10 ***
## conditionuncertainSuccess 1.5148 0.1998 7.581 4.40e-13 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.413 on 297 degrees of freedom
## Multiple R-squared: 0.1842, Adjusted R-squared: 0.1787
## F-statistic: 33.52 on 2 and 297 DF, p-value: 7.477e-14
mod_athankfulPG <- lm(thankfulPG ~ condition, data = gjg_aRef)
summary(mod_athankfulPG)
##
## Call:
## lm(formula = thankfulPG ~ condition, data = gjg_aRef)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4300 -0.6373 0.3627 0.8776 2.8776
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.4300 0.1413 38.441 < 2e-16 ***
## conditioncontrol -1.3076 0.2008 -6.512 3.16e-10 ***
## conditionuncertainSuccess 0.2073 0.1988 1.043 0.298
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.413 on 297 degrees of freedom
## Multiple R-squared: 0.1842, Adjusted R-squared: 0.1787
## F-statistic: 33.52 on 2 and 297 DF, p-value: 7.477e-14
mod_thankfulPG <- lm(sacrificesPG ~ condition, data = gjg)
summary(mod_thankfulPG)
##
## Call:
## lm(formula = sacrificesPG ~ condition, data = gjg)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1300 -0.7551 -0.1300 0.8700 3.2449
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.7551 0.1361 27.594 < 2e-16 ***
## conditionassuredSuccess 1.3749 0.1915 7.180 5.62e-12 ***
## conditionuncertainSuccess 1.6076 0.1906 8.437 1.45e-15 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.347 on 297 degrees of freedom
## Multiple R-squared: 0.2174, Adjusted R-squared: 0.2121
## F-statistic: 41.25 on 2 and 297 DF, p-value: < 2.2e-16
mod_asacrificesPG <- lm(sacrificesPG ~ condition, data = gjg_aRef)
summary(mod_asacrificesPG)
##
## Call:
## lm(formula = sacrificesPG ~ condition, data = gjg_aRef)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1300 -0.7551 -0.1300 0.8700 3.2449
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.1300 0.1347 38.080 < 2e-16 ***
## conditioncontrol -1.3749 0.1915 -7.180 5.62e-12 ***
## conditionuncertainSuccess 0.2327 0.1896 1.228 0.221
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.347 on 297 degrees of freedom
## Multiple R-squared: 0.2174, Adjusted R-squared: 0.2121
## F-statistic: 41.25 on 2 and 297 DF, p-value: < 2.2e-16
mod_gratitudePG <- lm(gratitudePG ~ condition, data = gjg)
summary(mod_gratitudePG)
##
## Call:
## lm(formula = gratitudePG ~ condition, data = gjg)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.7549 -0.7549 0.2451 0.9082 1.9082
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.0918 0.1097 28.184 < 2e-16 ***
## conditionassuredSuccess 0.6482 0.1544 4.199 3.55e-05 ***
## conditionuncertainSuccess 0.6631 0.1536 4.316 2.16e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.086 on 297 degrees of freedom
## Multiple R-squared: 0.07495, Adjusted R-squared: 0.06872
## F-statistic: 12.03 on 2 and 297 DF, p-value: 9.454e-06
mod_agratitudePG <- lm(gratitudePG ~ condition, data = gjg_aRef)
summary(mod_agratitudePG)
##
## Call:
## lm(formula = gratitudePG ~ condition, data = gjg_aRef)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.7549 -0.7549 0.2451 0.9082 1.9082
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.7400 0.1086 34.438 < 2e-16 ***
## conditioncontrol -0.6482 0.1544 -4.199 3.55e-05 ***
## conditionuncertainSuccess 0.0149 0.1528 0.098 0.922
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.086 on 297 degrees of freedom
## Multiple R-squared: 0.07495, Adjusted R-squared: 0.06872
## F-statistic: 12.03 on 2 and 297 DF, p-value: 9.454e-06
percep_plot_list <- list(plot_cooker(gjg, condition, futureImpact),
plot_cooker(gjg, condition, futureSacrifice),
plot_cooker(gjg, condition, futureObligation),
plot_cooker(gjg, condition, futureResponsibility))
percep_plot_arranged <- ggarrange(plotlist = percep_plot_list, ncol = 2, nrow = 2)
plot_grid(percep_plot_arranged, ncol = 1, rel_heights = c(0.1, 0.9))
pol_line(gjg, pol, futureImpact)
pol_line(gjg, pol, futureSacrifice)
pol_line(gjg, pol, futureObligation)
pol_line(gjg, pol, futureResponsibility)
mod_futureImpact <- lm(futureImpact ~ condition + pol, data = gjg)
summary(mod_futureImpact)
##
## Call:
## lm(formula = futureImpact ~ condition + pol, data = gjg)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0231 -0.5328 0.2139 0.8232 2.3155
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.92650 0.24853 15.799 < 2e-16 ***
## conditionassuredSuccess 0.22257 0.19280 1.154 0.2493
## conditionuncertainSuccess 0.32417 0.19181 1.690 0.0921 .
## pol 0.26771 0.04527 5.914 9.19e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.356 on 296 degrees of freedom
## Multiple R-squared: 0.1151, Adjusted R-squared: 0.1061
## F-statistic: 12.83 on 3 and 296 DF, p-value: 6.665e-08
mod_afutureImpact <- lm(futureImpact ~ condition, data = gjg_aRef)
summary(mod_afutureImpact)
##
## Call:
## lm(formula = futureImpact ~ condition, data = gjg_aRef)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5000 -0.5000 0.5000 0.8469 1.8469
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.4100 0.1431 37.799 <2e-16 ***
## conditioncontrol -0.2569 0.2034 -1.263 0.208
## conditionuncertainSuccess 0.0900 0.2014 0.447 0.655
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.431 on 297 degrees of freedom
## Multiple R-squared: 0.01048, Adjusted R-squared: 0.003815
## F-statistic: 1.573 on 2 and 297 DF, p-value: 0.2092
mod_futureSacrifice <- lm(futureSacrifice ~ condition + pol, data = gjg)
summary(mod_futureSacrifice)
##
## Call:
## lm(formula = futureSacrifice ~ condition + pol, data = gjg)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7686 -0.5159 0.2420 0.7763 2.4947
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.74038 0.23906 15.646 < 2e-16 ***
## conditionassuredSuccess 0.25961 0.18545 1.400 0.1626
## conditionuncertainSuccess 0.47271 0.18450 2.562 0.0109 *
## pol 0.25266 0.04354 5.803 1.68e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.304 on 296 degrees of freedom
## Multiple R-squared: 0.1214, Adjusted R-squared: 0.1125
## F-statistic: 13.64 on 3 and 296 DF, p-value: 2.343e-08
mod_afutureSacrifice <- lm(futureSacrifice ~ condition, data = gjg_aRef)
summary(mod_afutureSacrifice)
##
## Call:
## lm(formula = futureSacrifice ~ condition, data = gjg_aRef)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3922 -0.3922 0.1020 0.8100 2.1020
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.1900 0.1374 37.773 <2e-16 ***
## conditioncontrol -0.2920 0.1953 -1.495 0.136
## conditionuncertainSuccess 0.2022 0.1934 1.046 0.297
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.374 on 297 degrees of freedom
## Multiple R-squared: 0.02149, Adjusted R-squared: 0.0149
## F-statistic: 3.261 on 2 and 297 DF, p-value: 0.03972
mod_futureObligation <- lm(futureObligation ~ condition + pol, data = gjg)
summary(mod_futureObligation)
##
## Call:
## lm(formula = futureObligation ~ condition + pol, data = gjg)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0081 -0.5405 0.2610 0.9919 1.7992
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.83251 0.24235 19.940 < 2e-16 ***
## conditionassuredSuccess 0.23375 0.18800 1.243 0.21473
## conditionuncertainSuccess 0.30428 0.18704 1.627 0.10484
## pol 0.13455 0.04414 3.048 0.00251 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.322 on 296 degrees of freedom
## Multiple R-squared: 0.04037, Adjusted R-squared: 0.03064
## F-statistic: 4.151 on 3 and 296 DF, p-value: 0.006674
mod_afutureObligation <- lm(futureObligation ~ condition, data = gjg_aRef)
summary(mod_afutureObligation)
##
## Call:
## lm(formula = futureObligation ~ condition, data = gjg_aRef)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.765 -0.700 0.300 1.235 1.551
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.70000 0.13404 42.525 <2e-16 ***
## conditioncontrol -0.25102 0.19052 -1.318 0.189
## conditionuncertainSuccess 0.06471 0.18863 0.343 0.732
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.34 on 297 degrees of freedom
## Multiple R-squared: 0.01024, Adjusted R-squared: 0.003578
## F-statistic: 1.537 on 2 and 297 DF, p-value: 0.2168
mod_futureResponsibility <- lm(futureResponsibility ~ condition + pol, data = gjg)
summary(mod_futureResponsibility)
##
## Call:
## lm(formula = futureResponsibility ~ condition + pol, data = gjg)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.81264 -0.63122 0.05207 0.69376 1.97915
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.35609 0.18713 12.590 < 2e-16 ***
## conditionassuredSuccess 0.34804 0.14517 2.397 0.017129 *
## conditionuncertainSuccess 0.48333 0.14443 3.347 0.000924 ***
## pol 0.15836 0.03408 4.646 5.09e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.021 on 296 degrees of freedom
## Multiple R-squared: 0.1038, Adjusted R-squared: 0.09468
## F-statistic: 11.42 on 3 and 296 DF, p-value: 4.143e-07
mod_afutureResponsibility <- lm(futureResponsibility ~ condition, data = gjg_aRef)
summary(mod_afutureResponsibility)
##
## Call:
## lm(formula = futureResponsibility ~ condition, data = gjg_aRef)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.57843 -0.57843 -0.08163 0.55000 1.91837
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.4500 0.1056 32.682 <2e-16 ***
## conditioncontrol -0.3684 0.1500 -2.455 0.0147 *
## conditionuncertainSuccess 0.1284 0.1486 0.865 0.3880
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.056 on 297 degrees of freedom
## Multiple R-squared: 0.0384, Adjusted R-squared: 0.03193
## F-statistic: 5.93 on 2 and 297 DF, p-value: 0.002983
percep_plot_list <- list(plot_cooker(gjg, condition, moralMitigate),
plot_cooker(gjg, condition, moralProtect),
plot_cooker(gjg, condition, moralCollective))
percep_plot_arranged <- ggarrange(plotlist = percep_plot_list, ncol = 2, nrow = 2)
plot_grid(percep_plot_arranged, ncol = 1, rel_heights = c(0.1, 0.9))
pol_line(gjg, pol, moralMitigate)
pol_line(gjg, pol, moralProtect)
pol_line(gjg, pol, moralCollective)
mod_moralMitigate <- lm(moralMitigate ~ condition, data = gjg)
summary(mod_moralMitigate)
##
## Call:
## lm(formula = moralMitigate ~ condition, data = gjg)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.7549 -1.2143 0.2451 1.2451 2.7857
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.2143 0.1606 26.248 <2e-16 ***
## conditionassuredSuccess 0.3057 0.2259 1.353 0.1770
## conditionuncertainSuccess 0.5406 0.2248 2.405 0.0168 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.589 on 297 degrees of freedom
## Multiple R-squared: 0.01917, Adjusted R-squared: 0.01257
## F-statistic: 2.903 on 2 and 297 DF, p-value: 0.05642
mod_amoralMitigate <- lm(moralMitigate ~ condition, data = gjg_aRef)
summary(mod_amoralMitigate)
##
## Call:
## lm(formula = moralMitigate ~ condition, data = gjg_aRef)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.7549 -1.2143 0.2451 1.2451 2.7857
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.5200 0.1589 28.437 <2e-16 ***
## conditioncontrol -0.3057 0.2259 -1.353 0.177
## conditionuncertainSuccess 0.2349 0.2237 1.050 0.294
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.589 on 297 degrees of freedom
## Multiple R-squared: 0.01917, Adjusted R-squared: 0.01257
## F-statistic: 2.903 on 2 and 297 DF, p-value: 0.05642
mod_moralProtect <- lm(moralProtect ~ condition, data = gjg)
summary(mod_moralProtect)
##
## Call:
## lm(formula = moralProtect ~ condition, data = gjg)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.7347 -1.5490 0.2653 1.3300 3.4510
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.73469 0.15755 23.705 <2e-16 ***
## conditionassuredSuccess -0.06469 0.22169 -0.292 0.771
## conditionuncertainSuccess -0.18567 0.22061 -0.842 0.401
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.56 on 297 degrees of freedom
## Multiple R-squared: 0.002462, Adjusted R-squared: -0.004255
## F-statistic: 0.3665 on 2 and 297 DF, p-value: 0.6935
mod_amoralProtect <- lm(moralProtect ~ condition, data = gjg_aRef)
summary(mod_amoralProtect)
##
## Call:
## lm(formula = moralProtect ~ condition, data = gjg_aRef)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.7347 -1.5490 0.2653 1.3300 3.4510
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.67000 0.15597 23.531 <2e-16 ***
## conditioncontrol 0.06469 0.22169 0.292 0.771
## conditionuncertainSuccess -0.12098 0.21949 -0.551 0.582
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.56 on 297 degrees of freedom
## Multiple R-squared: 0.002462, Adjusted R-squared: -0.004255
## F-statistic: 0.3665 on 2 and 297 DF, p-value: 0.6935
mod_moralCollective <- lm(moralCollective ~ condition, data = gjg)
summary(mod_moralCollective)
##
## Call:
## lm(formula = moralCollective ~ condition, data = gjg)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4902 -0.4902 0.5098 1.0000 2.0000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.0000 0.1556 32.13 <2e-16 ***
## conditionassuredSuccess 0.3700 0.2190 1.69 0.0921 .
## conditionuncertainSuccess 0.4902 0.2179 2.25 0.0252 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.54 on 297 degrees of freedom
## Multiple R-squared: 0.01807, Adjusted R-squared: 0.01146
## F-statistic: 2.733 on 2 and 297 DF, p-value: 0.06668
mod_amoralCollective <- lm(moralCollective ~ condition, data = gjg_aRef)
summary(mod_amoralCollective)
##
## Call:
## lm(formula = moralCollective ~ condition, data = gjg_aRef)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4902 -0.4902 0.5098 1.0000 2.0000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.3700 0.1540 34.859 <2e-16 ***
## conditioncontrol -0.3700 0.2190 -1.690 0.0921 .
## conditionuncertainSuccess 0.1202 0.2168 0.554 0.5797
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.54 on 297 degrees of freedom
## Multiple R-squared: 0.01807, Adjusted R-squared: 0.01146
## F-statistic: 2.733 on 2 and 297 DF, p-value: 0.06668
percep_plot_list <- list(plot_cooker(gjg, condition, effortEfficacy),
plot_cooker(gjg, condition, dayToDayEfficacyR),
plot_cooker(gjg, condition, americansEfficacy1),
plot_cooker(gjg, condition, americansEfficacy2))
percep_plot_arranged <- ggarrange(plotlist = percep_plot_list, ncol = 2, nrow = 2)
plot_grid(percep_plot_arranged, ncol = 1, rel_heights = c(0.1, 0.9))
mod_effortEfficacy <- lm(effortEfficacy ~ condition, data = gjg)
summary(mod_effortEfficacy)
##
## Call:
## lm(formula = effortEfficacy ~ condition, data = gjg)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.0196 -0.8600 0.1400 0.9804 2.2755
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.7245 0.1093 24.932 <2e-16 ***
## conditionassuredSuccess 0.1355 0.1538 0.881 0.3789
## conditionuncertainSuccess 0.2951 0.1530 1.929 0.0547 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.082 on 297 degrees of freedom
## Multiple R-squared: 0.01241, Adjusted R-squared: 0.005761
## F-statistic: 1.866 on 2 and 297 DF, p-value: 0.1565
mod_aeffortEfficacy <- lm(effortEfficacy ~ condition, data = gjg_aRef)
summary(mod_aeffortEfficacy)
##
## Call:
## lm(formula = effortEfficacy ~ condition, data = gjg_aRef)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.0196 -0.8600 0.1400 0.9804 2.2755
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.8600 0.1082 26.438 <2e-16 ***
## conditioncontrol -0.1355 0.1538 -0.881 0.379
## conditionuncertainSuccess 0.1596 0.1522 1.048 0.295
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.082 on 297 degrees of freedom
## Multiple R-squared: 0.01241, Adjusted R-squared: 0.005761
## F-statistic: 1.866 on 2 and 297 DF, p-value: 0.1565
mod_dayToDayEfficacyR <- lm(dayToDayEfficacyR ~ condition, data = gjg)
summary(mod_dayToDayEfficacyR)
##
## Call:
## lm(formula = dayToDayEfficacyR ~ condition, data = gjg)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.5306 -1.2843 -0.2843 0.7157 2.7157
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.5306122 0.1204211 21.015 <2e-16 ***
## conditionassuredSuccess -0.0006122 0.1694475 -0.004 0.997
## conditionuncertainSuccess -0.2462985 0.1686233 -1.461 0.145
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.192 on 297 degrees of freedom
## Multiple R-squared: 0.009559, Adjusted R-squared: 0.00289
## F-statistic: 1.433 on 2 and 297 DF, p-value: 0.2402
mod_adayToDayEfficacyR <- lm(dayToDayEfficacyR ~ condition, data = gjg_aRef)
summary(mod_adayToDayEfficacyR)
##
## Call:
## lm(formula = dayToDayEfficacyR ~ condition, data = gjg_aRef)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.5306 -1.2843 -0.2843 0.7157 2.7157
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.5300000 0.1192108 21.223 <2e-16 ***
## conditioncontrol 0.0006122 0.1694475 0.004 0.997
## conditionuncertainSuccess -0.2456863 0.1677611 -1.465 0.144
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.192 on 297 degrees of freedom
## Multiple R-squared: 0.009559, Adjusted R-squared: 0.00289
## F-statistic: 1.433 on 2 and 297 DF, p-value: 0.2402
mod_americansEfficacy1 <- lm(americansEfficacy1 ~ condition, data = gjg)
summary(mod_americansEfficacy1)
##
## Call:
## lm(formula = americansEfficacy1 ~ condition, data = gjg)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.4216 -0.9898 0.0102 0.9500 2.0102
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.9898 0.1122 26.640 < 2e-16 ***
## conditionassuredSuccess 0.0602 0.1579 0.381 0.70331
## conditionuncertainSuccess 0.4318 0.1572 2.747 0.00637 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.111 on 297 degrees of freedom
## Multiple R-squared: 0.02919, Adjusted R-squared: 0.02266
## F-statistic: 4.466 on 2 and 297 DF, p-value: 0.01228
mod_aamericansEfficacy1 <- lm(americansEfficacy1 ~ condition, data = gjg_aRef)
summary(mod_aamericansEfficacy1)
##
## Call:
## lm(formula = americansEfficacy1 ~ condition, data = gjg_aRef)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.4216 -0.9898 0.0102 0.9500 2.0102
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.0500 0.1111 27.452 <2e-16 ***
## conditioncontrol -0.0602 0.1579 -0.381 0.7033
## conditionuncertainSuccess 0.3716 0.1563 2.377 0.0181 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.111 on 297 degrees of freedom
## Multiple R-squared: 0.02919, Adjusted R-squared: 0.02266
## F-statistic: 4.466 on 2 and 297 DF, p-value: 0.01228
mod_americansEfficacy2 <- lm(americansEfficacy2 ~ condition, data = gjg)
summary(mod_americansEfficacy2)
##
## Call:
## lm(formula = americansEfficacy2 ~ condition, data = gjg)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.277 -1.051 -0.140 0.860 1.949
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.05102 0.11610 26.279 <2e-16 ***
## conditionassuredSuccess 0.08898 0.16337 0.545 0.586
## conditionuncertainSuccess 0.22621 0.16297 1.388 0.166
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.149 on 296 degrees of freedom
## (1 observation deleted due to missingness)
## Multiple R-squared: 0.006579, Adjusted R-squared: -0.0001334
## F-statistic: 0.9801 on 2 and 296 DF, p-value: 0.3765
mod_aamericansEfficacy2 <- lm(americansEfficacy2 ~ condition, data = gjg_aRef)
summary(mod_aamericansEfficacy2)
##
## Call:
## lm(formula = americansEfficacy2 ~ condition, data = gjg_aRef)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.277 -1.051 -0.140 0.860 1.949
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.14000 0.11494 27.320 <2e-16 ***
## conditioncontrol -0.08898 0.16337 -0.545 0.586
## conditionuncertainSuccess 0.13723 0.16214 0.846 0.398
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.149 on 296 degrees of freedom
## (1 observation deleted due to missingness)
## Multiple R-squared: 0.006579, Adjusted R-squared: -0.0001334
## F-statistic: 0.9801 on 2 and 296 DF, p-value: 0.3765
percep_plot_list <- list(plot_cooker(gjg, condition, optimism),
plot_cooker(gjg, condition, hope))
percep_plot_arranged <- ggarrange(plotlist = percep_plot_list, ncol = 2, nrow = 1)
plot_grid(percep_plot_arranged, ncol = 1, rel_heights = c(0.1, 0.9))
pol_line(gjg, pol, optimism)
pol_line(gjg, pol, hope)
mod_optimism <- lm(optimism ~ condition, data = gjg)
summary(mod_optimism)
##
## Call:
## lm(formula = optimism ~ condition, data = gjg)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.730 -1.143 0.270 1.270 2.857
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.1429 0.1647 25.158 <2e-16 ***
## conditionassuredSuccess 0.5871 0.2317 2.534 0.0118 *
## conditionuncertainSuccess 0.5532 0.2306 2.399 0.0170 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.63 on 297 degrees of freedom
## Multiple R-squared: 0.02652, Adjusted R-squared: 0.01996
## F-statistic: 4.045 on 2 and 297 DF, p-value: 0.01849
mod_aoptimism <- lm(optimism ~ condition, data = gjg_aRef)
summary(mod_aoptimism)
##
## Call:
## lm(formula = optimism ~ condition, data = gjg_aRef)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.730 -1.143 0.270 1.270 2.857
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.73000 0.16302 29.015 <2e-16 ***
## conditioncontrol -0.58714 0.23172 -2.534 0.0118 *
## conditionuncertainSuccess -0.03392 0.22941 -0.148 0.8826
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.63 on 297 degrees of freedom
## Multiple R-squared: 0.02652, Adjusted R-squared: 0.01996
## F-statistic: 4.045 on 2 and 297 DF, p-value: 0.01849
mod_hope <- lm(hope ~ condition, data = gjg)
summary(mod_hope)
##
## Call:
## lm(formula = hope ~ condition, data = gjg)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.7157 -0.7157 0.2843 0.6939 1.6939
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.3061 0.1191 27.770 <2e-16 ***
## conditionassuredSuccess 0.1739 0.1675 1.038 0.3001
## conditionuncertainSuccess 0.4096 0.1667 2.457 0.0146 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.179 on 297 degrees of freedom
## Multiple R-squared: 0.02011, Adjusted R-squared: 0.01351
## F-statistic: 3.047 on 2 and 297 DF, p-value: 0.04897
mod_ahope <- lm(hope ~ condition, data = gjg_aRef)
summary(mod_ahope)
##
## Call:
## lm(formula = hope ~ condition, data = gjg_aRef)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.7157 -0.7157 0.2843 0.6939 1.6939
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.4800 0.1179 29.528 <2e-16 ***
## conditioncontrol -0.1739 0.1675 -1.038 0.300
## conditionuncertainSuccess 0.2357 0.1659 1.421 0.156
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.179 on 297 degrees of freedom
## Multiple R-squared: 0.02011, Adjusted R-squared: 0.01351
## F-statistic: 3.047 on 2 and 297 DF, p-value: 0.04897
percep_plot_list <- list(plot_cooker(gjg, condition, intergenerational1),
plot_cooker(gjg, condition, intergenerational2),
plot_cooker(gjg, condition, american1),
plot_cooker(gjg, condition, american2))
percep_plot_arranged <- ggarrange(plotlist = percep_plot_list, ncol = 2, nrow = 2)
plot_grid(percep_plot_arranged, ncol = 1, rel_heights = c(0.1, 0.9))
pol_line(gjg, pol, intergenerational1)
pol_line(gjg, pol, intergenerational2)
pol_line(gjg, pol, american1)
pol_line(gjg, pol, american2)
mod_intergenerational1 <- lm(intergenerational1 ~ condition, data = gjg)
summary(mod_taxForFuture)
##
## Call:
## lm(formula = taxForFuture ~ condition * pol, data = gjg)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4642 -1.0075 0.3201 0.9925 3.6943
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.445085 0.434820 3.323 0.001 **
## conditionassuredSuccess 0.527714 0.632273 0.835 0.405
## conditionuncertainSuccess 0.597195 0.624262 0.957 0.340
## pol 0.682365 0.088476 7.712 1.93e-13 ***
## conditionassuredSuccess:pol -0.009923 0.127407 -0.078 0.938
## conditionuncertainSuccess:pol -0.050668 0.126289 -0.401 0.689
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.557 on 294 degrees of freedom
## Multiple R-squared: 0.3657, Adjusted R-squared: 0.3549
## F-statistic: 33.9 on 5 and 294 DF, p-value: < 2.2e-16
mod_aintergenerational1 <- lm(intergenerational1 ~ condition, data = gjg_aRef)
summary(mod_ataxForFuture)
##
## Call:
## lm(formula = taxForFuture ~ condition, data = gjg_aRef)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1400 -1.1400 0.4286 1.4286 2.4286
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.1400 0.1931 26.623 <2e-16 ***
## conditioncontrol -0.5686 0.2744 -2.072 0.0391 *
## conditionuncertainSuccess -0.1498 0.2717 -0.551 0.5818
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.931 on 297 degrees of freedom
## Multiple R-squared: 0.01527, Adjusted R-squared: 0.008639
## F-statistic: 2.303 on 2 and 297 DF, p-value: 0.1018
mod_intergenerational2 <- lm(intergenerational2 ~ condition, data = gjg)
summary(mod_intergenerational2)
##
## Call:
## lm(formula = intergenerational2 ~ condition, data = gjg)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.294 -0.949 -0.170 0.830 2.051
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.9490 0.1166 25.281 <2e-16 ***
## conditionassuredSuccess 0.2210 0.1641 1.347 0.1791
## conditionuncertainSuccess 0.3451 0.1633 2.113 0.0354 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.155 on 297 degrees of freedom
## Multiple R-squared: 0.01514, Adjusted R-squared: 0.008509
## F-statistic: 2.283 on 2 and 297 DF, p-value: 0.1038
mod_aintergenerational2 <- lm(intergenerational2 ~ condition, data = gjg_aRef)
summary(mod_aintergenerational2)
##
## Call:
## lm(formula = intergenerational2 ~ condition, data = gjg_aRef)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.294 -0.949 -0.170 0.830 2.051
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.1700 0.1155 27.452 <2e-16 ***
## conditioncontrol -0.2210 0.1641 -1.347 0.179
## conditionuncertainSuccess 0.1241 0.1625 0.764 0.446
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.155 on 297 degrees of freedom
## Multiple R-squared: 0.01514, Adjusted R-squared: 0.008509
## F-statistic: 2.283 on 2 and 297 DF, p-value: 0.1038
mod_american1 <- lm(american1 ~ condition, data = gjg)
summary(mod_american1)
##
## Call:
## lm(formula = american1 ~ condition, data = gjg)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.9608 -0.8571 0.1000 1.0392 1.1429
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.85714 0.12390 47.272 <2e-16 ***
## conditionassuredSuccess 0.04286 0.17435 0.246 0.806
## conditionuncertainSuccess 0.10364 0.17350 0.597 0.551
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.227 on 297 degrees of freedom
## Multiple R-squared: 0.001215, Adjusted R-squared: -0.005511
## F-statistic: 0.1806 on 2 and 297 DF, p-value: 0.8348
mod_aamerican1 <- lm(american1 ~ condition, data = gjg_aRef)
summary(mod_aamerican1)
##
## Call:
## lm(formula = american1 ~ condition, data = gjg_aRef)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.9608 -0.8571 0.1000 1.0392 1.1429
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.90000 0.12266 48.101 <2e-16 ***
## conditioncontrol -0.04286 0.17435 -0.246 0.806
## conditionuncertainSuccess 0.06078 0.17261 0.352 0.725
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.227 on 297 degrees of freedom
## Multiple R-squared: 0.001215, Adjusted R-squared: -0.005511
## F-statistic: 0.1806 on 2 and 297 DF, p-value: 0.8348
mod_american2 <- lm(american2 ~ condition, data = gjg)
summary(mod_american2)
##
## Call:
## lm(formula = american2 ~ condition, data = gjg)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8300 -0.8300 0.2449 1.1863 2.2449
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.75510 0.17659 26.927 <2e-16 ***
## conditionassuredSuccess 0.07490 0.24849 0.301 0.763
## conditionuncertainSuccess 0.05862 0.24728 0.237 0.813
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.748 on 297 degrees of freedom
## Multiple R-squared: 0.0003378, Adjusted R-squared: -0.006394
## F-statistic: 0.05019 on 2 and 297 DF, p-value: 0.9511
mod_aamerican2 <- lm(american2 ~ condition, data = gjg_aRef)
summary(mod_aamerican2)
##
## Call:
## lm(formula = american2 ~ condition, data = gjg_aRef)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8300 -0.8300 0.2449 1.1863 2.2449
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.83000 0.17482 27.628 <2e-16 ***
## conditioncontrol -0.07490 0.24849 -0.301 0.763
## conditionuncertainSuccess -0.01627 0.24602 -0.066 0.947
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.748 on 297 degrees of freedom
## Multiple R-squared: 0.0003378, Adjusted R-squared: -0.006394
## F-statistic: 0.05019 on 2 and 297 DF, p-value: 0.9511