library(MASS)
data(menarche)
model <- glm(cbind(Menarche, Total - Menarche) ~ Age,
data = menarche, family = binomial())
summary(model)
##
## Call:
## glm(formula = cbind(Menarche, Total - Menarche) ~ Age, family = binomial(),
## data = menarche)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -21.22639 0.77068 -27.54 <2e-16 ***
## Age 1.63197 0.05895 27.68 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 3693.884 on 24 degrees of freedom
## Residual deviance: 26.703 on 23 degrees of freedom
## AIC: 114.76
##
## Number of Fisher Scoring iterations: 4
new_data <- data.frame(Age = c(11, 12, 13))
predicted_probabilities <- predict(model, newdata = new_data, type = "response")
cat("Predicted Probabilities:", predicted_probabilities, "\n")
## Predicted Probabilities: 0.03644789 0.1620879 0.4972984