# Load packages

# Core
library(tidyverse)
library(tidyquant)
library(readr)

# Time series
library(lubridate)
library(tibbletime)

# modeling
library(broom)

Goal

Examine how each asset contributes to portfolio standard deviation. This is to ensure that our risk is not concentrated in any one asset.

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG” from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Component Contribution Step-by-Step

Refresh your memory on covariance with this video. Click this link Refresh your memory on matrix multiplication. Click this link

# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%

    pivot_wider(names_from = asset, values_from = returns) %>%

    column_to_rownames(var = "date")

asset_returns_wide_tbl
##                      AGG           EEM           EFA          IJS           SPY
## 2013-01-31 -0.0062311986 -0.0029354841  0.0366065391  0.052133595  4.992336e-02
## 2013-02-28  0.0058913029 -0.0231052995 -0.0129694016  0.016174927  1.267771e-02
## 2013-03-28  0.0009847276 -0.0102352585  0.0129694016  0.040258332  3.726833e-02
## 2013-04-30  0.0096393989  0.0120849815  0.0489674814  0.001222311  1.903043e-02
## 2013-05-31 -0.0202136949 -0.0494832414 -0.0306553206  0.041976512  2.333552e-02
## 2013-06-28 -0.0157784052 -0.0547284143 -0.0271446476 -0.001402679 -1.343500e-02
## 2013-07-31  0.0026872316  0.0131596068  0.0518603722  0.063540726  5.038615e-02
## 2013-08-30 -0.0082978604 -0.0257055199 -0.0197463287 -0.034743016 -3.045123e-02
## 2013-09-30  0.0111437318  0.0695885706  0.0753386770  0.063873453  3.115617e-02
## 2013-10-31  0.0082919028  0.0408616094  0.0320815908  0.034234084  4.526677e-02
## 2013-11-29 -0.0025095335 -0.0025940982  0.0054496048  0.041661084  2.920676e-02
## 2013-12-31 -0.0055831080 -0.0040743900  0.0215281022  0.012892158  2.559601e-02
## 2014-01-31  0.0152908962 -0.0903225673 -0.0534132369 -0.035775310 -3.588433e-02
## 2014-02-28  0.0037573802  0.0332205633  0.0595049704  0.045257339  4.451020e-02
## 2014-03-31 -0.0014811509  0.0380216214 -0.0046025837  0.013315373  8.261306e-03
## 2014-04-30  0.0081834581  0.0077725291  0.0165293759 -0.023184317  6.927371e-03
## 2014-05-30  0.0117210359  0.0290913028  0.0158286689  0.006205400  2.294146e-02
## 2014-06-30 -0.0005756471  0.0237338661  0.0091653050  0.037718518  2.043463e-02
## 2014-07-31 -0.0025121196  0.0135556986 -0.0263798006 -0.052009198 -1.352878e-02
## 2014-08-29  0.0114308202  0.0279046064  0.0018003361  0.043657696  3.870445e-02
## 2014-09-30 -0.0061673394 -0.0808567637 -0.0395985408 -0.061260443 -1.389200e-02
## 2014-10-31  0.0105845535  0.0140964731 -0.0026548299  0.068875046  2.327789e-02
## 2014-11-28  0.0065488466 -0.0155413094  0.0006254588  0.004773450  2.710147e-02
## 2014-12-31  0.0014747047 -0.0404420753 -0.0407467306  0.025295838 -2.540111e-03
## 2015-01-30  0.0203156673 -0.0068958566  0.0062264483 -0.054627927 -3.007703e-02
## 2015-02-27 -0.0089884279  0.0431364879  0.0614505640  0.056914499  5.468203e-02
## 2015-03-31  0.0037402545 -0.0150864566 -0.0143888570  0.010156836 -1.583039e-02
## 2015-04-30 -0.0032333236  0.0662810958  0.0358168233 -0.018418025  9.785726e-03
## 2015-05-29 -0.0043832151 -0.0419106635  0.0019524099  0.007509766  1.277442e-02
## 2015-06-30 -0.0108257003 -0.0297469449 -0.0316786705  0.004171653 -2.052151e-02
## 2015-07-31  0.0085847614 -0.0651778881  0.0201144512 -0.027375563  2.233815e-02
## 2015-08-31 -0.0033636135 -0.0925124271 -0.0771525052 -0.047268508 -6.288650e-02
## 2015-09-30  0.0080813769 -0.0318248982 -0.0451947603 -0.038464406 -2.584729e-02
## 2015-10-30  0.0006853295  0.0618080746  0.0640258576  0.063589426  8.163496e-02
## 2015-11-30 -0.0038983529 -0.0255602844 -0.0075557898  0.024415199  3.648339e-03
## 2015-12-31 -0.0019185483 -0.0389471007 -0.0235949493 -0.052156702 -1.743346e-02
## 2016-01-29  0.0123296034 -0.0516366501 -0.0567578854 -0.060306851 -5.106880e-02
## 2016-02-29  0.0088316490 -0.0082115123 -0.0339139916  0.020605302 -8.260923e-04
## 2016-03-31  0.0087088620  0.1218789374  0.0637456126  0.089909958  6.510034e-02
## 2016-04-29  0.0025460767  0.0040792910  0.0219752337  0.021044433  3.933197e-03
## 2016-05-31  0.0001354073 -0.0376286244 -0.0008561090  0.004397110  1.686847e-02
## 2016-06-30  0.0191670939  0.0445825494 -0.0244915750  0.008292268  3.470050e-03
## 2016-07-29  0.0054296430  0.0524421733  0.0390004132  0.049348061  3.582171e-02
## 2016-08-31 -0.0021564796  0.0087982810  0.0053266728  0.011261350  1.197036e-03
## 2016-09-30  0.0005160979  0.0248727517  0.0132791210  0.008614872  5.781714e-05
## 2016-10-31 -0.0082053164 -0.0083117851 -0.0224036697 -0.038135007 -1.748877e-02
## 2016-11-30 -0.0259895705 -0.0451619762 -0.0179744554  0.125246430  3.617587e-02
## 2016-12-30  0.0025377613 -0.0025301334  0.0267029060  0.031491611  2.006901e-02
## 2017-01-31  0.0021265760  0.0644317161  0.0323819047 -0.012143923  1.773665e-02
## 2017-02-28  0.0064374794  0.0172577307  0.0118363001  0.013428972  3.853903e-02
## 2017-03-31 -0.0005529338  0.0361889541  0.0318056803 -0.006533303  1.249348e-03
## 2017-04-28  0.0090296015  0.0168663319  0.0239523991  0.005107972  9.877038e-03
## 2017-05-31  0.0068469869  0.0280602715  0.0348101151 -0.022862809  1.401426e-02
## 2017-06-30 -0.0001822261  0.0092235121  0.0029559902  0.029151952  6.354851e-03
## 2017-07-31  0.0033342094  0.0565944225  0.0261878647  0.007481453  2.034565e-02
## 2017-08-31  0.0093693547  0.0232440045 -0.0004482411 -0.027564468  2.913536e-03
## 2017-09-29 -0.0057324246 -0.0004463692  0.0233427009  0.082321611  1.994912e-02
## 2017-10-31  0.0009782661  0.0322784211  0.0166535047  0.005915868  2.329078e-02
## 2017-11-30 -0.0014842334 -0.0038969496  0.0068701928  0.036913453  3.010798e-02
## 2017-12-29  0.0047405078  0.0369253762  0.0133981663 -0.003731113  1.205496e-02
# Covariance of asset returns
covariance_matrix <- cov(asset_returns_wide_tbl)

covariance_matrix
##               AGG          EEM          EFA           IJS           SPY
## AGG  7.398361e-05 0.0001042108 4.178219e-05 -7.812115e-05 -9.031426e-06
## EEM  1.042108e-04 0.0017547096 1.039017e-03  6.437691e-04  6.795431e-04
## EFA  4.178219e-05 0.0010390167 1.064237e-03  6.490269e-04  6.975417e-04
## IJS -7.812115e-05 0.0006437691 6.490269e-04  1.565445e-03  8.290218e-04
## SPY -9.031426e-06 0.0006795431 6.975417e-04  8.290218e-04  7.408298e-04
# Standard deviation of portfolio
# Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
w <- c(0.25, 0.25, 0.2, 0.2, 0.1)

sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
sd_portfolio
##            [,1]
## [1,] 0.02347488
# Component contribution
# Similar to the formula for sd_portfolio
# Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
component_contribution
##               AGG         EEM         EFA         IJS        SPY
## [1,] 0.0003874104 0.009257144 0.005815634 0.005684446 0.00233025
rowSums(component_contribution)
## [1] 0.02347488
# Component contribution in percentage
component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
    round(3) %>%
    as_tibble()

component_percentages
## # A tibble: 1 × 5
##     AGG   EEM   EFA   IJS   SPY
##   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099
component_percentages %>%

    as_tibble() %>%
    gather(key = "asset", value = "contribution")
## # A tibble: 5 × 2
##   asset contribution
##   <chr>        <dbl>
## 1 AGG          0.017
## 2 EEM          0.394
## 3 EFA          0.248
## 4 IJS          0.242
## 5 SPY          0.099

4 Component Contribution with a Custom Function

# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%

    pivot_wider(names_from = asset, values_from = returns) %>%

    column_to_rownames(var = "date")

asset_returns_wide_tbl
##                      AGG           EEM           EFA          IJS           SPY
## 2013-01-31 -0.0062311986 -0.0029354841  0.0366065391  0.052133595  4.992336e-02
## 2013-02-28  0.0058913029 -0.0231052995 -0.0129694016  0.016174927  1.267771e-02
## 2013-03-28  0.0009847276 -0.0102352585  0.0129694016  0.040258332  3.726833e-02
## 2013-04-30  0.0096393989  0.0120849815  0.0489674814  0.001222311  1.903043e-02
## 2013-05-31 -0.0202136949 -0.0494832414 -0.0306553206  0.041976512  2.333552e-02
## 2013-06-28 -0.0157784052 -0.0547284143 -0.0271446476 -0.001402679 -1.343500e-02
## 2013-07-31  0.0026872316  0.0131596068  0.0518603722  0.063540726  5.038615e-02
## 2013-08-30 -0.0082978604 -0.0257055199 -0.0197463287 -0.034743016 -3.045123e-02
## 2013-09-30  0.0111437318  0.0695885706  0.0753386770  0.063873453  3.115617e-02
## 2013-10-31  0.0082919028  0.0408616094  0.0320815908  0.034234084  4.526677e-02
## 2013-11-29 -0.0025095335 -0.0025940982  0.0054496048  0.041661084  2.920676e-02
## 2013-12-31 -0.0055831080 -0.0040743900  0.0215281022  0.012892158  2.559601e-02
## 2014-01-31  0.0152908962 -0.0903225673 -0.0534132369 -0.035775310 -3.588433e-02
## 2014-02-28  0.0037573802  0.0332205633  0.0595049704  0.045257339  4.451020e-02
## 2014-03-31 -0.0014811509  0.0380216214 -0.0046025837  0.013315373  8.261306e-03
## 2014-04-30  0.0081834581  0.0077725291  0.0165293759 -0.023184317  6.927371e-03
## 2014-05-30  0.0117210359  0.0290913028  0.0158286689  0.006205400  2.294146e-02
## 2014-06-30 -0.0005756471  0.0237338661  0.0091653050  0.037718518  2.043463e-02
## 2014-07-31 -0.0025121196  0.0135556986 -0.0263798006 -0.052009198 -1.352878e-02
## 2014-08-29  0.0114308202  0.0279046064  0.0018003361  0.043657696  3.870445e-02
## 2014-09-30 -0.0061673394 -0.0808567637 -0.0395985408 -0.061260443 -1.389200e-02
## 2014-10-31  0.0105845535  0.0140964731 -0.0026548299  0.068875046  2.327789e-02
## 2014-11-28  0.0065488466 -0.0155413094  0.0006254588  0.004773450  2.710147e-02
## 2014-12-31  0.0014747047 -0.0404420753 -0.0407467306  0.025295838 -2.540111e-03
## 2015-01-30  0.0203156673 -0.0068958566  0.0062264483 -0.054627927 -3.007703e-02
## 2015-02-27 -0.0089884279  0.0431364879  0.0614505640  0.056914499  5.468203e-02
## 2015-03-31  0.0037402545 -0.0150864566 -0.0143888570  0.010156836 -1.583039e-02
## 2015-04-30 -0.0032333236  0.0662810958  0.0358168233 -0.018418025  9.785726e-03
## 2015-05-29 -0.0043832151 -0.0419106635  0.0019524099  0.007509766  1.277442e-02
## 2015-06-30 -0.0108257003 -0.0297469449 -0.0316786705  0.004171653 -2.052151e-02
## 2015-07-31  0.0085847614 -0.0651778881  0.0201144512 -0.027375563  2.233815e-02
## 2015-08-31 -0.0033636135 -0.0925124271 -0.0771525052 -0.047268508 -6.288650e-02
## 2015-09-30  0.0080813769 -0.0318248982 -0.0451947603 -0.038464406 -2.584729e-02
## 2015-10-30  0.0006853295  0.0618080746  0.0640258576  0.063589426  8.163496e-02
## 2015-11-30 -0.0038983529 -0.0255602844 -0.0075557898  0.024415199  3.648339e-03
## 2015-12-31 -0.0019185483 -0.0389471007 -0.0235949493 -0.052156702 -1.743346e-02
## 2016-01-29  0.0123296034 -0.0516366501 -0.0567578854 -0.060306851 -5.106880e-02
## 2016-02-29  0.0088316490 -0.0082115123 -0.0339139916  0.020605302 -8.260923e-04
## 2016-03-31  0.0087088620  0.1218789374  0.0637456126  0.089909958  6.510034e-02
## 2016-04-29  0.0025460767  0.0040792910  0.0219752337  0.021044433  3.933197e-03
## 2016-05-31  0.0001354073 -0.0376286244 -0.0008561090  0.004397110  1.686847e-02
## 2016-06-30  0.0191670939  0.0445825494 -0.0244915750  0.008292268  3.470050e-03
## 2016-07-29  0.0054296430  0.0524421733  0.0390004132  0.049348061  3.582171e-02
## 2016-08-31 -0.0021564796  0.0087982810  0.0053266728  0.011261350  1.197036e-03
## 2016-09-30  0.0005160979  0.0248727517  0.0132791210  0.008614872  5.781714e-05
## 2016-10-31 -0.0082053164 -0.0083117851 -0.0224036697 -0.038135007 -1.748877e-02
## 2016-11-30 -0.0259895705 -0.0451619762 -0.0179744554  0.125246430  3.617587e-02
## 2016-12-30  0.0025377613 -0.0025301334  0.0267029060  0.031491611  2.006901e-02
## 2017-01-31  0.0021265760  0.0644317161  0.0323819047 -0.012143923  1.773665e-02
## 2017-02-28  0.0064374794  0.0172577307  0.0118363001  0.013428972  3.853903e-02
## 2017-03-31 -0.0005529338  0.0361889541  0.0318056803 -0.006533303  1.249348e-03
## 2017-04-28  0.0090296015  0.0168663319  0.0239523991  0.005107972  9.877038e-03
## 2017-05-31  0.0068469869  0.0280602715  0.0348101151 -0.022862809  1.401426e-02
## 2017-06-30 -0.0001822261  0.0092235121  0.0029559902  0.029151952  6.354851e-03
## 2017-07-31  0.0033342094  0.0565944225  0.0261878647  0.007481453  2.034565e-02
## 2017-08-31  0.0093693547  0.0232440045 -0.0004482411 -0.027564468  2.913536e-03
## 2017-09-29 -0.0057324246 -0.0004463692  0.0233427009  0.082321611  1.994912e-02
## 2017-10-31  0.0009782661  0.0322784211  0.0166535047  0.005915868  2.329078e-02
## 2017-11-30 -0.0014842334 -0.0038969496  0.0068701928  0.036913453  3.010798e-02
## 2017-12-29  0.0047405078  0.0369253762  0.0133981663 -0.003731113  1.205496e-02
calculate_component_contribution <- function(.data, w) {
    
    # Covariance of asset returns
    covariance_matrix <- cov(.data)
    
    # Standard deviation of portfolio
    # Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
    sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
    
    # Component contribution
    # Similar to the formula for sd_portfolio
    # Mathematical trick to summarize the same, sd_portfolio, by asset instead on a single number
    component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
    
    # Component contribution in percentage
    component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
        round(3) %>%
        as_tibble()
    
    return(component_percentages)
}

asset_returns_wide_tbl %>% calculate_component_contribution(w = c(.25, .25, .2, .2, .1))
## # A tibble: 1 × 5
##     AGG   EEM   EFA   IJS   SPY
##   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099

5 Visualizing Component Contribution

Column Chart of Component Contribution

plot_data <- asset_returns_wide_tbl %>% 
    
    calculate_component_contribution(w = c(.25, .25, .2, .2, .1)) %>%
    
    # Transform to long form
    pivot_longer(cols = everything(), names_to = "Asset", values_to = "Contribution")

plot_data %>%
    
    ggplot(aes(x = Asset, y = Contribution)) + 
    geom_col(fill = "cornflowerblue") + 
    
    scale_y_continuous(labels = scales::percent_format(accuracy = 1)) + 
    theme(plot.title = element_text(hjust = 0.5)) +
    
    labs(title = "Percent Contribution to Portfolio Volatility")

Column Chart of Component Contribution and weight

plot_data <- asset_returns_wide_tbl %>% 
    
    calculate_component_contribution(w = c(.25, .25, .2, .2, .1)) %>%
    
    # Transform to long form
    pivot_longer(cols = everything(), names_to = "Asset", values_to = "Contribution") %>% 
    
    # Add weights
    add_column(weight = c(.25, .25, .2, .2, .1)) %>%
    
    # Transform to long
    pivot_longer(cols = c(Contribution, weight), names_to = "type", values_to = "value")

plot_data %>%
    
    ggplot(aes(x = Asset, y = value, fill = type)) + 
    geom_col(position = "dodge") + 
    
    scale_y_continuous(labels = scales::percent_format(accuracy = 1)) + 
    scale_fill_tq() +
    theme(plot.title = element_text(hjust = 0.5)) + 
    theme_tq() +
    
    labs(title = "Percent Contribution to Portfolio Volatility and Weight", y = "Percent", 
         x = NULL)

6 Rolling Component Contribution