\[ \boldsymbol{A}=\begin{bmatrix}1&3\\2&4\end{bmatrix}, \boldsymbol{B}=\begin{bmatrix}1\\2\end{bmatrix} のとき,\boldsymbol{A}\cdot \boldsymbol{B}を求めよ。 \]
(A <- matrix(1:4, nrow = 2))
## [,1] [,2]
## [1,] 1 3
## [2,] 2 4
(B <- matrix(1:2, nrow = 2))
## [,1]
## [1,] 1
## [2,] 2
A %*% B
## [,1]
## [1,] 7
## [2,] 10
import numpy as np
A = np.matrix([[1, 3], [2, 4]])
print(A)
## [[1 3]
## [2 4]]
B = np.matrix([[1],[2]])
print(B)
## [[1]
## [2]]
A.dot(B)
## matrix([[ 7],
## [10]])
\[ \boldsymbol{A}=\begin{bmatrix}1&3\\2&4\end{bmatrix}, \boldsymbol{I}=\begin{bmatrix}1&0\\0&1\end{bmatrix} のとき,\boldsymbol{A}\cdot \boldsymbol{I}を求めよ。 \]
(A <- matrix(1:4, nrow = 2))
## [,1] [,2]
## [1,] 1 3
## [2,] 2 4
(I <- diag(nrow = 2))
## [,1] [,2]
## [1,] 1 0
## [2,] 0 1
A %*% I
## [,1] [,2]
## [1,] 1 3
## [2,] 2 4
A = np.matrix([[1, 3], [2, 4]])
print(A)
## [[1 3]
## [2 4]]
I = np.diag([1,1])
print(I)
## [[1 0]
## [0 1]]
A.dot(I)
## matrix([[1, 3],
## [2, 4]])
\[ \boldsymbol{A}=\begin{bmatrix}1&3\\2&4\end{bmatrix}, \boldsymbol{B}=\begin{bmatrix}1&3\\2&4\end{bmatrix} のとき,\boldsymbol{A}\cdot \boldsymbol{B}を求めよ。 \]
A <- matrix(1:4, nrow = 2)
B <- matrix(1:4, nrow = 2)
A %*% B
## [,1] [,2]
## [1,] 7 15
## [2,] 10 22
次のように単に積記号「*」だと要素積(アダマール積)になるので注意する。 \[\boldsymbol{A}\otimes \boldsymbol{B}\]
A * B
## [,1] [,2]
## [1,] 1 9
## [2,] 4 16
A = np.matrix([[1, 3], [2, 4]])
B = np.matrix([[1, 3], [2, 4]])
A.dot(B)
## matrix([[ 7, 15],
## [10, 22]])
#install.packages("matlib")
library(matlib)
# shows addition of vectors
theta <- seq(0, 2*pi, pi/10)
x <- cos(theta)
y <- sin(theta)
v <- rbind(x, y)
A <- matrix(c(2, 0, -2, 2), nrow = 2)
w <- A %*% v
# proper geometry requires asp=1
matplot(x, y, type = "o",
xlim = c(-5, 5), ylim = c(-5, 5),
xlab="X", ylab = "Y")
matpoints(w[1, ], w[2, ], type = "o",
xlim = c(-5, 5), ylim = c(-5, 5),
xlab = "X", ylab = "Y")
abline(v = seq(-5, 5, 1),
h = seq(-5, 5, 1), lty = 2, col = gray(0.2))