=====================================================
Nama Mahasiswa : โIzzan Nuha Zamroni
NIM : 220605110082
Kelas : C
Mata Kuliah : Linear Algebra
Dosen Pengampuh : Prof.Dr.Suhartono,M.Kom
Jurusan : Teknik Informatika
Universitas : UIN Maulana Malik Ibrahim Malang
=====================================================
df <- USArrests
df <- na.omit(df)
df <- scale(df)
library(pracma)
A <- matrix(c(1, 1, 1, 1, 1, 0, 0, 0, 1), 3, 3, byrow = TRUE)
B <- orth(A)
B
## [,1] [,2]
## [1,] -0.7886751 0.2113249
## [2,] -0.5773503 -0.5773503
## [3,] -0.2113249 0.7886751
library(MASS)
A <- matrix(c(1, 1, 1, 1, 1, 0, 0, 0, 1), 3, 3, byrow = TRUE)
Null(t(A))
## [,1]
## [1,] -7.071068e-01
## [2,] 7.071068e-01
## [3,] -1.110223e-16
Null(t(A))
## [,1]
## [1,] -7.071068e-01
## [2,] 7.071068e-01
## [3,] -1.110223e-16
pca<- princomp(data.frame(scale(df)))
pca$loadings
##
## Loadings:
## Comp.1 Comp.2 Comp.3 Comp.4
## Murder 0.536 0.418 0.341 0.649
## Assault 0.583 0.188 0.268 -0.743
## UrbanPop 0.278 -0.873 0.378 0.134
## Rape 0.543 -0.167 -0.818
##
## Comp.1 Comp.2 Comp.3 Comp.4
## SS loadings 1.00 1.00 1.00 1.00
## Proportion Var 0.25 0.25 0.25 0.25
## Cumulative Var 0.25 0.50 0.75 1.00
pca$loadings
##
## Loadings:
## Comp.1 Comp.2 Comp.3 Comp.4
## Murder 0.536 0.418 0.341 0.649
## Assault 0.583 0.188 0.268 -0.743
## UrbanPop 0.278 -0.873 0.378 0.134
## Rape 0.543 -0.167 -0.818
##
## Comp.1 Comp.2 Comp.3 Comp.4
## SS loadings 1.00 1.00 1.00 1.00
## Proportion Var 0.25 0.25 0.25 0.25
## Cumulative Var 0.25 0.50 0.75 1.00
library(ISLR)
data(Hitters)
D <- na.omit(Hitters)
library(pracma)
res <- odregress(as.matrix(D[,1:2]), as.matrix(D$Salary))
res$coeff
## [1] -43.53176 150.65796 1861.91571
A <- matrix(c(2, 1, 1, 2), 2, 2)
eigen(A)
## eigen() decomposition
## $values
## [1] 3 1
##
## $vectors
## [,1] [,2]
## [1,] 0.7071068 -0.7071068
## [2,] 0.7071068 0.7071068
# Menghitung dan menampilkan bilangan Fibonacci
fibonacci <- function(n) {
if (n <= 0) {
return(NULL)
} else if (n == 1) {
return(0)
} else if (n == 2) {
return(1)
} else {
a <- 0
b <- 1
for (i in 3:n) {
c <- a + b
a <- b
b <- c
}
return(b)
}
}
# Menampilkan deret Fibonacci dari 1 hingga 10
for (i in 1:10) {
hasil <- fibonacci(i)
print(hasil)
}
## [1] 0
## [1] 1
## [1] 1
## [1] 2
## [1] 3
## [1] 5
## [1] 8
## [1] 13
## [1] 21
## [1] 34