1. INTRODUCCIÓN

Este cuaderno ilustra dos técnicas de interpolación espacial: Distancia ponderada inversa (IDW) y Kriging ordinario (OK). IDW es una técnica determinista. OK es probabilístico. Ambas técnicas se utilizan aquí para obtener una superficie continua de SOC a 15-30 cm de muestras obtenidas de SoilGrids 250 m.

2. SETUP

Primero, limpiemos la memoria:

rm(list=ls())

Ahora, asegúrese de haber instalado previamente las bibliotecas requeridas.

Luego, carga las bibliotecas:

library(sp)
library(terra)
library(sf)
library(stars)
library(gstat)
library(automap)
library(leaflet)
library(leafem)
library(ggplot2)
library(dplyr)
library(curl)
## Using libcurl 7.84.0 with Schannel

3. LEER LOS DATOS DE ENTRADA

Necesitamos leer un conjunto de datos para imitar los datos del mundo real. Por lo tanto, leamos la capa SOC que descargamos de ISRIC usando la biblioteca terra:

## class       : SpatRaster 
## dimensions  : 837, 885, 1  (nrow, ncol, nlyr)
## resolution  : 0.002259887, 0.002389486  (x, y)
## extent      : -77.1284, -75.1284, 4.2754, 6.2754  (xmin, xmax, ymin, ymax)
## coord. ref. : lon/lat WGS 84 (EPSG:4326) 
## source      : RISARALDA.tif 
## name        : RISARALDA 
## min value   :         0 
## max value   :      3507

Ahora, convierta los datos SOC en porcentaje. Revise el factor de escala de SOC en el sitio web de SoilGrids y anótelo aquí.

¿Qué es el CRS de los datos del mundo real?

Parece que necesitamos una transformación de dicho CRS en el conocido WGS84 CRS:

## class       : SpatRaster 
## dimensions  : 861, 861, 1  (nrow, ncol, nlyr)
## resolution  : 0.002321978, 0.002321978  (x, y)
## extent      : -77.1284, -75.12918, 4.276177, 6.2754  (xmin, xmax, ymin, ymax)
## coord. ref. : +proj=longlat +datum=WGS84 +no_defs 
## source(s)   : memory
## name        : RISARALDA 
## min value   :    0.0000 
## max value   :  343.6304

Convirtamos la capa SpatRaster en un objeto de estrellas:

4. MUESTREO DEL MUNDO

Cogemos una muestra de aprox. 500 sitios de los datos del mundo real utilizando una muestra ubicada aleatoriamente:

##  class       : SpatVector 
##  geometry    : points 
##  dimensions  : 500, 1  (geometries, attributes)
##  extent      : -77.12724, -75.13034, 4.27966, 6.271917  (xmin, xmax, ymin, ymax)
##  coord. ref. : +proj=longlat +datum=WGS84 +no_defs 
##  names       : RISARALDA
##  type        :     <num>
##  values      :     87.28
##                    70.87
##                    179.1

Describa las características principales del objeto de muestras.

Ahora, necesitamos convertir el objeto spatVector en un objeto de característica simple:

## Simple feature collection with 500 features and 1 field
## Geometry type: POINT
## Dimension:     XY
## Bounding box:  xmin: -77.12724 ymin: 4.27966 xmax: -75.13034 ymax: 6.271917
## Geodetic CRS:  GEOGCRS["unknown",
##     DATUM["World Geodetic System 1984",
##         ELLIPSOID["WGS 84",6378137,298.257223563,
##             LENGTHUNIT["metre",1]],
##         ID["EPSG",6326]],
##     PRIMEM["Greenwich",0,
##         ANGLEUNIT["degree",0.0174532925199433],
##         ID["EPSG",8901]],
##     CS[ellipsoidal,2],
##         AXIS["longitude",east,
##             ORDER[1],
##             ANGLEUNIT["degree",0.0174532925199433,
##                 ID["EPSG",9122]]],
##         AXIS["latitude",north,
##             ORDER[2],
##             ANGLEUNIT["degree",0.0174532925199433,
##                 ID["EPSG",9122]]]]
## First 10 features:
##    RISARALDA                   geometry
## 1   87.27782 POINT (-75.18839 6.137242)
## 2   70.87183 POINT (-75.16285 6.179038)
## 3  179.05453 POINT (-77.06919 5.983992)
## 4   35.99824 POINT (-75.69226 5.726252)
## 5  207.07167  POINT (-76.39117 5.74715)
## 6   64.91766 POINT (-75.99411 6.104735)
## 7   80.68392 POINT (-76.06609 5.384921)
## 8  240.06917 POINT (-76.50959 5.463869)
## 9  195.00716 POINT (-77.07383 4.737089)
## 10  36.37814 POINT (-76.30061 4.514179)

Visualicemos las muestras:

##      id    longit    latit        soc
## 1     1 -75.18839 6.137242  87.277817
## 2     2 -75.16285 6.179038  70.871826
## 3     3 -77.06919 5.983992 179.054535
## 4     4 -75.69226 5.726252  35.998238
## 5     5 -76.39117 5.747150 207.071671
## 6     6 -75.99411 6.104735  64.917656
## 7     7 -76.06609 5.384921  80.683922
## 8     8 -76.50959 5.463869 240.069168
## 9     9 -77.07383 4.737089 195.007156
## 10   10 -76.30061 4.514179  36.378139
## 11   11 -76.80216 5.891113 205.853424
## 12   12 -76.14272 6.271917  55.879570
## 13   13 -76.03823 4.295913  23.360821
## 14   14 -75.39969 5.849317  72.381210
## 15   15 -75.52740 4.792817  80.541985
## 16   16 -76.75108 4.790495 183.446838
## 17   17 -76.34705 4.797461  87.319481
## 18   18 -75.33467 5.946840  61.890442
## 19   19 -76.11486 4.412012  25.521173
## 20   20 -75.60867 4.502569  48.452229
## 21   21 -76.74179 5.480122 196.632309
## 22   22 -76.21935 4.330743  41.023312
## 23   23 -75.32771 5.273466  77.125450
## 24   24 -76.36563 5.872537 208.496933
## 25   25 -76.88111 5.268822 191.216629
## 26   26 -75.74102 4.820680  35.631210
## 27   27 -76.56764 5.315262 210.094818
## 28   28 -75.15124 5.995602  56.013706
## 29   29 -76.76733 4.976253 225.072723
## 30   30 -75.75959 4.432910  26.014748
## 31   31 -75.38576 5.194519  72.062981
## 32   32 -75.87569 5.821453  43.441902
## 33   33 -75.40665 5.626407  67.357910
## 34   34 -76.18684 5.220061 103.940125
## 35   35 -77.09705 5.798233 229.951843
## 36   36 -75.82229 6.090803  32.641544
## 37   37 -75.82693 5.057522  28.045456
## 38   38 -76.38421 5.175943 201.778885
## 39   39 -75.76656 6.062939  44.035587
## 40   40 -75.17446 5.468512  84.608299
## 41   41 -75.17446 5.454581  49.048431
## 42   42 -76.40975 6.174394 196.890533
## 43   43 -76.20774 5.556748 193.700241
## 44   44 -76.95541 6.251019 244.319626
## 45   45 -75.64349 5.373311  32.368717
## 46   46 -75.42523 5.027337  71.874161
## 47   47 -75.61563 5.888791  28.568874
## 48   48 -76.43993 5.470834 208.466125
## 49   49 -76.19613 5.788946  62.658966
## 50   50 -77.05526 5.960772 166.698105
## 51   51 -76.28436 6.109379 222.407120
## 52   52 -76.96470 4.525789 205.642426
## 53   53 -76.67910 4.760309 156.148117
## 54   54 -77.04597 4.565263 200.201370
## 55   55 -75.60867 4.641888  40.101250
## 56   56 -75.33003 4.894984   0.000000
## 57   57 -76.74876 5.064488 185.815292
## 58   58 -75.70851 4.509535  35.104443
## 59   59 -77.00882 5.250247 203.843887
## 60   60 -76.30061 6.062939 288.380951
## 61   61 -76.27739 4.769597  78.699577
## 62   62 -75.54829 6.093125  76.925827
## 63   63 -75.35325 5.912010  71.984009
## 64   64 -75.24876 5.858605  81.528076
## 65   65 -75.41362 5.373311  92.968369
## 66   66 -75.50650 4.518823  65.547867
## 67   67 -75.16517 4.295913  55.814148
## 68   68 -76.44458 4.651176 195.812576
## 69   69 -77.02507 5.624085 202.326523
## 70   70 -76.97863 6.209224 221.435608
## 71   71 -75.88962 5.886469  28.479691
## 72   72 -76.91826 4.495604 201.014664
## 73   73 -75.84551 5.108606  25.327795
## 74   74 -75.22322 5.115572  86.773308
## 75   75 -75.15820 5.445293  72.895035
## 76   76 -76.73018 5.366345 223.642273
## 77   77 -76.80913 5.484766 199.359970
## 78   78 -76.55603 4.929813 205.596039
## 79   79 -77.07151 4.692972 196.259552
## 80   80 -76.01966 5.844673  34.774796
## 81   81 -76.16594 5.798233  52.974453
## 82   82 -75.27894 5.526562  75.493874
## 83   83 -76.80216 4.581517 201.150421
## 84   84 -76.88808 4.458452 183.507446
## 85   85 -76.32383 4.881052 140.387985
## 86   86 -75.69458 4.330743  55.120678
## 87   87 -75.30216 5.429039  70.220596
## 88   88 -76.92523 4.627956 218.370407
## 89   89 -76.56996 5.391887 173.173492
## 90   90 -76.46315 6.262629  95.161697
## 91   91 -75.28127 4.850866  73.800232
## 92   92 -76.69535 5.756438 289.070099
## 93   93 -76.38653 5.384921 214.952652
## 94   94 -76.70232 4.990185 183.447861
## 95   95 -76.94612 5.617119 253.139038
## 96   96 -75.14427 4.762631  68.721733
## 97   97 -76.71160 5.568358 240.830170
## 98   98 -76.34009 5.596221 247.644684
## 99   99 -77.05526 6.134920 198.988907
## 100 100 -76.92058 4.869442 221.811432
## 101 101 -75.35325 4.892662  45.300129
## 102 102 -76.35866 5.048234 102.740791
## 103 103 -76.91594 4.442198 183.812271
## 104 104 -75.86408 5.454581  75.884384
## 105 105 -75.20232 5.426717  74.546555
## 106 106 -76.38188 5.577645 206.942291
## 107 107 -76.22631 4.367895  32.338093
## 108 108 -76.27275 4.897306  33.326439
## 109 109 -75.72476 5.624085  78.991058
## 110 110 -75.78514 5.967738  49.649998
## 111 111 -77.10170 6.206902 226.408997
## 112 112 -75.21161 5.366345  70.054619
## 113 113 -75.75031 6.028109  45.881828
## 114 114 -76.54442 5.633373 216.012711
## 115 115 -75.91981 4.333065  35.488617
## 116 116 -76.95541 4.857832 187.937622
## 117 117 -75.99411 5.155045  99.966354
## 118 118 -75.46470 4.321455  60.952976
## 119 119 -76.62105 4.600093 192.989853
## 120 120 -76.64195 5.217739 209.502823
## 121 121 -76.96006 4.971609 196.708542
## 122 122 -76.84628 4.542043 194.232269
## 123 123 -75.44845 5.858605  62.508076
## 124 124 -77.04365 5.647305 244.214203
## 125 125 -76.10789 4.971609  92.361557
## 126 126 -76.14969 5.902722  68.784134
## 127 127 -75.81532 5.387243  87.118263
## 128 128 -75.88730 5.596221  51.473667
## 129 129 -76.55603 4.946067 224.065216
## 130 130 -75.63885 4.532755   5.692451
## 131 131 -76.56300 4.939101 224.197113
## 132 132 -77.11331 5.494054 214.057968
## 133 133 -76.03127 5.833063  35.836510
## 134 134 -76.38885 4.829968  68.007111
## 135 135 -75.73870 5.844673  21.351812
## 136 136 -76.70696 5.828419 267.752472
## 137 137 -76.00340 4.860154  38.643814
## 138 138 -75.64349 4.453808  61.656082
## 139 139 -77.00185 4.544365 202.370667
## 140 140 -76.67213 5.020371 228.120956
## 141 141 -76.80216 5.740184 256.989563
## 142 142 -75.13034 5.329194  79.955940
## 143 143 -75.75727 4.618668  34.563599
## 144 144 -76.58622 5.758760 284.165039
## 145 145 -76.98328 4.846222 223.312775
## 146 146 -76.53978 4.316811  81.646233
## 147 147 -76.69303 4.291269 190.350418
## 148 148 -76.76269 5.138792 214.626511
## 149 149 -75.89427 5.874859  34.270996
## 150 150 -75.27198 6.141886  68.853416
## 151 151 -76.06609 5.389565  78.656265
## 152 152 -75.42291 4.751021  64.939735
## 153 153 -76.76037 4.827646 189.459061
## 154 154 -75.35093 4.860154  58.552708
## 155 155 -76.24257 5.867893  63.971790
## 156 156 -76.20077 4.769597  33.162369
## 157 157 -76.60479 5.556748 182.479019
## 158 158 -75.14427 5.236315  60.847794
## 159 159 -76.94148 4.381827 181.408890
## 160 160 -75.62260 6.255663   0.000000
## 161 161 -76.68142 4.463096 175.209641
## 162 162 -76.82306 6.058295 245.983688
## 163 163 -75.59473 4.704582  52.024014
## 164 164 -76.07770 4.660464  25.896441
## 165 165 -75.57151 6.088481  98.886787
## 166 166 -75.50882 4.904272  73.966110
## 167 167 -77.03436 5.001795 192.981842
## 168 168 -75.75727 5.733218  75.163071
## 169 169 -76.61176 5.456903 242.417786
## 170 170 -75.57384 5.271144  45.474922
## 171 171 -76.05681 4.918204  42.980415
## 172 172 -75.69226 4.662786  42.159878
## 173 173 -76.39349 4.370217  45.484161
## 174 174 -75.38343 4.409690  54.935192
## 175 175 -77.04829 5.603187 210.669647
## 176 176 -75.39737 5.326872  69.977554
## 177 177 -75.53901 5.305974  41.317051
## 178 178 -75.61331 6.095447  60.545502
## 179 179 -76.96238 6.151174 196.003723
## 180 180 -76.07770 5.429039  68.062508
## 181 181 -75.67832 4.681362  40.764973
## 182 182 -76.21470 5.531206 183.733475
## 183 183 -76.90433 6.197614 203.444778
## 184 184 -75.76192 5.433683  62.698158
## 185 185 -77.02507 5.294364 208.148956
## 186 186 -76.72786 6.195292   0.000000
## 187 187 -75.47631 6.260307  56.364750
## 188 188 -76.08467 5.115572  86.236153
## 189 189 -75.60402 4.439876  57.072392
## 190 190 -76.46780 4.428266  34.811321
## 191 191 -75.57616 6.093125 108.293594
## 192 192 -77.07383 4.878730 181.889145
## 193 193 -76.94845 5.384921 286.218872
## 194 194 -75.64117 5.247925  34.810215
## 195 195 -76.74179 4.398080 185.300751
## 196 196 -76.81842 5.380277 208.331055
## 197 197 -77.07616 6.151174 265.460754
## 198 198 -75.39272 5.863249  57.454773
## 199 199 -77.07151 5.881825 192.107697
## 200 200 -75.21625 4.365573  31.492250
## 201 201 -76.10557 4.437554  20.801600
## 202 202 -77.09705 5.626407 223.130951
## 203 203 -76.30061 4.925170  48.114456
## 204 204 -75.32074 5.124860  72.329727
## 205 205 -75.97786 4.744055  28.908651
## 206 206 -75.58545 4.804427  58.992214
## 207 207 -76.62105 5.468512 187.064987
## 208 208 -76.14736 5.018049  58.935280
## 209 209 -75.77585 4.295913  42.336060
## 210 210 -75.80603 5.101640  40.374447
## 211 211 -76.71393 6.139564 170.307999
## 212 212 -76.54907 5.921298 293.644226
## 213 213 -75.17446 4.771919  71.921738
## 214 214 -76.23560 5.011083 112.349197
## 215 215 -75.41362 5.675169  54.677170
## 216 216 -76.28900 4.987863  57.912689
## 217 217 -76.60712 4.384149 220.847443
## 218 218 -75.20696 4.525789  56.350460
## 219 219 -75.88498 4.857832  40.724785
## 220 220 -76.13111 6.267273  38.944817
## 221 221 -75.96161 4.813715  24.524565
## 222 222 -75.28591 4.913560  72.962448
## 223 223 -76.89736 6.118666 213.904556
## 224 224 -76.50030 4.474706  57.058369
## 225 225 -75.62724 5.498698  52.134880
## 226 226 -75.29055 5.364023  61.410500
## 227 227 -76.48405 6.093125 256.605530
## 228 228 -75.44613 5.988636  55.344032
## 229 229 -76.31687 4.881052 200.156555
## 230 230 -75.84551 5.322228  72.893082
## 231 231 -76.24489 4.992507  97.797073
## 232 232 -76.33544 5.756438 216.423492
## 233 233 -76.27043 6.248697  42.345409
## 234 234 -76.41439 5.612475 214.827301
## 235 235 -76.59318 5.477800 250.710831
## 236 236 -76.04520 4.502569  23.497158
## 237 237 -75.86176 5.809843  39.830582
## 238 238 -75.90588 5.837707  29.671490
## 239 239 -76.01733 5.644983  88.245499
## 240 240 -76.54907 5.570680 190.256638
## 241 241 -76.19148 5.656593  89.948776
## 242 242 -76.14040 4.934457  54.547821
## 243 243 -75.71315 4.288947  55.567383
## 244 244 -75.35789 4.934457  67.473732
## 245 245 -75.64349 5.935230  49.189754
## 246 246 -75.69458 5.192197  30.852612
## 247 247 -77.04133 5.078420 202.488434
## 248 248 -76.51656 5.173621 190.331253
## 249 249 -75.53901 4.692972  69.778122
## 250 250 -76.86950 6.093125 269.043304
## 251 251 -76.58390 5.721608 260.572662
## 252 252 -76.26811 4.632600  50.393631
## 253 253 -75.91052 4.595449  33.341091
## 254 254 -76.68606 5.187553 214.095978
## 255 255 -75.75959 4.899628  33.109276
## 256 256 -76.05216 5.663559  82.709930
## 257 257 -75.14659 4.769597  63.482723
## 258 258 -76.79055 5.744828 239.430206
## 259 259 -76.23328 4.964643 102.694824
## 260 260 -76.32151 6.125632 193.774536
## 261 261 -75.23018 4.428266  12.215521
## 262 262 -76.95773 4.537399 191.174042
## 263 263 -77.02507 6.053651 240.546600
## 264 264 -75.85247 4.992507  33.053726
## 265 265 -76.03591 4.922848  41.483849
## 266 266 -75.66439 5.401175  42.351475
## 267 267 -75.89891 6.181360  37.178616
## 268 268 -76.31455 4.802105  56.174278
## 269 269 -75.52507 5.853961  41.472160
## 270 270 -76.48637 4.553653  88.893906
## 271 271 -76.76037 5.424395 207.697159
## 272 272 -75.53204 4.493282  64.925697
## 273 273 -76.46083 5.018049 197.966248
## 274 274 -75.89891 4.748699   9.133649
## 275 275 -75.25108 5.422073  72.513191
## 276 276 -77.07848 5.134148 197.874222
## 277 277 -75.66439 5.872537  43.282372
## 278 278 -75.61563 5.631051  40.916744
## 279 279 -76.49566 5.698388 200.231339
## 280 280 -76.79752 5.726252 254.407394
## 281 281 -75.94071 4.425944  27.890051
## 282 282 -75.23018 5.247925  57.039967
## 283 283 -76.40975 5.963094 201.315338
## 284 284 -75.90356 6.248697  34.561378
## 285 285 -75.66439 6.232443  67.186867
## 286 286 -77.10170 4.349319 164.240326
## 287 287 -76.40046 6.218512 113.447212
## 288 288 -75.15820 5.928264  45.149586
## 289 289 -75.34628 5.494054  72.472862
## 290 290 -76.40975 5.749472 198.905350
## 291 291 -76.12182 5.382599  87.546562
## 292 292 -76.53978 5.916654 298.608063
## 293 293 -75.67832 6.262629  82.314064
## 294 294 -76.73715 5.754116 252.529572
## 295 295 -76.35866 5.220061 121.782722
## 296 296 -75.32538 4.755665  67.344757
## 297 297 -75.52740 5.545138  45.646076
## 298 298 -77.03668 6.216190 245.075378
## 299 299 -75.90123 5.243281  82.092606
## 300 300 -75.23483 5.064488  49.175484
## 301 301 -75.21857 5.631051  87.689713
## 302 302 -76.68142 5.055200 225.133911
## 303 303 -76.28668 5.018049  31.126347
## 304 304 -75.62027 5.071454  36.871635
## 305 305 -75.62956 4.669752  51.148991
## 306 306 -77.11795 4.607058 182.221008
## 307 307 -76.83699 4.948389 214.181381
## 308 308 -75.45774 5.770370  75.633087
## 309 309 -76.60944 5.726252 251.963226
## 310 310 -76.44226 5.229349 202.651321
## 311 311 -76.47244 4.711548 171.808685
## 312 312 -75.18607 4.969287  76.982536
## 313 313 -75.87569 4.525789  43.933056
## 314 314 -76.20774 5.603187 213.791321
## 315 315 -77.02739 4.444520 155.765228
## 316 316 -77.02275 4.323777 220.814011
## 317 317 -75.28591 6.146530  60.869904
## 318 318 -76.96934 6.141886 204.185410
## 319 319 -75.28359 4.957677  70.974709
## 320 320 -75.42987 5.944518  84.434509
## 321 321 -75.22786 4.648854  72.926079
## 322 322 -76.53978 4.660464  93.447433
## 323 323 -76.04520 5.596221  80.001259
## 324 324 -75.40897 4.328421  63.822693
## 325 325 -76.79287 4.395758 195.664047
## 326 326 -76.94148 5.535850 194.019272
## 327 327 -75.48792 5.858605  54.191631
## 328 328 -76.80216 6.004890 236.180237
## 329 329 -76.48173 5.514952 231.364075
## 330 330 -76.17291 6.055973  92.041641
## 331 331 -75.30913 5.466191  52.825386
## 332 332 -75.62492 5.631051  27.753708
## 333 333 -75.55062 5.164333  40.589798
## 334 334 -76.30526 4.699938  51.629807
## 335 335 -75.76424 6.093125  30.289902
## 336 336 -75.16517 5.076098  65.417824
## 337 337 -77.04597 5.591577 207.309708
## 338 338 -75.71315 5.359379  51.636051
## 339 339 -75.59241 5.545138  50.575562
## 340 340 -75.69458 6.130276  89.816437
## 341 341 -76.78823 5.668203 211.161392
## 342 342 -77.08544 4.908916 186.439377
## 343 343 -75.34164 4.825324  83.404503
## 344 344 -75.81764 6.183682  25.443794
## 345 345 -75.86176 4.542043  20.845411
## 346 346 -75.86873 5.396531  60.538235
## 347 347 -76.16594 4.293591  29.238165
## 348 348 -75.24411 4.393436  65.227852
## 349 349 -76.28204 5.600865 226.003143
## 350 350 -76.44690 5.851639 227.267914
## 351 351 -77.08544 5.245603 231.617310
## 352 352 -75.65975 4.460774  42.492775
## 353 353 -76.64195 5.322228 200.578125
## 354 354 -76.63962 5.319906 200.590851
## 355 355 -75.25572 5.240959  78.170418
## 356 356 -76.65820 4.997151 182.547989
## 357 357 -76.01501 5.498698  52.281391
## 358 358 -76.73482 6.035075 292.147217
## 359 359 -75.53436 5.259534  57.254555
## 360 360 -75.25805 6.248697  53.546909
## 361 361 -77.09473 5.429039 181.906586
## 362 362 -76.91826 6.251019 221.438538
## 363 363 -75.26501 4.846222  70.945671
## 364 364 -75.16285 5.150401  74.692635
## 365 365 -76.36099 5.289720 216.379593
## 366 366 -76.20774 4.753343  49.773190
## 367 367 -76.00572 4.820680  37.446877
## 368 368 -77.03436 5.022693 225.339752
## 369 369 -76.20309 6.202258  54.319843
## 370 370 -76.65820 4.741733 190.894958
## 371 371 -76.05216 4.535077  25.261669
## 372 372 -77.01578 4.929813 189.282654
## 373 373 -75.93606 5.703032  57.001339
## 374 374 -76.79984 5.740184 253.455872
## 375 375 -76.97631 5.266500 184.014420
## 376 376 -76.71393 5.308296 225.664993
## 377 377 -76.21238 5.675169  87.206345
## 378 378 -77.01114 5.682135 232.878967
## 379 379 -76.83003 5.475478 214.755295
## 380 380 -75.76888 5.593899 100.530823
## 381 381 -77.04597 4.302879 186.741501
## 382 382 -75.89427 5.712320  33.121578
## 383 383 -76.38653 5.155045 185.561539
## 384 384 -75.99876 4.509535  28.154982
## 385 385 -76.51888 5.672847 209.469696
## 386 386 -75.51811 6.002568  65.015587
## 387 387 -75.79907 4.751021  34.343311
## 388 388 -76.22863 4.832290  53.349560
## 389 389 -76.14040 5.682135  59.230343
## 390 390 -75.32074 5.538172  72.525467
## 391 391 -75.47167 5.085386  71.040176
## 392 392 -75.14427 6.260307  48.727314
## 393 393 -75.58777 4.806749  52.824501
## 394 394 -76.40743 5.045912 196.994644
## 395 395 -77.06919 4.906594 180.472092
## 396 396 -76.22863 4.723157  33.862190
## 397 397 -75.22322 4.757987  63.245056
## 398 398 -76.86718 6.230121 207.578659
## 399 399 -75.70851 4.929813  42.110050
## 400 400 -75.28823 4.925170  76.919319
## 401 401 -76.09396 5.747150  67.109093
## 402 402 -76.78359 4.400402 185.359756
## 403 403 -75.62724 4.532755  45.159241
## 404 404 -76.57693 5.364023 216.151154
## 405 405 -75.30216 5.925942  67.047798
## 406 406 -75.94767 5.563714  89.314125
## 407 407 -75.47863 5.090030  70.786232
## 408 408 -75.96393 6.130276  49.836746
## 409 409 -76.00108 5.484766  90.533813
## 410 410 -75.47863 5.266500  63.236668
## 411 411 -76.52585 4.502569  98.481201
## 412 412 -77.12724 5.598543 194.613068
## 413 413 -75.69922 5.459225  43.125355
## 414 414 -76.83931 4.565263 194.908432
## 415 415 -76.31455 4.281981  40.178741
## 416 416 -75.59473 4.720835  59.885208
## 417 417 -75.29055 6.072227  68.655807
## 418 418 -76.70928 4.820680 221.018097
## 419 419 -76.39117 5.487088 211.712784
## 420 420 -75.55526 6.160462  54.740356
## 421 421 -76.57461 6.167428 315.270142
## 422 422 -75.16285 5.686778  51.392376
## 423 423 -76.19148 4.744055  39.830322
## 424 424 -76.67445 5.273466 209.931610
## 425 425 -75.55526 4.316811  66.373589
## 426 426 -75.74334 5.013405  43.278378
## 427 427 -76.04984 5.575323  86.435020
## 428 428 -75.17910 5.022693  65.575272
## 429 429 -76.52120 5.856283 202.242172
## 430 430 -76.10789 4.732445  42.371986
## 431 431 -77.10170 5.747150 230.723480
## 432 432 -75.49489 4.711548  58.853077
## 433 433 -77.02739 5.524240 197.998489
## 434 434 -76.06609 5.779658  68.819992
## 435 435 -76.42832 5.935230 211.583618
## 436 436 -75.14891 5.642661  57.547813
## 437 437 -76.73947 4.298235 198.126160
## 438 438 -76.99024 5.045912 193.730087
## 439 439 -76.33544 4.623312  78.425835
## 440 440 -75.61331 4.391114  60.004860
## 441 441 -76.04055 6.127954  67.230019
## 442 442 -76.79055 5.498698 243.638382
## 443 443 -76.46780 4.690650  61.144131
## 444 444 -77.01578 5.354736 231.796890
## 445 445 -75.55758 4.279660  67.312622
## 446 446 -76.37492 5.661237 212.566864
## 447 447 -76.16594 4.402724  25.203529
## 448 448 -75.21393 5.703032  91.238350
## 449 449 -75.14195 4.616346  71.990791
## 450 450 -76.96470 5.591577 243.885223
## 451 451 -75.37415 4.997151  58.651077
## 452 452 -75.36718 4.316811  96.224907
## 453 453 -75.79675 5.977026  41.796757
## 454 454 -76.89504 5.308296 208.452820
## 455 455 -75.28127 5.477800  79.364182
## 456 456 -76.57925 4.451486 199.404572
## 457 457 -76.92987 5.466191 233.735001
## 458 458 -75.91981 6.016499  58.298122
## 459 459 -75.75031 4.850866  31.019745
## 460 460 -76.05681 6.011855  83.708138
## 461 461 -76.38188 4.857832  30.436731
## 462 462 -75.90820 5.377955  45.298435
## 463 463 -76.59551 4.609380 201.958633
## 464 464 -75.63653 5.842351  24.720390
## 465 465 -75.46470 6.069905  60.619854
## 466 466 -76.35634 6.225477  61.718830
## 467 467 -75.13730 5.213095  60.471573
## 468 468 -75.43916 4.583839  59.887680
## 469 469 -76.23560 5.531206 223.266830
## 470 470 -75.20928 5.217739  71.632484
## 471 471 -76.49798 4.600093 210.882889
## 472 472 -77.04829 4.948389 184.848846
## 473 473 -75.52972 4.911238  77.542526
## 474 474 -75.64349 4.579195  35.731258
## 475 475 -75.92910 5.788946  33.521137
## 476 476 -76.38653 5.946840 207.472382
## 477 477 -75.35789 4.881052  36.433659
## 478 478 -76.40510 5.022693 143.575638
## 479 479 -75.79675 4.611702  31.794424
## 480 480 -75.15124 5.152723  67.062492
## 481 481 -76.30061 4.881052  94.273346
## 482 482 -75.46470 5.210773  67.134506
## 483 483 -77.06222 6.162784 238.776031
## 484 484 -76.14969 5.700710  72.409843
## 485 485 -76.91826 5.619441 233.378830
## 486 486 -76.78126 4.662786 192.122864
## 487 487 -76.89040 4.553653 187.406357
## 488 488 -75.55062 5.777336  35.321281
## 489 489 -75.68297 5.206129  28.668873
## 490 490 -76.57461 5.726252 240.918289
## 491 491 -76.05681 4.535077  21.871252
## 492 492 -77.02507 5.925942 187.582047
## 493 493 -76.81609 4.648854 227.971176
## 494 494 -76.86718 5.150401 215.968491
## 495 495 -76.16594 5.956128  72.967430
## 496 496 -75.74566 6.227799  55.481659
## 497 497 -75.62956 5.463869  53.204323
## 498 498 -76.84396 5.429039 257.888580
## 499 499 -75.30681 5.380277  66.256256
## 500 500 -75.77120 6.251019  51.805077

Quitemos los valores de NA:

head(sitios)
##   id    longit    latit       soc
## 1  1 -75.18839 6.137242  87.27782
## 2  2 -75.16285 6.179038  70.87183
## 3  3 -77.06919 5.983992 179.05453
## 4  4 -75.69226 5.726252  35.99824
## 5  5 -76.39117 5.747150 207.07167
## 6  6 -75.99411 6.104735  64.91766

Visualicemos las muestras:

Ahora, estamos listos para realizar las tareas de interpolación.

5. INTERPOLACIÓN

5.1 Creación del objeto gstat

Para interpolar, primero necesitamos crear un objeto de clase gstat, usando una función del mismo nombre: gstat.

Un objeto gstat contiene toda la información necesaria para realizar la interpolación espacial, a saber:

Basándose en sus argumentos, la función gstat “entiende” qué tipo de modelo de interpolación queremos usar:

Sin modelo de variograma → IDW Modelo de variograma, sin covariables → Kriging ordinario

Vamos a utilizar tres parámetros de la función gstat:

5.2 interpolación IDW

Para interpolar SOC usando el método IDW, creamos el siguiente objeto gstat, especificando solo la fórmula y los datos:

Ahora que nuestro modelo de interpolación g1 está definido, podemos usar la función de predicción para interpolar realmente, es decir, para estimar los valores de precipitación.

La función de predicción acepta:

El raster sirve para dos propósitos:

Vamos a crear un objeto ráster con valores de celda iguales a 1:

¿Qué es rrr?

rrr
## class       : SpatRaster 
## dimensions  : 216, 216, 1  (nrow, ncol, nlyr)
## resolution  : 0.009287914, 0.009287914  (x, y)
## extent      : -77.1284, -75.12221, 4.269211, 6.2754  (xmin, xmax, ymin, ymax)
## coord. ref. : +proj=longlat +datum=WGS84 +no_defs 
## source(s)   : memory
## name        : RISARALDA 
## min value   :    0.0000 
## max value   :  333.5054

Definimos nuevos valores:

Definimos nuevos nombres

¿Qué es rrr ahora?

rrr
## class       : SpatRaster 
## dimensions  : 216, 216, 1  (nrow, ncol, nlyr)
## resolution  : 0.009287914, 0.009287914  (x, y)
## extent      : -77.1284, -75.12221, 4.269211, 6.2754  (xmin, xmax, ymin, ymax)
## coord. ref. : +proj=longlat +datum=WGS84 +no_defs 
## source(s)   : memory
## name        : valor 
## min value   :     1 
## max value   :     1

Por ejemplo, la siguiente expresión interpola los valores SOC según el modelo definido en g1 y la plantilla ráster definida en stars.rrr:

## [inverse distance weighted interpolation]

¿Qué es z1?

z1
## stars object with 2 dimensions and 2 attributes
## attribute(s):
##                Min. 1st Qu.   Median     Mean  3rd Qu.     Max.  NA's
## var1.pred  1.067947 64.9101 82.81908 116.7504 184.1278 314.8289     0
## var1.var         NA      NA       NA      NaN       NA       NA 46656
## dimension(s):
##   from  to   offset       delta                       refsys x/y
## x    1 216 -77.1284  0.00928791 +proj=longlat +datum=WGS8... [x]
## y    1 216   6.2754 -0.00928791 +proj=longlat +datum=WGS8... [y]

Tome nota de los nombres de los dos atributos incluidos en el objeto z1.

Podemos crear un subconjunto solo del primer atributo y cambiarle el nombre a “soc”:

Tenemos que crear una paleta de color:

El ráster SOC interpolado, utilizando IDW, se muestra en la siguiente figura:

## Warning in pal(c(r[1], cuts, r[2])): Some values were outside the color scale
## and will be treated as NA

5.3 Aceptar interpolación

Los métodos kriging requieren un modelo de variograma. El modelo de variograma es una forma objetiva de cuantificar el patrón de autocorrelación en los datos y asignar pesos en consecuencia al hacer predicciones.

Como primer paso, podemos calcular y examinar el variograma empírico utilizando la función de variograma.

La función requiere dos argumentos:

Por ejemplo, la siguiente expresión calcula el variograma empírico de muestras, sin covariables:

Tracemos el variograma:

plot(v_emp_ok)

Hay varias formas de ajustar un modelo de variograma a un variograma empírico. Usaremos el más simple: ajuste automático usando la función autofitVariogram del paquete automap:

La función elige el tipo de modelo que mejor se ajusta y también ajusta sus parámetros. Puede usar show.vgms() para mostrar los tipos de modelos de variograma.

Tenga en cuenta que la función autofitVariogram no funciona en objetos sf, por lo que convertimos el objeto en un SpatialPointsDataFrame (paquete sp).

El modelo ajustado se puede trazar con plot:

plot(v_mod_ok)

El objeto resultante es en realidad una lista con varios componentes, incluido el variograma empírico y el modelo de variograma ajustado. El componente $var_model del objeto resultante contiene el modelo real:

v_mod_ok$var_model
##   model       psill    range kappa
## 1   Nug    364.8009    0.000   0.0
## 2   Ste 107208.6010 1455.953   0.7

En tu cuaderno, explica el significado de cada elemento del modelo anterior.

Ahora, el modelo de variograma se puede pasar a la función gstat, y podemos continuar con la interpolación de Kriging ordinario:

## [using ordinary kriging]

Nuevamente, subdividiremos el atributo de valores predichos y lo renombraremos:

Las predicciones de Kriging ordinario se muestran en la siguiente figura:

## Warning in pal(c(r[1], cuts, r[2])): Some values were outside the color scale
## and will be treated as NA

6. EVALUACIÓN DE RESULTADOS

6.1 Evaluación cualitativa

Otra vista de las tres salidas de interpolación:

## Warning in pal(c(r[1], cuts, r[2])): Some values were outside the color scale
## and will be treated as NA

6.2 Validación cruzada

Hemos estimado superficies climáticas usando dos métodos diferentes: IDW y Kriging Ordinario. Aunque es útil examinar y comparar los resultados gráficamente, también necesitamos una forma objetiva de evaluar la precisión de la interpolación. De esa forma, podemos elegir objetivamente el método más preciso entre los métodos de interpolación disponibles.

En la validación cruzada Leave-One-Out:

Podemos ejecutar la validación cruzada Leave-One-Out usando la función gstat.cv, que acepta un objeto gstat.

Al escribir el siguiente fragmento, oculte el mensaje y los resultados.

## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]

El resultado de gstat.cv tiene los siguientes atributos:

cv1
## class       : SpatialPointsDataFrame 
## features    : 500 
## extent      : -77.12724, -75.13034, 4.27966, 6.271917  (xmin, xmax, ymin, ymax)
## crs         : +proj=longlat +datum=WGS84 +no_defs 
## variables   : 6
## names       :        var1.pred, var1.var,         observed,          residual, zscore, fold 
## min values  : 20.4784998080254,       NA,                0, -189.763144203481,     NA,    1 
## max values  : 281.610887917643,       NA, 315.270141601562,  148.756393343835,     NA,  500

Convirtamos el objeto cv1:

Ahora, grafiquemos los residuos:

Ahora, calculamos índices de precisión de predicción, como el error cuadrático medio (RMSE):

## [1] 30.31076

Ahora, repita el proceso con los resultados OK:

Tiempo de conversión:

Calcule RSME para obtener resultados correctos:

## [1] 26.50455

El metodo de IDW tiene una forma de interpretar mas sencilla, pero genera resultados mas sesgandos, pero, el metodo OK es mas complejo de interpretar tanto en graficos como en datos, pero es mas preciso en el momento de los resultados, por esta razon el metodo OK es mucho mas optimo siempre y cuando se tenga una correlacion espacial de los datos lo cual puede llegar a una variabilidad espcial del fenomeno mejor representada como se tiene en este caso.

7. Reference

Citar este trabajo como: Lizarazo, I., 2023. Interpolación espacial del carbono orgánico del suelo. Disponible en https://rpubs.com/ials2un/soc_interp.

sessionInfo()
## R version 4.2.2 (2022-10-31 ucrt)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 22621)
## 
## Matrix products: default
## 
## locale:
## [1] LC_COLLATE=Spanish_Colombia.utf8  LC_CTYPE=Spanish_Colombia.utf8   
## [3] LC_MONETARY=Spanish_Colombia.utf8 LC_NUMERIC=C                     
## [5] LC_TIME=Spanish_Colombia.utf8    
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
##  [1] curl_5.0.0    dplyr_1.1.0   ggplot2_3.4.1 leafem_0.2.0  leaflet_2.1.2
##  [6] automap_1.1-9 gstat_2.1-1   stars_0.6-1   abind_1.4-5   sf_1.0-12    
## [11] terra_1.7-29  sp_1.6-0     
## 
## loaded via a namespace (and not attached):
##  [1] Rcpp_1.0.10        lattice_0.20-45    FNN_1.1.3.2        png_0.1-8         
##  [5] class_7.3-20       zoo_1.8-12         digest_0.6.31      utf8_1.2.3        
##  [9] R6_2.5.1           plyr_1.8.8         evaluate_0.20      e1071_1.7-13      
## [13] highr_0.10         pillar_1.8.1       rlang_1.0.6        rstudioapi_0.14   
## [17] raster_3.6-20      jquerylib_0.1.4    rmarkdown_2.20     rgdal_1.6-6       
## [21] htmlwidgets_1.6.2  munsell_0.5.0      proxy_0.4-27       compiler_4.2.2    
## [25] xfun_0.37          pkgconfig_2.0.3    base64enc_0.1-3    htmltools_0.5.4   
## [29] tidyselect_1.2.0   tibble_3.1.8       intervals_0.15.3   codetools_0.2-18  
## [33] reshape_0.8.9      fansi_1.0.4        spacetime_1.3-0    withr_2.5.0       
## [37] grid_4.2.2         jsonlite_1.8.4     lwgeom_0.2-11      gtable_0.3.1      
## [41] lifecycle_1.0.3    DBI_1.1.3          magrittr_2.0.3     units_0.8-2       
## [45] scales_1.2.1       KernSmooth_2.23-20 cli_3.6.0          cachem_1.0.6      
## [49] farver_2.1.1       bslib_0.4.2        ellipsis_0.3.2     xts_0.13.1        
## [53] generics_0.1.3     vctrs_0.5.2        tools_4.2.2        glue_1.6.2        
## [57] crosstalk_1.2.0    parallel_4.2.2     fastmap_1.1.0      yaml_2.3.7        
## [61] colorspace_2.1-0   classInt_0.4-9     knitr_1.42         sass_0.4.5