Data Wrangling (not printed here)

Type 1 - Confident Trust

The Confident Trust Variables

Selecting the variables needed

conf <- tga %>% 
  select(
         c01_positive_fa,
         b06_internal_fa,   
         b04,
         b06_external_fa,
         c04_governmental_fa,
         b05_turnout_frq,
         c06_participation_fa,       
         pol_knowledge_ave,
         d03_free_fa,
         d01_conventional_fa,      
         d07_pro_science_fa,
         d06_global_cons_fa_rev,
         d06_national_cons_fa_rev,
         d07_pro_science_fa,
         d07_anti_science_fa_rev)

Standardize all variables

conf_s <- data.frame(scale(conf, center=T, scale=T))

Calculating dimension scores of politics media and science for Type confident

conf_s <- conf_s %>%
  mutate(conf_politics = (
         c01_positive_fa+
         b06_internal_fa+   
         b04+
         b06_external_fa+
         c04_governmental_fa+
         b05_turnout_frq+
         c06_participation_fa)/7  )

         
         #######################
conf_s <- conf_s %>%
  mutate(conf_media = (        
    pol_knowledge_ave+
         d03_free_fa+
         d01_conventional_fa)/3)
         
         ######################
conf_s <- conf_s %>%
  mutate(conf_science = (        
         d07_pro_science_fa+
         d06_global_cons_fa_rev+
         d06_national_cons_fa_rev+
         d07_pro_science_fa+
         d07_anti_science_fa_rev)/5)

combine conf_s dataframe with original tga dataframe

conf_ss <- conf_s %>% select(conf_politics, conf_media, conf_science)
tga <- cbind(tga, conf_ss)

Confident Trust

Graphs

dim_names_conf <- c(
                    `conf_media` = "Trust in Media",
                    `conf_politics` = "Trust in Politics",
                    `conf_science` = "Trust in Science"
                    )


tga %>% 
  pivot_longer(
    cols = starts_with("conf_"),
    names_to = "conf_dimension",
    values_to = "conf_score"
  ) %>% 
  ggplot(aes(conf_score)) +
  facet_wrap(~conf_dimension, labeller = as_labeller(dim_names_conf)) +
  geom_histogram(aes(y = ..density..), alpha = .2, bins = 50)+
  geom_density(color = "red") +
  labs(title =" Confident Trust According to Sub-Dimensions",
       x= "Confidence Score") +
  firatheme::theme_fira()
## Warning: The dot-dot notation (`..density..`) was deprecated in ggplot2 3.4.0.
## ℹ Please use `after_stat(density)` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## Warning: Removed 872 rows containing non-finite values (`stat_bin()`).
## Warning: Removed 872 rows containing non-finite values (`stat_density()`).

Confident Trust According to Partisanship

dim_names_conf <- c(
                    `conf_media` = "Trust in Media",
                    `conf_politics` = "Trust in Politics",
                    `conf_science` = "Trust in Science"
                    )


tga %>% 
  pivot_longer(
    cols = starts_with("conf_"),
    names_to = "conf_dimension",
    values_to = "conf_score"
  ) %>% 
    filter(  c08_f == "chp_partisan" | 
                  c08_f =="hdp_partisan" | c08_f == "iyi_partisan" | 
           c08_f == "mhp_partisan" | c08_f == "akp_partisan") %>% 
  ggplot(aes(conf_score, c08_f)) +
  geom_boxplot() +
  geom_vline(xintercept = 0, color ="red") +
  xlim(-2,2) +
  facet_wrap(~conf_dimension, labeller = as_labeller(dim_names_conf)) +
  labs(title = "Confident Trust According to Partisanship", y="", x="Confident Trust Score") +
  firatheme::theme_fira()
## Warning: Removed 663 rows containing non-finite values (`stat_boxplot()`).

Confident Trust According to Ideology

dim_names_conf <- c(
                    `conf_media` = "Trust in Media",
                    `conf_politics` = "Trust in Politics",
                    `conf_science` = "Trust in Science"
                    )


tga %>% 
  pivot_longer(
    cols = starts_with("conf_"),
    names_to = "conf_dimension",
    values_to = "conf_score"
  ) %>% 
  drop_na(ideology_f) %>%
  ggplot(aes(conf_score, ideology_f)) +
  geom_boxplot() +
  facet_wrap(~conf_dimension, labeller = as_labeller(dim_names_conf)) +
  labs(title = "Confident Trust According to Ideology", y="") +
  firatheme::theme_fira()
## Warning: Removed 814 rows containing non-finite values (`stat_boxplot()`).

Type 2 - Gullible Trust

Selecting the variables needed

library(tidyverse)
gul <- tga %>% 
  select(b01_num_r , 
b06_internal_fa_rev,
b04_rev, 
b06_external_fa , 
a0406, c04_governmental_fa,
b05_turnout_frq_rev,
d01_conventional_fa,
d03_not_free_fa,
d01_news_frequency,
d0702,
d0701,
d0704,
d0703_rev
)

Standardize all variables

gul_s <- data.frame(scale(gul, center=T, scale=T))

Calculating dimension scores of politics media and science for Type Gullible

gul_s <-  gul_s %>%
  mutate(
    gul_politics = (
      b01_num_r +
        b04_rev +
        b06_external_fa +
        a0406 +
        c04_governmental_fa +
        b05_turnout_frq_rev +
        b06_internal_fa_rev
    ) / 7
  )
gul_s <-  gul_s %>%
  mutate (gul_media = (d01_conventional_fa +
                         d03_not_free_fa +
                         d01_news_frequency) / 3)

gul_s <-  gul_s %>%
  mutate (gul_science = (d0702 +
                           d0701 +
                           d0704 +
                           d0703_rev) / 4)

combine gul_s dataframe with original tga dataframe

gul_ss <- gul_s %>% select(gul_politics, gul_media, gul_science)
tga <- cbind(tga, gul_ss)

Gullible Trust

Graphs

dim_names_gul <- c(
                    `gul_media` = "Trust in Media",
                    `gul_politics` = "Trust in Politics",
                    `gul_science` = "Trust in Science"
                    )


tga %>% 
  pivot_longer(
    cols = starts_with("gul_"),
    names_to = "gul_dimension",
    values_to = "gul_score"
  ) %>% 
  ggplot(aes(gul_score)) +
  facet_wrap(~gul_dimension, labeller = as_labeller(dim_names_gul)) +
  geom_histogram(aes(y = ..density..), alpha = .2, bins = 50)+
  geom_density(color = "red") +
  labs(title =" Gullible Trust According to Sub-Dimensions",
       x= "Gullibility Score") +
  firatheme::theme_fira()
## Warning: Removed 579 rows containing non-finite values (`stat_bin()`).
## Warning: Removed 579 rows containing non-finite values (`stat_density()`).

Gullible Trust According to Partisanship

dim_names <- c(
                    `gul_media` = "Trust in Media",
                    `gul_politics` = "Trust in Politics",
                    `gul_science` = "Trust in Science"
                    )


tga %>% 
  pivot_longer(
    cols = starts_with("gul_"),
    names_to = "dimension",
    values_to = "score"
  ) %>% 
    filter(  c08_f == "chp_partisan" | 
                  c08_f =="hdp_partisan" | c08_f == "iyi_partisan" | 
           c08_f == "mhp_partisan" | c08_f == "akp_partisan") %>% 
  ggplot(aes(score, c08_f)) +
  geom_boxplot() +
  geom_vline(xintercept = 0, color ="red") +
  facet_wrap(~dimension, labeller = as_labeller(dim_names)) +
  xlim(-2,2) +
  labs(title = "Gullible Trust According to Partisanship", y="", x="Gullible Trust Score") +
  firatheme::theme_fira()
## Warning: Removed 434 rows containing non-finite values (`stat_boxplot()`).

dim_names <- c(
                    `gul_media` = "Trust in Media",
                    `gul_politics` = "Trust in Politics",
                    `gul_science` = "Trust in Science"
                    )


tga %>% 
  pivot_longer(
    cols = starts_with("gul_"),
    names_to = "dimension",
    values_to = "score"
  ) %>% 
  drop_na(ideology_f) %>%
  ggplot(aes(score, ideology_f)) +
  geom_boxplot() +
  facet_wrap(~dimension, labeller = as_labeller(dim_names)) +
  labs(title = "Gullible Trust According to Ideology", y="") +
  firatheme::theme_fira()
## Warning: Removed 536 rows containing non-finite values (`stat_boxplot()`).

Type 3 - Skeptic Distrust

Selecting the variables needed

library(tidyverse)
ske <- tga %>% 
  select(c01_anxiety_fa,
b06_internal_fa,
c01_negative_fa,
b04,
b06_external_fa,
b05_turnout_frq, 
c06_participation_frq,
c14_partisanship_degree_fa_rev,
pol_knowledge,
d03_free_fa,
d01_news_frequency,
d07_pro_science_fa,
d06_global_cons_fa_rev, 
d06_national_cons_fa_rev,
d07_anti_science_fa,
d0704,
d0703
)

Standardize all variables

ske_s <- data.frame(scale(ske, center=T, scale=T))

Calculating dimension scores of politics media and science for Type Skeptic

ske_s <-  ske_s %>%
  mutate(
   ske_politics = (
     c01_anxiety_fa +
b06_internal_fa +
c01_negative_fa+
b04+
b06_external_fa+
b05_turnout_frq+ 
c06_participation_frq+
c14_partisanship_degree_fa_rev) / 8)

ske_s <-  ske_s %>%
  mutate (ske_media = (pol_knowledge+
d03_free_fa+
d01_news_frequency) / 3)

ske_s <-  ske_s %>%
  mutate (ske_science = (d07_pro_science_fa+
d06_global_cons_fa_rev+
d06_national_cons_fa_rev+
d07_anti_science_fa+
d0704+
d0703) / 6)

combine ske_s dataframe with original tga dataframe

ske_ss <- ske_s %>% select(ske_politics, ske_media, ske_science)
tga <- cbind(tga, ske_ss)

Skeptic Distrust

Graphs

dim_names_ske <- c(
                    `ske_media` = "Trust in Media",
                    `ske_politics` = "Trust in Politics",
                    `ske_science` = "Trust in Science"
                    )


tga %>% 
  pivot_longer(
    cols = starts_with("ske_"),
    names_to = "ske_dimension",
    values_to = "ske_score"
  ) %>% 
  ggplot(aes(ske_score)) +
  facet_wrap(~ske_dimension, labeller = as_labeller(dim_names_ske)) +
  geom_histogram(aes(y = ..density..), alpha = .2, bins = 50)+
  geom_density(color = "red") +
  labs(title =" Skeptic Distrust According to Sub-Dimensions",
       x= "Skeptic Distrust Score") +
  firatheme::theme_fira()
## Warning: Removed 774 rows containing non-finite values (`stat_bin()`).
## Warning: Removed 774 rows containing non-finite values (`stat_density()`).

Skeptic Distrust According to Partisanship

dim_names_ske <- c(
                    `ske_media` = "Trust in Media",
                    `ske_politics` = "Trust in Politics",
                    `ske_science` = "Trust in Science"
                    )


tga %>% 
  pivot_longer(
    cols = starts_with("ske_"),
    names_to = "dimension",
    values_to = "score"
  ) %>% 
    filter(  c08_f == "chp_partisan" | 
                  c08_f =="hdp_partisan" | c08_f == "iyi_partisan" | 
           c08_f == "mhp_partisan" | c08_f == "akp_partisan") %>% 
  ggplot(aes(score, c08_f)) +
  geom_boxplot() +
  geom_vline(xintercept = 0, color ="red") +
  facet_wrap(~dimension, labeller = as_labeller(dim_names_ske)) +
  xlim(-2,2) +
  labs(title = "Skeptic Distrust According to Partisanship", y="", x="Skeptic Distrust Score") +
  firatheme::theme_fira()
## Warning: Removed 590 rows containing non-finite values (`stat_boxplot()`).

Skeptic Distrust According to Ideology

dim_names_ske <- c(
                    `ske_media` = "Trust in Media",
                    `ske_politics` = "Trust in Politics",
                    `ske_science` = "Trust in Science"
                    )


tga %>% 
  pivot_longer(
    cols = starts_with("ske_"),
    names_to = "dimension",
    values_to = "score"
  ) %>% 
  drop_na(ideology_f) %>%
  ggplot(aes(score, ideology_f)) +
  geom_boxplot() +
  facet_wrap(~dimension, labeller = as_labeller(dim_names_ske)) +
  labs(title = "Skeptic Distrust According to Ideology", y="") +
  firatheme::theme_fira()
## Warning: Removed 718 rows containing non-finite values (`stat_boxplot()`).