=====================================================
Nama Mahasiswa : โIzzan Nuha Zamroni
NIM : 220605110082
Kelas : C
Mata Kuliah : Linear Algebra
Dosen Pengampuh : Prof.Dr.Suhartono,M.Kom
Jurusan : Teknik Informatika
Universitas : UIN Maulana Malik Ibrahim Malang
=====================================================
library(pracma)
B <- matrix(c(1, 0, 0, 1, 1, 0, 1, 1, 1), 3, 3, byrow = TRUE)
v <- c(2, 4, 0)
inv(B) %*% v
## [,1]
## [1,] 2
## [2,] 2
## [3,] -4
library(mvtnorm)
set.seed(123)
sigma <- matrix(c(4,2,2,3), ncol=2)
x <- rmvnorm(n=500, mean=c(0,0), sigma=sigma)
pca<- princomp(x)
pca
## Call:
## princomp(x = x)
##
## Standard deviations:
## Comp.1 Comp.2
## 2.241521 1.231119
##
## 2 variables and 500 observations.
pca$loadings
##
## Loadings:
## Comp.1 Comp.2
## [1,] 0.781 0.625
## [2,] 0.625 -0.781
##
## Comp.1 Comp.2
## SS loadings 1.0 1.0
## Proportion Var 0.5 0.5
## Cumulative Var 0.5 1.0
## Library for the Credit data set
library(ISLR)
## Loading the data
data(Credit)
credit.data <- Default[,3:4]
m1 <- mean(credit.data[,1])
m2 <- mean(credit.data[,2])
credit.data2 <- credit.data - c(m1, m2)
credit.data3 <- scale(credit.data2)
pca<- princomp(data.frame(scale(credit.data3)))
pca$loadings
##
## Loadings:
## Comp.1 Comp.2
## balance 0.707 0.707
## income 0.707 -0.707
##
## Comp.1 Comp.2
## SS loadings 1.0 1.0
## Proportion Var 0.5 0.5
## Cumulative Var 0.5 1.0
T <- pca$loadings
D <- inv(T) %*% t(scale(credit.data3))
credit.data4 <- t(D)
s <- c(-1.96, 1.96)
Non_Outlier_v1 <- mean(credit.data4[,1]) + s * sd(credit.data4[,1])
Non_Outlier_v2 <- mean(credit.data4[,2]) + s * sd(credit.data4[,2])
Non_Outlier_v1
## [1] -2.608577 2.608577
Non_Outlier_v2
## [1] -0.9372965 0.9372965