=====================================================

Nama Mahasiswa : โ€™Izzan Nuha Zamroni

NIM : 220605110082

Kelas : C

Mata Kuliah : Linear Algebra

Dosen Pengampuh : Prof.Dr.Suhartono,M.Kom

Jurusan : Teknik Informatika

Universitas : UIN Maulana Malik Ibrahim Malang

=====================================================

library(pracma)
A <- matrix(c(1, -1, 4, 2, 0, -1, -1, -1, 5), nrow=3, ncol=3,
byrow=TRUE)
rref(A)
##      [,1] [,2] [,3]
## [1,]    1    0 -0.5
## [2,]    0    1 -4.5
## [3,]    0    0  0.0
 rref(A)
##      [,1] [,2] [,3]
## [1,]    1    0 -0.5
## [2,]    0    1 -4.5
## [3,]    0    0  0.0
library(MASS)
A <- matrix(c(1, 1, 0, 0, 0, 0,
0, 0, 1, 1, 0, 0,
0, 0, 0, 0, 1, 1,
1, 0, 1, 0, 1, 0,
0, 1, 0, 1, 0, 1), 5, 6, byrow=TRUE)
V <- Null(t(A))
V
##            [,1]        [,2]
## [1,] -0.1999668  0.54161482
## [2,]  0.1999668 -0.54161482
## [3,] -0.3690688 -0.44398374
## [4,]  0.3690688  0.44398374
## [5,]  0.5690356 -0.09763107
## [6,] -0.5690356  0.09763107
X <- matrix(c(43, 7, 44, 6, 49, 1), 3, 2, byrow = TRUE)
fisher.test(X, alternative = "greater")
## 
##  Fisher's Exact Test for Count Data
## 
## data:  X
## p-value = 0.08963
## alternative hypothesis: greater
chisq.test(X)
## Warning in chisq.test(X): Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  X
## X-squared = 4.8845, df = 2, p-value = 0.08697