Principal Components Analyses w/ Alyssa's Joggle & Neuropsych Test Data

Joggle PCA

Initial Extraction of the Components

AJData2PCA<-principal(AJData2,nfactors=14,rotate="none")
principal(r=AJData2,nfactors=14,rotate="none")

Eigen Values

ev <- eigen(cor(AJData2))
ev

Scree Plot

ap <- parallel(subject=nrow(AJData2),var=ncol(AJData2), rep=100,cent=.05)
nS <- nScree(x=ev$values, aparallel=ap$eigen$qevpea)
plotnScree(nS)

plot of chunk unnamed-chunk-4

Rotation to Final Solution

AJData2PCA.r<-principal(AJData2,nfactors=5,rotate="varimax",scores=T)
principal(r=AJData2,nfactors=5,rotate="varimax",scores=T)
## Principal Components Analysis
## Call: principal(r = AJData2, nfactors = 5, rotate = "varimax", scores = T)
## Standardized loadings (pattern matrix) based upon correlation matrix
##                      RC1   RC4   RC5   RC3   RC2   h2   u2
## VTCorrectResponses  0.04 -0.02  0.78  0.26 -0.26 0.75 0.25
## VTEfficiencyScore   0.22  0.11  0.88  0.09  0.11 0.85 0.15
## MTSpeedScore        0.54  0.14  0.25 -0.16  0.33 0.51 0.49
## NBCorrectResponses  0.12 -0.06  0.08  0.92  0.05 0.87 0.13
## NBAccuracyScore     0.10  0.07  0.08  0.75 -0.05 0.59 0.41
## AMCorrectResponses -0.16 -0.04 -0.21  0.04  0.88 0.84 0.16
## AMEfficiencyScore  -0.02  0.13  0.07 -0.09  0.90 0.84 0.16
## LTCorrectResponses  0.10  0.88  0.01  0.08  0.01 0.80 0.20
## LTEfficiencyScore   0.08  0.92  0.08  0.07  0.13 0.88 0.12
## DTCorrectResponses  0.68  0.42  0.42  0.20 -0.01 0.86 0.14
## DTEfficiencyScore   0.66  0.41  0.42  0.11  0.00 0.79 0.21
## BTAccuracyScore    -0.04  0.31  0.21  0.54 -0.10 0.44 0.56
## PTAggregateScore    0.91 -0.06 -0.06  0.15 -0.11 0.86 0.14
## PTEfficiencyScore   0.90  0.01  0.05  0.06 -0.20 0.86 0.14
## 
##                        RC1  RC4  RC5  RC3  RC2
## SS loadings           2.94 2.14 1.91 1.89 1.86
## Proportion Var        0.21 0.15 0.14 0.13 0.13
## Cumulative Var        0.21 0.36 0.50 0.63 0.77
## Proportion Explained  0.27 0.20 0.18 0.18 0.17
## Cumulative Proportion 0.27 0.47 0.65 0.83 1.00
## 
## Test of the hypothesis that 5 components are sufficient.
## 
## The degrees of freedom for the null model are  91  and the objective function was  9.58
## The degrees of freedom for the model are 31  and the objective function was  3.35 
## The total number of observations was  44  with MLE Chi Square =  114.4  with prob <  1.8e-11 
## 
## Fit based upon off diagonal values = 0.95

Neuro Test PCA

Initial Extraction of the Components

AJData1PCA<-principal(AJData1,nfactors=,rotate="none")
principal(r=AJData1,nfactors=35,rotate="none")

Eigen Values

ev <- eigen(cor(AJData1))
ev

Scree Plot

ap <- parallel(subject=nrow(AJData1),var=ncol(AJData1), rep=100,cent=.05)
nS <- nScree(x=ev$values, aparallel=ap$eigen$qevpea)
plotnScree(nS)

plot of chunk unnamed-chunk-10

Rotation to Final Solution

AJData1PCA.r<-principal(AJData1,nfactors=5,rotate="varimax",scores=T)
principal(r=AJData1,nfactors=5,rotate="varimax",scores=T)
## Principal Components Analysis
## Call: principal(r = AJData1, nfactors = 5, rotate = "varimax", scores = T)
## Standardized loadings (pattern matrix) based upon correlation matrix
##                 RC1   RC2   RC3   RC4   RC5   h2   u2
## MOCAdsf        0.57  0.07  0.31  0.07  0.34 0.54 0.46
## MOCAdsb        0.54 -0.13 -0.14 -0.43  0.16 0.54 0.46
## MOCADS         0.76 -0.03  0.13 -0.23  0.35 0.78 0.22
## MOCATTL        0.73  0.53  0.10  0.06 -0.05 0.83 0.17
## MOCAATT        0.83  0.16 -0.02 -0.08  0.03 0.73 0.27
## MOCAVIS        0.38  0.40  0.09 -0.21 -0.35 0.47 0.53
## MOCANAM        0.27  0.08  0.43 -0.14 -0.41 0.45 0.55
## MOCALAN        0.65 -0.06  0.31  0.43  0.06 0.71 0.29
## MOCAABS        0.03  0.64  0.08  0.24  0.20 0.51 0.49
## MOCAORI        0.03  0.12 -0.67 -0.21 -0.05 0.50 0.50
## rMOCATTL       0.70  0.54  0.07  0.04 -0.07 0.80 0.20
## FWRATTL        0.81  0.05  0.19  0.30  0.25 0.84 0.16
## MMSEtemporal   0.12  0.18 -0.08 -0.02  0.53 0.33 0.67
## MMSEspatial    0.11 -0.12  0.28 -0.10  0.74 0.66 0.34
## MMSElang       0.07  0.15 -0.06  0.84 -0.11 0.74 0.26
## MMSEattcal     0.50 -0.14  0.08 -0.09 -0.35 0.41 0.59
## MMSETTL        0.40  0.14 -0.02  0.48  0.15 0.43 0.57
## MMSEATTcalSUM  0.68  0.05 -0.04 -0.05 -0.20 0.51 0.49
## BVRTTTL        0.42  0.28  0.22  0.20 -0.40 0.50 0.50
## PMTTL          0.25  0.20  0.45  0.28 -0.28 0.46 0.54
## TMTAT         -0.10 -0.83  0.03  0.01  0.12 0.71 0.29
## TMTBT         -0.50 -0.31 -0.26  0.14  0.21 0.48 0.52
## CRCorrect     -0.07  0.46  0.38 -0.02  0.17 0.39 0.61
## MWords         0.65  0.05  0.23  0.41 -0.04 0.65 0.35
## AWords         0.72  0.02  0.36  0.24 -0.10 0.72 0.28
## SWords         0.69  0.11  0.31  0.38 -0.10 0.75 0.25
## FrWords        0.12  0.46  0.67 -0.13  0.03 0.70 0.30
## AnWords        0.07  0.71  0.37  0.09  0.12 0.67 0.33
## VgWords        0.05  0.03  0.64 -0.11  0.16 0.46 0.54
## BWDTTL         0.69  0.16 -0.17  0.05 -0.03 0.54 0.46
## FWDTTL         0.70 -0.07 -0.08  0.10  0.03 0.50 0.50
## DSTTL          0.10  0.62 -0.04  0.31 -0.39 0.64 0.36
## MQTTL         -0.35 -0.11 -0.35  0.08 -0.01 0.26 0.74
## BNT1          -0.03  0.25  0.59  0.11 -0.26 0.49 0.51
## alphsptt       0.64  0.43  0.04  0.29 -0.07 0.68 0.32
## 
##                        RC1  RC2  RC3  RC4  RC5
## SS loadings           8.57 3.84 3.28 2.39 2.31
## Proportion Var        0.24 0.11 0.09 0.07 0.07
## Cumulative Var        0.24 0.35 0.45 0.52 0.58
## Proportion Explained  0.42 0.19 0.16 0.12 0.11
## Cumulative Proportion 0.42 0.61 0.77 0.89 1.00
## 
## Test of the hypothesis that 5 components are sufficient.
## 
## The degrees of freedom for the null model are  595  and the objective function was  74.55
## The degrees of freedom for the model are 430  and the objective function was  NaN 
## The total number of observations was  42  with MLE Chi Square =  NaN  with prob <  NaN 
## 
## Fit based upon off diagonal values = 0.94

Joggle and Neuropsych PCA - Abbreviated data (31 variables)

Initial Extraction of the Components

AJDataAbbrPCA<-principal(AJDataAbbr,nfactors=31,rotate="none")
principal(r=AJDataAbbr,nfactors=31,rotate="none")

Eigen Values

ev <- eigen(cor(AJDataAbbr))
ev

Scree Plot

ap <- parallel(subject=nrow(AJDataAbbr),var=ncol(AJDataAbbr), rep=100,cent=.05)
nS <- nScree(x=ev$values, aparallel=ap$eigen$qevpea)
plotnScree(nS)

plot of chunk unnamed-chunk-16

Rotation to Final Solution

AJDataAbbrPCA.r<-principal(AJDataAbbr,nfactors=5,rotate="varimax",scores=T)
principal(r=AJDataAbbr,nfactors=5,rotate="varimax",scores=T)
## Principal Components Analysis
## Call: principal(r = AJDataAbbr, nfactors = 5, rotate = "varimax", scores = T)
## Standardized loadings (pattern matrix) based upon correlation matrix
##                     RC1   RC2   RC3   RC4   RC5   h2   u2
## MOCADS             0.69 -0.26  0.02  0.17  0.07 0.57 0.43
## MOCAATT            0.87  0.00 -0.02  0.13 -0.08 0.78 0.22
## MOCAVIS            0.38  0.42  0.23 -0.11 -0.27 0.46 0.54
## MOCAABS            0.10  0.05  0.65 -0.03  0.12 0.45 0.55
## MOCAORI            0.02  0.07 -0.16 -0.09 -0.55 0.34 0.66
## rMOCATTL           0.76  0.19  0.39  0.06 -0.11 0.78 0.22
## FWRATTL            0.77 -0.11  0.13  0.31  0.23 0.77 0.23
## MMSEtemporal       0.03 -0.13  0.08  0.77 -0.19 0.65 0.35
## MMSEspatial       -0.01 -0.56  0.28  0.45  0.09 0.61 0.39
## MMSETTL            0.29  0.18  0.13  0.60  0.28 0.57 0.43
## MMSEATTcalSUM      0.64  0.15 -0.07  0.25 -0.13 0.52 0.48
## BVRTTTL            0.46  0.51  0.11  0.03  0.39 0.64 0.36
## PMTTL              0.26  0.24  0.40 -0.04  0.46 0.50 0.50
## TMTAT             -0.16 -0.52 -0.52 -0.09  0.26 0.64 0.36
## TMTBT             -0.55 -0.02 -0.43  0.11 -0.02 0.50 0.50
## CRCorrect         -0.02 -0.02  0.59  0.02  0.09 0.36 0.64
## AnWords            0.15  0.28  0.68  0.09  0.02 0.57 0.43
## BWDTTL             0.72  0.22 -0.20  0.30 -0.07 0.69 0.31
## FWDTTL             0.76 -0.05 -0.21 -0.09  0.10 0.64 0.36
## DSTTL              0.11  0.81  0.29  0.05  0.03 0.75 0.25
## MQTTL             -0.21 -0.12 -0.32 -0.21  0.18 0.24 0.76
## BNT1              -0.03  0.18  0.52  0.18  0.05 0.34 0.66
## alphsptt           0.76  0.18  0.30 -0.18  0.17 0.77 0.23
## VTEfficiencyScore  0.19  0.64  0.25 -0.03 -0.12 0.52 0.48
## MTSpeedScore      -0.04  0.56 -0.03 -0.10  0.03 0.33 0.67
## NBAccuracyScore    0.56  0.19  0.13  0.00 -0.28 0.44 0.56
## AMEfficiencyScore -0.22  0.02  0.50 -0.48 -0.02 0.54 0.46
## LTEfficiencyScore -0.14  0.46  0.42 -0.02 -0.23 0.46 0.54
## DTEfficiencyScore -0.07  0.87  0.18  0.19 -0.07 0.83 0.17
## BTAccuracyScore    0.22  0.17  0.18  0.37 -0.58 0.58 0.42
## PTEfficiencyScore  0.13  0.59  0.01  0.44  0.36 0.69 0.31
## 
##                        RC1  RC2  RC3  RC4  RC5
## SS loadings           5.90 4.23 3.41 2.23 1.74
## Proportion Var        0.19 0.14 0.11 0.07 0.06
## Cumulative Var        0.19 0.33 0.44 0.51 0.57
## Proportion Explained  0.34 0.24 0.19 0.13 0.10
## Cumulative Proportion 0.34 0.58 0.77 0.90 1.00
## 
## Test of the hypothesis that 5 components are sufficient.
## 
## The degrees of freedom for the null model are  465  and the objective function was  25.26
## The degrees of freedom for the model are 320  and the objective function was  12.31 
## The total number of observations was  43  with MLE Chi Square =  338.6  with prob <  0.23 
## 
## Fit based upon off diagonal values = 0.92

Joggle and Neuropsych PCA - All Major Variables (49 variables)

Initial Extraction of the Components

ANeupsyJogglePCA<-principal(AJNeupsyJoggle,nfactors=49,rotate="none")
principal(r=AJNeupsyJoggle,nfactors=49,rotate="none")

Eigen Values

ev <- eigen(cor(AJNeupsyJoggle))
ev

Scree Plot

ap <- parallel(subject=nrow(AJNeupsyJoggle),var=ncol(AJNeupsyJoggle), rep=100,cent=.05)
nS <- nScree(x=ev$values, aparallel=ap$eigen$qevpea)
plotnScree(nS)

plot of chunk unnamed-chunk-22

Rotation to Final Solution

AJNeupsyJogglePCA.r<-principal(AJNeupsyJoggle,nfactors=5,rotate="varimax",scores=T)
principal(r=AJNeupsyJoggle,nfactors=5,rotate="varimax",scores=T)
## Principal Components Analysis
## Call: principal(r = AJNeupsyJoggle, nfactors = 5, rotate = "varimax", 
##     scores = T)
## Standardized loadings (pattern matrix) based upon correlation matrix
##                      RC1   RC2   RC4   RC3   RC5   h2   u2
## MOCAdsf             0.62 -0.22  0.18  0.27 -0.04 0.54 0.46
## MOCAdsb             0.26 -0.26  0.35 -0.16  0.19 0.32 0.68
## MOCADS              0.61 -0.33  0.36  0.09  0.10 0.63 0.37
## MOCATTL             0.62  0.21  0.61  0.18 -0.03 0.83 0.17
## MOCAATT             0.64 -0.08  0.56 -0.03  0.15 0.76 0.24
## MOCAVIS             0.27  0.36  0.37  0.12 -0.18 0.39 0.61
## MOCANAM             0.31  0.21  0.06  0.27 -0.04 0.22 0.78
## MOCALAN             0.80  0.01  0.02  0.12 -0.01 0.65 0.35
## MOCAABS             0.09  0.20  0.24  0.34 -0.16 0.25 0.75
## MOCAORI            -0.20  0.08  0.32 -0.53 -0.07 0.44 0.56
## rMOCATTL            0.58  0.21  0.61  0.17 -0.05 0.79 0.21
## FWRATTL             0.85 -0.09  0.20  0.13  0.15 0.80 0.20
## MMSEtemporal       -0.01 -0.13  0.15  0.16  0.54 0.35 0.65
## MMSEspatial         0.16 -0.48 -0.13  0.34  0.21 0.43 0.57
## MMSElang            0.37  0.49 -0.23 -0.11 -0.31 0.55 0.45
## MMSEattcal          0.38 -0.01  0.13 -0.13  0.36 0.31 0.69
## MMSETTL             0.45  0.22  0.00  0.00  0.47 0.46 0.54
## MMSEATTcalSUM       0.50  0.06  0.40 -0.14  0.27 0.51 0.49
## BVRTTTL             0.45  0.49  0.12  0.14  0.17 0.50 0.50
## PMTTL               0.40  0.28  0.00  0.32 -0.06 0.34 0.66
## TMTAT               0.06 -0.51 -0.57 -0.31 -0.03 0.68 0.32
## TMTBT              -0.37  0.03 -0.48 -0.25  0.04 0.43 0.57
## CRCorrect          -0.02  0.08  0.07  0.59 -0.05 0.36 0.64
## MWords              0.81  0.17  0.00  0.09 -0.10 0.70 0.30
## AWords              0.82  0.10  0.06  0.20  0.10 0.73 0.27
## SWords              0.82  0.28  0.04  0.17  0.11 0.79 0.21
## FrWords             0.12  0.08  0.25  0.80  0.10 0.72 0.28
## AnWords             0.07  0.31  0.34  0.63  0.05 0.61 0.39
## VgWords             0.13 -0.14  0.00  0.60 -0.09 0.40 0.60
## BWDTTL              0.51  0.10  0.44 -0.15  0.34 0.60 0.40
## FWDTTL              0.62 -0.18  0.29 -0.15 -0.03 0.52 0.48
## DSTTL               0.09  0.79  0.27  0.12  0.06 0.72 0.28
## MQTTL              -0.35 -0.13 -0.10 -0.27  0.03 0.23 0.77
## BNT1                0.13  0.31 -0.11  0.55 -0.03 0.43 0.57
## alphsptt            0.64  0.21  0.46  0.08 -0.25 0.73 0.27
## VTCorrectResponses  0.03  0.32  0.52 -0.39  0.31 0.62 0.38
## VTEfficiencyScore  -0.07  0.51  0.51  0.12  0.12 0.56 0.44
## MTSpeedScore       -0.05  0.44  0.02  0.11 -0.05 0.21 0.79
## NBCorrectResponses  0.33  0.01  0.64  0.02  0.03 0.52 0.48
## NBAccuracyScore     0.28  0.20  0.56  0.00 -0.01 0.43 0.57
## AMCorrectResponses  0.08 -0.19 -0.03  0.03 -0.79 0.66 0.34
## AMEfficiencyScore  -0.10  0.11 -0.07  0.32 -0.78 0.73 0.27
## LTCorrectResponses  0.03  0.58  0.12 -0.26 -0.31 0.51 0.49
## LTEfficiencyScore   0.01  0.60  0.03  0.03 -0.26 0.43 0.57
## DTCorrectResponses  0.05  0.86  0.23  0.12  0.18 0.84 0.16
## DTEfficiencyScore  -0.04  0.84  0.13  0.16  0.20 0.80 0.20
## BTAccuracyScore     0.02  0.07  0.54  0.09  0.22 0.36 0.64
## PTAggregateScore    0.42  0.59 -0.07  0.04  0.20 0.57 0.43
## PTEfficiencyScore   0.30  0.64 -0.09  0.13  0.37 0.66 0.34
## 
##                        RC1  RC2  RC4  RC3  RC5
## SS loadings           8.49 6.30 4.96 3.82 3.08
## Proportion Var        0.17 0.13 0.10 0.08 0.06
## Cumulative Var        0.17 0.30 0.40 0.48 0.54
## Proportion Explained  0.32 0.24 0.19 0.14 0.12
## Cumulative Proportion 0.32 0.55 0.74 0.88 1.00
## 
## Test of the hypothesis that 5 components are sufficient.
## 
## The degrees of freedom for the null model are  1176  and the objective function was  222
## The degrees of freedom for the model are 941  and the objective function was  196 
## The total number of observations was  42  with MLE Chi Square =  4018  with prob <  0 
## 
## Fit based upon off diagonal values = 0.91