=====================================================
Nama Mahasiswa : โIzzan Nuha Zamroni
NIM : 220605110082
Kelas : C
Mata Kuliah : Linear Algebra
Dosen Pengampuh : Prof.Dr.Suhartono,M.Kom
Jurusan : Teknik Informatika
Universitas : UIN Maulana Malik Ibrahim Malang
=====================================================
df <- USArrests
library(rlang)
head(df)
## Murder Assault UrbanPop Rape
## Alabama 13.2 236 58 21.2
## Alaska 10.0 263 48 44.5
## Arizona 8.1 294 80 31.0
## Arkansas 8.8 190 50 19.5
## California 9.0 276 91 40.6
## Colorado 7.9 204 78 38.7
df <- na.omit(df)
df <- scale(df)
d <- dist(df, method = "euclidean")
hc <- hclust(d)
sub_grp <- cutree(hc, k = 4)
library(ISLR)
data(Auto)
summary(Auto)
## mpg cylinders displacement horsepower weight
## Min. : 9.00 Min. :3.000 Min. : 68.0 Min. : 46.0 Min. :1613
## 1st Qu.:17.00 1st Qu.:4.000 1st Qu.:105.0 1st Qu.: 75.0 1st Qu.:2225
## Median :22.75 Median :4.000 Median :151.0 Median : 93.5 Median :2804
## Mean :23.45 Mean :5.472 Mean :194.4 Mean :104.5 Mean :2978
## 3rd Qu.:29.00 3rd Qu.:8.000 3rd Qu.:275.8 3rd Qu.:126.0 3rd Qu.:3615
## Max. :46.60 Max. :8.000 Max. :455.0 Max. :230.0 Max. :5140
##
## acceleration year origin name
## Min. : 8.00 Min. :70.00 Min. :1.000 amc matador : 5
## 1st Qu.:13.78 1st Qu.:73.00 1st Qu.:1.000 ford pinto : 5
## Median :15.50 Median :76.00 Median :1.000 toyota corolla : 5
## Mean :15.54 Mean :75.98 Mean :1.577 amc gremlin : 4
## 3rd Qu.:17.02 3rd Qu.:79.00 3rd Qu.:2.000 amc hornet : 4
## Max. :24.80 Max. :82.00 Max. :3.000 chevrolet chevette: 4
## (Other) :365
auto <- Auto[,1:7]
summary(auto)
## mpg cylinders displacement horsepower weight
## Min. : 9.00 Min. :3.000 Min. : 68.0 Min. : 46.0 Min. :1613
## 1st Qu.:17.00 1st Qu.:4.000 1st Qu.:105.0 1st Qu.: 75.0 1st Qu.:2225
## Median :22.75 Median :4.000 Median :151.0 Median : 93.5 Median :2804
## Mean :23.45 Mean :5.472 Mean :194.4 Mean :104.5 Mean :2978
## 3rd Qu.:29.00 3rd Qu.:8.000 3rd Qu.:275.8 3rd Qu.:126.0 3rd Qu.:3615
## Max. :46.60 Max. :8.000 Max. :455.0 Max. :230.0 Max. :5140
## acceleration year
## Min. : 8.00 Min. :70.00
## 1st Qu.:13.78 1st Qu.:73.00
## Median :15.50 Median :76.00
## Mean :15.54 Mean :75.98
## 3rd Qu.:17.02 3rd Qu.:79.00
## Max. :24.80 Max. :82.00
new.data <- Auto[, 1:8]
new.data$origin <- as.character(new.data$origin)
summary(new.data)
## mpg cylinders displacement horsepower weight
## Min. : 9.00 Min. :3.000 Min. : 68.0 Min. : 46.0 Min. :1613
## 1st Qu.:17.00 1st Qu.:4.000 1st Qu.:105.0 1st Qu.: 75.0 1st Qu.:2225
## Median :22.75 Median :4.000 Median :151.0 Median : 93.5 Median :2804
## Mean :23.45 Mean :5.472 Mean :194.4 Mean :104.5 Mean :2978
## 3rd Qu.:29.00 3rd Qu.:8.000 3rd Qu.:275.8 3rd Qu.:126.0 3rd Qu.:3615
## Max. :46.60 Max. :8.000 Max. :455.0 Max. :230.0 Max. :5140
## acceleration year origin
## Min. : 8.00 Min. :70.00 Length:392
## 1st Qu.:13.78 1st Qu.:73.00 Class :character
## Median :15.50 Median :76.00 Mode :character
## Mean :15.54 Mean :75.98
## 3rd Qu.:17.02 3rd Qu.:79.00
## Max. :24.80 Max. :82.00
library(rgl)
dat <- replicate(2, 1:3)
points3d(x=23, y=3, z=0)
pc <- prcomp(auto, scale=TRUE)
plot(pc)
plot(cumsum(pc$sdev^2/sum(pc$sdev^2)))