# Import necessary libraries
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(readr)
library(ggplot2)
library(psych)
## 
## Attaching package: 'psych'
## The following objects are masked from 'package:ggplot2':
## 
##     %+%, alpha
library(gridExtra)
## 
## Attaching package: 'gridExtra'
## The following object is masked from 'package:dplyr':
## 
##     combine
library(DescTools)
## 
## Attaching package: 'DescTools'
## The following objects are masked from 'package:psych':
## 
##     AUC, ICC, SD
library(corrplot)
## corrplot 0.92 loaded
library(caret)
## Loading required package: lattice
## 
## Attaching package: 'caret'
## The following objects are masked from 'package:DescTools':
## 
##     MAE, RMSE
library(mlr)
## Loading required package: ParamHelpers
## Warning message: 'mlr' is in 'maintenance-only' mode since July 2019.
## Future development will only happen in 'mlr3'
## (<https://mlr3.mlr-org.com>). Due to the focus on 'mlr3' there might be
## uncaught bugs meanwhile in {mlr} - please consider switching.
## 
## Attaching package: 'mlr'
## The following object is masked from 'package:caret':
## 
##     train
suppressWarnings(expr)
## function (expr) 
## {
##     enexpr(expr)
## }
## <bytecode: 0x7f9e9c53d6a0>
## <environment: namespace:rlang>
# Check current working directory
getwd()
## [1] "/Users/crystalhoo/Desktop/house-price-prediction"
# Change working directory
#setwd("C:/Users/User/Desktop")

Import Dataset

dataset <- read.csv("train.csv")
head(dataset)
##   Id MSSubClass MSZoning LotFrontage LotArea Street Alley LotShape LandContour
## 1  1         60       RL          65    8450   Pave  <NA>      Reg         Lvl
## 2  2         20       RL          80    9600   Pave  <NA>      Reg         Lvl
## 3  3         60       RL          68   11250   Pave  <NA>      IR1         Lvl
## 4  4         70       RL          60    9550   Pave  <NA>      IR1         Lvl
## 5  5         60       RL          84   14260   Pave  <NA>      IR1         Lvl
## 6  6         50       RL          85   14115   Pave  <NA>      IR1         Lvl
##   Utilities LotConfig LandSlope Neighborhood Condition1 Condition2 BldgType
## 1    AllPub    Inside       Gtl      CollgCr       Norm       Norm     1Fam
## 2    AllPub       FR2       Gtl      Veenker      Feedr       Norm     1Fam
## 3    AllPub    Inside       Gtl      CollgCr       Norm       Norm     1Fam
## 4    AllPub    Corner       Gtl      Crawfor       Norm       Norm     1Fam
## 5    AllPub       FR2       Gtl      NoRidge       Norm       Norm     1Fam
## 6    AllPub    Inside       Gtl      Mitchel       Norm       Norm     1Fam
##   HouseStyle OverallQual OverallCond YearBuilt YearRemodAdd RoofStyle RoofMatl
## 1     2Story           7           5      2003         2003     Gable  CompShg
## 2     1Story           6           8      1976         1976     Gable  CompShg
## 3     2Story           7           5      2001         2002     Gable  CompShg
## 4     2Story           7           5      1915         1970     Gable  CompShg
## 5     2Story           8           5      2000         2000     Gable  CompShg
## 6     1.5Fin           5           5      1993         1995     Gable  CompShg
##   Exterior1st Exterior2nd MasVnrType MasVnrArea ExterQual ExterCond Foundation
## 1     VinylSd     VinylSd    BrkFace        196        Gd        TA      PConc
## 2     MetalSd     MetalSd       None          0        TA        TA     CBlock
## 3     VinylSd     VinylSd    BrkFace        162        Gd        TA      PConc
## 4     Wd Sdng     Wd Shng       None          0        TA        TA     BrkTil
## 5     VinylSd     VinylSd    BrkFace        350        Gd        TA      PConc
## 6     VinylSd     VinylSd       None          0        TA        TA       Wood
##   BsmtQual BsmtCond BsmtExposure BsmtFinType1 BsmtFinSF1 BsmtFinType2
## 1       Gd       TA           No          GLQ        706          Unf
## 2       Gd       TA           Gd          ALQ        978          Unf
## 3       Gd       TA           Mn          GLQ        486          Unf
## 4       TA       Gd           No          ALQ        216          Unf
## 5       Gd       TA           Av          GLQ        655          Unf
## 6       Gd       TA           No          GLQ        732          Unf
##   BsmtFinSF2 BsmtUnfSF TotalBsmtSF Heating HeatingQC CentralAir Electrical
## 1          0       150         856    GasA        Ex          Y      SBrkr
## 2          0       284        1262    GasA        Ex          Y      SBrkr
## 3          0       434         920    GasA        Ex          Y      SBrkr
## 4          0       540         756    GasA        Gd          Y      SBrkr
## 5          0       490        1145    GasA        Ex          Y      SBrkr
## 6          0        64         796    GasA        Ex          Y      SBrkr
##   X1stFlrSF X2ndFlrSF LowQualFinSF GrLivArea BsmtFullBath BsmtHalfBath FullBath
## 1       856       854            0      1710            1            0        2
## 2      1262         0            0      1262            0            1        2
## 3       920       866            0      1786            1            0        2
## 4       961       756            0      1717            1            0        1
## 5      1145      1053            0      2198            1            0        2
## 6       796       566            0      1362            1            0        1
##   HalfBath BedroomAbvGr KitchenAbvGr KitchenQual TotRmsAbvGrd Functional
## 1        1            3            1          Gd            8        Typ
## 2        0            3            1          TA            6        Typ
## 3        1            3            1          Gd            6        Typ
## 4        0            3            1          Gd            7        Typ
## 5        1            4            1          Gd            9        Typ
## 6        1            1            1          TA            5        Typ
##   Fireplaces FireplaceQu GarageType GarageYrBlt GarageFinish GarageCars
## 1          0        <NA>     Attchd        2003          RFn          2
## 2          1          TA     Attchd        1976          RFn          2
## 3          1          TA     Attchd        2001          RFn          2
## 4          1          Gd     Detchd        1998          Unf          3
## 5          1          TA     Attchd        2000          RFn          3
## 6          0        <NA>     Attchd        1993          Unf          2
##   GarageArea GarageQual GarageCond PavedDrive WoodDeckSF OpenPorchSF
## 1        548         TA         TA          Y          0          61
## 2        460         TA         TA          Y        298           0
## 3        608         TA         TA          Y          0          42
## 4        642         TA         TA          Y          0          35
## 5        836         TA         TA          Y        192          84
## 6        480         TA         TA          Y         40          30
##   EnclosedPorch X3SsnPorch ScreenPorch PoolArea PoolQC Fence MiscFeature
## 1             0          0           0        0   <NA>  <NA>        <NA>
## 2             0          0           0        0   <NA>  <NA>        <NA>
## 3             0          0           0        0   <NA>  <NA>        <NA>
## 4           272          0           0        0   <NA>  <NA>        <NA>
## 5             0          0           0        0   <NA>  <NA>        <NA>
## 6             0        320           0        0   <NA> MnPrv        Shed
##   MiscVal MoSold YrSold SaleType SaleCondition SalePrice
## 1       0      2   2008       WD        Normal    208500
## 2       0      5   2007       WD        Normal    181500
## 3       0      9   2008       WD        Normal    223500
## 4       0      2   2006       WD       Abnorml    140000
## 5       0     12   2008       WD        Normal    250000
## 6     700     10   2009       WD        Normal    143000

Dataset Overview

There are 1460 records (rows) and 81 attributes (columns).

Dataset is mostly made up of numerical values (int64 & float64) and categorical values (object). Statistics are provided for numerical variables only.

cat("Total rows & columns:", dim(dataset), '\n\n')
## Total rows & columns: 1460 81
str(dataset)
## 'data.frame':    1460 obs. of  81 variables:
##  $ Id           : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ MSSubClass   : int  60 20 60 70 60 50 20 60 50 190 ...
##  $ MSZoning     : chr  "RL" "RL" "RL" "RL" ...
##  $ LotFrontage  : int  65 80 68 60 84 85 75 NA 51 50 ...
##  $ LotArea      : int  8450 9600 11250 9550 14260 14115 10084 10382 6120 7420 ...
##  $ Street       : chr  "Pave" "Pave" "Pave" "Pave" ...
##  $ Alley        : chr  NA NA NA NA ...
##  $ LotShape     : chr  "Reg" "Reg" "IR1" "IR1" ...
##  $ LandContour  : chr  "Lvl" "Lvl" "Lvl" "Lvl" ...
##  $ Utilities    : chr  "AllPub" "AllPub" "AllPub" "AllPub" ...
##  $ LotConfig    : chr  "Inside" "FR2" "Inside" "Corner" ...
##  $ LandSlope    : chr  "Gtl" "Gtl" "Gtl" "Gtl" ...
##  $ Neighborhood : chr  "CollgCr" "Veenker" "CollgCr" "Crawfor" ...
##  $ Condition1   : chr  "Norm" "Feedr" "Norm" "Norm" ...
##  $ Condition2   : chr  "Norm" "Norm" "Norm" "Norm" ...
##  $ BldgType     : chr  "1Fam" "1Fam" "1Fam" "1Fam" ...
##  $ HouseStyle   : chr  "2Story" "1Story" "2Story" "2Story" ...
##  $ OverallQual  : int  7 6 7 7 8 5 8 7 7 5 ...
##  $ OverallCond  : int  5 8 5 5 5 5 5 6 5 6 ...
##  $ YearBuilt    : int  2003 1976 2001 1915 2000 1993 2004 1973 1931 1939 ...
##  $ YearRemodAdd : int  2003 1976 2002 1970 2000 1995 2005 1973 1950 1950 ...
##  $ RoofStyle    : chr  "Gable" "Gable" "Gable" "Gable" ...
##  $ RoofMatl     : chr  "CompShg" "CompShg" "CompShg" "CompShg" ...
##  $ Exterior1st  : chr  "VinylSd" "MetalSd" "VinylSd" "Wd Sdng" ...
##  $ Exterior2nd  : chr  "VinylSd" "MetalSd" "VinylSd" "Wd Shng" ...
##  $ MasVnrType   : chr  "BrkFace" "None" "BrkFace" "None" ...
##  $ MasVnrArea   : int  196 0 162 0 350 0 186 240 0 0 ...
##  $ ExterQual    : chr  "Gd" "TA" "Gd" "TA" ...
##  $ ExterCond    : chr  "TA" "TA" "TA" "TA" ...
##  $ Foundation   : chr  "PConc" "CBlock" "PConc" "BrkTil" ...
##  $ BsmtQual     : chr  "Gd" "Gd" "Gd" "TA" ...
##  $ BsmtCond     : chr  "TA" "TA" "TA" "Gd" ...
##  $ BsmtExposure : chr  "No" "Gd" "Mn" "No" ...
##  $ BsmtFinType1 : chr  "GLQ" "ALQ" "GLQ" "ALQ" ...
##  $ BsmtFinSF1   : int  706 978 486 216 655 732 1369 859 0 851 ...
##  $ BsmtFinType2 : chr  "Unf" "Unf" "Unf" "Unf" ...
##  $ BsmtFinSF2   : int  0 0 0 0 0 0 0 32 0 0 ...
##  $ BsmtUnfSF    : int  150 284 434 540 490 64 317 216 952 140 ...
##  $ TotalBsmtSF  : int  856 1262 920 756 1145 796 1686 1107 952 991 ...
##  $ Heating      : chr  "GasA" "GasA" "GasA" "GasA" ...
##  $ HeatingQC    : chr  "Ex" "Ex" "Ex" "Gd" ...
##  $ CentralAir   : chr  "Y" "Y" "Y" "Y" ...
##  $ Electrical   : chr  "SBrkr" "SBrkr" "SBrkr" "SBrkr" ...
##  $ X1stFlrSF    : int  856 1262 920 961 1145 796 1694 1107 1022 1077 ...
##  $ X2ndFlrSF    : int  854 0 866 756 1053 566 0 983 752 0 ...
##  $ LowQualFinSF : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ GrLivArea    : int  1710 1262 1786 1717 2198 1362 1694 2090 1774 1077 ...
##  $ BsmtFullBath : int  1 0 1 1 1 1 1 1 0 1 ...
##  $ BsmtHalfBath : int  0 1 0 0 0 0 0 0 0 0 ...
##  $ FullBath     : int  2 2 2 1 2 1 2 2 2 1 ...
##  $ HalfBath     : int  1 0 1 0 1 1 0 1 0 0 ...
##  $ BedroomAbvGr : int  3 3 3 3 4 1 3 3 2 2 ...
##  $ KitchenAbvGr : int  1 1 1 1 1 1 1 1 2 2 ...
##  $ KitchenQual  : chr  "Gd" "TA" "Gd" "Gd" ...
##  $ TotRmsAbvGrd : int  8 6 6 7 9 5 7 7 8 5 ...
##  $ Functional   : chr  "Typ" "Typ" "Typ" "Typ" ...
##  $ Fireplaces   : int  0 1 1 1 1 0 1 2 2 2 ...
##  $ FireplaceQu  : chr  NA "TA" "TA" "Gd" ...
##  $ GarageType   : chr  "Attchd" "Attchd" "Attchd" "Detchd" ...
##  $ GarageYrBlt  : int  2003 1976 2001 1998 2000 1993 2004 1973 1931 1939 ...
##  $ GarageFinish : chr  "RFn" "RFn" "RFn" "Unf" ...
##  $ GarageCars   : int  2 2 2 3 3 2 2 2 2 1 ...
##  $ GarageArea   : int  548 460 608 642 836 480 636 484 468 205 ...
##  $ GarageQual   : chr  "TA" "TA" "TA" "TA" ...
##  $ GarageCond   : chr  "TA" "TA" "TA" "TA" ...
##  $ PavedDrive   : chr  "Y" "Y" "Y" "Y" ...
##  $ WoodDeckSF   : int  0 298 0 0 192 40 255 235 90 0 ...
##  $ OpenPorchSF  : int  61 0 42 35 84 30 57 204 0 4 ...
##  $ EnclosedPorch: int  0 0 0 272 0 0 0 228 205 0 ...
##  $ X3SsnPorch   : int  0 0 0 0 0 320 0 0 0 0 ...
##  $ ScreenPorch  : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ PoolArea     : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ PoolQC       : chr  NA NA NA NA ...
##  $ Fence        : chr  NA NA NA NA ...
##  $ MiscFeature  : chr  NA NA NA NA ...
##  $ MiscVal      : int  0 0 0 0 0 700 0 350 0 0 ...
##  $ MoSold       : int  2 5 9 2 12 10 8 11 4 1 ...
##  $ YrSold       : int  2008 2007 2008 2006 2008 2009 2007 2009 2008 2008 ...
##  $ SaleType     : chr  "WD" "WD" "WD" "WD" ...
##  $ SaleCondition: chr  "Normal" "Normal" "Normal" "Abnorml" ...
##  $ SalePrice    : int  208500 181500 223500 140000 250000 143000 307000 200000 129900 118000 ...
summary(dataset)
##        Id           MSSubClass      MSZoning          LotFrontage    
##  Min.   :   1.0   Min.   : 20.0   Length:1460        Min.   : 21.00  
##  1st Qu.: 365.8   1st Qu.: 20.0   Class :character   1st Qu.: 59.00  
##  Median : 730.5   Median : 50.0   Mode  :character   Median : 69.00  
##  Mean   : 730.5   Mean   : 56.9                      Mean   : 70.05  
##  3rd Qu.:1095.2   3rd Qu.: 70.0                      3rd Qu.: 80.00  
##  Max.   :1460.0   Max.   :190.0                      Max.   :313.00  
##                                                      NA's   :259     
##     LotArea          Street             Alley             LotShape        
##  Min.   :  1300   Length:1460        Length:1460        Length:1460       
##  1st Qu.:  7554   Class :character   Class :character   Class :character  
##  Median :  9478   Mode  :character   Mode  :character   Mode  :character  
##  Mean   : 10517                                                           
##  3rd Qu.: 11602                                                           
##  Max.   :215245                                                           
##                                                                           
##  LandContour         Utilities          LotConfig          LandSlope        
##  Length:1460        Length:1460        Length:1460        Length:1460       
##  Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
##                                                                             
##                                                                             
##                                                                             
##                                                                             
##  Neighborhood        Condition1         Condition2          BldgType        
##  Length:1460        Length:1460        Length:1460        Length:1460       
##  Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
##                                                                             
##                                                                             
##                                                                             
##                                                                             
##   HouseStyle         OverallQual      OverallCond      YearBuilt   
##  Length:1460        Min.   : 1.000   Min.   :1.000   Min.   :1872  
##  Class :character   1st Qu.: 5.000   1st Qu.:5.000   1st Qu.:1954  
##  Mode  :character   Median : 6.000   Median :5.000   Median :1973  
##                     Mean   : 6.099   Mean   :5.575   Mean   :1971  
##                     3rd Qu.: 7.000   3rd Qu.:6.000   3rd Qu.:2000  
##                     Max.   :10.000   Max.   :9.000   Max.   :2010  
##                                                                    
##   YearRemodAdd   RoofStyle           RoofMatl         Exterior1st       
##  Min.   :1950   Length:1460        Length:1460        Length:1460       
##  1st Qu.:1967   Class :character   Class :character   Class :character  
##  Median :1994   Mode  :character   Mode  :character   Mode  :character  
##  Mean   :1985                                                           
##  3rd Qu.:2004                                                           
##  Max.   :2010                                                           
##                                                                         
##  Exterior2nd         MasVnrType          MasVnrArea      ExterQual        
##  Length:1460        Length:1460        Min.   :   0.0   Length:1460       
##  Class :character   Class :character   1st Qu.:   0.0   Class :character  
##  Mode  :character   Mode  :character   Median :   0.0   Mode  :character  
##                                        Mean   : 103.7                     
##                                        3rd Qu.: 166.0                     
##                                        Max.   :1600.0                     
##                                        NA's   :8                          
##   ExterCond          Foundation          BsmtQual           BsmtCond        
##  Length:1460        Length:1460        Length:1460        Length:1460       
##  Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
##                                                                             
##                                                                             
##                                                                             
##                                                                             
##  BsmtExposure       BsmtFinType1         BsmtFinSF1     BsmtFinType2      
##  Length:1460        Length:1460        Min.   :   0.0   Length:1460       
##  Class :character   Class :character   1st Qu.:   0.0   Class :character  
##  Mode  :character   Mode  :character   Median : 383.5   Mode  :character  
##                                        Mean   : 443.6                     
##                                        3rd Qu.: 712.2                     
##                                        Max.   :5644.0                     
##                                                                           
##    BsmtFinSF2        BsmtUnfSF       TotalBsmtSF       Heating         
##  Min.   :   0.00   Min.   :   0.0   Min.   :   0.0   Length:1460       
##  1st Qu.:   0.00   1st Qu.: 223.0   1st Qu.: 795.8   Class :character  
##  Median :   0.00   Median : 477.5   Median : 991.5   Mode  :character  
##  Mean   :  46.55   Mean   : 567.2   Mean   :1057.4                     
##  3rd Qu.:   0.00   3rd Qu.: 808.0   3rd Qu.:1298.2                     
##  Max.   :1474.00   Max.   :2336.0   Max.   :6110.0                     
##                                                                        
##   HeatingQC          CentralAir         Electrical          X1stFlrSF   
##  Length:1460        Length:1460        Length:1460        Min.   : 334  
##  Class :character   Class :character   Class :character   1st Qu.: 882  
##  Mode  :character   Mode  :character   Mode  :character   Median :1087  
##                                                           Mean   :1163  
##                                                           3rd Qu.:1391  
##                                                           Max.   :4692  
##                                                                         
##    X2ndFlrSF     LowQualFinSF       GrLivArea     BsmtFullBath   
##  Min.   :   0   Min.   :  0.000   Min.   : 334   Min.   :0.0000  
##  1st Qu.:   0   1st Qu.:  0.000   1st Qu.:1130   1st Qu.:0.0000  
##  Median :   0   Median :  0.000   Median :1464   Median :0.0000  
##  Mean   : 347   Mean   :  5.845   Mean   :1515   Mean   :0.4253  
##  3rd Qu.: 728   3rd Qu.:  0.000   3rd Qu.:1777   3rd Qu.:1.0000  
##  Max.   :2065   Max.   :572.000   Max.   :5642   Max.   :3.0000  
##                                                                  
##   BsmtHalfBath        FullBath        HalfBath       BedroomAbvGr  
##  Min.   :0.00000   Min.   :0.000   Min.   :0.0000   Min.   :0.000  
##  1st Qu.:0.00000   1st Qu.:1.000   1st Qu.:0.0000   1st Qu.:2.000  
##  Median :0.00000   Median :2.000   Median :0.0000   Median :3.000  
##  Mean   :0.05753   Mean   :1.565   Mean   :0.3829   Mean   :2.866  
##  3rd Qu.:0.00000   3rd Qu.:2.000   3rd Qu.:1.0000   3rd Qu.:3.000  
##  Max.   :2.00000   Max.   :3.000   Max.   :2.0000   Max.   :8.000  
##                                                                    
##   KitchenAbvGr   KitchenQual         TotRmsAbvGrd     Functional       
##  Min.   :0.000   Length:1460        Min.   : 2.000   Length:1460       
##  1st Qu.:1.000   Class :character   1st Qu.: 5.000   Class :character  
##  Median :1.000   Mode  :character   Median : 6.000   Mode  :character  
##  Mean   :1.047                      Mean   : 6.518                     
##  3rd Qu.:1.000                      3rd Qu.: 7.000                     
##  Max.   :3.000                      Max.   :14.000                     
##                                                                        
##    Fireplaces    FireplaceQu         GarageType         GarageYrBlt  
##  Min.   :0.000   Length:1460        Length:1460        Min.   :1900  
##  1st Qu.:0.000   Class :character   Class :character   1st Qu.:1961  
##  Median :1.000   Mode  :character   Mode  :character   Median :1980  
##  Mean   :0.613                                         Mean   :1979  
##  3rd Qu.:1.000                                         3rd Qu.:2002  
##  Max.   :3.000                                         Max.   :2010  
##                                                        NA's   :81    
##  GarageFinish         GarageCars      GarageArea      GarageQual       
##  Length:1460        Min.   :0.000   Min.   :   0.0   Length:1460       
##  Class :character   1st Qu.:1.000   1st Qu.: 334.5   Class :character  
##  Mode  :character   Median :2.000   Median : 480.0   Mode  :character  
##                     Mean   :1.767   Mean   : 473.0                     
##                     3rd Qu.:2.000   3rd Qu.: 576.0                     
##                     Max.   :4.000   Max.   :1418.0                     
##                                                                        
##   GarageCond         PavedDrive          WoodDeckSF      OpenPorchSF    
##  Length:1460        Length:1460        Min.   :  0.00   Min.   :  0.00  
##  Class :character   Class :character   1st Qu.:  0.00   1st Qu.:  0.00  
##  Mode  :character   Mode  :character   Median :  0.00   Median : 25.00  
##                                        Mean   : 94.24   Mean   : 46.66  
##                                        3rd Qu.:168.00   3rd Qu.: 68.00  
##                                        Max.   :857.00   Max.   :547.00  
##                                                                         
##  EnclosedPorch      X3SsnPorch      ScreenPorch        PoolArea      
##  Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.000  
##  1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.000  
##  Median :  0.00   Median :  0.00   Median :  0.00   Median :  0.000  
##  Mean   : 21.95   Mean   :  3.41   Mean   : 15.06   Mean   :  2.759  
##  3rd Qu.:  0.00   3rd Qu.:  0.00   3rd Qu.:  0.00   3rd Qu.:  0.000  
##  Max.   :552.00   Max.   :508.00   Max.   :480.00   Max.   :738.000  
##                                                                      
##     PoolQC             Fence           MiscFeature           MiscVal        
##  Length:1460        Length:1460        Length:1460        Min.   :    0.00  
##  Class :character   Class :character   Class :character   1st Qu.:    0.00  
##  Mode  :character   Mode  :character   Mode  :character   Median :    0.00  
##                                                           Mean   :   43.49  
##                                                           3rd Qu.:    0.00  
##                                                           Max.   :15500.00  
##                                                                             
##      MoSold           YrSold       SaleType         SaleCondition     
##  Min.   : 1.000   Min.   :2006   Length:1460        Length:1460       
##  1st Qu.: 5.000   1st Qu.:2007   Class :character   Class :character  
##  Median : 6.000   Median :2008   Mode  :character   Mode  :character  
##  Mean   : 6.322   Mean   :2008                                        
##  3rd Qu.: 8.000   3rd Qu.:2009                                        
##  Max.   :12.000   Max.   :2010                                        
##                                                                       
##    SalePrice     
##  Min.   : 34900  
##  1st Qu.:129975  
##  Median :163000  
##  Mean   :180921  
##  3rd Qu.:214000  
##  Max.   :755000  
## 

Data Preprocessing

Check for sum of duplicates between columns

No duplication inside the dataset

duplicates <- sum(duplicated(dataset))
cat(paste("Number of duplicates:", duplicates))
## Number of duplicates: 0

Remove Meaningless Columns

At this stage, we have removed irrelevant columns from the dataset.

‘Id’ column is removed, as it is a unique identifier for each customer.

‘GarageCars’ column is removed, as it provides redundant information already captured by the ‘GarageArea’ column.

We also removed the ‘Exterior2nd’ column, as it represents a limited set of additional choices for exterior covering.

Furthermore, we removed the ‘GarageYrBlt’ column, as the year of construction is typically the same as the ‘YearBuilt’ column.

Finally, we removed the ‘TotRmsAbvGrd’ column, as it provides a similar meaning as the ‘First Floor’ square footage.

Subset the dataset by removing specific columns

dataset <- subset(dataset, select = -c(Id, GarageCars, Exterior2nd, GarageYrBlt, TotRmsAbvGrd))

Check for Missing Values

There are a total of 19 columns with missing values

5 of them have missing values higher than 20%

Columns with missing values higher than 20%: PoolQC, MiscFeature, Alley, Fence, FireplaceQu

Column with missing values higher than 20% will be removed in this stage

Calculate missing percentages

missing_percentages <- colSums(is.na(dataset)) / nrow(dataset) * 100

Create dataframe with column names and missing percentages

missing_dataset <- data.frame(
  column_name = names(missing_percentages), 
  missing_percentage = missing_percentages
) %>%
  # Sort the dataframe by missing percentages in descending order
  arrange(desc(missing_percentage)) %>%
  # Filter out columns with 0 missing percentages
  filter(missing_percentage > 0)

Remove columns with missing values more than 20%

dataset <- subset(dataset, select = -c(PoolQC, MiscFeature, Alley, Fence, FireplaceQu))

Impute numerical missing data using mean & Impute categorical missing data using mode

Median is chosen to fill in missing values, rather than the mean.

The mean is sensitive to extreme values and can be heavily influenced by outliers in the data, which can lead to biased estimates. In contrast, the median is a robust measure of central tendency that is less sensitive to extreme values and is more appropriate for skewed data.

Identify numerical columns & replace missing numerical values with mean

num_cols <- sapply(dataset, is.numeric)
for (col in names(dataset[, num_cols])) {
  col_mean <- mean(dataset[, col], na.rm = TRUE)
  dataset[, col][is.na(dataset[, col])] <- rep(col_mean, sum(is.na(dataset[, col])))
}

Identify categorical columns & replace missing categorical values with mode

cat_cols <- sapply(dataset, is.factor) | sapply(dataset, is.character)
for (col in names(dataset[, cat_cols])) {
  dataset[, col][is.na(dataset[, col])] <- as.character(Mode(dataset[, col], na.rm = TRUE))
}

Explore Data - Exploratory Data Analysis (EDA)

Plot Distribution of Numeric Data

Majority of numerical columns’ distribution are right-skewed (31 attributes), however, 3 of them are left-skewed

Select numerical columns using the “is.numeric” function

numerical_cols <- names(dataset)[sapply(dataset, is.numeric)]
categorical_cols <- names(dataset)[sapply(dataset, is.factor) | sapply(dataset, is.character)]

Create new data frames with only numerical and categorical columns

numerical_data <- dataset[numerical_cols]
categorical_data <- dataset[categorical_cols]

Create a function to plot probability density plot and skewness

plot_density <- function(column, col_name) {
  # Compute the skewness of the data
  skewness <- skew(column)
  
  # Set the plot color based on the skewness
  if (skewness < 0) {
    plot_color <- "blue"
  } else {
    plot_color <- "red"
  }
  
  # Create the density plot
  plot_title <- paste("Skewness:", round(skewness, 2), "| Column:", col_name)
  density_plot <- ggplot(data = data.frame(column), aes(x = column)) +
    geom_density(fill = plot_color, alpha = 0.3) +
    ggtitle(plot_title)
  
  return(density_plot)
}

Apply the plot_density function to each column of numerical data in numerical_data

plots <- lapply(names(numerical_data), function(col_name) {
  plot_density(numerical_data[[col_name]], col_name)
})

Arrange the resulting plots in a grid with 5 columns

grid.arrange(grobs = plots, ncol = 5)

Check Outliers using boxplot

Create a list of boxplots for the first 20 attributes

Outliers are found in most of the columns - 27 attributes

boxplot_numerical_first20attributes <- lapply(1:20, function(i) {
  ggplot(numerical_data, aes(x = 1, y = numerical_data[, i])) +
    geom_boxplot() +
    ggtitle(paste0("Boxplot of", colnames(numerical_data)[i])) +
    xlab("") +
    ylab(colnames(numerical_data)[i])
})

Create a list of boxplots for the remaining 14 attributes

boxplot_numerical_rest14attributes <- lapply(21:34, function(i) {
  ggplot(numerical_data, aes(x = 1, y = numerical_data[, i])) +
    geom_boxplot() +
    ggtitle(paste0("Boxplot of", colnames(numerical_data)[i])) +
    xlab("") +
    ylab(colnames(numerical_data)[i])
})

grid.arrange(grobs = boxplot_numerical_first20attributes, ncol = 5)

grid.arrange(grobs = boxplot_numerical_rest14attributes, ncol = 5)

Perform Correlation Matrix

correlation_matrix <- cor(numerical_data, method = "pearson")
print(correlation_matrix)
##                 MSSubClass  LotFrontage      LotArea OverallQual  OverallCond
## MSSubClass     1.000000000 -0.357055878 -0.139781082  0.03262771 -0.059315817
## LotFrontage   -0.357055878  1.000000000  0.306794605  0.23419623 -0.052820100
## LotArea       -0.139781082  0.306794605  1.000000000  0.10580574 -0.005636270
## OverallQual    0.032627708  0.234196231  0.105805742  1.00000000 -0.091932343
## OverallCond   -0.059315817 -0.052820100 -0.005636270 -0.09193234  1.000000000
## YearBuilt      0.027850137  0.117597979  0.014227652  0.57232277 -0.375983196
## YearRemodAdd   0.040581045  0.082745885  0.013788427  0.55068392  0.073741498
## MasVnrArea     0.022894690  0.179283452  0.103960227  0.41023774 -0.127788119
## BsmtFinSF1    -0.069835749  0.215828435  0.214103131  0.23966597 -0.046230856
## BsmtFinSF2    -0.065648579  0.043339566  0.111169745 -0.05911869  0.040229170
## BsmtUnfSF     -0.140759481  0.122155600 -0.002618360  0.30815893 -0.136840570
## TotalBsmtSF   -0.238518409  0.363357723  0.260833135  0.53780850 -0.171097515
## X1stFlrSF     -0.251758352  0.414266394  0.299474579  0.47622383 -0.144202784
## X2ndFlrSF      0.307885721  0.072482666  0.050985948  0.29549288  0.028942116
## LowQualFinSF   0.046473756  0.036848721  0.004778970 -0.03042928  0.025494320
## GrLivArea      0.074853180  0.368391966  0.263116167  0.59300743 -0.079685865
## BsmtFullBath   0.003491026  0.091480992  0.158154531  0.11109779 -0.054941515
## BsmtHalfBath  -0.002332535 -0.006419220  0.048045571 -0.04015016  0.117820915
## FullBath       0.131608222  0.180424206  0.126030627  0.55059971 -0.194149489
## HalfBath       0.177354389  0.048258362  0.014259469  0.27345810 -0.060769327
## BedroomAbvGr  -0.023438028  0.237023227  0.119689908  0.10167636  0.012980060
## KitchenAbvGr   0.281721040 -0.005804607 -0.017783871 -0.18388223 -0.087000855
## Fireplaces    -0.045569340  0.235754565  0.271364010  0.39676504 -0.023819978
## GarageArea    -0.098671543  0.323662899  0.180402755  0.56202176 -0.151521371
## WoodDeckSF    -0.012579358  0.077106221  0.171697687  0.23892339 -0.003333699
## OpenPorchSF   -0.006100121  0.137454496  0.084773809  0.30881882 -0.032588814
## EnclosedPorch -0.012036622  0.009790061 -0.018339734 -0.11393686  0.070356184
## X3SsnPorch    -0.043824549  0.062335471  0.020422830  0.03037057  0.025503660
## ScreenPorch   -0.026030177  0.037684305  0.043160378  0.06488636  0.054810529
## PoolArea       0.008282708  0.180867647  0.077672392  0.06516584 -0.001984942
## MiscVal       -0.007683291  0.001168275  0.038067692 -0.03140621  0.068776806
## MoSold        -0.013584643  0.010157807  0.001204988  0.07081517 -0.003510839
## YrSold        -0.021407038  0.006768250 -0.014261407 -0.02734671  0.043949746
## SalePrice     -0.084284135  0.334900852  0.263843354  0.79098160 -0.077855894
##                  YearBuilt YearRemodAdd   MasVnrArea   BsmtFinSF1   BsmtFinSF2
## MSSubClass     0.027850137  0.040581045  0.022894690 -0.069835749 -0.065648579
## LotFrontage    0.117597979  0.082745885  0.179283452  0.215828435  0.043339566
## LotArea        0.014227652  0.013788427  0.103960227  0.214103131  0.111169745
## OverallQual    0.572322769  0.550683924  0.410237736  0.239665966 -0.059118693
## OverallCond   -0.375983196  0.073741498 -0.127788119 -0.046230856  0.040229170
## YearBuilt      1.000000000  0.592854976  0.314745023  0.249503197 -0.049106831
## YearRemodAdd   0.592854976  1.000000000  0.179186495  0.128450547 -0.067758514
## MasVnrArea     0.314745023  0.179186495  1.000000000  0.263582388 -0.072302247
## BsmtFinSF1     0.249503197  0.128450547  0.263582388  1.000000000 -0.050117400
## BsmtFinSF2    -0.049106831 -0.067758514 -0.072302247 -0.050117400  1.000000000
## BsmtUnfSF      0.149040392  0.181133087  0.114183659 -0.495251469 -0.209294492
## TotalBsmtSF    0.391452002  0.291065583  0.362452094  0.522396052  0.104809538
## X1stFlrSF      0.281985859  0.240379268  0.342160338  0.445862656  0.097117448
## X2ndFlrSF      0.010307660  0.140023779  0.174019344 -0.137078986 -0.099260316
## LowQualFinSF  -0.183784344 -0.062419100 -0.069068105 -0.064502597  0.014806998
## GrLivArea      0.199009714  0.287388520  0.389892916  0.208171130 -0.009639892
## BsmtFullBath   0.187598550  0.119469879  0.085054528  0.649211754  0.158678061
## BsmtHalfBath  -0.038161806 -0.012337032  0.026668558  0.067418478  0.070948134
## FullBath       0.468270787  0.439046484  0.275729847  0.058543137 -0.076443862
## HalfBath       0.242655910  0.183330612  0.200802357  0.004262424 -0.032147837
## BedroomAbvGr  -0.070651217 -0.040580928  0.102417471 -0.107354677 -0.015728114
## KitchenAbvGr  -0.174800246 -0.149597521 -0.037364011 -0.081006851 -0.040751236
## Fireplaces     0.147716399  0.112581318  0.247906285  0.260010920  0.046920709
## GarageArea     0.478953820  0.371599809  0.372567013  0.296970385 -0.018226592
## WoodDeckSF     0.224880142  0.205725920  0.159349430  0.204306145  0.067898326
## OpenPorchSF    0.188685840  0.226297633  0.124965275  0.111760613  0.003092562
## EnclosedPorch -0.387267783 -0.193919147 -0.109848652 -0.102303306  0.036543339
## X3SsnPorch     0.031354513  0.045285810  0.018794814  0.026450506 -0.029993398
## ScreenPorch   -0.050364435 -0.038740011  0.061453179  0.062020623  0.088871251
## PoolArea       0.004949728  0.005829372  0.011722909  0.140491286  0.041709055
## MiscVal       -0.034383139 -0.010286249 -0.029814762  0.003571473  0.004939781
## MoSold         0.012398471  0.021490002 -0.005939579 -0.015726948 -0.015210738
## YrSold        -0.013617680  0.035743247 -0.008183639  0.014358922  0.031705637
## SalePrice      0.522897333  0.507100967  0.475241317  0.386419806 -0.011378121
##                  BsmtUnfSF   TotalBsmtSF    X1stFlrSF    X2ndFlrSF
## MSSubClass    -0.140759481 -0.2385184093 -0.251758352  0.307885721
## LotFrontage    0.122155600  0.3633577228  0.414266394  0.072482666
## LotArea       -0.002618360  0.2608331345  0.299474579  0.050985948
## OverallQual    0.308158927  0.5378084986  0.476223829  0.295492879
## OverallCond   -0.136840570 -0.1710975146 -0.144202784  0.028942116
## YearBuilt      0.149040392  0.3914520021  0.281985859  0.010307660
## YearRemodAdd   0.181133087  0.2910655826  0.240379268  0.140023779
## MasVnrArea     0.114183659  0.3624520941  0.342160338  0.174019344
## BsmtFinSF1    -0.495251469  0.5223960520  0.445862656 -0.137078986
## BsmtFinSF2    -0.209294492  0.1048095376  0.097117448 -0.099260316
## BsmtUnfSF      1.000000000  0.4153596052  0.317987438  0.004469092
## TotalBsmtSF    0.415359605  1.0000000000  0.819529975 -0.174511950
## X1stFlrSF      0.317987438  0.8195299750  1.000000000 -0.202646181
## X2ndFlrSF      0.004469092 -0.1745119501 -0.202646181  1.000000000
## LowQualFinSF   0.028166688 -0.0332453873 -0.014240673  0.063352950
## GrLivArea      0.240257268  0.4548682025  0.566023969  0.687501064
## BsmtFullBath  -0.422900477  0.3073505537  0.244671104 -0.169493952
## BsmtHalfBath  -0.095804288 -0.0003145818  0.001955654 -0.023854784
## FullBath       0.288886055  0.3237224136  0.380637495  0.421377983
## HalfBath      -0.041117530 -0.0488037386 -0.119915909  0.609707300
## BedroomAbvGr   0.166643317  0.0504499555  0.127400749  0.502900613
## KitchenAbvGr   0.030085868 -0.0689006426  0.068100588  0.059305753
## Fireplaces     0.051574882  0.3395193239  0.410531085  0.194560892
## GarageArea     0.183302698  0.4866654638  0.489781654  0.138346959
## WoodDeckSF    -0.005316424  0.2320186091  0.235458623  0.092165418
## OpenPorchSF    0.129005415  0.2472637463  0.211671225  0.208026063
## EnclosedPorch -0.002537855 -0.0954777367 -0.065291701  0.061988691
## X3SsnPorch     0.020764006  0.0373837273  0.056104374 -0.024357648
## ScreenPorch   -0.012579273  0.0844889859  0.088758073  0.040606448
## PoolArea      -0.035092241  0.1260531321  0.131524976  0.081486878
## MiscVal       -0.023836645 -0.0184789224 -0.021095719  0.016196875
## MoSold         0.034888443  0.0131961786  0.031371560  0.035164427
## YrSold        -0.041258195 -0.0149686480 -0.013603771 -0.028699914
## SalePrice      0.214479106  0.6135805516  0.605852185  0.319333803
##                LowQualFinSF    GrLivArea  BsmtFullBath  BsmtHalfBath
## MSSubClass     0.0464737559  0.074853180  0.0034910258 -0.0023325346
## LotFrontage    0.0368487208  0.368391966  0.0914809919 -0.0064192197
## LotArea        0.0047789699  0.263116167  0.1581545311  0.0480455709
## OverallQual   -0.0304292840  0.593007430  0.1110977861 -0.0401501577
## OverallCond    0.0254943199 -0.079685865 -0.0549415154  0.1178209151
## YearBuilt     -0.1837843444  0.199009714  0.1875985500 -0.0381618057
## YearRemodAdd  -0.0624191001  0.287388520  0.1194698791 -0.0123370321
## MasVnrArea    -0.0690681050  0.389892916  0.0850545278  0.0266685579
## BsmtFinSF1    -0.0645025969  0.208171130  0.6492117536  0.0674184779
## BsmtFinSF2     0.0148069979 -0.009639892  0.1586780608  0.0709481337
## BsmtUnfSF      0.0281666881  0.240257268 -0.4229004774 -0.0958042882
## TotalBsmtSF   -0.0332453873  0.454868203  0.3073505537 -0.0003145818
## X1stFlrSF     -0.0142406727  0.566023969  0.2446711042  0.0019556536
## X2ndFlrSF      0.0633529501  0.687501064 -0.1694939517 -0.0238547839
## LowQualFinSF   1.0000000000  0.134682813 -0.0471434219 -0.0058415048
## GrLivArea      0.1346828130  1.000000000  0.0348360495 -0.0189184832
## BsmtFullBath  -0.0471434219  0.034836050  1.0000000000 -0.1478709605
## BsmtHalfBath  -0.0058415048 -0.018918483 -0.1478709605  1.0000000000
## FullBath      -0.0007095096  0.630011646 -0.0645120486 -0.0545358120
## HalfBath      -0.0270800493  0.415771636 -0.0309049591 -0.0123399001
## BedroomAbvGr   0.1056065685  0.521269511 -0.1506728092  0.0465188484
## KitchenAbvGr   0.0075217443  0.100063165 -0.0415025464 -0.0379443502
## Fireplaces    -0.0212721434  0.461679134  0.1379277084  0.0289755866
## GarageArea    -0.0676014132  0.468997477  0.1791894804 -0.0245355796
## WoodDeckSF    -0.0254436480  0.247432821  0.1753151901  0.0401612233
## OpenPorchSF    0.0182510391  0.330223962  0.0673414614 -0.0253237579
## EnclosedPorch  0.0610812378  0.009113210 -0.0499106491 -0.0085553339
## X3SsnPorch    -0.0042956104  0.020643190 -0.0001060915  0.0351136309
## ScreenPorch    0.0267994130  0.101510396  0.0231477258  0.0321214072
## PoolArea       0.0621573723  0.170205336  0.0676155562  0.0200246298
## MiscVal       -0.0037928708 -0.002415640 -0.0230470249 -0.0073665245
## MoSold        -0.0221739606  0.050239681 -0.0253608943  0.0328727052
## YrSold        -0.0289208798 -0.036525820  0.0670491377 -0.0465238818
## SalePrice     -0.0256061300  0.708624478  0.2271222331 -0.0168441543
##                    FullBath     HalfBath BedroomAbvGr KitchenAbvGr   Fireplaces
## MSSubClass     0.1316082224  0.177354389 -0.023438028  0.281721040 -0.045569340
## LotFrontage    0.1804242055  0.048258362  0.237023227 -0.005804607  0.235754565
## LotArea        0.1260306265  0.014259469  0.119689908 -0.017783871  0.271364010
## OverallQual    0.5505997094  0.273458099  0.101676356 -0.183882235  0.396765038
## OverallCond   -0.1941494887 -0.060769327  0.012980060 -0.087000855 -0.023819978
## YearBuilt      0.4682707872  0.242655910 -0.070651217 -0.174800246  0.147716399
## YearRemodAdd   0.4390464839  0.183330612 -0.040580928 -0.149597521  0.112581318
## MasVnrArea     0.2757298473  0.200802357  0.102417471 -0.037364011  0.247906285
## BsmtFinSF1     0.0585431369  0.004262424 -0.107354677 -0.081006851  0.260010920
## BsmtFinSF2    -0.0764438620 -0.032147837 -0.015728114 -0.040751236  0.046920709
## BsmtUnfSF      0.2888860555 -0.041117530  0.166643317  0.030085868  0.051574882
## TotalBsmtSF    0.3237224136 -0.048803739  0.050449956 -0.068900643  0.339519324
## X1stFlrSF      0.3806374950 -0.119915909  0.127400749  0.068100588  0.410531085
## X2ndFlrSF      0.4213779829  0.609707300  0.502900613  0.059305753  0.194560892
## LowQualFinSF  -0.0007095096 -0.027080049  0.105606569  0.007521744 -0.021272143
## GrLivArea      0.6300116463  0.415771636  0.521269511  0.100063165  0.461679134
## BsmtFullBath  -0.0645120486 -0.030904959 -0.150672809 -0.041502546  0.137927708
## BsmtHalfBath  -0.0545358120 -0.012339900  0.046518848 -0.037944350  0.028975587
## FullBath       1.0000000000  0.136380589  0.363251983  0.133115214  0.243670503
## HalfBath       0.1363805887  1.000000000  0.226651484 -0.068262549  0.203648508
## BedroomAbvGr   0.3632519830  0.226651484  1.000000000  0.198596758  0.107569681
## KitchenAbvGr   0.1331152142 -0.068262549  0.198596758  1.000000000 -0.123936235
## Fireplaces     0.2436705031  0.203648508  0.107569681 -0.123936235  1.000000000
## GarageArea     0.4056562085  0.163549364  0.065252530 -0.064433047  0.269141238
## WoodDeckSF     0.1877032138  0.108080303  0.046853773 -0.090130273  0.200018796
## OpenPorchSF    0.2599774255  0.199740148  0.093809572 -0.070090610  0.169405327
## EnclosedPorch -0.1150929635 -0.095316526  0.041570435  0.037312385 -0.024821869
## X3SsnPorch     0.0353530166 -0.004972488 -0.024477796 -0.024600359  0.011257239
## ScreenPorch   -0.0081060933  0.072425845  0.044299691 -0.051613366  0.184530270
## PoolArea       0.0496038256  0.022381498  0.070702584 -0.014525116  0.095073522
## MiscVal       -0.0142898450  0.001290145  0.007766972  0.062340724  0.001408605
## MoSold         0.0558721290 -0.009049888  0.046543860  0.026588907  0.046357102
## YrSold        -0.0196688407 -0.010268669 -0.036013893  0.031687207 -0.024095565
## SalePrice      0.5606637627  0.284107676  0.168213154 -0.135907371  0.466928837
##                GarageArea   WoodDeckSF  OpenPorchSF EnclosedPorch    X3SsnPorch
## MSSubClass    -0.09867154 -0.012579358 -0.006100121  -0.012036622 -0.0438245492
## LotFrontage    0.32366290  0.077106221  0.137454496   0.009790061  0.0623354713
## LotArea        0.18040276  0.171697687  0.084773809  -0.018339734  0.0204228296
## OverallQual    0.56202176  0.238923392  0.308818823  -0.113936859  0.0303705671
## OverallCond   -0.15152137 -0.003333699 -0.032588814   0.070356184  0.0255036600
## YearBuilt      0.47895382  0.224880142  0.188685840  -0.387267783  0.0313545131
## YearRemodAdd   0.37159981  0.205725920  0.226297633  -0.193919147  0.0452858098
## MasVnrArea     0.37256701  0.159349430  0.124965275  -0.109848652  0.0187948145
## BsmtFinSF1     0.29697039  0.204306145  0.111760613  -0.102303306  0.0264505062
## BsmtFinSF2    -0.01822659  0.067898326  0.003092562   0.036543339 -0.0299933980
## BsmtUnfSF      0.18330270 -0.005316424  0.129005415  -0.002537855  0.0207640057
## TotalBsmtSF    0.48666546  0.232018609  0.247263746  -0.095477737  0.0373837273
## X1stFlrSF      0.48978165  0.235458623  0.211671225  -0.065291701  0.0561043745
## X2ndFlrSF      0.13834696  0.092165418  0.208026063   0.061988691 -0.0243576484
## LowQualFinSF  -0.06760141 -0.025443648  0.018251039   0.061081238 -0.0042956104
## GrLivArea      0.46899748  0.247432821  0.330223962   0.009113210  0.0206431897
## BsmtFullBath   0.17918948  0.175315190  0.067341461  -0.049910649 -0.0001060915
## BsmtHalfBath  -0.02453558  0.040161223 -0.025323758  -0.008555334  0.0351136309
## FullBath       0.40565621  0.187703214  0.259977425  -0.115092963  0.0353530166
## HalfBath       0.16354936  0.108080303  0.199740148  -0.095316526 -0.0049724884
## BedroomAbvGr   0.06525253  0.046853773  0.093809572   0.041570435 -0.0244777964
## KitchenAbvGr  -0.06443305 -0.090130273 -0.070090610   0.037312385 -0.0246003587
## Fireplaces     0.26914124  0.200018796  0.169405327  -0.024821869  0.0112572390
## GarageArea     1.00000000  0.224666307  0.241434672  -0.121776720  0.0350867002
## WoodDeckSF     0.22466631  1.000000000  0.058660609  -0.125988888 -0.0327706336
## OpenPorchSF    0.24143467  0.058660609  1.000000000  -0.093079318 -0.0058424993
## EnclosedPorch -0.12177672 -0.125988888 -0.093079318   1.000000000 -0.0373052828
## X3SsnPorch     0.03508670 -0.032770634 -0.005842499  -0.037305283  1.0000000000
## ScreenPorch    0.05141176 -0.074181351  0.074303944  -0.082864245 -0.0314358470
## PoolArea       0.06104727  0.073378207  0.060762111   0.054202562 -0.0079915489
## MiscVal       -0.02739991 -0.009551228 -0.018583739   0.018360600  0.0003539653
## MoSold         0.02797380  0.021011044  0.071254885  -0.028887266  0.0294737952
## YrSold        -0.02737794  0.022270451 -0.057619360  -0.009915937  0.0186449254
## SalePrice      0.62343144  0.324413445  0.315856227  -0.128577958  0.0445836653
##                ScreenPorch     PoolArea       MiscVal       MoSold       YrSold
## MSSubClass    -0.026030177  0.008282708 -0.0076832913 -0.013584643 -0.021407038
## LotFrontage    0.037684305  0.180867647  0.0011682749  0.010157807  0.006768250
## LotArea        0.043160378  0.077672392  0.0380676920  0.001204988 -0.014261407
## OverallQual    0.064886360  0.065165844 -0.0314062105  0.070815172 -0.027346708
## OverallCond    0.054810529 -0.001984942  0.0687768061 -0.003510839  0.043949746
## YearBuilt     -0.050364435  0.004949728 -0.0343831387  0.012398471 -0.013617680
## YearRemodAdd  -0.038740011  0.005829372 -0.0102862488  0.021490002  0.035743247
## MasVnrArea     0.061453179  0.011722909 -0.0298147620 -0.005939579 -0.008183639
## BsmtFinSF1     0.062020623  0.140491286  0.0035714735 -0.015726948  0.014358922
## BsmtFinSF2     0.088871251  0.041709055  0.0049397812 -0.015210738  0.031705637
## BsmtUnfSF     -0.012579273 -0.035092241 -0.0238366451  0.034888443 -0.041258195
## TotalBsmtSF    0.084488986  0.126053132 -0.0184789224  0.013196179 -0.014968648
## X1stFlrSF      0.088758073  0.131524976 -0.0210957195  0.031371560 -0.013603771
## X2ndFlrSF      0.040606448  0.081486878  0.0161968746  0.035164427 -0.028699914
## LowQualFinSF   0.026799413  0.062157372 -0.0037928708 -0.022173961 -0.028920880
## GrLivArea      0.101510396  0.170205336 -0.0024156396  0.050239681 -0.036525820
## BsmtFullBath   0.023147726  0.067615556 -0.0230470249 -0.025360894  0.067049138
## BsmtHalfBath   0.032121407  0.020024630 -0.0073665245  0.032872705 -0.046523882
## FullBath      -0.008106093  0.049603826 -0.0142898450  0.055872129 -0.019668841
## HalfBath       0.072425845  0.022381498  0.0012901448 -0.009049888 -0.010268669
## BedroomAbvGr   0.044299691  0.070702584  0.0077669720  0.046543860 -0.036013893
## KitchenAbvGr  -0.051613366 -0.014525116  0.0623407240  0.026588907  0.031687207
## Fireplaces     0.184530270  0.095073522  0.0014086054  0.046357102 -0.024095565
## GarageArea     0.051411762  0.061047272 -0.0273999144  0.027973800 -0.027377940
## WoodDeckSF    -0.074181351  0.073378207 -0.0095512282  0.021011044  0.022270451
## OpenPorchSF    0.074303944  0.060762111 -0.0185837390  0.071254885 -0.057619360
## EnclosedPorch -0.082864245  0.054202562  0.0183606001 -0.028887266 -0.009915937
## X3SsnPorch    -0.031435847 -0.007991549  0.0003539653  0.029473795  0.018644925
## ScreenPorch    1.000000000  0.051307395  0.0319457608  0.023216992  0.010694106
## PoolArea       0.051307395  1.000000000  0.0296686509 -0.033736640 -0.059688932
## MiscVal        0.031945761  0.029668651  1.0000000000 -0.006494550  0.004906262
## MoSold         0.023216992 -0.033736640 -0.0064945502  1.000000000 -0.145721413
## YrSold         0.010694106 -0.059688932  0.0049062625 -0.145721413  1.000000000
## SalePrice      0.111446571  0.092403549 -0.0211895796  0.046432245 -0.028922585
##                 SalePrice
## MSSubClass    -0.08428414
## LotFrontage    0.33490085
## LotArea        0.26384335
## OverallQual    0.79098160
## OverallCond   -0.07785589
## YearBuilt      0.52289733
## YearRemodAdd   0.50710097
## MasVnrArea     0.47524132
## BsmtFinSF1     0.38641981
## BsmtFinSF2    -0.01137812
## BsmtUnfSF      0.21447911
## TotalBsmtSF    0.61358055
## X1stFlrSF      0.60585218
## X2ndFlrSF      0.31933380
## LowQualFinSF  -0.02560613
## GrLivArea      0.70862448
## BsmtFullBath   0.22712223
## BsmtHalfBath  -0.01684415
## FullBath       0.56066376
## HalfBath       0.28410768
## BedroomAbvGr   0.16821315
## KitchenAbvGr  -0.13590737
## Fireplaces     0.46692884
## GarageArea     0.62343144
## WoodDeckSF     0.32441344
## OpenPorchSF    0.31585623
## EnclosedPorch -0.12857796
## X3SsnPorch     0.04458367
## ScreenPorch    0.11144657
## PoolArea       0.09240355
## MiscVal       -0.02118958
## MoSold         0.04643225
## YrSold        -0.02892259
## SalePrice      1.00000000

Create a heatmap of the correlation matrix

corrplot(correlation_matrix, method = "color", type = "upper", order = "hclust", tl.col = "black", tl.cex = 0.3, tl.srt = 90)

print(correlation_matrix)
##                 MSSubClass  LotFrontage      LotArea OverallQual  OverallCond
## MSSubClass     1.000000000 -0.357055878 -0.139781082  0.03262771 -0.059315817
## LotFrontage   -0.357055878  1.000000000  0.306794605  0.23419623 -0.052820100
## LotArea       -0.139781082  0.306794605  1.000000000  0.10580574 -0.005636270
## OverallQual    0.032627708  0.234196231  0.105805742  1.00000000 -0.091932343
## OverallCond   -0.059315817 -0.052820100 -0.005636270 -0.09193234  1.000000000
## YearBuilt      0.027850137  0.117597979  0.014227652  0.57232277 -0.375983196
## YearRemodAdd   0.040581045  0.082745885  0.013788427  0.55068392  0.073741498
## MasVnrArea     0.022894690  0.179283452  0.103960227  0.41023774 -0.127788119
## BsmtFinSF1    -0.069835749  0.215828435  0.214103131  0.23966597 -0.046230856
## BsmtFinSF2    -0.065648579  0.043339566  0.111169745 -0.05911869  0.040229170
## BsmtUnfSF     -0.140759481  0.122155600 -0.002618360  0.30815893 -0.136840570
## TotalBsmtSF   -0.238518409  0.363357723  0.260833135  0.53780850 -0.171097515
## X1stFlrSF     -0.251758352  0.414266394  0.299474579  0.47622383 -0.144202784
## X2ndFlrSF      0.307885721  0.072482666  0.050985948  0.29549288  0.028942116
## LowQualFinSF   0.046473756  0.036848721  0.004778970 -0.03042928  0.025494320
## GrLivArea      0.074853180  0.368391966  0.263116167  0.59300743 -0.079685865
## BsmtFullBath   0.003491026  0.091480992  0.158154531  0.11109779 -0.054941515
## BsmtHalfBath  -0.002332535 -0.006419220  0.048045571 -0.04015016  0.117820915
## FullBath       0.131608222  0.180424206  0.126030627  0.55059971 -0.194149489
## HalfBath       0.177354389  0.048258362  0.014259469  0.27345810 -0.060769327
## BedroomAbvGr  -0.023438028  0.237023227  0.119689908  0.10167636  0.012980060
## KitchenAbvGr   0.281721040 -0.005804607 -0.017783871 -0.18388223 -0.087000855
## Fireplaces    -0.045569340  0.235754565  0.271364010  0.39676504 -0.023819978
## GarageArea    -0.098671543  0.323662899  0.180402755  0.56202176 -0.151521371
## WoodDeckSF    -0.012579358  0.077106221  0.171697687  0.23892339 -0.003333699
## OpenPorchSF   -0.006100121  0.137454496  0.084773809  0.30881882 -0.032588814
## EnclosedPorch -0.012036622  0.009790061 -0.018339734 -0.11393686  0.070356184
## X3SsnPorch    -0.043824549  0.062335471  0.020422830  0.03037057  0.025503660
## ScreenPorch   -0.026030177  0.037684305  0.043160378  0.06488636  0.054810529
## PoolArea       0.008282708  0.180867647  0.077672392  0.06516584 -0.001984942
## MiscVal       -0.007683291  0.001168275  0.038067692 -0.03140621  0.068776806
## MoSold        -0.013584643  0.010157807  0.001204988  0.07081517 -0.003510839
## YrSold        -0.021407038  0.006768250 -0.014261407 -0.02734671  0.043949746
## SalePrice     -0.084284135  0.334900852  0.263843354  0.79098160 -0.077855894
##                  YearBuilt YearRemodAdd   MasVnrArea   BsmtFinSF1   BsmtFinSF2
## MSSubClass     0.027850137  0.040581045  0.022894690 -0.069835749 -0.065648579
## LotFrontage    0.117597979  0.082745885  0.179283452  0.215828435  0.043339566
## LotArea        0.014227652  0.013788427  0.103960227  0.214103131  0.111169745
## OverallQual    0.572322769  0.550683924  0.410237736  0.239665966 -0.059118693
## OverallCond   -0.375983196  0.073741498 -0.127788119 -0.046230856  0.040229170
## YearBuilt      1.000000000  0.592854976  0.314745023  0.249503197 -0.049106831
## YearRemodAdd   0.592854976  1.000000000  0.179186495  0.128450547 -0.067758514
## MasVnrArea     0.314745023  0.179186495  1.000000000  0.263582388 -0.072302247
## BsmtFinSF1     0.249503197  0.128450547  0.263582388  1.000000000 -0.050117400
## BsmtFinSF2    -0.049106831 -0.067758514 -0.072302247 -0.050117400  1.000000000
## BsmtUnfSF      0.149040392  0.181133087  0.114183659 -0.495251469 -0.209294492
## TotalBsmtSF    0.391452002  0.291065583  0.362452094  0.522396052  0.104809538
## X1stFlrSF      0.281985859  0.240379268  0.342160338  0.445862656  0.097117448
## X2ndFlrSF      0.010307660  0.140023779  0.174019344 -0.137078986 -0.099260316
## LowQualFinSF  -0.183784344 -0.062419100 -0.069068105 -0.064502597  0.014806998
## GrLivArea      0.199009714  0.287388520  0.389892916  0.208171130 -0.009639892
## BsmtFullBath   0.187598550  0.119469879  0.085054528  0.649211754  0.158678061
## BsmtHalfBath  -0.038161806 -0.012337032  0.026668558  0.067418478  0.070948134
## FullBath       0.468270787  0.439046484  0.275729847  0.058543137 -0.076443862
## HalfBath       0.242655910  0.183330612  0.200802357  0.004262424 -0.032147837
## BedroomAbvGr  -0.070651217 -0.040580928  0.102417471 -0.107354677 -0.015728114
## KitchenAbvGr  -0.174800246 -0.149597521 -0.037364011 -0.081006851 -0.040751236
## Fireplaces     0.147716399  0.112581318  0.247906285  0.260010920  0.046920709
## GarageArea     0.478953820  0.371599809  0.372567013  0.296970385 -0.018226592
## WoodDeckSF     0.224880142  0.205725920  0.159349430  0.204306145  0.067898326
## OpenPorchSF    0.188685840  0.226297633  0.124965275  0.111760613  0.003092562
## EnclosedPorch -0.387267783 -0.193919147 -0.109848652 -0.102303306  0.036543339
## X3SsnPorch     0.031354513  0.045285810  0.018794814  0.026450506 -0.029993398
## ScreenPorch   -0.050364435 -0.038740011  0.061453179  0.062020623  0.088871251
## PoolArea       0.004949728  0.005829372  0.011722909  0.140491286  0.041709055
## MiscVal       -0.034383139 -0.010286249 -0.029814762  0.003571473  0.004939781
## MoSold         0.012398471  0.021490002 -0.005939579 -0.015726948 -0.015210738
## YrSold        -0.013617680  0.035743247 -0.008183639  0.014358922  0.031705637
## SalePrice      0.522897333  0.507100967  0.475241317  0.386419806 -0.011378121
##                  BsmtUnfSF   TotalBsmtSF    X1stFlrSF    X2ndFlrSF
## MSSubClass    -0.140759481 -0.2385184093 -0.251758352  0.307885721
## LotFrontage    0.122155600  0.3633577228  0.414266394  0.072482666
## LotArea       -0.002618360  0.2608331345  0.299474579  0.050985948
## OverallQual    0.308158927  0.5378084986  0.476223829  0.295492879
## OverallCond   -0.136840570 -0.1710975146 -0.144202784  0.028942116
## YearBuilt      0.149040392  0.3914520021  0.281985859  0.010307660
## YearRemodAdd   0.181133087  0.2910655826  0.240379268  0.140023779
## MasVnrArea     0.114183659  0.3624520941  0.342160338  0.174019344
## BsmtFinSF1    -0.495251469  0.5223960520  0.445862656 -0.137078986
## BsmtFinSF2    -0.209294492  0.1048095376  0.097117448 -0.099260316
## BsmtUnfSF      1.000000000  0.4153596052  0.317987438  0.004469092
## TotalBsmtSF    0.415359605  1.0000000000  0.819529975 -0.174511950
## X1stFlrSF      0.317987438  0.8195299750  1.000000000 -0.202646181
## X2ndFlrSF      0.004469092 -0.1745119501 -0.202646181  1.000000000
## LowQualFinSF   0.028166688 -0.0332453873 -0.014240673  0.063352950
## GrLivArea      0.240257268  0.4548682025  0.566023969  0.687501064
## BsmtFullBath  -0.422900477  0.3073505537  0.244671104 -0.169493952
## BsmtHalfBath  -0.095804288 -0.0003145818  0.001955654 -0.023854784
## FullBath       0.288886055  0.3237224136  0.380637495  0.421377983
## HalfBath      -0.041117530 -0.0488037386 -0.119915909  0.609707300
## BedroomAbvGr   0.166643317  0.0504499555  0.127400749  0.502900613
## KitchenAbvGr   0.030085868 -0.0689006426  0.068100588  0.059305753
## Fireplaces     0.051574882  0.3395193239  0.410531085  0.194560892
## GarageArea     0.183302698  0.4866654638  0.489781654  0.138346959
## WoodDeckSF    -0.005316424  0.2320186091  0.235458623  0.092165418
## OpenPorchSF    0.129005415  0.2472637463  0.211671225  0.208026063
## EnclosedPorch -0.002537855 -0.0954777367 -0.065291701  0.061988691
## X3SsnPorch     0.020764006  0.0373837273  0.056104374 -0.024357648
## ScreenPorch   -0.012579273  0.0844889859  0.088758073  0.040606448
## PoolArea      -0.035092241  0.1260531321  0.131524976  0.081486878
## MiscVal       -0.023836645 -0.0184789224 -0.021095719  0.016196875
## MoSold         0.034888443  0.0131961786  0.031371560  0.035164427
## YrSold        -0.041258195 -0.0149686480 -0.013603771 -0.028699914
## SalePrice      0.214479106  0.6135805516  0.605852185  0.319333803
##                LowQualFinSF    GrLivArea  BsmtFullBath  BsmtHalfBath
## MSSubClass     0.0464737559  0.074853180  0.0034910258 -0.0023325346
## LotFrontage    0.0368487208  0.368391966  0.0914809919 -0.0064192197
## LotArea        0.0047789699  0.263116167  0.1581545311  0.0480455709
## OverallQual   -0.0304292840  0.593007430  0.1110977861 -0.0401501577
## OverallCond    0.0254943199 -0.079685865 -0.0549415154  0.1178209151
## YearBuilt     -0.1837843444  0.199009714  0.1875985500 -0.0381618057
## YearRemodAdd  -0.0624191001  0.287388520  0.1194698791 -0.0123370321
## MasVnrArea    -0.0690681050  0.389892916  0.0850545278  0.0266685579
## BsmtFinSF1    -0.0645025969  0.208171130  0.6492117536  0.0674184779
## BsmtFinSF2     0.0148069979 -0.009639892  0.1586780608  0.0709481337
## BsmtUnfSF      0.0281666881  0.240257268 -0.4229004774 -0.0958042882
## TotalBsmtSF   -0.0332453873  0.454868203  0.3073505537 -0.0003145818
## X1stFlrSF     -0.0142406727  0.566023969  0.2446711042  0.0019556536
## X2ndFlrSF      0.0633529501  0.687501064 -0.1694939517 -0.0238547839
## LowQualFinSF   1.0000000000  0.134682813 -0.0471434219 -0.0058415048
## GrLivArea      0.1346828130  1.000000000  0.0348360495 -0.0189184832
## BsmtFullBath  -0.0471434219  0.034836050  1.0000000000 -0.1478709605
## BsmtHalfBath  -0.0058415048 -0.018918483 -0.1478709605  1.0000000000
## FullBath      -0.0007095096  0.630011646 -0.0645120486 -0.0545358120
## HalfBath      -0.0270800493  0.415771636 -0.0309049591 -0.0123399001
## BedroomAbvGr   0.1056065685  0.521269511 -0.1506728092  0.0465188484
## KitchenAbvGr   0.0075217443  0.100063165 -0.0415025464 -0.0379443502
## Fireplaces    -0.0212721434  0.461679134  0.1379277084  0.0289755866
## GarageArea    -0.0676014132  0.468997477  0.1791894804 -0.0245355796
## WoodDeckSF    -0.0254436480  0.247432821  0.1753151901  0.0401612233
## OpenPorchSF    0.0182510391  0.330223962  0.0673414614 -0.0253237579
## EnclosedPorch  0.0610812378  0.009113210 -0.0499106491 -0.0085553339
## X3SsnPorch    -0.0042956104  0.020643190 -0.0001060915  0.0351136309
## ScreenPorch    0.0267994130  0.101510396  0.0231477258  0.0321214072
## PoolArea       0.0621573723  0.170205336  0.0676155562  0.0200246298
## MiscVal       -0.0037928708 -0.002415640 -0.0230470249 -0.0073665245
## MoSold        -0.0221739606  0.050239681 -0.0253608943  0.0328727052
## YrSold        -0.0289208798 -0.036525820  0.0670491377 -0.0465238818
## SalePrice     -0.0256061300  0.708624478  0.2271222331 -0.0168441543
##                    FullBath     HalfBath BedroomAbvGr KitchenAbvGr   Fireplaces
## MSSubClass     0.1316082224  0.177354389 -0.023438028  0.281721040 -0.045569340
## LotFrontage    0.1804242055  0.048258362  0.237023227 -0.005804607  0.235754565
## LotArea        0.1260306265  0.014259469  0.119689908 -0.017783871  0.271364010
## OverallQual    0.5505997094  0.273458099  0.101676356 -0.183882235  0.396765038
## OverallCond   -0.1941494887 -0.060769327  0.012980060 -0.087000855 -0.023819978
## YearBuilt      0.4682707872  0.242655910 -0.070651217 -0.174800246  0.147716399
## YearRemodAdd   0.4390464839  0.183330612 -0.040580928 -0.149597521  0.112581318
## MasVnrArea     0.2757298473  0.200802357  0.102417471 -0.037364011  0.247906285
## BsmtFinSF1     0.0585431369  0.004262424 -0.107354677 -0.081006851  0.260010920
## BsmtFinSF2    -0.0764438620 -0.032147837 -0.015728114 -0.040751236  0.046920709
## BsmtUnfSF      0.2888860555 -0.041117530  0.166643317  0.030085868  0.051574882
## TotalBsmtSF    0.3237224136 -0.048803739  0.050449956 -0.068900643  0.339519324
## X1stFlrSF      0.3806374950 -0.119915909  0.127400749  0.068100588  0.410531085
## X2ndFlrSF      0.4213779829  0.609707300  0.502900613  0.059305753  0.194560892
## LowQualFinSF  -0.0007095096 -0.027080049  0.105606569  0.007521744 -0.021272143
## GrLivArea      0.6300116463  0.415771636  0.521269511  0.100063165  0.461679134
## BsmtFullBath  -0.0645120486 -0.030904959 -0.150672809 -0.041502546  0.137927708
## BsmtHalfBath  -0.0545358120 -0.012339900  0.046518848 -0.037944350  0.028975587
## FullBath       1.0000000000  0.136380589  0.363251983  0.133115214  0.243670503
## HalfBath       0.1363805887  1.000000000  0.226651484 -0.068262549  0.203648508
## BedroomAbvGr   0.3632519830  0.226651484  1.000000000  0.198596758  0.107569681
## KitchenAbvGr   0.1331152142 -0.068262549  0.198596758  1.000000000 -0.123936235
## Fireplaces     0.2436705031  0.203648508  0.107569681 -0.123936235  1.000000000
## GarageArea     0.4056562085  0.163549364  0.065252530 -0.064433047  0.269141238
## WoodDeckSF     0.1877032138  0.108080303  0.046853773 -0.090130273  0.200018796
## OpenPorchSF    0.2599774255  0.199740148  0.093809572 -0.070090610  0.169405327
## EnclosedPorch -0.1150929635 -0.095316526  0.041570435  0.037312385 -0.024821869
## X3SsnPorch     0.0353530166 -0.004972488 -0.024477796 -0.024600359  0.011257239
## ScreenPorch   -0.0081060933  0.072425845  0.044299691 -0.051613366  0.184530270
## PoolArea       0.0496038256  0.022381498  0.070702584 -0.014525116  0.095073522
## MiscVal       -0.0142898450  0.001290145  0.007766972  0.062340724  0.001408605
## MoSold         0.0558721290 -0.009049888  0.046543860  0.026588907  0.046357102
## YrSold        -0.0196688407 -0.010268669 -0.036013893  0.031687207 -0.024095565
## SalePrice      0.5606637627  0.284107676  0.168213154 -0.135907371  0.466928837
##                GarageArea   WoodDeckSF  OpenPorchSF EnclosedPorch    X3SsnPorch
## MSSubClass    -0.09867154 -0.012579358 -0.006100121  -0.012036622 -0.0438245492
## LotFrontage    0.32366290  0.077106221  0.137454496   0.009790061  0.0623354713
## LotArea        0.18040276  0.171697687  0.084773809  -0.018339734  0.0204228296
## OverallQual    0.56202176  0.238923392  0.308818823  -0.113936859  0.0303705671
## OverallCond   -0.15152137 -0.003333699 -0.032588814   0.070356184  0.0255036600
## YearBuilt      0.47895382  0.224880142  0.188685840  -0.387267783  0.0313545131
## YearRemodAdd   0.37159981  0.205725920  0.226297633  -0.193919147  0.0452858098
## MasVnrArea     0.37256701  0.159349430  0.124965275  -0.109848652  0.0187948145
## BsmtFinSF1     0.29697039  0.204306145  0.111760613  -0.102303306  0.0264505062
## BsmtFinSF2    -0.01822659  0.067898326  0.003092562   0.036543339 -0.0299933980
## BsmtUnfSF      0.18330270 -0.005316424  0.129005415  -0.002537855  0.0207640057
## TotalBsmtSF    0.48666546  0.232018609  0.247263746  -0.095477737  0.0373837273
## X1stFlrSF      0.48978165  0.235458623  0.211671225  -0.065291701  0.0561043745
## X2ndFlrSF      0.13834696  0.092165418  0.208026063   0.061988691 -0.0243576484
## LowQualFinSF  -0.06760141 -0.025443648  0.018251039   0.061081238 -0.0042956104
## GrLivArea      0.46899748  0.247432821  0.330223962   0.009113210  0.0206431897
## BsmtFullBath   0.17918948  0.175315190  0.067341461  -0.049910649 -0.0001060915
## BsmtHalfBath  -0.02453558  0.040161223 -0.025323758  -0.008555334  0.0351136309
## FullBath       0.40565621  0.187703214  0.259977425  -0.115092963  0.0353530166
## HalfBath       0.16354936  0.108080303  0.199740148  -0.095316526 -0.0049724884
## BedroomAbvGr   0.06525253  0.046853773  0.093809572   0.041570435 -0.0244777964
## KitchenAbvGr  -0.06443305 -0.090130273 -0.070090610   0.037312385 -0.0246003587
## Fireplaces     0.26914124  0.200018796  0.169405327  -0.024821869  0.0112572390
## GarageArea     1.00000000  0.224666307  0.241434672  -0.121776720  0.0350867002
## WoodDeckSF     0.22466631  1.000000000  0.058660609  -0.125988888 -0.0327706336
## OpenPorchSF    0.24143467  0.058660609  1.000000000  -0.093079318 -0.0058424993
## EnclosedPorch -0.12177672 -0.125988888 -0.093079318   1.000000000 -0.0373052828
## X3SsnPorch     0.03508670 -0.032770634 -0.005842499  -0.037305283  1.0000000000
## ScreenPorch    0.05141176 -0.074181351  0.074303944  -0.082864245 -0.0314358470
## PoolArea       0.06104727  0.073378207  0.060762111   0.054202562 -0.0079915489
## MiscVal       -0.02739991 -0.009551228 -0.018583739   0.018360600  0.0003539653
## MoSold         0.02797380  0.021011044  0.071254885  -0.028887266  0.0294737952
## YrSold        -0.02737794  0.022270451 -0.057619360  -0.009915937  0.0186449254
## SalePrice      0.62343144  0.324413445  0.315856227  -0.128577958  0.0445836653
##                ScreenPorch     PoolArea       MiscVal       MoSold       YrSold
## MSSubClass    -0.026030177  0.008282708 -0.0076832913 -0.013584643 -0.021407038
## LotFrontage    0.037684305  0.180867647  0.0011682749  0.010157807  0.006768250
## LotArea        0.043160378  0.077672392  0.0380676920  0.001204988 -0.014261407
## OverallQual    0.064886360  0.065165844 -0.0314062105  0.070815172 -0.027346708
## OverallCond    0.054810529 -0.001984942  0.0687768061 -0.003510839  0.043949746
## YearBuilt     -0.050364435  0.004949728 -0.0343831387  0.012398471 -0.013617680
## YearRemodAdd  -0.038740011  0.005829372 -0.0102862488  0.021490002  0.035743247
## MasVnrArea     0.061453179  0.011722909 -0.0298147620 -0.005939579 -0.008183639
## BsmtFinSF1     0.062020623  0.140491286  0.0035714735 -0.015726948  0.014358922
## BsmtFinSF2     0.088871251  0.041709055  0.0049397812 -0.015210738  0.031705637
## BsmtUnfSF     -0.012579273 -0.035092241 -0.0238366451  0.034888443 -0.041258195
## TotalBsmtSF    0.084488986  0.126053132 -0.0184789224  0.013196179 -0.014968648
## X1stFlrSF      0.088758073  0.131524976 -0.0210957195  0.031371560 -0.013603771
## X2ndFlrSF      0.040606448  0.081486878  0.0161968746  0.035164427 -0.028699914
## LowQualFinSF   0.026799413  0.062157372 -0.0037928708 -0.022173961 -0.028920880
## GrLivArea      0.101510396  0.170205336 -0.0024156396  0.050239681 -0.036525820
## BsmtFullBath   0.023147726  0.067615556 -0.0230470249 -0.025360894  0.067049138
## BsmtHalfBath   0.032121407  0.020024630 -0.0073665245  0.032872705 -0.046523882
## FullBath      -0.008106093  0.049603826 -0.0142898450  0.055872129 -0.019668841
## HalfBath       0.072425845  0.022381498  0.0012901448 -0.009049888 -0.010268669
## BedroomAbvGr   0.044299691  0.070702584  0.0077669720  0.046543860 -0.036013893
## KitchenAbvGr  -0.051613366 -0.014525116  0.0623407240  0.026588907  0.031687207
## Fireplaces     0.184530270  0.095073522  0.0014086054  0.046357102 -0.024095565
## GarageArea     0.051411762  0.061047272 -0.0273999144  0.027973800 -0.027377940
## WoodDeckSF    -0.074181351  0.073378207 -0.0095512282  0.021011044  0.022270451
## OpenPorchSF    0.074303944  0.060762111 -0.0185837390  0.071254885 -0.057619360
## EnclosedPorch -0.082864245  0.054202562  0.0183606001 -0.028887266 -0.009915937
## X3SsnPorch    -0.031435847 -0.007991549  0.0003539653  0.029473795  0.018644925
## ScreenPorch    1.000000000  0.051307395  0.0319457608  0.023216992  0.010694106
## PoolArea       0.051307395  1.000000000  0.0296686509 -0.033736640 -0.059688932
## MiscVal        0.031945761  0.029668651  1.0000000000 -0.006494550  0.004906262
## MoSold         0.023216992 -0.033736640 -0.0064945502  1.000000000 -0.145721413
## YrSold         0.010694106 -0.059688932  0.0049062625 -0.145721413  1.000000000
## SalePrice      0.111446571  0.092403549 -0.0211895796  0.046432245 -0.028922585
##                 SalePrice
## MSSubClass    -0.08428414
## LotFrontage    0.33490085
## LotArea        0.26384335
## OverallQual    0.79098160
## OverallCond   -0.07785589
## YearBuilt      0.52289733
## YearRemodAdd   0.50710097
## MasVnrArea     0.47524132
## BsmtFinSF1     0.38641981
## BsmtFinSF2    -0.01137812
## BsmtUnfSF      0.21447911
## TotalBsmtSF    0.61358055
## X1stFlrSF      0.60585218
## X2ndFlrSF      0.31933380
## LowQualFinSF  -0.02560613
## GrLivArea      0.70862448
## BsmtFullBath   0.22712223
## BsmtHalfBath  -0.01684415
## FullBath       0.56066376
## HalfBath       0.28410768
## BedroomAbvGr   0.16821315
## KitchenAbvGr  -0.13590737
## Fireplaces     0.46692884
## GarageArea     0.62343144
## WoodDeckSF     0.32441344
## OpenPorchSF    0.31585623
## EnclosedPorch -0.12857796
## X3SsnPorch     0.04458367
## ScreenPorch    0.11144657
## PoolArea       0.09240355
## MiscVal       -0.02118958
## MoSold         0.04643225
## YrSold        -0.02892259
## SalePrice      1.00000000
high_corr <- which(abs((correlation_matrix) > 0.8 | correlation_matrix < -0.8)& correlation_matrix!= 1, arr.ind=TRUE)
high_corr_values <- correlation_matrix[high_corr]
high_corr_df <- data.frame(row = high_corr[, 1], col = high_corr[, 2], corr = high_corr_values)
high_corr_df
##             row col    corr
## X1stFlrSF    13  12 0.81953
## TotalBsmtSF  12  13 0.81953

Categorical Data

Display the first six rows of the categorical data frame

head(categorical_data)
##   MSZoning Street LotShape LandContour Utilities LotConfig LandSlope
## 1       RL   Pave      Reg         Lvl    AllPub    Inside       Gtl
## 2       RL   Pave      Reg         Lvl    AllPub       FR2       Gtl
## 3       RL   Pave      IR1         Lvl    AllPub    Inside       Gtl
## 4       RL   Pave      IR1         Lvl    AllPub    Corner       Gtl
## 5       RL   Pave      IR1         Lvl    AllPub       FR2       Gtl
## 6       RL   Pave      IR1         Lvl    AllPub    Inside       Gtl
##   Neighborhood Condition1 Condition2 BldgType HouseStyle RoofStyle RoofMatl
## 1      CollgCr       Norm       Norm     1Fam     2Story     Gable  CompShg
## 2      Veenker      Feedr       Norm     1Fam     1Story     Gable  CompShg
## 3      CollgCr       Norm       Norm     1Fam     2Story     Gable  CompShg
## 4      Crawfor       Norm       Norm     1Fam     2Story     Gable  CompShg
## 5      NoRidge       Norm       Norm     1Fam     2Story     Gable  CompShg
## 6      Mitchel       Norm       Norm     1Fam     1.5Fin     Gable  CompShg
##   Exterior1st MasVnrType ExterQual ExterCond Foundation BsmtQual BsmtCond
## 1     VinylSd    BrkFace        Gd        TA      PConc       Gd       TA
## 2     MetalSd       None        TA        TA     CBlock       Gd       TA
## 3     VinylSd    BrkFace        Gd        TA      PConc       Gd       TA
## 4     Wd Sdng       None        TA        TA     BrkTil       TA       Gd
## 5     VinylSd    BrkFace        Gd        TA      PConc       Gd       TA
## 6     VinylSd       None        TA        TA       Wood       Gd       TA
##   BsmtExposure BsmtFinType1 BsmtFinType2 Heating HeatingQC CentralAir
## 1           No          GLQ          Unf    GasA        Ex          Y
## 2           Gd          ALQ          Unf    GasA        Ex          Y
## 3           Mn          GLQ          Unf    GasA        Ex          Y
## 4           No          ALQ          Unf    GasA        Gd          Y
## 5           Av          GLQ          Unf    GasA        Ex          Y
## 6           No          GLQ          Unf    GasA        Ex          Y
##   Electrical KitchenQual Functional GarageType GarageFinish GarageQual
## 1      SBrkr          Gd        Typ     Attchd          RFn         TA
## 2      SBrkr          TA        Typ     Attchd          RFn         TA
## 3      SBrkr          Gd        Typ     Attchd          RFn         TA
## 4      SBrkr          Gd        Typ     Detchd          Unf         TA
## 5      SBrkr          Gd        Typ     Attchd          RFn         TA
## 6      SBrkr          TA        Typ     Attchd          Unf         TA
##   GarageCond PavedDrive SaleType SaleCondition
## 1         TA          Y       WD        Normal
## 2         TA          Y       WD        Normal
## 3         TA          Y       WD        Normal
## 4         TA          Y       WD       Abnorml
## 5         TA          Y       WD        Normal
## 6         TA          Y       WD        Normal

Encode Categorical Data

Create a copy of the dataset

dataset_encode <- dataset

for (col in colnames(dataset_encode)) {

if (is.factor(dataset_encode[[col]]) | is.character(dataset_encode[[col]])) {

encoded_col <- predict(dummyVars(formula = as.formula(paste0(“~”, col)), data = dataset_encode), newdata = dataset_encode)

dataset_encode[[col]] <- encoded_col

}

}

library(arules)
## Loading required package: Matrix
## 
## Attaching package: 'arules'
## The following object is masked from 'package:dplyr':
## 
##     recode
## The following objects are masked from 'package:base':
## 
##     abbreviate, write
library(caret)
library(catboost)
library(cluster)
library(dplyr)
library(e1071)
## 
## Attaching package: 'e1071'
## The following object is masked from 'package:mlr':
## 
##     impute
library(factoextra)
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
library(ggplot2)
library(glmnet)
## Loaded glmnet 4.1-7
library(lattice)
library(lightgbm)
## Loading required package: R6
## 
## Attaching package: 'lightgbm'
## The following object is masked from 'package:dplyr':
## 
##     slice
library(mlrMBO)
## Loading required package: smoof
## Loading required package: checkmate
library(randomForest)
## randomForest 4.7-1.1
## Type rfNews() to see new features/changes/bug fixes.
## 
## Attaching package: 'randomForest'
## The following object is masked from 'package:gridExtra':
## 
##     combine
## The following object is masked from 'package:psych':
## 
##     outlier
## The following object is masked from 'package:ggplot2':
## 
##     margin
## The following object is masked from 'package:dplyr':
## 
##     combine
library(tidyr)
## 
## Attaching package: 'tidyr'
## The following objects are masked from 'package:Matrix':
## 
##     expand, pack, unpack
library(viridis)
## Loading required package: viridisLite
library(xgboost)
## 
## Attaching package: 'xgboost'
## The following objects are masked from 'package:lightgbm':
## 
##     getinfo, setinfo, slice
## The following object is masked from 'package:dplyr':
## 
##     slice
library(Metrics)
## 
## Attaching package: 'Metrics'
## The following objects are masked from 'package:caret':
## 
##     precision, recall
library(Rtsne)
library(DiceKriging)
## 
## Attaching package: 'DiceKriging'
## The following object is masked from 'package:checkmate':
## 
##     checkNames
suppressWarnings(expr)
## function (expr) 
## {
##     enexpr(expr)
## }
## <bytecode: 0x7f9e9c53d6a0>
## <environment: namespace:rlang>
#source("data_cleaning.r")

Data Transformation/Scaling

Data preprocessing steps such as log transformation, scaling, and one-hot encoding.

Data splitted into train, validation, and test sets and combines the training and validation sets for model training.

Calculates and displays the skewness of the numerical features and target variable before and after the log transformations.

Split the numerical variables into features and the target variable.

X_num <- subset(numerical_data, select = -c(SalePrice))
y <- subset(numerical_data, select = c(SalePrice))$SalePrice

Log Transformation for numerical features.

skewness_before <- sapply(X_num, function(x) {
  e1071::skewness(x)
})

X_num_skewed <- skewness_before[abs(skewness_before) > 0.75]

for (x in names(X_num_skewed)) {
  # bc <- BoxCoxTrans(X_num[[x]], lambda = 0.15)
  # X_num[[x]] <- predict(bc, X_num[[x]])
  X_num[[x]] <- log1p(X_num[[x]])
}

skewness_after <- sapply(X_num, function(x) {
  e1071::skewness(x)
})

data.frame(skewness_before, skewness_after)
##               skewness_before skewness_after
## MSSubClass         1.40476562    0.248485705
## LotFrontage        2.38005182   -0.890144743
## LotArea           12.18261502   -0.137122272
## OverallQual        0.21649836    0.216498356
## OverallCond        0.69164401    0.691644012
## YearBuilt         -0.61220121   -0.612201211
## YearRemodAdd      -0.50252776   -0.502527759
## MasVnrArea         2.67091482    0.480131975
## BsmtFinSF1         1.68204129   -0.617139693
## BsmtFinSF2         4.24652141    2.518510460
## BsmtUnfSF          0.91837835   -2.182012816
## TotalBsmtSF        1.52112395   -5.144083032
## X1stFlrSF          1.37392896    0.079949547
## X2ndFlrSF          0.81135997    0.289048572
## LowQualFinSF       8.99283329    7.444994097
## GrLivArea          1.36375364   -0.006127642
## BsmtFullBath       0.59484237    0.594842375
## BsmtHalfBath       4.09497490    3.924985577
## FullBath           0.03648647    0.036486466
## HalfBath           0.67450925    0.674509252
## BedroomAbvGr       0.21135511    0.211355110
## KitchenAbvGr       4.47917826    3.861466484
## Fireplaces         0.64823107    0.648231070
## GarageArea         0.17961125    0.179611252
## WoodDeckSF         1.53820999    0.153221248
## OpenPorchSF        2.35948572   -0.023349240
## EnclosedPorch      3.08352575    2.107936639
## X3SsnPorch        10.28317840    7.719088344
## ScreenPorch        4.11374731    3.143938375
## PoolArea          14.79791829   14.333602712
## MiscVal           24.42652237    5.160083979
## MoSold             0.21161746    0.211617459
## YrSold             0.09607079    0.096070792

Log Transformation for the target variable.

skewness_before <- e1071::skewness(y)

y_t <- log1p(y)

skewness_after <- e1071::skewness(y_t)

sprintf("Before: %f, After: %f", skewness_before, skewness_after)
## [1] "Before: 1.879009, After: 0.121097"

Scaling

X_num <- scale(X_num)

One-Hot Encoding for categorical variables.

encoder <- dummyVars(~., data = categorical_data)

X_cat <- predict(encoder, newdata = categorical_data)
X_cat <- data.frame(X_cat)

Split into train and validation and test sets.

X <- cbind(X_cat, X_num)

train_idx <- createDataPartition(y_t, p = 0.7, list = F)
X_train <- X[train_idx, ]
y_train <- y_t[train_idx]

X_test <- X[-train_idx, ]
y_test <- y_t[-train_idx]

train_val_idx <- createDataPartition(y_train, p = 0.8, list = FALSE)
X_train <- X_train[train_val_idx, ]
y_train <- y_train[train_val_idx]

X_val <- X_train[-train_val_idx, ]
y_val <- y_train[-train_val_idx]

X_train_val <- rbind(X_train, X_val)
y_train_val <- c(y_train, y_val)
dim(X)
## [1] 1460  251
length(y)
## [1] 1460
dim(X_train)
## [1] 821 251
length(y_train)
## [1] 821
dim(X_val)
## [1] 154 251
length(y_val)
## [1] 154
#names(X)

Clustering

The code executes PCA (Principal Component Analysis) to reduce the data’s dimensionality and extract the principal components.

Elbow method used to determine the best number of clusters. Result: 3.

K-means clustering is performed on the principal components, assigning each observation to a specific cluster.

The cluster assignments are appended to the principal components data, and a scatter plot is generated to visualize the resulting clusters.

# Load the necessary libraries
library(stats)
library(factoextra)

# Perform PCA on the data matrix
pca_result <- prcomp(X)

# Extract the principal components
principal_components <- as.data.frame(pca_result$x)

# Determine the optimal number of clusters using the elbow method
fviz_nbclust(principal_components, kmeans, method = "wss")

k <- 3
# Perform K-means clustering on the principal components
kmeans_result <- kmeans(principal_components, centers = k)
cluster_assignments <- kmeans_result$cluster
print(cluster_assignments)
##    1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16 
##    3    2    3    2    3    2    3    3    2    2    2    3    2    3    2    2 
##   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32 
##    2    2    2    2    3    2    3    1    2    3    2    3    2    2    2    2 
##   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48 
##    3    2    3    3    3    2    2    2    2    2    2    2    2    3    3    3 
##   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64 
##    2    2    3    2    2    3    2    2    1    3    3    2    3    2    1    2 
##   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80 
##    3    3    3    3    2    2    3    2    3    2    2    1    2    2    2    2 
##   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96 
##    3    1    3    2    3    3    3    1    2    2    2    2    2    2    3    3 
##   97   98   99  100  101  102  103  104  105  106  107  108  109  110  111  112 
##    3    2    2    2    3    3    2    3    2    3    2    2    2    3    2    3 
##  113  114  115  116  117  118  119  120  121  122  123  124  125  126  127  128 
##    3    3    2    1    2    2    3    3    2    2    2    1    2    2    1    2 
##  129  130  131  132  133  134  135  136  137  138  139  140  141  142  143  144 
##    2    2    3    3    2    3    2    3    2    3    3    3    2    3    2    3 
##  145  146  147  148  149  150  151  152  153  154  155  156  157  158  159  160 
##    2    1    2    3    2    2    2    3    3    2    2    2    2    3    3    3 
##  161  162  163  164  165  166  167  168  169  170  171  172  173  174  175  176 
##    2    3    3    2    2    2    2    3    3    3    2    3    1    2    3    2 
##  177  178  179  180  181  182  183  184  185  186  187  188  189  190  191  192 
##    3    2    3    2    1    2    2    3    2    3    3    2    2    1    3    2 
##  193  194  195  196  197  198  199  200  201  202  203  204  205  206  207  208 
##    3    1    2    1    3    3    2    3    2    2    2    1    2    3    2    2 
##  209  210  211  212  213  214  215  216  217  218  219  220  221  222  223  224 
##    3    2    2    3    3    2    2    2    3    2    3    1    3    3    3    2 
##  225  226  227  228  229  230  231  232  233  234  235  236  237  238  239  240 
##    3    1    3    1    2    1    2    3    1    2    3    1    3    3    3    2 
##  241  242  243  244  245  246  247  248  249  250  251  252  253  254  255  256 
##    3    2    2    2    3    3    2    2    3    3    2    1    3    2    2    3 
##  257  258  259  260  261  262  263  264  265  266  267  268  269  270  271  272 
##    3    3    3    2    2    3    2    2    2    3    3    2    2    2    3    2 
##  273  274  275  276  277  278  279  280  281  282  283  284  285  286  287  288 
##    3    2    2    2    3    2    3    3    3    3    1    3    1    1    2    2 
##  289  290  291  292  293  294  295  296  297  298  299  300  301  302  303  304 
##    2    2    3    2    2    3    2    2    2    3    2    2    2    3    3    2 
##  305  306  307  308  309  310  311  312  313  314  315  316  317  318  319  320 
##    3    3    3    2    2    3    3    2    2    3    2    3    3    3    3    3 
##  321  322  323  324  325  326  327  328  329  330  331  332  333  334  335  336 
##    3    3    3    2    3    2    1    2    2    2    2    2    3    1    3    3 
##  337  338  339  340  341  342  343  344  345  346  347  348  349  350  351  352 
##    3    3    3    2    3    2    2    3    1    2    2    2    1    3    3    3 
##  353  354  355  356  357  358  359  360  361  362  363  364  365  366  367  368 
##    2    2    2    3    3    1    2    3    2    2    3    1    3    2    3    2 
##  369  370  371  372  373  374  375  376  377  378  379  380  381  382  383  384 
##    2    2    3    2    1    2    3    2    2    3    3    3    2    3    3    2 
##  385  386  387  388  389  390  391  392  393  394  395  396  397  398  399  400 
##    3    1    2    2    3    3    2    3    2    2    2    2    2    2    2    3 
##  401  402  403  404  405  406  407  408  409  410  411  412  413  414  415  416 
##    1    3    2    3    3    2    2    2    3    3    2    2    3    2    3    3 
##  417  418  419  420  421  422  423  424  425  426  427  428  429  430  431  432 
##    2    2    2    2    1    3    2    3    2    2    3    2    3    2    1    2 
##  433  434  435  436  437  438  439  440  441  442  443  444  445  446  447  448 
##    1    3    1    3    2    2    2    2    3    2    2    1    3    2    3    3 
##  449  450  451  452  453  454  455  456  457  458  459  460  461  462  463  464 
##    2    2    2    3    3    3    2    2    2    3    2    2    3    2    2    2 
##  465  466  467  468  469  470  471  472  473  474  475  476  477  478  479  480 
##    2    1    2    2    3    3    1    3    1    3    1    2    3    3    3    2 
##  481  482  483  484  485  486  487  488  489  490  491  492  493  494  495  496 
##    3    3    2    1    2    2    2    2    2    1    1    2    3    2    2    2 
##  497  498  499  500  501  502  503  504  505  506  507  508  509  510  511  512 
##    3    2    2    2    1    3    2    3    1    2    3    3    2    2    2    1 
##  513  514  515  516  517  518  519  520  521  522  523  524  525  526  527  528 
##    2    2    2    3    3    3    3    2    2    2    2    3    3    3    2    3 
##  529  530  531  532  533  534  535  536  537  538  539  540  541  542  543  544 
##    2    3    3    2    2    2    3    2    3    2    2    3    3    3    3    1 
##  545  546  547  548  549  550  551  552  553  554  555  556  557  558  559  560 
##    3    3    2    2    2    3    1    2    3    2    3    2    2    2    3    1 
##  561  562  563  564  565  566  567  568  569  570  571  572  573  574  575  576 
##    2    2    2    2    3    2    3    3    3    2    2    2    3    3    2    2 
##  577  578  579  580  581  582  583  584  585  586  587  588  589  590  591  592 
##    2    2    1    2    2    3    2    3    2    3    2    2    2    2    3    3 
##  593  594  595  596  597  598  599  600  601  602  603  604  605  606  607  608 
##    2    1    2    3    2    1    2    1    3    2    3    1    3    3    2    2 
##  609  610  611  612  613  614  615  616  617  618  619  620  621  622  623  624 
##    3    2    3    2    3    2    1    2    3    2    3    3    2    3    2    1 
##  625  626  627  628  629  630  631  632  633  634  635  636  637  638  639  640 
##    3    2    2    2    3    2    2    1    3    2    2    2    2    2    2    1 
##  641  642  643  644  645  646  647  648  649  650  651  652  653  654  655  656 
##    3    3    3    2    3    2    2    2    2    1    3    2    3    2    3    1 
##  657  658  659  660  661  662  663  664  665  666  667  668  669  670  671  672 
##    2    2    2    2    3    3    2    2    3    3    3    3    2    2    3    2 
##  673  674  675  676  677  678  679  680  681  682  683  684  685  686  687  688 
##    2    3    2    1    2    2    3    2    1    2    1    3    3    3    3    1 
##  689  690  691  692  693  694  695  696  697  698  699  700  701  702  703  704 
##    3    3    1    3    3    2    2    2    2    2    2    1    3    2    3    2 
##  705  706  707  708  709  710  711  712  713  714  715  716  717  718  719  720 
##    3    2    3    1    3    2    2    2    1    2    3    2    2    2    3    2 
##  721  722  723  724  725  726  727  728  729  730  731  732  733  734  735  736 
##    3    1    2    2    3    2    3    3    2    2    1    3    3    2    2    2 
##  737  738  739  740  741  742  743  744  745  746  747  748  749  750  751  752 
##    2    3    2    3    2    2    3    2    1    3    3    2    3    2    2    3 
##  753  754  755  756  757  758  759  760  761  762  763  764  765  766  767  768 
##    3    3    2    1    3    3    1    3    2    2    3    3    1    3    3    2 
##  769  770  771  772  773  774  775  776  777  778  779  780  781  782  783  784 
##    3    3    2    2    2    2    3    1    3    2    2    2    3    3    3    1 
##  785  786  787  788  789  790  791  792  793  794  795  796  797  798  799  800 
##    2    2    2    3    2    3    1    2    3    3    3    3    2    2    3    2 
##  801  802  803  804  805  806  807  808  809  810  811  812  813  814  815  816 
##    3    2    3    3    2    3    2    3    2    2    2    1    2    2    2    3 
##  817  818  819  820  821  822  823  824  825  826  827  828  829  830  831  832 
##    2    3    2    1    3    2    3    2    3    3    2    3    2    1    2    1 
##  833  834  835  836  837  838  839  840  841  842  843  844  845  846  847  848 
##    3    2    2    2    2    1    2    2    2    2    2    2    2    2    3    2 
##  849  850  851  852  853  854  855  856  857  858  859  860  861  862  863  864 
##    3    3    1    1    2    2    2    2    2    3    2    3    2    2    2    2 
##  865  866  867  868  869  870  871  872  873  874  875  876  877  878  879  880 
##    3    2    3    2    2    3    2    3    2    2    2    3    2    3    2    2 
##  881  882  883  884  885  886  887  888  889  890  891  892  893  894  895  896 
##    2    3    3    2    2    1    3    2    3    2    2    3    2    2    2    2 
##  897  898  899  900  901  902  903  904  905  906  907  908  909  910  911  912 
##    2    2    3    2    2    2    3    3    2    2    3    2    2    3    2    2 
##  913  914  915  916  917  918  919  920  921  922  923  924  925  926  927  928 
##    2    2    1    1    2    2    3    2    3    2    3    1    3    2    3    3 
##  929  930  931  932  933  934  935  936  937  938  939  940  941  942  943  944 
##    3    3    3    2    3    3    3    2    3    3    3    2    2    3    2    2 
##  945  946  947  948  949  950  951  952  953  954  955  956  957  958  959  960 
##    2    2    2    3    3    2    2    2    2    3    1    2    1    2    3    1 
##  961  962  963  964  965  966  967  968  969  970  971  972  973  974  975  976 
##    2    3    1    3    3    3    2    2    2    2    2    1    2    3    2    1 
##  977  978  979  980  981  982  983  984  985  986  987  988  989  990  991  992 
##    2    1    2    2    2    3    1    3    2    2    2    3    3    3    3    2 
##  993  994  995  996  997  998  999 1000 1001 1002 1003 1004 1005 1006 1007 1008 
##    3    3    3    2    2    2    2    3    2    2    3    2    1    2    2    1 
## 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 
##    3    2    2    2    2    2    2    3    3    1    3    1    3    3    2    1 
## 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 
##    3    2    2    3    2    1    2    3    3    3    2    2    3    3    1    1 
## 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 
##    2    2    1    3    3    2    3    2    2    2    3    3    2    2    3    2 
## 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 
##    1    3    3    2    1    2    2    2    2    3    3    2    1    2    2    2 
## 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 
##    2    2    3    2    2    2    1    2    3    2    3    2    3    2    1    3 
## 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 
##    1    1    2    1    2    2    2    3    2    1    2    3    2    2    2    2 
## 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 
##    1    3    3    3    3    3    3    3    2    2    2    3    3    2    2    2 
## 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 
##    2    3    2    2    3    2    1    3    3    1    2    2    2    3    3    2 
## 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 
##    2    2    3    2    2    3    3    2    2    2    3    2    2    2    2    3 
## 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 
##    2    2    3    3    2    1    3    3    1    3    2    2    3    3    3    3 
## 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 
##    2    3    2    2    1    2    2    3    2    2    2    2    3    3    3    2 
## 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 
##    3    2    2    3    3    3    3    1    2    1    2    3    3    2    3    2 
## 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 
##    2    3    2    3    2    3    2    3    2    3    3    3    2    2    2    2 
## 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 
##    2    3    2    1    2    2    2    2    3    2    3    2    3    2    3    2 
## 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 
##    2    2    2    2    1    3    2    3    3    3    3    3    2    3    3    2 
## 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 
##    2    2    3    1    2    3    3    2    3    2    3    2    3    2    2    2 
## 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 
##    1    1    2    3    3    2    3    2    2    2    2    2    2    3    3    2 
## 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 
##    3    3    2    2    2    2    2    2    1    3    2    1    2    3    2    2 
## 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 
##    2    1    3    2    3    2    3    3    1    3    1    2    2    3    3    3 
## 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 
##    3    3    2    3    3    1    3    2    2    2    3    2    3    2    2    2 
## 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 
##    2    3    3    2    2    2    1    2    2    2    3    2    2    2    3    2 
## 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 
##    3    2    3    3    3    2    3    2    2    3    3    3    2    2    1    3 
## 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 
##    2    3    2    3    1    3    3    1    1    3    2    2    3    3    3    3 
## 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 
##    2    2    1    3    2    3    2    2    2    2    3    2    3    2    3    2 
## 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 
##    2    2    1    3    2    2    2    2    2    3    3    3    2    1    2    2 
## 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 
##    2    3    3    2    2    3    2    1    2    3    2    3    3    1    1    3 
## 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 
##    2    2    3    2    2    3    3    1    2    3    2    3    2    3    2    3 
## 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 
##    2    1    3    2    3    2    2    3    2    1    2    3    1    2    3    3 
## 1457 1458 1459 1460 
##    3    3    2    2
# Add the cluster assignments to the principal components data
principal_components$cluster <- as.factor(cluster_assignments)

ggplot(principal_components, aes(PC1, PC2, color = cluster)) +
  geom_point() +
  labs(x = "Principal Component 1", y = "Principal Component 2") +
  scale_color_discrete(name = "Cluster") +
 theme_minimal()

t-SNE

t-SNE (t-Distributed Stochastic Neighbor Embedding) is perfomed for dimensionality reduction and visualization of the data.

Function:

Calculates the t-SNE coordinates

Creates a dendrogram through hierarchical clustering

Determines the number of clusters visually, assigns data points to clusters

Computes centroids for each cluster

Generates scatter plots to visualize the t-SNE coordinates colored by the original variable and cluster assignments

Includes a bar plot showing the cluster frequencies and evaluates clustering quality using silhouette analysis.

tsne <- Rtsne(X)
tsne_df <- data.frame(tsne)
dist_mat <- dist(tsne$Y, method = "euclidean")
hclust_avg <- hclust(dist_mat, method = "average")

dend <- as.dendrogram(hclust_avg)
plot(dend)

k = 15
cut_avg <- cutree(hclust_avg, k)
tsne_df$cluster <- cut_avg

getCentroid <- function(points) {
  xy <- numeric(2)
  
  xy[1] = mean(points[, 1])
  xy[2] = mean(points[, 2])

  return(xy)
}

centroids = matrix(0, k, 2)
for (i in unique(cut_avg)) centroids[i, ] <- getCentroid(tsne$Y[cut_avg == i,])

Silhouette Graph: Graph width represents the number of data point; longer length indicates a stronger separation and better-defined clusters.

The lighter the color, the higher the house price.

tsne_df
##         N           Y.1          Y.2        costs itercosts origD perplexity
## 1    1460  1.986541e+01   0.61696248 6.312128e-04 73.771148    50         30
## 2    1460  3.704116e+00  17.12829597 8.232540e-04 71.150987    50         30
## 3    1460  2.014823e+01  -0.70238402 8.511462e-04 71.034367    50         30
## 4    1460 -2.776097e+01   7.42146480 3.518235e-04 71.035404    50         30
## 5    1460  2.049439e+01  -2.68081918 5.377578e-04 71.037731    50         30
## 6    1460  8.551878e+00  -9.86640159 1.835220e-04  1.555216    50         30
## 7    1460 -1.365457e-01 -19.74222937 1.439053e-03  1.312321    50         30
## 8    1460  7.018594e+00  24.49087648 8.079059e-04  1.228241    50         30
## 9    1460 -2.974571e+01  -9.98391754 5.951550e-04  1.196858    50         30
## 10   1460 -3.572762e+00  -2.29372078 8.088329e-04  1.176920    50         30
## 11   1460 -8.876179e+00   5.88658564 1.742382e-03  1.164909    50         30
## 12   1460  2.327253e+01  -6.33412442 3.948003e-04  1.155632    50         30
## 13   1460  3.767144e+00  -0.01074932 8.627069e-04  1.148755    50         30
## 14   1460 -2.724445e+00 -27.21039124 5.896907e-04  1.143827    50         30
## 15   1460 -6.929143e+00  -2.70460989 9.837242e-04  1.139748    50         30
## 16   1460 -1.866745e+01   8.81821619 7.690628e-04  1.135437    50         30
## 17   1460 -5.033253e+00  19.69411388 1.129143e-03  1.131049    50         30
## 18   1460 -2.249028e+01  29.56426190 2.261055e-04  1.127886    50         30
## 19   1460 -1.260445e+01 -11.32737087 1.099444e-03  1.125117    50         30
## 20   1460 -1.189045e+01   4.14226659 1.052478e-03  1.123256    50         30
## 21   1460  2.828610e+01  -3.24507358 4.173264e-04 73.771148    50         30
## 22   1460 -2.255078e+01  11.97767458 7.400350e-04 71.150987    50         30
## 23   1460 -4.039918e+00 -27.97222117 7.656355e-04 71.034367    50         30
## 24   1460  7.770521e+00  -5.53522565 1.558227e-03 71.035404    50         30
## 25   1460  7.334040e-01  10.27577087 7.199786e-04 71.037731    50         30
## 26   1460 -2.375303e+00 -25.78658325 4.094778e-04  1.555216    50         30
## 27   1460  2.885874e+00  19.20802716 4.868814e-04  1.312321    50         30
## 28   1460 -3.038099e-01 -21.78084086 1.050677e-03  1.228241    50         30
## 29   1460 -4.256321e+00  -5.49863836 5.379093e-04  1.196858    50         30
## 30   1460 -1.994594e+01  13.78177044 2.389868e-04  1.176920    50         30
## 31   1460 -2.439541e+01  13.23623861 9.066452e-04  1.164909    50         30
## 32   1460 -1.414430e+01  -5.07683992 1.486820e-03  1.155632    50         30
## 33   1460 -8.564948e+00 -25.51218076 2.359553e-04  1.148755    50         30
## 34   1460  4.226560e+00  14.97345959 5.513542e-04  1.143827    50         30
## 35   1460  1.025058e+01 -22.37488610 6.141026e-04  1.139748    50         30
## 36   1460  2.780281e+01  -2.87848877 4.092666e-04  1.135437    50         30
## 37   1460 -1.511928e+01 -12.21702278 1.154713e-03  1.131049    50         30
## 38   1460  4.070995e+00  16.12912804 8.755048e-04  1.127886    50         30
## 39   1460 -8.898812e+00   9.37688585 8.266751e-04  1.125117    50         30
## 40   1460 -2.208428e+01  30.39641844 1.668854e-04  1.123256    50         30
## 41   1460 -8.200685e+00  -3.66998674 1.044667e-03 73.771148    50         30
## 42   1460  4.179280e+00  15.00092016 6.410947e-04 71.150987    50         30
## 43   1460 -2.915433e+00   5.21787108 7.706347e-04 71.034367    50         30
## 44   1460 -7.690188e-01   7.63334436 4.243941e-04 71.035404    50         30
## 45   1460 -1.810113e+00   8.53811196 1.030059e-03 71.037731    50         30
## 46   1460  9.933275e+00 -22.66429833 4.929111e-04  1.555216    50         30
## 47   1460  1.337784e+01 -14.37573786 7.182959e-04  1.312321    50         30
## 48   1460 -5.131762e+00 -24.05535921 4.866584e-04  1.228241    50         30
## 49   1460 -2.911821e+01 -11.21216077 2.437323e-04  1.196858    50         30
## 50   1460 -8.860755e+00   6.10262860 1.134323e-03  1.176920    50         30
## 51   1460  8.619451e+00  17.62880279 7.982909e-04  1.164909    50         30
## 52   1460 -3.615796e+01   6.94109880 6.071872e-04  1.155632    50         30
## 53   1460  4.220717e-01   5.80851697 3.188263e-04  1.148755    50         30
## 54   1460  1.335188e+01 -10.28527035 7.715632e-04  1.143827    50         30
## 55   1460 -1.307171e+01   1.08902214 9.764671e-04  1.139748    50         30
## 56   1460  7.070279e+00 -10.40681970 6.254991e-04  1.135437    50         30
## 57   1460  3.922133e+01  -1.67168525 3.399996e-04  1.131049    50         30
## 58   1460  2.877218e+01   3.83968560 5.696405e-04  1.127886    50         30
## 59   1460  2.759604e+01  -4.56450990 2.092763e-04  1.125117    50         30
## 60   1460 -9.355720e+00   5.14343379 8.723019e-04  1.123256    50         30
## 61   1460 -1.278215e+01 -11.46681586 6.454594e-04 73.771148    50         30
## 62   1460 -2.743416e+01  12.32781556 1.314707e-03 71.150987    50         30
## 63   1460  1.238512e+01 -23.13568151 6.718501e-04 71.034367    50         30
## 64   1460 -2.816901e+01   9.28321673 6.910749e-04 71.035404    50         30
## 65   1460  1.884554e+01  -0.62760277 5.203892e-04 71.037731    50         30
## 66   1460  2.767114e+01  -2.30007907 7.324863e-04  1.555216    50         30
## 67   1460 -1.358972e+00 -13.04916481 8.538453e-04  1.312321    50         30
## 68   1460 -1.854762e+00 -19.00474759 1.186887e-03  1.228241    50         30
## 69   1460 -1.600896e+01   6.76850500 6.052313e-04  1.196858    50         30
## 70   1460 -2.502587e+01   7.93620533 7.736814e-04  1.176920    50         30
## 71   1460 -1.760768e+00 -12.65743519 7.980831e-04  1.164909    50         30
## 72   1460 -9.611671e+00   7.21427195 1.164541e-03  1.155632    50         30
## 73   1460  1.958520e+01  13.47004709 6.768649e-04  1.148755    50         30
## 74   1460 -1.042616e+00   9.97945517 1.129621e-03  1.143827    50         30
## 75   1460 -2.902196e+01 -10.39267675 5.901708e-04  1.139748    50         30
## 76   1460  4.437559e+01   4.15370884 4.325591e-04  1.135437    50         30
## 77   1460 -1.192425e+01   5.83571674 9.663715e-04  1.131049    50         30
## 78   1460 -1.829393e+01   1.41226079 1.142798e-03  1.127886    50         30
## 79   1460 -2.469038e+01 -12.14785163 6.003784e-04  1.125117    50         30
## 80   1460 -2.658901e+01  11.18415777 9.079538e-04  1.123256    50         30
## 81   1460  1.698581e+01  13.79843493 1.214593e-03 73.771148    50         30
## 82   1460  2.024836e+01 -21.64242229 4.668457e-04 71.150987    50         30
## 83   1460 -3.664736e+00 -27.17467033 8.833755e-04 71.034367    50         30
## 84   1460 -1.109128e+01  -1.95825988 9.807902e-04 71.035404    50         30
## 85   1460  7.127931e+00  25.90282402 9.266649e-04 71.037731    50         30
## 86   1460  2.633685e+01  -2.03124625 3.126195e-04  1.555216    50         30
## 87   1460  2.485586e+01   5.75887278 4.349472e-04  1.312321    50         30
## 88   1460  3.718150e+01  -2.80876040 2.901393e-04  1.228241    50         30
## 89   1460 -3.632818e+01   5.76311003 1.928239e-04  1.196858    50         30
## 90   1460 -1.392597e+01  -9.45359175 1.032273e-03  1.176920    50         30
## 91   1460 -2.005805e+01  28.31187351 3.961537e-04  1.164909    50         30
## 92   1460 -1.005284e+01  -1.11494547 6.325959e-04  1.155632    50         30
## 93   1460 -1.595622e+01  13.01731213 9.136438e-04  1.148755    50         30
## 94   1460 -2.623611e+01 -10.26380918 4.114362e-04  1.143827    50         30
## 95   1460  1.895318e+01   3.19340075 6.777869e-04  1.139748    50         30
## 96   1460  6.654960e+00  26.11493597 7.113825e-04  1.135437    50         30
## 97   1460 -2.072006e+00 -20.42717900 7.832183e-04  1.131049    50         30
## 98   1460 -7.201559e+00   1.72107892 8.273412e-04  1.127886    50         30
## 99   1460 -7.281512e+00  19.28261324 5.517415e-04  1.125117    50         30
## 100  1460 -5.089245e+00  18.67278260 6.161473e-04  1.123256    50         30
## 101  1460 -2.206904e+00 -14.61161370 8.013740e-04 73.771148    50         30
## 102  1460  2.417159e+01   7.29329871 9.488142e-04 71.150987    50         30
## 103  1460 -2.167335e+01  31.11099711 2.304384e-04 71.034367    50         30
## 104  1460 -8.496256e+00 -25.64624591 6.008806e-04 71.035404    50         30
## 105  1460 -2.825285e+01  -3.21897823 1.290395e-03 71.037731    50         30
## 106  1460  2.726106e+01  -1.31048036 1.000007e-03  1.555216    50         30
## 107  1460 -7.863999e+00  20.67658224 6.287204e-04  1.312321    50         30
## 108  1460 -3.422086e+00   9.90921782 1.087887e-03  1.228241    50         30
## 109  1460 -2.716128e+01  13.13410608 2.685448e-04  1.196858    50         30
## 110  1460 -9.582727e+00  -6.82197574 8.370237e-04  1.176920    50         30
## 111  1460 -2.091008e+01  -0.58198317 1.098286e-03  1.164909    50         30
## 112  1460  2.131084e+01   5.70368050 5.420783e-04  1.155632    50         30
## 113  1460  1.608023e+01  -5.91052847 8.251326e-04  1.148755    50         30
## 114  1460 -5.012581e+00 -10.30130502 8.238789e-04  1.143827    50         30
## 115  1460  1.056112e+01   6.06373713 1.625292e-03  1.139748    50         30
## 116  1460  3.874242e+01  -0.42494905 3.841055e-04  1.135437    50         30
## 117  1460  3.738359e+00  19.86458682 6.418124e-04  1.131049    50         30
## 118  1460 -1.502649e+01 -12.00802221 7.869551e-04  1.127886    50         30
## 119  1460  1.830076e+01  -6.42559329 5.213700e-04  1.125117    50         30
## 120  1460  3.001868e+01   5.35248815 5.505252e-04  1.123256    50         30
## 121  1460  7.334809e+00  -9.44760832 2.572020e-04 73.771148    50         30
## 122  1460 -2.419105e+01  12.15461534 1.507383e-03 71.150987    50         30
## 123  1460  4.120086e+00   1.29424362 7.420127e-04 71.034367    50         30
## 124  1460  1.435726e+01 -20.62767390 1.845382e-03 71.035404    50         30
## 125  1460 -1.291203e+01  -5.19306719 1.013023e-03 71.037731    50         30
## 126  1460 -3.730329e+01   6.95943862 3.176853e-04  1.555216    50         30
## 127  1460  3.910732e+00  -5.78763390 1.441835e-03  1.312321    50         30
## 128  1460 -1.724765e+01   6.95094712 4.395826e-04  1.228241    50         30
## 129  1460  1.253096e+01  11.33471675 9.596910e-04  1.196858    50         30
## 130  1460  5.696393e+00 -10.81802535 3.825430e-04  1.176920    50         30
## 131  1460  1.417729e+01  10.37146970 6.913022e-04  1.164909    50         30
## 132  1460  1.967303e+01  -0.39855385 1.110492e-03  1.155632    50         30
## 133  1460 -8.342952e+00   7.89504759 1.121345e-03  1.148755    50         30
## 134  1460 -1.486188e+00 -18.24404505 7.998188e-04  1.143827    50         30
## 135  1460 -7.413830e+00  -9.15386728 1.674109e-03  1.139748    50         30
## 136  1460 -1.047453e+01  -5.64493515 1.159753e-03  1.135437    50         30
## 137  1460 -8.081743e+00  -3.61005849 1.182396e-03  1.131049    50         30
## 138  1460 -2.456443e+01 -13.37693959 2.252292e-04  1.127886    50         30
## 139  1460  2.135602e+01  -1.92788478 2.354585e-04  1.125117    50         30
## 140  1460  1.832442e+01   3.21088350 7.594926e-04  1.123256    50         30
## 141  1460 -1.116294e+01   2.83094711 8.652286e-04 73.771148    50         30
## 142  1460 -3.419359e+00 -17.64065061 2.881910e-04 71.150987    50         30
## 143  1460 -2.006844e+01  -0.36047702 6.720297e-04 71.034367    50         30
## 144  1460 -1.776241e+00 -18.61217454 1.288332e-03 71.035404    50         30
## 145  1460 -2.421249e+01 -14.06098377 5.177088e-04 71.037731    50         30
## 146  1460  3.894871e+01  -3.89623811 5.117821e-04  1.555216    50         30
## 147  1460 -1.476117e+01   8.19571503 5.807937e-04  1.312321    50         30
## 148  1460  2.482850e+01   7.02249565 1.524578e-03  1.228241    50         30
## 149  1460 -1.371421e+01  -9.16384488 8.562325e-04  1.196858    50         30
## 150  1460 -2.453902e+01   2.89759883 9.695830e-04  1.176920    50         30
## 151  1460 -9.652709e+00   4.12984066 1.941347e-04  1.164909    50         30
## 152  1460  1.791418e+00 -22.14558894 3.530796e-04  1.155632    50         30
## 153  1460  1.407980e+01  11.08180811 9.803545e-04  1.148755    50         30
## 154  1460  1.253750e+00   8.35831800 7.190795e-04  1.143827    50         30
## 155  1460 -2.301209e+01  12.74142416 2.433453e-04  1.139748    50         30
## 156  1460 -2.387960e+01  13.76582189 6.880175e-04  1.135437    50         30
## 157  1460 -2.002843e+01  28.06697168 2.501324e-04  1.131049    50         30
## 158  1460  2.683683e+01   0.17794690 4.286774e-04  1.127886    50         30
## 159  1460  2.155502e+01   2.16527546 2.605565e-04  1.125117    50         30
## 160  1460  8.540352e+00 -11.17741556 2.636143e-04  1.123256    50         30
## 161  1460 -1.233782e+01  -3.62170771 1.968736e-03 73.771148    50         30
## 162  1460  2.003961e+01  -5.98370886 2.111396e-04 71.150987    50         30
## 163  1460 -1.521346e+00 -23.37325815 6.587628e-04 71.034367    50         30
## 164  1460 -1.657966e+01   7.15239109 9.592530e-04 71.035404    50         30
## 165  1460 -2.864850e+01  13.63275457 4.503540e-04 71.037731    50         30
## 166  1460 -2.450512e+01 -10.01725614 1.395207e-03  1.555216    50         30
## 167  1460  5.046641e+00   4.98541434 4.769108e-04  1.312321    50         30
## 168  1460  2.160706e+01  -7.44705891 6.720856e-04  1.228241    50         30
## 169  1460  2.730815e+01   6.05147544 1.299810e-03  1.196858    50         30
## 170  1460 -3.488854e+00 -30.69427888 1.133689e-03  1.176920    50         30
## 171  1460 -3.746138e+01   6.41047834 4.294120e-04  1.164909    50         30
## 172  1460 -6.780054e+00  -5.52746480 6.532527e-04  1.155632    50         30
## 173  1460  1.249225e+01   3.03806671 1.219290e-03  1.148755    50         30
## 174  1460  1.338367e+00   3.37206759 1.775087e-03  1.143827    50         30
## 175  1460 -1.873476e+00 -10.12780175 5.285481e-04  1.139748    50         30
## 176  1460 -7.762656e+00 -10.55833510 1.127410e-03  1.135437    50         30
## 177  1460  1.115455e+01  14.98303092 9.340449e-04  1.131049    50         30
## 178  1460 -1.809355e+01  -0.58381055 1.105026e-03  1.127886    50         30
## 179  1460  3.874120e+00 -22.15806267 1.984772e-04  1.125117    50         30
## 180  1460 -2.040661e+01  11.79329995 1.437896e-03  1.123256    50         30
## 181  1460  3.763842e+01  -0.22600518 4.316873e-04 73.771148    50         30
## 182  1460 -2.645816e+01   7.07253522 1.343445e-03 71.150987    50         30
## 183  1460 -1.761788e+01  27.27155820 1.217026e-03 71.034367    50         30
## 184  1460  2.636693e+01   3.88424061 2.392966e-04 71.035404    50         30
## 185  1460 -2.129276e+01   8.06282418 5.930913e-04 71.037731    50         30
## 186  1460 -3.874935e+01   4.53579146 3.979569e-04  1.555216    50         30
## 187  1460  3.161236e-01  -0.98829493 1.867086e-03  1.312321    50         30
## 188  1460 -3.984815e+01   5.81149256 1.286645e-03  1.228241    50         30
## 189  1460 -9.896775e+00  24.14308233 1.161216e-03  1.196858    50         30
## 190  1460  1.307859e+01 -14.84867983 5.896989e-04  1.176920    50         30
## 191  1460 -6.591539e+00  25.64242072 1.471104e-03  1.164909    50         30
## 192  1460  1.341416e+01   8.34337781 1.024645e-03  1.155632    50         30
## 193  1460 -5.468078e+00 -19.30586063 8.806553e-04  1.148755    50         30
## 194  1460  3.895017e+01  -3.87377135 5.313662e-04  1.143827    50         30
## 195  1460 -1.051333e+01   5.50511152 1.027154e-03  1.139748    50         30
## 196  1460  4.075436e+01   3.02257519 6.662581e-04  1.135437    50         30
## 197  1460  2.967977e+00 -25.71216564 1.183563e-03  1.131049    50         30
## 198  1460  1.110633e+01  -3.71882649 3.790902e-04  1.127886    50         30
## 199  1460 -3.704875e+01   5.24339447 3.255766e-04  1.125117    50         30
## 200  1460  2.743008e+00 -24.79858432 9.546337e-04  1.123256    50         30
## 201  1460 -9.640526e+00 -24.97474731 8.821825e-04 73.771148    50         30
## 202  1460  4.248365e+00  18.41016734 4.925151e-04 71.150987    50         30
## 203  1460 -3.101506e+01   7.93297395 1.163894e-03 71.034367    50         30
## 204  1460  1.780886e+01 -18.95497608 2.328933e-04 71.035404    50         30
## 205  1460 -1.949140e+01   4.46974740 1.286041e-03 71.037731    50         30
## 206  1460  7.362171e+00 -10.63976968 3.871395e-04  1.555216    50         30
## 207  1460 -1.373118e+01  -4.95241686 6.854000e-04  1.312321    50         30
## 208  1460 -2.201276e-01   7.95152493 6.647683e-04  1.228241    50         30
## 209  1460  1.578498e+01  -5.01790732 1.408267e-03  1.196858    50         30
## 210  1460 -7.023498e+00   0.70510842 9.208801e-04  1.176920    50         30
## 211  1460 -1.779104e+01  14.57801538 1.713277e-03  1.164909    50         30
## 212  1460 -9.188847e+00 -25.06690982 1.150896e-03  1.155632    50         30
## 213  1460  1.846270e+01   2.64617451 2.761416e-04  1.148755    50         30
## 214  1460  2.237939e+00  17.82268464 7.811057e-04  1.143827    50         30
## 215  1460  6.521190e+00  26.08385185 1.111685e-03  1.139748    50         30
## 216  1460  3.525486e+00  16.26546783 9.143506e-04  1.135437    50         30
## 217  1460 -2.223517e+00 -18.41879649 8.424945e-04  1.131049    50         30
## 218  1460 -2.428900e+01  13.07340304 1.246090e-03  1.127886    50         30
## 219  1460  1.111586e+01  16.22585352 9.079080e-04  1.125117    50         30
## 220  1460  1.412602e+01 -24.86122246 2.808823e-04  1.123256    50         30
## 221  1460 -6.063724e+00 -24.94063000 3.288021e-04 73.771148    50         30
## 222  1460  2.752910e+01   4.99579331 3.875417e-04 71.150987    50         30
## 223  1460  1.828097e+01   7.20240975 4.307268e-04 71.034367    50         30
## 224  1460 -9.501102e-01   8.58703769 8.112615e-04 71.035404    50         30
## 225  1460  3.496019e+00 -20.96529877 3.828500e-04 71.037731    50         30
## 226  1460  4.196276e+01   1.05729372 2.046074e-04  1.555216    50         30
## 227  1460  2.214660e+01  -2.00043891 1.177225e-03  1.312321    50         30
## 228  1460  4.307925e+01   1.75334271 2.974175e-04  1.228241    50         30
## 229  1460 -1.103925e+01   2.88897156 1.060936e-03  1.196858    50         30
## 230  1460  1.416413e+01 -23.39942158 5.074691e-04  1.176920    50         30
## 231  1460 -3.476474e+00   2.80865150 1.186662e-03  1.164909    50         30
## 232  1460  1.776762e+01  -3.39585742 2.535677e-04  1.155632    50         30
## 233  1460  4.264275e+01   0.82268140 9.023346e-05  1.148755    50         30
## 234  1460  5.968135e-02   6.27103750 5.685036e-04  1.143827    50         30
## 235  1460  1.841465e+01   0.18477361 7.402057e-04  1.139748    50         30
## 236  1460  4.321908e+01   1.59967163 1.083273e-04  1.135437    50         30
## 237  1460 -6.058450e+00 -26.92288008 1.294523e-03  1.131049    50         30
## 238  1460  8.216382e+00 -10.76234596 3.688609e-04  1.127886    50         30
## 239  1460 -1.841806e+00 -28.15887486 2.470247e-04  1.125117    50         30
## 240  1460 -1.989808e+01   3.85218578 6.982344e-04  1.123256    50         30
## 241  1460 -3.216189e+00 -19.10622698 6.389683e-04 73.771148    50         30
## 242  1460 -1.336239e+01   9.65060629 7.113466e-04 71.150987    50         30
## 243  1460 -2.405684e+01  12.35857862 6.312351e-04 71.034367    50         30
## 244  1460  2.756287e+01  10.09057830 1.166346e-03 71.035404    50         30
## 245  1460  1.953288e+01   1.85363919 3.834696e-04 71.037731    50         30
## 246  1460  5.247188e+00  16.65974244 9.484306e-04  1.555216    50         30
## 247  1460 -2.884705e+01  -9.66111559 6.177633e-04  1.312321    50         30
## 248  1460 -1.345978e+01  -0.85197958 1.291728e-03  1.228241    50         30
## 249  1460  2.627084e+01   2.17484886 1.263170e-03  1.196858    50         30
## 250  1460  4.270069e+00  22.73175640 5.710435e-04  1.176920    50         30
## 251  1460 -4.911740e+00  18.12520514 5.284618e-04  1.164909    50         30
## 252  1460  9.140468e+00 -17.23282402 6.228260e-04  1.155632    50         30
## 253  1460  2.715623e+01   4.74012911 5.467972e-04  1.148755    50         30
## 254  1460  4.182146e+00  19.25998391 5.897637e-04  1.143827    50         30
## 255  1460 -6.740981e+00   3.38807140 7.577568e-04  1.139748    50         30
## 256  1460  2.557146e+01  -0.36446343 5.428444e-04  1.135437    50         30
## 257  1460  2.362477e+01   3.29990592 9.226400e-04  1.131049    50         30
## 258  1460 -2.048770e+00 -17.82706534 8.149137e-04  1.127886    50         30
## 259  1460  8.122014e+00 -10.93125464 6.619612e-04  1.125117    50         30
## 260  1460 -2.005763e+01  28.21633420 1.468647e-04  1.123256    50         30
## 261  1460 -1.313876e+00   3.56611385 6.292153e-04 73.771148    50         30
## 262  1460  2.745715e+01  -3.82669350 4.917907e-04 71.150987    50         30
## 263  1460  5.472324e-01  -4.56412587 1.021054e-03 71.034367    50         30
## 264  1460 -3.790023e+01   7.02648986 3.503606e-04 71.035404    50         30
## 265  1460 -1.627125e+01   8.62861933 3.791751e-04 71.037731    50         30
## 266  1460 -2.848470e+00 -11.10911671 1.404586e-03  1.555216    50         30
## 267  1460  1.919681e+01   6.83166081 7.299037e-04  1.312321    50         30
## 268  1460 -3.810994e+01   5.20488852 6.355066e-04  1.228241    50         30
## 269  1460 -3.496739e+00  10.16467661 4.275139e-04  1.196858    50         30
## 270  1460 -5.984834e+00  -1.87968160 8.177119e-04  1.176920    50         30
## 271  1460  2.973392e+01   1.42200364 4.359797e-04  1.164909    50         30
## 272  1460  2.583710e+00   8.81930059 9.669885e-04  1.155632    50         30
## 273  1460  2.306402e+01  -1.50208930 1.144263e-03  1.148755    50         30
## 274  1460 -1.487347e+00  -9.75029629 1.399459e-03  1.143827    50         30
## 275  1460 -9.300969e+00   5.03652475 1.201290e-03  1.139748    50         30
## 276  1460 -2.837171e+01  -0.24845547 3.874686e-04  1.135437    50         30
## 277  1460 -8.685287e+00 -26.73329413 4.787269e-04  1.131049    50         30
## 278  1460 -1.296788e+01   5.52161123 1.390304e-04  1.127886    50         30
## 279  1460  2.403414e+00 -26.21796856 8.652725e-04  1.125117    50         30
## 280  1460  1.432256e+01  10.17404509 1.607117e-03  1.123256    50         30
## 281  1460  8.188254e+00 -10.86957672 4.154401e-04 73.771148    50         30
## 282  1460 -4.587985e+00 -21.56720100 3.286752e-04 71.150987    50         30
## 283  1460  1.253157e+01 -21.54850267 5.569947e-04 71.034367    50         30
## 284  1460 -2.098597e+00 -27.55795260 1.039053e-04 71.035404    50         30
## 285  1460  1.471200e+01 -19.92488856 7.525857e-04 71.037731    50         30
## 286  1460  3.642173e+01  -2.77899508 4.641454e-04  1.555216    50         30
## 287  1460 -2.646024e+01  -2.76258629 2.714243e-03  1.312321    50         30
## 288  1460 -1.275998e+01   2.72986506 7.945098e-04  1.228241    50         30
## 289  1460 -1.029607e+01   1.91400075 4.416515e-04  1.196858    50         30
## 290  1460 -2.876275e+01  -0.60713315 5.990596e-04  1.176920    50         30
## 291  1460  3.060012e+01   2.87264376 4.422003e-04  1.164909    50         30
## 292  1460 -2.292717e+01   0.94791105 4.710499e-04  1.155632    50         30
## 293  1460 -2.571193e+01  -3.00334600 1.019857e-03  1.148755    50         30
## 294  1460  1.511237e+01   7.47568393 7.027138e-04  1.143827    50         30
## 295  1460 -7.055334e+00  -5.06460718 1.264736e-03  1.139748    50         30
## 296  1460 -1.535909e+00  -0.93090856 6.323626e-04  1.135437    50         30
## 297  1460 -2.104833e+01   1.47238834 9.214308e-04  1.131049    50         30
## 298  1460  2.004719e+01  12.77774067 1.557506e-03  1.127886    50         30
## 299  1460  9.760887e+00  15.48593811 8.238875e-04  1.125117    50         30
## 300  1460  2.125734e+00  15.08254859 1.023462e-03  1.123256    50         30
## 301  1460 -2.922355e+00  -2.41907872 4.605612e-04 73.771148    50         30
## 302  1460  2.257684e+01   4.20282735 1.171985e-03 71.150987    50         30
## 303  1460 -3.600213e+00 -29.80323252 6.420475e-04 71.034367    50         30
## 304  1460 -5.876582e+00   5.84056104 6.778935e-04 71.035404    50         30
## 305  1460 -2.978177e+00  26.62741671 1.699262e-03 71.037731    50         30
## 306  1460 -6.222852e-01 -19.95543102 1.711796e-04  1.555216    50         30
## 307  1460  1.680356e+01  -2.39932323 2.125490e-04  1.312321    50         30
## 308  1460 -1.971617e+01   6.37056919 3.297583e-04  1.228241    50         30
## 309  1460 -1.259783e+01   5.87395635 4.953887e-04  1.196858    50         30
## 310  1460  3.149605e+00 -18.18836562 2.495890e-04  1.176920    50         30
## 311  1460  2.054950e+01   7.90485976 1.104604e-03  1.164909    50         30
## 312  1460 -9.967867e+00   8.42863650 1.399706e-03  1.155632    50         30
## 313  1460 -2.653111e+01  -1.39387828 7.734785e-04  1.148755    50         30
## 314  1460  3.448202e+00   9.15444680 6.993630e-04  1.143827    50         30
## 315  1460 -2.929951e+01   5.18190253 1.084633e-03  1.139748    50         30
## 316  1460  1.941284e+01   4.68785527 1.208263e-03  1.135437    50         30
## 317  1460  1.579191e+01   8.76627857 1.291003e-03  1.131049    50         30
## 318  1460  2.949175e+01   1.30092238 4.382751e-04  1.127886    50         30
## 319  1460  1.732116e+01  -2.48859157 3.855104e-04  1.125117    50         30
## 320  1460 -1.136534e+00 -13.37133366 1.153150e-03  1.123256    50         30
## 321  1460  2.848775e+01  -3.26366892 2.611410e-04 73.771148    50         30
## 322  1460  2.043410e+01  -4.09564169 7.264160e-04 71.150987    50         30
## 323  1460  1.122104e+01   5.94491320 8.015451e-04 71.034367    50         30
## 324  1460 -1.325526e+01   9.65102317 6.207932e-04 71.035404    50         30
## 325  1460  2.450007e+01  -2.29547878 4.087909e-04 71.037731    50         30
## 326  1460 -2.179294e+01  13.86570524 4.575753e-04  1.555216    50         30
## 327  1460  1.329138e+01 -17.51472844 7.256770e-04  1.312321    50         30
## 328  1460 -8.811685e+00  -2.31261644 8.841935e-04  1.228241    50         30
## 329  1460 -2.885013e+01   9.20067248 3.858514e-04  1.196858    50         30
## 330  1460 -2.462407e+01  13.05402976 8.174061e-04  1.176920    50         30
## 331  1460 -2.471152e+01 -14.63016663 3.419479e-04  1.164909    50         30
## 332  1460 -8.754787e+00   7.76149419 2.717259e-03  1.155632    50         30
## 333  1460 -7.517659e-01 -21.57209953 4.169789e-04  1.148755    50         30
## 334  1460  1.197872e+01 -21.84640970 9.497920e-04  1.143827    50         30
## 335  1460  1.933951e+01   6.60110252 5.429321e-04  1.139748    50         30
## 336  1460  3.929590e+00   9.68093345 8.691114e-04  1.135437    50         30
## 337  1460  1.892432e+00 -19.65833915 7.962809e-04  1.131049    50         30
## 338  1460 -1.901586e+00 -19.73733526 6.455989e-04  1.127886    50         30
## 339  1460  1.738025e+00 -14.12390255 2.223526e-03  1.125117    50         30
## 340  1460  4.260088e+00   1.50764734 6.192101e-04  1.123256    50         30
## 341  1460  2.485961e+01   4.82879279 2.938889e-04 73.771148    50         30
## 342  1460 -1.938650e+01  13.43813376 1.155860e-03 71.150987    50         30
## 343  1460 -2.169899e+01  29.97600902 7.080161e-05 71.034367    50         30
## 344  1460  9.994735e+00 -23.17207503 6.413588e-04 71.035404    50         30
## 345  1460  4.170483e+01   4.46409917 5.828406e-04 71.037731    50         30
## 346  1460 -2.477500e+01   4.50717389 1.329284e-03  1.555216    50         30
## 347  1460 -6.500312e+00  20.97382354 4.071512e-04  1.312321    50         30
## 348  1460 -7.267837e+00  -4.78389435 8.662980e-04  1.228241    50         30
## 349  1460  3.833498e+01  -2.24192866 6.983390e-04  1.196858    50         30
## 350  1460  2.239261e+01  -5.78746524 2.307012e-04  1.176920    50         30
## 351  1460  1.007769e+01 -23.86128594 6.012112e-04  1.164909    50         30
## 352  1460  1.271039e+01 -14.07509994 1.141331e-03  1.155632    50         30
## 353  1460  2.063524e+00  19.80203016 6.871371e-04  1.148755    50         30
## 354  1460 -1.895327e+01   9.56595697 6.625996e-04  1.143827    50         30
## 355  1460 -2.423617e+01   7.46329895 9.202206e-04  1.139748    50         30
## 356  1460 -4.968230e+00 -14.70919719 1.049767e-03  1.135437    50         30
## 357  1460 -2.029239e+00 -15.98870824 9.039312e-04  1.131049    50         30
## 358  1460  7.806202e+00  -5.52987587 1.946275e-03  1.127886    50         30
## 359  1460  4.149076e+00  19.89213289 4.128937e-04  1.125117    50         30
## 360  1460  1.573502e+01  -5.11565317 1.499780e-03  1.123256    50         30
## 361  1460  4.518216e+00  -1.45639326 1.074916e-03 73.771148    50         30
## 362  1460 -1.957209e+01   2.09264805 2.235062e-03 71.150987    50         30
## 363  1460 -1.902641e+01  30.64735908 5.210367e-04 71.034367    50         30
## 364  1460  4.243552e+01   2.14999191 1.330102e-05 71.035404    50         30
## 365  1460  1.896722e+01   7.64606775 5.186977e-04 71.037731    50         30
## 366  1460 -2.790682e+01  14.16114989 7.267119e-04  1.555216    50         30
## 367  1460  6.136283e+00   1.43265130 1.017658e-03  1.312321    50         30
## 368  1460  6.113001e+00  16.90974169 5.168090e-04  1.228241    50         30
## 369  1460 -7.437514e+00  -1.82440203 6.182052e-04  1.196858    50         30
## 370  1460  3.670358e+00   6.06147996 7.433506e-04  1.176920    50         30
## 371  1460  2.687620e+01   7.55641549 5.196637e-04  1.164909    50         30
## 372  1460 -1.910057e+01  29.67269548 4.530280e-04  1.155632    50         30
## 373  1460  1.201783e+00   5.71129851 8.609385e-04  1.148755    50         30
## 374  1460 -2.622044e+00   6.32561800 8.096084e-04  1.143827    50         30
## 375  1460  2.760770e+01   5.78942818 9.768819e-04  1.139748    50         30
## 376  1460 -1.961303e+01  16.55521867 3.857489e-04  1.135437    50         30
## 377  1460 -1.213199e+00  -1.60970014 7.402418e-04  1.131049    50         30
## 378  1460  2.916579e+01  -0.70712196 5.080819e-04  1.127886    50         30
## 379  1460  4.974499e+00 -22.29986169 1.456674e-04  1.125117    50         30
## 380  1460  2.539767e+01   7.61283643 1.169477e-03  1.123256    50         30
## 381  1460 -2.580266e+01   8.54798003 6.050805e-04 73.771148    50         30
## 382  1460 -5.983846e+00 -24.46466296 2.919690e-04 71.150987    50         30
## 383  1460  2.570070e+01   3.83352612 6.433520e-04 71.034367    50         30
## 384  1460 -2.190135e+01  15.31821202 6.060571e-04 71.035404    50         30
## 385  1460  1.688990e+01   5.46079312 7.672329e-04 71.037731    50         30
## 386  1460  1.463924e+01 -22.80663156 2.514379e-04  1.555216    50         30
## 387  1460 -2.401270e+01   1.28103009 7.159739e-04  1.312321    50         30
## 388  1460 -4.927485e+00   0.67953417 6.250284e-04  1.228241    50         30
## 389  1460 -5.039282e+00 -27.32601478 7.973343e-04  1.196858    50         30
## 390  1460  2.156044e+01  -7.17328460 1.265690e-03  1.176920    50         30
## 391  1460 -2.886223e+01   7.18906399 9.038790e-04  1.164909    50         30
## 392  1460  1.893357e+01   5.55134684 5.967223e-04  1.155632    50         30
## 393  1460 -2.144163e+01  27.96605517 3.305699e-04  1.148755    50         30
## 394  1460 -1.213056e+01   2.68930231 4.357740e-04  1.143827    50         30
## 395  1460 -2.001596e+01   5.89800839 2.049431e-03  1.139748    50         30
## 396  1460 -7.010887e+00   3.49378328 1.564476e-03  1.135437    50         30
## 397  1460 -1.045004e+01   4.61110701 3.344379e-04  1.131049    50         30
## 398  1460  1.320776e+01  11.25555663 1.043409e-03  1.127886    50         30
## 399  1460 -2.193669e+01  15.75067345 7.713660e-04  1.125117    50         30
## 400  1460  1.640917e+01  -0.31769033 1.640506e-03  1.123256    50         30
## 401  1460  1.316963e+01 -14.65901161 6.173112e-04 73.771148    50         30
## 402  1460 -6.537601e+00 -22.61235551 3.327634e-04 71.150987    50         30
## 403  1460 -1.857340e+01   9.57072458 1.118804e-03 71.034367    50         30
## 404  1460  2.646756e+01  -2.04265894 2.803920e-04 71.035404    50         30
## 405  1460  2.731176e+01   8.67790114 7.401665e-04 71.037731    50         30
## 406  1460 -5.267248e+00  -5.15927064 7.462555e-04  1.555216    50         30
## 407  1460 -3.728562e+01   5.93974269 6.365995e-04  1.312321    50         30
## 408  1460 -2.821251e+01   9.44384633 1.032843e-03  1.228241    50         30
## 409  1460  2.833858e+01  -2.71060374 3.636766e-04  1.196858    50         30
## 410  1460  2.144751e+01  -5.88635020 5.907466e-04  1.176920    50         30
## 411  1460 -1.437770e+01   2.46853869 9.412653e-04  1.164909    50         30
## 412  1460 -1.721943e+00  -4.52837242 4.964704e-04  1.155632    50         30
## 413  1460  5.816546e+00 -21.28578842 5.631263e-04  1.148755    50         30
## 414  1460 -2.145332e+01  11.89353873 6.236558e-04  1.143827    50         30
## 415  1460  9.199219e+00  17.62249745 7.679060e-04  1.139748    50         30
## 416  1460 -6.447015e+00 -22.94165115 6.977926e-04  1.135437    50         30
## 417  1460  1.145853e+01  11.17183105 1.181069e-03  1.131049    50         30
## 418  1460 -1.323094e+01  18.77413898 8.981573e-04  1.127886    50         30
## 419  1460 -2.010187e+01   1.97527496 1.106200e-03  1.125117    50         30
## 420  1460 -1.105466e+01  12.71814327 1.304623e-03  1.123256    50         30
## 421  1460 -2.258114e+01 -14.63909089 1.079826e-03 73.771148    50         30
## 422  1460  4.651101e+00  16.70457352 6.967053e-04 71.150987    50         30
## 423  1460 -1.351018e+01   4.76603328 4.999285e-04 71.034367    50         30
## 424  1460  2.135592e+01  -3.96362861 7.021847e-04 71.035404    50         30
## 425  1460 -7.350752e+00  -1.88986487 1.039222e-03 71.037731    50         30
## 426  1460 -2.943644e+01  12.84635391 5.982384e-04  1.555216    50         30
## 427  1460  9.074455e+00 -17.12600880 1.175171e-03  1.312321    50         30
## 428  1460 -1.176031e+01   5.65474777 1.235792e-03  1.228241    50         30
## 429  1460 -3.476039e+00 -20.45425304 7.800801e-04  1.196858    50         30
## 430  1460 -8.115656e+00 -10.60421352 9.945789e-04  1.176920    50         30
## 431  1460  4.304057e+01   1.68944874 2.168098e-04  1.164909    50         30
## 432  1460 -1.961196e+01   6.66861592 7.691562e-04  1.155632    50         30
## 433  1460  4.367875e+01   1.49189299 2.074010e-04  1.148755    50         30
## 434  1460  2.674088e+01   8.69619174 8.542614e-04  1.143827    50         30
## 435  1460  4.543205e+01   4.44252217 7.299529e-04  1.139748    50         30
## 436  1460  1.601204e+01   4.18056500 8.669716e-04  1.135437    50         30
## 437  1460 -2.009834e+01   8.13192881 8.134473e-04  1.131049    50         30
## 438  1460 -2.019691e+01  11.43094047 1.461930e-03  1.127886    50         30
## 439  1460 -1.695824e+01  13.87807869 8.126458e-04  1.125117    50         30
## 440  1460 -7.802407e+00  21.13762531 1.090235e-03  1.123256    50         30
## 441  1460  2.907380e+00 -24.42348860 3.006040e-04 73.771148    50         30
## 442  1460 -2.490307e+01 -12.28983581 3.416162e-04 71.150987    50         30
## 443  1460 -2.419467e+01   4.80743564 1.469842e-03 71.034367    50         30
## 444  1460  1.348610e+01 -24.79459299 2.706636e-04 71.035404    50         30
## 445  1460  1.904945e+01   3.93674267 5.260827e-04 71.037731    50         30
## 446  1460 -1.349414e+01  -0.94783014 1.243189e-03  1.555216    50         30
## 447  1460 -4.311174e+00 -12.05643377 9.683563e-04  1.312321    50         30
## 448  1460  2.761980e+01   6.63751128 4.586871e-04  1.228241    50         30
## 449  1460 -2.450321e+01   4.72224575 1.019009e-03  1.196858    50         30
## 450  1460 -1.928717e+01   4.76749305 7.913772e-04  1.176920    50         30
## 451  1460 -1.855068e+01   8.71993872 4.649789e-04  1.164909    50         30
## 452  1460 -3.742812e+00  -7.33275920 9.259003e-04  1.155632    50         30
## 453  1460  1.767260e+01   6.15214055 6.118245e-04  1.148755    50         30
## 454  1460  2.791871e+01   3.09220352 9.149265e-04  1.143827    50         30
## 455  1460 -2.308473e+01 -14.16012547 1.134111e-03  1.139748    50         30
## 456  1460 -9.326810e+00  -2.16574366 1.246767e-03  1.135437    50         30
## 457  1460 -2.462054e+01  12.36187518 3.212847e-04  1.131049    50         30
## 458  1460 -3.831132e+00  -7.03761240 1.122110e-03  1.127886    50         30
## 459  1460 -2.191547e+01   6.80792066 8.697882e-04  1.125117    50         30
## 460  1460 -2.470106e+01   8.74636532 7.596417e-04  1.123256    50         30
## 461  1460  1.671388e+01  -0.26237104 5.415069e-04 73.771148    50         30
## 462  1460 -1.542525e+01  -2.88066964 1.544733e-03 71.150987    50         30
## 463  1460 -2.148271e+00   5.52097175 3.372242e-04 71.034367    50         30
## 464  1460 -2.146890e+01   3.36890863 1.348575e-03 71.035404    50         30
## 465  1460 -1.027281e+01   0.60605271 3.408177e-04 71.037731    50         30
## 466  1460  1.363370e+01 -24.47392807 1.842695e-04  1.555216    50         30
## 467  1460  4.293391e+00  -0.38583380 8.175293e-04  1.312321    50         30
## 468  1460  1.156660e+01  10.24978747 1.906096e-03  1.228241    50         30
## 469  1460 -2.302219e+00 -25.86487171 8.603418e-04  1.196858    50         30
## 470  1460  2.194531e+01   0.23102935 1.723808e-03  1.176920    50         30
## 471  1460  1.506480e+01 -13.77830207 8.796821e-04  1.164909    50         30
## 472  1460  1.847926e+01  14.25283553 1.590644e-03  1.155632    50         30
## 473  1460  2.013369e+01 -20.45669870 9.087069e-04  1.148755    50         30
## 474  1460  1.459364e+00 -21.22087951 5.222866e-04  1.143827    50         30
## 475  1460  1.291419e+01 -20.05066128 6.375597e-04  1.139748    50         30
## 476  1460  4.015660e+00   0.07360296 1.003230e-03  1.135437    50         30
## 477  1460 -1.244418e+00 -17.29459811 1.091664e-03  1.131049    50         30
## 478  1460  2.598299e+01  -2.95300345 4.980846e-04  1.127886    50         30
## 479  1460  3.447437e-01 -19.83276838 9.520887e-04  1.125117    50         30
## 480  1460 -1.119670e+01   9.97998999 5.048328e-04  1.123256    50         30
## 481  1460  1.896126e+00 -20.16963485 3.415721e-04 73.771148    50         30
## 482  1460  2.417502e+00 -19.78096148 3.197607e-04 71.150987    50         30
## 483  1460 -2.136529e+01   5.23618141 6.207092e-04 71.034367    50         30
## 484  1460  2.019896e+01 -21.66092062 7.344977e-04 71.035404    50         30
## 485  1460 -8.803049e+00   9.44038126 7.494664e-04 71.037731    50         30
## 486  1460 -1.096153e+01  12.61522572 1.264356e-03  1.555216    50         30
## 487  1460 -7.133004e+00   0.35267569 1.326341e-03  1.312321    50         30
## 488  1460  3.633432e+00  -0.88627729 8.232670e-04  1.228241    50         30
## 489  1460 -2.646229e+01 -10.98978341 2.706980e-04  1.196858    50         30
## 490  1460  4.552290e+01   4.40778514 6.478605e-04  1.176920    50         30
## 491  1460  3.882000e+01   5.06716488 1.183632e-03  1.164909    50         30
## 492  1460 -1.838693e+01   0.33064865 8.679506e-04  1.155632    50         30
## 493  1460  3.095306e+01   6.12697912 2.743322e-04  1.148755    50         30
## 494  1460 -2.568468e+00   8.53821251 1.054643e-03  1.143827    50         30
## 495  1460 -1.857515e+01  11.32396789 4.679563e-04  1.139748    50         30
## 496  1460 -1.844214e+01  15.05050835 5.617185e-04  1.135437    50         30
## 497  1460 -7.630339e+00 -15.08657749 7.683931e-04  1.131049    50         30
## 498  1460 -2.224083e+01   1.05641901 1.120288e-03  1.127886    50         30
## 499  1460 -8.992679e+00   1.50820129 7.061060e-04  1.125117    50         30
## 500  1460  3.024859e+00  21.45630895 5.889422e-04  1.123256    50         30
## 501  1460  4.308882e+01   1.32982574 3.306015e-04 73.771148    50         30
## 502  1460  2.170022e+01   2.55889574 4.979317e-04 71.150987    50         30
## 503  1460 -6.746106e+00  19.59342107 3.386458e-04 71.034367    50         30
## 504  1460  6.512048e+00  -1.96434525 6.147546e-04 71.035404    50         30
## 505  1460  4.080217e+01   4.11846397 3.464924e-04 71.037731    50         30
## 506  1460 -2.691407e+01 -12.37583082 7.203407e-04  1.555216    50         30
## 507  1460  2.191958e+01  -1.65022891 1.252034e-03  1.312321    50         30
## 508  1460 -5.265324e+00 -22.63227148 3.740599e-04  1.228241    50         30
## 509  1460 -2.871961e+01  13.43795919 6.608176e-04  1.196858    50         30
## 510  1460 -6.603257e+00  -0.10713844 6.016523e-04  1.176920    50         30
## 511  1460 -4.643249e+00  20.66060293 4.483416e-04  1.164909    50         30
## 512  1460  1.223877e+01 -24.81189813 4.518948e-04  1.155632    50         30
## 513  1460 -1.587996e+00   8.21035915 4.612736e-04  1.148755    50         30
## 514  1460 -1.302546e+01  13.15891134 7.107550e-04  1.143827    50         30
## 515  1460 -2.120793e+01  13.77368864 1.446634e-03  1.139748    50         30
## 516  1460  4.659053e+00 -21.16678365 7.338002e-04  1.135437    50         30
## 517  1460  1.460625e+01  12.03536518 6.566890e-04  1.131049    50         30
## 518  1460  2.471131e+01  -1.35480316 5.979843e-04  1.127886    50         30
## 519  1460  1.842891e+01   3.67797913 7.037558e-04  1.125117    50         30
## 520  1460 -2.809991e+01   0.21542238 5.585239e-04  1.123256    50         30
## 521  1460 -2.282676e+01  30.89195603 1.719798e-04 73.771148    50         30
## 522  1460 -7.417574e+00  -7.17555775 1.479063e-03 71.150987    50         30
## 523  1460 -2.530839e+01   6.57862714 5.041411e-04 71.034367    50         30
## 524  1460  2.353630e+01  -7.63966844 4.182036e-04 71.035404    50         30
## 525  1460  2.041113e+01  -3.36366025 8.998011e-04 71.037731    50         30
## 526  1460 -6.623857e+00 -24.23908598 6.172425e-04  1.555216    50         30
## 527  1460 -1.378393e+01  12.98090629 7.880469e-04  1.312321    50         30
## 528  1460  2.176231e+01  -7.25194591 6.738106e-04  1.228241    50         30
## 529  1460 -1.617071e+01  13.57074940 5.172334e-04  1.196858    50         30
## 530  1460 -8.229159e+00 -14.70616202 6.490563e-04  1.176920    50         30
## 531  1460 -8.238348e-01 -14.08066303 1.435055e-03  1.164909    50         30
## 532  1460 -2.827979e+01  11.21793176 3.801689e-04  1.155632    50         30
## 533  1460 -1.909364e+01  27.84688629 3.401093e-04  1.148755    50         30
## 534  1460 -2.043685e+01  26.68142565 4.647230e-04  1.143827    50         30
## 535  1460  2.866939e+01   6.17986209 1.102916e-04  1.139748    50         30
## 536  1460 -3.066923e+01  12.03898922 7.718533e-04  1.135437    50         30
## 537  1460  2.630810e+01   4.86849802 7.332753e-04  1.131049    50         30
## 538  1460 -1.074053e+01   4.88044014 6.214949e-04  1.127886    50         30
## 539  1460 -8.958793e+00  -1.67238152 1.046164e-03  1.125117    50         30
## 540  1460  1.735045e+00 -14.23503021 9.589189e-04  1.123256    50         30
## 541  1460  3.122758e+00 -21.02994578 6.693679e-04 73.771148    50         30
## 542  1460  2.679529e+01  -0.16482673 1.677949e-03 71.150987    50         30
## 543  1460 -4.669241e+00 -13.71326188 1.623202e-03 71.034367    50         30
## 544  1460  2.016274e+01 -19.54833997 7.508928e-04 71.035404    50         30
## 545  1460  1.970335e+01   4.99333025 1.260922e-04 71.037731    50         30
## 546  1460  1.446981e+01   5.36671295 6.269915e-04  1.555216    50         30
## 547  1460  7.892530e+00 -10.07025169 1.021435e-03  1.312321    50         30
## 548  1460 -1.005147e+00  -0.22055258 1.038275e-03  1.228241    50         30
## 549  1460 -4.404943e-02  10.59839836 4.144349e-04  1.196858    50         30
## 550  1460  2.757872e+01   4.78248408 6.476184e-04  1.176920    50         30
## 551  1460  4.748784e+00  -4.92864804 8.758953e-04  1.164909    50         30
## 552  1460 -1.254526e+01   4.67825329 4.786072e-04  1.155632    50         30
## 553  1460 -2.868802e+00 -26.99517952 8.341831e-04  1.148755    50         30
## 554  1460 -1.916128e+01  28.32743547 2.349107e-04  1.143827    50         30
## 555  1460  1.992181e+01  -2.72733607 6.531584e-04  1.139748    50         30
## 556  1460 -2.183218e+01  12.86406817 1.613389e-03  1.135437    50         30
## 557  1460  3.720723e+00  -0.49552735 8.252895e-04  1.131049    50         30
## 558  1460 -3.108366e+01   7.90298197 1.019565e-03  1.127886    50         30
## 559  1460  8.680555e+00  17.51585255 1.084507e-03  1.125117    50         30
## 560  1460  1.346220e+01 -24.36410973 2.396546e-04  1.123256    50         30
## 561  1460  5.194513e+00   1.54515629 4.660125e-04 73.771148    50         30
## 562  1460  8.573181e-01   8.09050290 1.222951e-03 71.150987    50         30
## 563  1460 -6.709611e+00   4.03352849 1.539496e-03 71.034367    50         30
## 564  1460 -3.032913e+01  -0.53397261 7.895552e-04 71.035404    50         30
## 565  1460  1.720095e+01   3.43525842 7.473622e-04 71.037731    50         30
## 566  1460 -2.492797e+01  14.01334842 5.012356e-04  1.555216    50         30
## 567  1460  2.587256e+01  -2.09109052 7.109570e-04  1.312321    50         30
## 568  1460 -7.002781e+00 -27.28026020 7.862648e-04  1.228241    50         30
## 569  1460  1.368239e+01  -9.81957151 1.165684e-03  1.196858    50         30
## 570  1460  5.672740e-01  -4.17794287 5.581279e-04  1.176920    50         30
## 571  1460 -2.464837e+01 -13.85328971 5.404778e-04  1.164909    50         30
## 572  1460 -7.896938e+00   0.47781935 3.158434e-04  1.155632    50         30
## 573  1460  2.580802e+01   4.45643350 3.620577e-05  1.148755    50         30
## 574  1460  2.908977e+01   8.09799946 2.402080e-04  1.143827    50         30
## 575  1460  6.517697e+00  18.11810709 1.084960e-03  1.139748    50         30
## 576  1460 -2.393342e+01   9.28937551 8.541304e-04  1.135437    50         30
## 577  1460 -2.804349e+01   4.04103869 9.329850e-04  1.131049    50         30
## 578  1460 -1.055540e+00   2.71149763 8.434651e-04  1.127886    50         30
## 579  1460  3.704467e+01  -3.40085842 4.881953e-04  1.125117    50         30
## 580  1460 -2.512675e+01   3.68337257 6.634011e-04  1.123256    50         30
## 581  1460  4.429733e+00  18.36830611 8.021975e-04 73.771148    50         30
## 582  1460 -7.293159e-01 -26.91691441 3.115105e-04 71.150987    50         30
## 583  1460 -4.165734e-01  -4.05339430 6.675898e-04 71.034367    50         30
## 584  1460 -2.979228e+00  26.62892174 1.533987e-03 71.035404    50         30
## 585  1460 -2.917385e+01  -0.34466409 8.936555e-04 71.037731    50         30
## 586  1460  1.884367e+00 -21.59620677 3.697297e-04  1.555216    50         30
## 587  1460 -1.141782e+00   5.56248949 7.047223e-04  1.312321    50         30
## 588  1460 -1.652065e+00  -0.02234930 1.207404e-03  1.228241    50         30
## 589  1460  6.689857e+00  -2.09605885 7.113890e-04  1.196858    50         30
## 590  1460 -3.610469e+01   6.99380401 6.994104e-04  1.176920    50         30
## 591  1460  2.256856e+01   2.46938116 1.367596e-03  1.164909    50         30
## 592  1460  2.104595e+01  -7.05872084 5.531657e-04  1.155632    50         30
## 593  1460 -6.154044e+00   7.07694577 5.826703e-04  1.148755    50         30
## 594  1460  1.822506e+01 -18.74104285 5.022994e-04  1.143827    50         30
## 595  1460 -1.394320e+01   4.13584440 8.282915e-04  1.139748    50         30
## 596  1460  3.035896e+00 -25.69079084 1.055981e-03  1.135437    50         30
## 597  1460 -1.983928e+01   7.47616562 5.733514e-04  1.131049    50         30
## 598  1460  1.639966e+01 -24.05582832 9.860895e-04  1.127886    50         30
## 599  1460 -1.309698e+00  -9.81436657 8.847079e-04  1.125117    50         30
## 600  1460  4.098706e+01   4.47935257 4.509971e-04  1.123256    50         30
## 601  1460  2.040181e+01  -3.81175686 5.947409e-04 73.771148    50         30
## 602  1460 -2.758649e+01  -1.44144723 4.215169e-04 71.150987    50         30
## 603  1460  1.814465e+01   4.98545306 2.707119e-04 71.034367    50         30
## 604  1460  3.675836e+01  -2.75256410 3.595628e-04 71.035404    50         30
## 605  1460 -1.149006e+00 -18.84239095 1.597506e-03 71.037731    50         30
## 606  1460  1.679185e+01  14.34439157 1.015922e-03  1.555216    50         30
## 607  1460 -1.174873e+01 -10.54041229 8.136728e-04  1.312321    50         30
## 608  1460 -2.065851e+01  -2.37524868 1.180344e-03  1.228241    50         30
## 609  1460 -6.614184e+00  25.62244425 1.894883e-03  1.196858    50         30
## 610  1460 -6.788084e+00   1.99150137 6.481296e-04  1.176920    50         30
## 611  1460  2.003338e+01  -6.00746199 6.939891e-04  1.164909    50         30
## 612  1460  4.503398e+00  22.41769958 7.584179e-04  1.155632    50         30
## 613  1460  2.005023e+01  -2.31063934 3.195006e-04  1.148755    50         30
## 614  1460 -1.460244e+01  -9.92546007 5.238478e-04  1.143827    50         30
## 615  1460  4.471158e+01   4.90489374 7.102305e-04  1.139748    50         30
## 616  1460 -4.353115e+00   0.16299291 4.966626e-04  1.135437    50         30
## 617  1460  1.902916e+01   5.11513591 7.089324e-04  1.131049    50         30
## 618  1460 -1.525481e+01   5.39267907 5.257170e-04  1.127886    50         30
## 619  1460  2.597719e+00 -25.89468683 6.833954e-04  1.125117    50         30
## 620  1460  1.986371e+01  -5.48250206 6.697584e-04  1.123256    50         30
## 621  1460 -1.883758e+01  15.67022384 8.330778e-04 73.771148    50         30
## 622  1460  1.083854e+01   7.36685524 8.387830e-04 71.150987    50         30
## 623  1460 -9.029162e+00   1.10813437 1.490848e-03 71.034367    50         30
## 624  1460  3.762623e+01  -0.29350282 5.342249e-04 71.035404    50         30
## 625  1460  1.657781e+01  15.22062583 9.708006e-04 71.037731    50         30
## 626  1460  4.152890e+00   2.02475514 6.638789e-04  1.555216    50         30
## 627  1460 -6.082987e+00  20.17447772 5.731256e-04  1.312321    50         30
## 628  1460 -1.401862e+00   2.92004379 7.047441e-04  1.228241    50         30
## 629  1460  9.551813e+00  15.42677395 4.723549e-04  1.196858    50         30
## 630  1460  4.326480e-01   2.88113949 6.205918e-04  1.176920    50         30
## 631  1460 -2.691437e+01  12.88271072 4.201072e-04  1.164909    50         30
## 632  1460  1.269987e+01 -23.06476207 4.242296e-04  1.155632    50         30
## 633  1460 -9.803134e+00  -6.06098553 1.407079e-03  1.148755    50         30
## 634  1460  3.008219e+00  19.17862195 7.034329e-04  1.143827    50         30
## 635  1460 -9.554808e+00  23.76253940 7.707715e-04  1.139748    50         30
## 636  1460 -3.694822e+01   4.24246813 3.117546e-04  1.135437    50         30
## 637  1460 -1.996376e+01  16.10412903 7.517336e-04  1.131049    50         30
## 638  1460 -2.736310e+01 -12.05974151 7.031615e-04  1.127886    50         30
## 639  1460 -1.944996e+01  13.34477513 6.182995e-04  1.125117    50         30
## 640  1460  1.076225e+01 -20.77780411 4.129261e-04  1.123256    50         30
## 641  1460  9.682999e+00 -23.09457241 2.332046e-04 73.771148    50         30
## 642  1460  1.950230e+01   2.51821194 6.128312e-04 71.150987    50         30
## 643  1460  1.854751e+01  -7.22841013 1.102481e-03 71.034367    50         30
## 644  1460  9.550971e+00   8.08914760 8.612479e-04 71.035404    50         30
## 645  1460  5.388461e+00 -21.19202343 6.282775e-04 71.037731    50         30
## 646  1460 -4.146962e+00   8.18549394 9.042371e-04  1.555216    50         30
## 647  1460 -1.985340e+01  28.40705040 3.622607e-04  1.312321    50         30
## 648  1460  5.703873e+00   1.26429469 7.134621e-04  1.228241    50         30
## 649  1460  1.383751e+01  13.21810576 8.317222e-04  1.196858    50         30
## 650  1460  4.479546e+01   4.93267149 6.251568e-04  1.176920    50         30
## 651  1460  2.797109e+01   2.80459570 5.005022e-04  1.164909    50         30
## 652  1460 -2.307845e+01  -0.32869522 1.143575e-03  1.155632    50         30
## 653  1460  2.784385e+01   3.49937231 8.379598e-04  1.148755    50         30
## 654  1460 -2.745081e+01  11.77271292 1.539421e-03  1.143827    50         30
## 655  1460  1.868230e+00 -18.29225096 2.544229e-04  1.139748    50         30
## 656  1460  4.210119e+01   1.11849635 1.220828e-04  1.135437    50         30
## 657  1460 -7.058886e+00  10.04247846 1.138310e-03  1.131049    50         30
## 658  1460 -2.927176e+01  12.12331162 7.716387e-04  1.127886    50         30
## 659  1460 -2.764637e+01   3.75757946 8.890601e-04  1.125117    50         30
## 660  1460 -7.443119e+00   7.91989886 3.793702e-04  1.123256    50         30
## 661  1460  1.376422e+01  12.99409105 6.322327e-04 73.771148    50         30
## 662  1460  1.833784e+01  -4.56804713 3.991281e-04 71.150987    50         30
## 663  1460 -1.163421e+01  -6.44094405 7.209528e-04 71.034367    50         30
## 664  1460 -1.630048e+00   4.48877208 4.984948e-04 71.035404    50         30
## 665  1460  5.004462e+00 -19.70663023 4.633547e-04 71.037731    50         30
## 666  1460  2.830756e+01  -1.06725706 9.493797e-04  1.555216    50         30
## 667  1460  1.126268e+01   7.38077555 9.794121e-04  1.312321    50         30
## 668  1460 -1.443193e+00 -16.41738995 1.009461e-03  1.228241    50         30
## 669  1460 -5.292962e+00   4.37049011 9.359319e-04  1.196858    50         30
## 670  1460 -2.164469e+01  13.06714237 1.034380e-03  1.176920    50         30
## 671  1460  2.055957e+01   4.02057161 6.510343e-04  1.164909    50         30
## 672  1460 -2.181802e+01   1.00277877 9.036070e-04  1.155632    50         30
## 673  1460 -5.390704e+00  -3.15295003 1.581709e-03  1.148755    50         30
## 674  1460  6.339164e+00  -1.68610064 1.294872e-03  1.143827    50         30
## 675  1460 -6.496328e+00   3.39650778 2.874553e-03  1.139748    50         30
## 676  1460  4.083475e+01   2.95283515 6.039307e-04  1.135437    50         30
## 677  1460 -2.800203e+01 -10.48698490 3.474407e-04  1.131049    50         30
## 678  1460 -1.936298e+01  11.04552278 7.507546e-04  1.127886    50         30
## 679  1460 -1.224678e+00 -27.44134888 6.708822e-04  1.125117    50         30
## 680  1460 -7.815404e+00   1.42540968 1.082327e-03  1.123256    50         30
## 681  1460  3.086168e+00  -6.39686524 1.505139e-03 73.771148    50         30
## 682  1460 -2.477632e+01   9.88905068 1.552325e-03 71.150987    50         30
## 683  1460  1.221244e+01 -18.39077750 1.062580e-03 71.034367    50         30
## 684  1460  1.438048e+00 -19.53731738 1.067356e-03 71.035404    50         30
## 685  1460  2.507689e+01   8.26023863 6.135199e-04 71.037731    50         30
## 686  1460  1.248700e+01   3.05848135 9.661869e-04  1.555216    50         30
## 687  1460  3.136005e+01   4.39389998 3.425657e-04  1.312321    50         30
## 688  1460  3.612073e+01  -1.43689480 5.990875e-04  1.228241    50         30
## 689  1460 -3.424322e+00 -20.94255138 5.457347e-04  1.196858    50         30
## 690  1460  1.227739e+01 -23.69558473 4.006391e-04  1.176920    50         30
## 691  1460  1.789605e+01 -18.98383078 4.465372e-04  1.164909    50         30
## 692  1460  2.442497e+01  -7.59468167 4.441197e-04  1.155632    50         30
## 693  1460  1.889436e+01  -3.63476008 4.367080e-04  1.148755    50         30
## 694  1460 -2.161034e+01  13.13855543 4.149035e-04  1.143827    50         30
## 695  1460 -2.333679e+01   5.39643656 7.660458e-04  1.139748    50         30
## 696  1460 -2.565663e+00 -10.87409251 1.338448e-03  1.135437    50         30
## 697  1460 -1.618647e+01  15.08105419 1.213146e-03  1.131049    50         30
## 698  1460  2.570237e+00  19.81816772 5.507834e-04  1.127886    50         30
## 699  1460  6.845822e-01  10.37403592 7.043316e-04  1.125117    50         30
## 700  1460  1.412107e+01 -20.85942892 7.239074e-04  1.123256    50         30
## 701  1460  1.679249e+00 -20.10353543 6.600851e-04 73.771148    50         30
## 702  1460 -1.019165e+01  -2.22300216 6.716856e-04 71.150987    50         30
## 703  1460  2.682982e+01  -3.65781458 7.133076e-04 71.034367    50         30
## 704  1460 -2.911949e+01  -9.19978179 5.195393e-04 71.035404    50         30
## 705  1460  7.536280e+00 -11.22096329 3.784772e-04 71.037731    50         30
## 706  1460 -2.303427e+01  29.49932211 1.553983e-04  1.555216    50         30
## 707  1460 -3.720740e+00  -7.37497496 9.638722e-04  1.312321    50         30
## 708  1460  1.073712e+01 -21.87166150 6.119797e-04  1.228241    50         30
## 709  1460  2.911520e+01   6.21328371 2.280439e-04  1.196858    50         30
## 710  1460 -1.123911e+01   0.10398111 7.728730e-04  1.176920    50         30
## 711  1460 -1.619126e+01   7.77349480 4.569368e-04  1.164909    50         30
## 712  1460 -2.301958e+01  10.63556917 4.117245e-04  1.155632    50         30
## 713  1460  1.237367e+01 -19.53388967 7.168108e-04  1.148755    50         30
## 714  1460 -2.224065e+00  -3.14488297 4.784842e-04  1.143827    50         30
## 715  1460  1.367575e+01   7.61208951 1.043678e-03  1.139748    50         30
## 716  1460 -1.072716e+01  -5.62492484 1.129083e-03  1.135437    50         30
## 717  1460 -2.943573e+01  10.70714665 5.043769e-04  1.131049    50         30
## 718  1460  4.002863e+00  16.16871573 7.566931e-04  1.127886    50         30
## 719  1460  1.729761e+01  -2.60185939 4.382159e-04  1.125117    50         30
## 720  1460 -9.790131e+00   3.72048303 1.297105e-03  1.123256    50         30
## 721  1460  1.110097e+01 -18.91373846 1.036662e-03 73.771148    50         30
## 722  1460  1.810284e+01 -18.60022066 4.040835e-04 71.150987    50         30
## 723  1460 -1.169076e+01   6.18201167 1.006554e-03 71.034367    50         30
## 724  1460 -2.914300e+01  -0.83435030 6.915578e-04 71.035404    50         30
## 725  1460  2.943450e+00 -20.88921708 6.338018e-04 71.037731    50         30
## 726  1460 -6.404090e+00  18.72673603 4.972312e-04  1.555216    50         30
## 727  1460  6.645976e+00 -11.25389812 3.261266e-04  1.312321    50         30
## 728  1460 -3.634046e+00 -18.68278863 5.658092e-04  1.228241    50         30
## 729  1460 -2.514202e+01 -13.32378810 2.644032e-04  1.196858    50         30
## 730  1460 -3.729079e+01   6.32771473 3.703490e-04  1.176920    50         30
## 731  1460  1.248711e+01 -20.48491930 4.199789e-04  1.164909    50         30
## 732  1460  8.652283e+00 -20.02131146 1.317242e-03  1.155632    50         30
## 733  1460  2.195046e+01  -1.46740564 1.264267e-03  1.148755    50         30
## 734  1460 -5.326517e+00  19.30508825 1.809109e-03  1.143827    50         30
## 735  1460 -1.427792e+01   3.32516289 1.206862e-03  1.139748    50         30
## 736  1460 -2.178052e+01   4.55138314 5.489717e-04  1.135437    50         30
## 737  1460 -2.177057e+01  30.02826284 1.479734e-04  1.131049    50         30
## 738  1460  2.890263e+01   4.14505555 3.861936e-04  1.127886    50         30
## 739  1460 -2.099719e+01 -14.25802046 1.125981e-03  1.125117    50         30
## 740  1460  2.556715e+01   3.91697117 1.054354e-03  1.123256    50         30
## 741  1460 -2.798393e+01  11.25673997 4.142167e-04 73.771148    50         30
## 742  1460  2.169522e+00  16.54556442 4.438907e-04 71.150987    50         30
## 743  1460 -4.814150e+00 -28.37912926 3.671899e-04 71.034367    50         30
## 744  1460  6.187233e+00  15.57039746 7.631868e-04 71.035404    50         30
## 745  1460  7.559228e+00 -12.02292008 3.577492e-04 71.037731    50         30
## 746  1460  1.178771e+01  16.24549816 5.674587e-04  1.555216    50         30
## 747  1460  2.246596e+01   4.28952609 1.126202e-03  1.312321    50         30
## 748  1460 -2.968880e+01  10.45589608 2.622847e-04  1.228241    50         30
## 749  1460 -5.072651e-01 -17.23283443 5.042530e-04  1.196858    50         30
## 750  1460 -1.963845e+01  29.79043578 1.594933e-04  1.176920    50         30
## 751  1460 -1.936383e+01   6.61422816 6.113545e-04  1.164909    50         30
## 752  1460  2.930763e+01   4.87696978 6.673490e-04  1.155632    50         30
## 753  1460 -3.852747e+00 -16.95891005 9.496635e-04  1.148755    50         30
## 754  1460  2.704339e+01  -1.14268328 3.524269e-04  1.143827    50         30
## 755  1460 -3.933417e-02  10.12089174 1.199103e-03  1.139748    50         30
## 756  1460  3.879902e+01  -0.51003229 4.884304e-04  1.135437    50         30
## 757  1460  2.475184e+01   3.66005593 8.469082e-04  1.131049    50         30
## 758  1460  1.037870e+01  11.01589798 7.829668e-04  1.127886    50         30
## 759  1460  3.926948e+01  -0.60449109 6.601305e-04  1.125117    50         30
## 760  1460  2.224363e+01  -2.33128151 1.054734e-03  1.123256    50         30
## 761  1460 -6.684798e+00  19.36281889 1.139636e-03 73.771148    50         30
## 762  1460 -1.676625e+01   3.70564975 1.167355e-03 71.150987    50         30
## 763  1460  2.439121e+01   3.63068339 5.235475e-04 71.034367    50         30
## 764  1460  1.577685e+01  -5.20349584 1.612920e-03 71.035404    50         30
## 765  1460  1.507139e+01 -13.79277418 7.125012e-04 71.037731    50         30
## 766  1460 -2.509491e+00 -24.98061502 2.059733e-04  1.555216    50         30
## 767  1460  6.884204e+00  25.05184719 8.398767e-04  1.312321    50         30
## 768  1460  6.102698e+00  24.47278114 2.653130e-03  1.228241    50         30
## 769  1460 -7.484325e+00 -22.87800944 9.951604e-04  1.196858    50         30
## 770  1460  1.681532e+01  -5.42980493 2.360376e-04  1.176920    50         30
## 771  1460 -1.331178e+00  -0.18089438 1.097406e-03  1.164909    50         30
## 772  1460 -1.275985e+01   1.46994717 1.242895e-03  1.155632    50         30
## 773  1460 -1.398837e-01   4.62520677 8.643886e-04  1.148755    50         30
## 774  1460 -1.238427e+01   3.85167183 1.142203e-03  1.143827    50         30
## 775  1460 -1.689352e+00 -28.27458782 2.400482e-04  1.139748    50         30
## 776  1460  2.011053e+01 -21.72872424 7.335255e-04  1.135437    50         30
## 777  1460 -4.185983e+00 -26.01796732 5.830547e-04  1.131049    50         30
## 778  1460 -5.941990e+00   3.04858623 1.239864e-03  1.127886    50         30
## 779  1460 -2.103539e+01  31.40418001 1.426553e-04  1.125117    50         30
## 780  1460 -2.584114e-01  -4.11333114 1.402951e-03  1.123256    50         30
## 781  1460 -5.117227e+00 -29.04365058 1.377946e-03 73.771148    50         30
## 782  1460  2.287722e+01   2.45546364 9.045856e-04 71.150987    50         30
## 783  1460 -8.053641e+00 -25.49248111 8.946531e-04 71.034367    50         30
## 784  1460  8.764121e-01  -4.86282066 1.072917e-03 71.035404    50         30
## 785  1460 -2.641605e+01  12.32514241 2.837450e-04 71.037731    50         30
## 786  1460  3.905587e+00   4.46224804 8.899246e-04  1.555216    50         30
## 787  1460 -1.873486e+01  -4.55845615 2.024694e-03  1.312321    50         30
## 788  1460  2.051408e+01   2.53578256 9.031469e-05  1.228241    50         30
## 789  1460 -1.575695e+01   8.06201271 1.304618e-03  1.196858    50         30
## 790  1460  1.362909e+01   8.78828823 6.220816e-04  1.176920    50         30
## 791  1460  1.409328e+01 -23.08478368 5.972777e-04  1.164909    50         30
## 792  1460 -3.086786e+00  -1.23957666 1.042633e-03  1.155632    50         30
## 793  1460  1.780693e+01   4.74816212 1.060077e-03  1.148755    50         30
## 794  1460 -4.441382e+00 -25.51706943 4.063564e-04  1.143827    50         30
## 795  1460  7.543824e+00  25.87526410 1.127606e-03  1.139748    50         30
## 796  1460  1.785943e+01  13.49473342 1.121127e-03  1.135437    50         30
## 797  1460 -1.070138e+01  -2.59360976 9.667791e-04  1.131049    50         30
## 798  1460 -1.237423e+01   4.04655235 1.941546e-03  1.127886    50         30
## 799  1460  2.611046e+01  -4.92802406 5.346232e-04  1.125117    50         30
## 800  1460 -2.632408e+01   6.81924534 4.903104e-04  1.123256    50         30
## 801  1460  6.405846e+00  24.62813179 6.377030e-04 73.771148    50         30
## 802  1460 -1.447666e+01   8.38592161 1.099303e-03 71.150987    50         30
## 803  1460  1.963638e+01   4.46122387 4.196261e-04 71.034367    50         30
## 804  1460  2.605040e+01  -5.37520070 7.967552e-04 71.035404    50         30
## 805  1460 -1.230028e+01   3.34197801 2.055436e-03 71.037731    50         30
## 806  1460 -3.186808e+00 -24.86406256 5.659359e-04  1.555216    50         30
## 807  1460 -2.017632e+00   7.33048962 4.919036e-04  1.312321    50         30
## 808  1460  1.724130e+01   1.93318048 3.805844e-04  1.228241    50         30
## 809  1460 -1.734877e-01   2.49383947 9.828810e-04  1.196858    50         30
## 810  1460 -2.786801e+01 -11.57664139 1.129358e-04  1.176920    50         30
## 811  1460  1.109776e+01  -3.18795762 4.840593e-04  1.164909    50         30
## 812  1460  1.797678e+01 -18.95566053 5.103896e-04  1.155632    50         30
## 813  1460 -8.096568e+00  18.32090961 1.238616e-03  1.148755    50         30
## 814  1460 -6.008360e+00  20.38045459 5.219803e-04  1.143827    50         30
## 815  1460 -2.931262e+01   5.19634737 6.474079e-04  1.139748    50         30
## 816  1460 -6.870308e+00 -27.36059946 5.367721e-04  1.135437    50         30
## 817  1460 -1.372463e+01  12.61403325 1.778605e-03  1.131049    50         30
## 818  1460  1.146903e+00 -18.84434272 5.244501e-04  1.127886    50         30
## 819  1460 -4.147130e+00   0.57531692 9.612342e-04  1.125117    50         30
## 820  1460  1.235455e+01 -21.47314085 2.402009e-04  1.123256    50         30
## 821  1460  2.808087e+01   3.65805961 1.121237e-03 73.771148    50         30
## 822  1460 -2.151373e+01  11.97559806 3.023670e-04 71.150987    50         30
## 823  1460  2.830178e+01   6.14182740 5.438239e-04 71.034367    50         30
## 824  1460 -2.369053e+01   4.50663235 1.205880e-03 71.035404    50         30
## 825  1460 -5.117647e+00 -24.11812589 3.973401e-04 71.037731    50         30
## 826  1460  3.910414e+00 -21.21990149 2.520965e-04  1.555216    50         30
## 827  1460 -1.617699e+01  15.07975685 1.053945e-03  1.312321    50         30
## 828  1460 -7.716327e+00 -24.61190831 1.127631e-03  1.228241    50         30
## 829  1460  7.664280e+00  14.63099310 7.289996e-04  1.196858    50         30
## 830  1460  3.460204e+01  -3.97106910 5.593832e-04  1.176920    50         30
## 831  1460  5.928051e+00   1.42888417 1.072174e-03  1.164909    50         30
## 832  1460  3.459170e+01  -3.97107326 6.793280e-04  1.155632    50         30
## 833  1460  1.882464e+01  -0.49220703 3.584957e-04  1.148755    50         30
## 834  1460  3.879620e+00   2.79670058 5.961071e-04  1.143827    50         30
## 835  1460 -7.396141e+00   0.84497981 1.709262e-03  1.139748    50         30
## 836  1460 -8.321456e+00   4.37620874 7.426639e-04  1.135437    50         30
## 837  1460 -9.777520e+00  13.75793237 8.828906e-04  1.131049    50         30
## 838  1460  4.343245e+01   1.82054679 1.954341e-04  1.127886    50         30
## 839  1460 -1.496040e+01 -12.05774143 1.607872e-03  1.125117    50         30
## 840  1460 -1.958996e+01   2.40639111 1.880676e-03  1.123256    50         30
## 841  1460 -2.818267e+01   9.10943816 5.145517e-04 73.771148    50         30
## 842  1460 -2.874630e+01  10.82583611 1.143370e-03 71.150987    50         30
## 843  1460  6.472080e-01   2.98572861 9.148531e-04 71.034367    50         30
## 844  1460 -2.455601e+01 -12.20342016 2.721760e-04 71.035404    50         30
## 845  1460 -2.720029e+01  10.12167635 1.430057e-04 71.037731    50         30
## 846  1460 -7.897835e-01  -7.22811114 1.141861e-03  1.555216    50         30
## 847  1460  1.733338e+01  -2.16842825 4.810059e-04  1.312321    50         30
## 848  1460 -6.956219e+00   5.38203684 4.940974e-04  1.228241    50         30
## 849  1460 -3.052905e+01  -0.46806334 7.118081e-04  1.196858    50         30
## 850  1460  1.603989e+01  10.90769594 1.521286e-03  1.176920    50         30
## 851  1460  1.865359e+01 -19.25549844 3.318715e-04  1.164909    50         30
## 852  1460  1.355331e+01 -24.40585094 3.378667e-04  1.155632    50         30
## 853  1460 -2.774107e+01  -2.57780187 7.653433e-04  1.148755    50         30
## 854  1460 -4.599633e+00  -0.97290983 8.194796e-04  1.143827    50         30
## 855  1460  4.918089e+00   4.42666956 8.270815e-04  1.139748    50         30
## 856  1460 -8.670341e+00   9.71740608 4.426899e-04  1.135437    50         30
## 857  1460 -1.838698e+00   5.00713322 6.132729e-04  1.131049    50         30
## 858  1460  2.734701e+01   9.27614069 8.051543e-04  1.127886    50         30
## 859  1460 -1.061908e+01  -5.75299418 1.289396e-03  1.125117    50         30
## 860  1460  1.635145e+01  13.68853378 7.827747e-04  1.123256    50         30
## 861  1460 -2.181758e+01   6.45902431 8.850175e-04 73.771148    50         30
## 862  1460 -2.407966e+00   0.27798965 7.756711e-04 71.150987    50         30
## 863  1460 -1.237136e+01  -3.58474399 1.191341e-03 71.034367    50         30
## 864  1460 -7.908847e+00   3.41937365 1.108086e-03 71.035404    50         30
## 865  1460 -5.288801e+00 -23.41238988 6.897561e-04 71.037731    50         30
## 866  1460 -7.848009e+00   1.69095824 8.222223e-04  1.555216    50         30
## 867  1460 -2.521124e+00 -27.55759962 3.792179e-04  1.312321    50         30
## 868  1460 -5.302855e+00  18.93204904 7.287320e-04  1.228241    50         30
## 869  1460 -1.823561e+01  29.83942695 3.466033e-04  1.196858    50         30
## 870  1460  1.879473e+01  -1.40241438 1.185860e-03  1.176920    50         30
## 871  1460 -1.495464e+01   5.12110164 1.947584e-03  1.164909    50         30
## 872  1460  2.072226e+01   0.80593961 7.369730e-04  1.155632    50         30
## 873  1460 -1.851630e+01  11.49243712 4.521833e-04  1.148755    50         30
## 874  1460 -3.742910e+01   6.13454960 4.658005e-04  1.143827    50         30
## 875  1460 -2.304248e+01   5.04488117 1.526219e-03  1.139748    50         30
## 876  1460  2.448369e+01   2.05752209 7.602905e-04  1.135437    50         30
## 877  1460 -8.382555e+00   5.34261569 3.729694e-04  1.131049    50         30
## 878  1460  2.012176e+01  -5.66732859 3.846487e-04  1.127886    50         30
## 879  1460 -5.770101e+00  18.72527054 1.127221e-03  1.125117    50         30
## 880  1460 -7.413071e+00  10.02193220 9.502276e-04  1.123256    50         30
## 881  1460 -1.262589e+01 -12.01881110 1.093420e-03 73.771148    50         30
## 882  1460  2.225349e+01  -0.48587598 7.017228e-04 71.150987    50         30
## 883  1460  2.901456e+01   8.23230254 5.468146e-04 71.034367    50         30
## 884  1460 -3.723967e+01   5.19944078 2.715811e-04 71.035404    50         30
## 885  1460 -9.780668e+00   0.99038400 1.511591e-03 71.037731    50         30
## 886  1460  1.161320e+01 -21.12774451 2.040082e-04  1.555216    50         30
## 887  1460 -2.427067e+01 -13.40257762 1.775299e-04  1.312321    50         30
## 888  1460 -2.905965e+01  -1.32287300 5.154863e-04  1.228241    50         30
## 889  1460 -5.947290e+00 -12.97735564 1.418002e-03  1.196858    50         30
## 890  1460  7.074888e+00 -10.11819565 4.267903e-04  1.176920    50         30
## 891  1460 -7.665835e+00  21.17480941 7.582184e-04  1.164909    50         30
## 892  1460  1.018901e+01   8.02446504 1.185549e-03  1.155632    50         30
## 893  1460  2.762826e+00  16.85885197 5.948341e-04  1.148755    50         30
## 894  1460 -5.106265e+00  -4.79572723 1.562450e-03  1.143827    50         30
## 895  1460 -2.167032e+01  31.10299047 2.518628e-04  1.139748    50         30
## 896  1460  1.328718e+01  11.80285313 7.238856e-04  1.135437    50         30
## 897  1460 -1.498444e+01   9.85801870 1.423634e-03  1.131049    50         30
## 898  1460 -2.161810e+01  31.71941595 2.133146e-04  1.127886    50         30
## 899  1460  4.324324e+00 -22.16813291 2.984918e-04  1.125117    50         30
## 900  1460 -1.008016e+01   3.77654627 1.259998e-03  1.123256    50         30
## 901  1460 -1.066760e+01   5.85222374 1.338883e-03 73.771148    50         30
## 902  1460 -7.251384e+00   7.77469717 8.171737e-04 71.150987    50         30
## 903  1460  2.927122e+01   5.13136770 8.754676e-04 71.034367    50         30
## 904  1460 -2.938389e+00 -28.64184087 3.251980e-04 71.035404    50         30
## 905  1460 -9.661420e+00   1.00883189 1.493846e-03 71.037731    50         30
## 906  1460 -2.588583e+00   3.20957689 1.344890e-03  1.555216    50         30
## 907  1460 -3.527648e-01 -22.55932353 1.201499e-03  1.312321    50         30
## 908  1460 -2.642811e+01  -2.79570475 1.265630e-03  1.228241    50         30
## 909  1460 -5.715670e-01   7.64189375 3.913766e-04  1.196858    50         30
## 910  1460  2.488500e+01   5.78853402 4.949353e-04  1.176920    50         30
## 911  1460 -2.629791e+01 -13.01236266 4.473070e-04  1.164909    50         30
## 912  1460 -8.832117e+00   3.58957797 7.231230e-04  1.155632    50         30
## 913  1460 -7.382108e+00  19.94059649 6.967006e-04  1.148755    50         30
## 914  1460 -2.639376e+01 -11.99151991 6.168830e-04  1.143827    50         30
## 915  1460  3.741110e+01  -2.55474759 2.896978e-04  1.139748    50         30
## 916  1460  4.216568e+01   0.81457089 1.649476e-04  1.135437    50         30
## 917  1460 -1.832633e+01  16.59674457 7.137848e-04  1.131049    50         30
## 918  1460 -1.189144e+01   4.23733884 4.232675e-04  1.127886    50         30
## 919  1460  1.459040e+01   2.28958290 8.878879e-04  1.125117    50         30
## 920  1460  3.726775e+00   5.92879045 1.393006e-03  1.123256    50         30
## 921  1460  9.638114e+00  17.32767660 1.495686e-03 73.771148    50         30
## 922  1460 -1.641162e+01  21.19277620 1.532595e-03 71.150987    50         30
## 923  1460 -7.034183e+00 -22.04224508 9.114816e-04 71.034367    50         30
## 924  1460  1.404905e+01 -18.92013700 1.788638e-03 71.035404    50         30
## 925  1460 -1.538059e+00 -10.00375421 8.535428e-04 71.037731    50         30
## 926  1460  3.359925e+00  18.35333014 5.426393e-04  1.555216    50         30
## 927  1460  2.618259e+01  -2.08479908 1.104932e-03  1.312321    50         30
## 928  1460  1.373536e+01  11.05747207 1.098890e-03  1.228241    50         30
## 929  1460 -7.343864e+00 -26.10971586 6.050349e-04  1.196858    50         30
## 930  1460  2.405582e+01   9.56053316 8.451054e-04  1.176920    50         30
## 931  1460 -7.558511e+00 -24.60629073 1.051999e-03  1.164909    50         30
## 932  1460  2.678020e+00  19.68099588 9.797034e-04  1.155632    50         30
## 933  1460 -1.410178e+00 -25.66540734 2.417150e-04  1.148755    50         30
## 934  1460 -5.727191e+00 -26.97408589 1.138565e-03  1.143827    50         30
## 935  1460 -7.255126e+00 -17.84143556 6.009890e-04  1.139748    50         30
## 936  1460 -2.056951e+01  13.79547416 2.025919e-04  1.135437    50         30
## 937  1460 -4.813568e+00 -19.23097887 1.477363e-03  1.131049    50         30
## 938  1460  2.145533e+01   2.24465034 5.470939e-04  1.127886    50         30
## 939  1460  3.123538e+01   2.61884139 7.768049e-04  1.125117    50         30
## 940  1460 -2.706266e+01   8.55841306 2.185743e-04  1.123256    50         30
## 941  1460 -2.374342e+01 -13.11667454 5.582116e-04 73.771148    50         30
## 942  1460  8.124232e+00 -11.02768175 4.871321e-04 71.150987    50         30
## 943  1460 -2.136237e+01 -14.23266214 8.466606e-04 71.034367    50         30
## 944  1460 -2.450247e+01 -12.61376889 4.212107e-04 71.035404    50         30
## 945  1460  5.718875e+00  13.92957504 6.286667e-04 71.037731    50         30
## 946  1460 -3.793411e+01   6.94319465 3.391381e-04  1.555216    50         30
## 947  1460 -1.730079e-01   2.51112376 8.394412e-04  1.312321    50         30
## 948  1460  4.990729e-01 -19.45185003 3.134796e-04  1.228241    50         30
## 949  1460  2.573341e+01   0.23175510 1.056345e-03  1.196858    50         30
## 950  1460 -6.683567e+00   8.84251118 9.470681e-04  1.176920    50         30
## 951  1460 -1.836154e-01  10.05961913 6.305012e-04  1.164909    50         30
## 952  1460 -6.353323e+00   5.07722391 1.482111e-03  1.155632    50         30
## 953  1460  1.993069e+00  16.55959172 7.695409e-04  1.148755    50         30
## 954  1460  5.445397e+00  22.52539411 5.444666e-04  1.143827    50         30
## 955  1460  6.391592e+00  18.55317332 2.655221e-04  1.139748    50         30
## 956  1460 -2.628905e+01 -12.36518772 4.838217e-04  1.135437    50         30
## 957  1460  4.126466e+01   2.99622020 3.887690e-04  1.131049    50         30
## 958  1460 -1.120897e+01   4.90180385 1.252633e-03  1.127886    50         30
## 959  1460 -5.269110e+00 -19.20754897 1.102381e-03  1.125117    50         30
## 960  1460  3.791865e+01  -1.48672125 1.798283e-04  1.123256    50         30
## 961  1460 -9.589550e+00   8.77370572 5.121740e-04 73.771148    50         30
## 962  1460  1.579365e+01   8.85317676 8.090588e-04 71.150987    50         30
## 963  1460  4.049732e+01   2.93123821 4.819172e-04 71.034367    50         30
## 964  1460 -8.708506e+00 -26.98347209 3.462337e-04 71.035404    50         30
## 965  1460  1.907061e+01   0.44338010 3.483558e-04 71.037731    50         30
## 966  1460  2.998110e+01   5.40395623 4.792935e-04  1.555216    50         30
## 967  1460 -2.172626e+01   2.87436222 4.485017e-04  1.312321    50         30
## 968  1460 -7.341139e+00   0.97400422 1.060335e-03  1.228241    50         30
## 969  1460 -1.826862e+01   6.67485588 1.059746e-03  1.196858    50         30
## 970  1460 -2.230239e+00  -2.86042153 5.952667e-04  1.176920    50         30
## 971  1460 -2.352155e+01   1.98654884 6.260106e-04  1.164909    50         30
## 972  1460  3.818989e+01  -2.44527587 6.441393e-04  1.155632    50         30
## 973  1460  3.104352e+00  -6.40610498 1.299169e-03  1.148755    50         30
## 974  1460 -3.755354e+00 -24.04735352 2.896583e-04  1.143827    50         30
## 975  1460 -2.195958e+01   7.15546895 6.071963e-04  1.139748    50         30
## 976  1460  3.612938e+01  -1.09290900 6.792112e-04  1.135437    50         30
## 977  1460 -1.690144e+01   7.42284011 4.395690e-04  1.131049    50         30
## 978  1460  1.443646e+01 -17.52825775 6.999923e-04  1.127886    50         30
## 979  1460 -1.178708e+01   5.29204716 1.087859e-03  1.125117    50         30
## 980  1460 -7.724412e+00   6.80768194 1.888220e-03  1.123256    50         30
## 981  1460  8.020856e+00   4.96183228 1.535517e-03 73.771148    50         30
## 982  1460  1.968250e+01  -5.12770431 5.464849e-04 71.150987    50         30
## 983  1460  1.471621e+01 -24.47806271 6.803336e-04 71.034367    50         30
## 984  1460  2.783601e+01   1.72962700 4.325823e-04 71.035404    50         30
## 985  1460 -2.158671e+01  31.26907605 2.864610e-04 71.037731    50         30
## 986  1460 -2.607944e+00  -3.44212844 1.391212e-03  1.555216    50         30
## 987  1460 -2.134642e+01   8.13712425 4.106864e-04  1.312321    50         30
## 988  1460  4.557601e+00 -21.80832785 6.219017e-04  1.228241    50         30
## 989  1460  1.417626e+01  11.04893260 1.713319e-03  1.196858    50         30
## 990  1460  3.061973e+01   4.26477921 6.776980e-04  1.176920    50         30
## 991  1460  2.117599e+01  -3.91065150 6.564205e-04  1.164909    50         30
## 992  1460 -2.176293e+01   6.10124669 4.295297e-04  1.155632    50         30
## 993  1460  1.062470e+01   8.16595345 7.895153e-04  1.148755    50         30
## 994  1460  3.045763e+01   4.49522915 5.624527e-04  1.143827    50         30
## 995  1460  3.264151e+00 -20.54928398 7.032715e-04  1.139748    50         30
## 996  1460 -2.601531e+01  -1.18130728 8.891386e-04  1.135437    50         30
## 997  1460 -8.133781e+00   6.13425107 8.209659e-04  1.131049    50         30
## 998  1460 -1.040749e+01  -5.73512771 9.879143e-04  1.127886    50         30
## 999  1460 -2.262029e+01  13.59590148 4.590973e-04  1.125117    50         30
## 1000 1460 -3.564150e+00 -18.75894573 6.930639e-04  1.123256    50         30
## 1001 1460 -1.980448e+01  28.63818226 1.690025e-04 73.771148    50         30
## 1002 1460 -2.068857e+01  14.22379325 6.025474e-04 71.150987    50         30
## 1003 1460 -3.589992e+00 -26.93875057 1.065344e-03 71.034367    50         30
## 1004 1460 -2.487918e+01 -13.22496524 4.383308e-04 71.035404    50         30
## 1005 1460  1.437607e+01 -23.34258497 2.707118e-04 71.037731    50         30
## 1006 1460 -5.167054e+00   1.41679120 6.452862e-04  1.555216    50         30
## 1007 1460  5.871516e+00  14.82983774 7.049077e-04  1.312321    50         30
## 1008 1460  4.186937e+01   4.49670153 4.818595e-04  1.228241    50         30
## 1009 1460  1.047803e+00 -27.42429027 7.510193e-04  1.196858    50         30
## 1010 1460 -3.697289e+01   5.59647443 3.697329e-04  1.176920    50         30
## 1011 1460 -2.673887e+01   8.77739651 4.728464e-04  1.164909    50         30
## 1012 1460 -2.189431e+01  31.05650196 1.440689e-04  1.155632    50         30
## 1013 1460 -2.817575e+01   0.72344540 5.862147e-04  1.148755    50         30
## 1014 1460 -4.323166e+00  11.77740404 1.202479e-03  1.143827    50         30
## 1015 1460 -8.205287e+00  -3.37864833 5.465144e-04  1.139748    50         30
## 1016 1460  2.005548e+01   3.29042530 6.903821e-04  1.135437    50         30
## 1017 1460 -8.193068e-01 -17.65906847 1.365826e-03  1.131049    50         30
## 1018 1460  1.228137e+01 -18.73250335 6.134088e-04  1.127886    50         30
## 1019 1460  2.328508e+01   8.42413411 9.284490e-04  1.125117    50         30
## 1020 1460  1.377834e+01 -23.99715623 4.154421e-04  1.123256    50         30
## 1021 1460 -1.258762e+01 -12.12771134 8.560971e-04 73.771148    50         30
## 1022 1460 -3.462766e+00 -20.50986217 7.139224e-04 71.150987    50         30
## 1023 1460 -2.383539e+01  11.77749299 1.302100e-03 71.034367    50         30
## 1024 1460  1.407295e+01 -23.48333219 7.359243e-04 71.035404    50         30
## 1025 1460 -5.147080e+00 -11.27880136 6.344892e-04 71.037731    50         30
## 1026 1460 -9.972752e-01   8.04493407 1.091412e-03  1.555216    50         30
## 1027 1460  5.657853e+00   1.36390165 5.813470e-04  1.312321    50         30
## 1028 1460  7.001663e-01 -20.84256916 6.321172e-04  1.228241    50         30
## 1029 1460 -1.844255e+01   0.48910147 2.076280e-03  1.196858    50         30
## 1030 1460  4.364912e+01   0.46750954 1.657429e-04  1.176920    50         30
## 1031 1460 -2.853037e+01  -9.38409230 7.204691e-04  1.164909    50         30
## 1032 1460 -3.817476e+01   4.74453533 4.190340e-04  1.155632    50         30
## 1033 1460  1.652645e+01   3.21243803 4.222562e-04  1.148755    50         30
## 1034 1460 -2.818841e+00 -18.02887861 1.521139e-04  1.143827    50         30
## 1035 1460 -1.704991e+01   7.23627672 7.662017e-04  1.139748    50         30
## 1036 1460 -1.971160e+01  28.91558882 1.023423e-04  1.135437    50         30
## 1037 1460  3.022442e+00 -19.63453419 3.085591e-04  1.131049    50         30
## 1038 1460  1.994407e+01  13.09933373 1.441116e-03  1.127886    50         30
## 1039 1460  4.127823e+01   1.63140635 2.201967e-04  1.125117    50         30
## 1040 1460  4.537101e+01   4.35158322 5.252710e-04  1.123256    50         30
## 1041 1460 -1.031867e+00  -8.93196966 1.162782e-03 73.771148    50         30
## 1042 1460  1.007323e+01  15.60718383 8.063991e-04 71.150987    50         30
## 1043 1460  1.254308e+01 -21.64209343 2.546243e-04 71.034367    50         30
## 1044 1460  1.864228e+01  -2.41512881 1.539050e-03 71.035404    50         30
## 1045 1460 -6.999058e+00 -15.11873767 1.378971e-03 71.037731    50         30
## 1046 1460 -1.907912e+01  29.19548138 2.234189e-04  1.555216    50         30
## 1047 1460  2.418016e+01  -6.63498701 1.031961e-03  1.312321    50         30
## 1048 1460  2.140431e+00  17.78827739 9.270836e-04  1.228241    50         30
## 1049 1460 -1.867491e+01  28.87391053 1.816445e-04  1.196858    50         30
## 1050 1460 -1.909584e+01  27.84326050 3.209966e-04  1.176920    50         30
## 1051 1460 -6.142740e+00 -22.91401802 6.922881e-04  1.164909    50         30
## 1052 1460 -6.155017e+00 -22.77491376 3.536190e-04  1.155632    50         30
## 1053 1460  1.026026e+01  15.48380483 1.216494e-03  1.148755    50         30
## 1054 1460 -9.060549e+00  -0.29086434 4.367892e-04  1.143827    50         30
## 1055 1460  2.051690e+01  -2.79043242 3.109383e-04  1.139748    50         30
## 1056 1460  5.847102e+00  14.89364697 9.630960e-04  1.135437    50         30
## 1057 1460  1.208611e+01 -22.07207184 7.110301e-04  1.131049    50         30
## 1058 1460  2.214374e+01   4.54869411 4.139658e-04  1.127886    50         30
## 1059 1460  2.112798e+01  -6.16285948 4.727771e-04  1.125117    50         30
## 1060 1460  8.174872e+00   7.54460569 1.068494e-03  1.123256    50         30
## 1061 1460  1.478651e+01 -19.88307347 3.548927e-04 73.771148    50         30
## 1062 1460 -8.154381e+00  18.23042425 3.734978e-04 71.150987    50         30
## 1063 1460 -2.731527e+01 -11.18626815 7.146663e-04 71.034367    50         30
## 1064 1460 -1.419262e+01   9.80009944 5.980559e-04 71.035404    50         30
## 1065 1460  1.372570e+00   3.45849508 6.827556e-04 71.037731    50         30
## 1066 1460  1.768549e+01   1.96237138 6.175204e-04  1.555216    50         30
## 1067 1460  2.751481e+01   9.26864289 6.591100e-04  1.312321    50         30
## 1068 1460  8.572639e+00   8.98571465 9.291747e-04  1.228241    50         30
## 1069 1460  1.944673e+01   9.11775877 1.178114e-03  1.196858    50         30
## 1070 1460  2.597496e+00  16.43130068 1.371747e-03  1.176920    50         30
## 1071 1460  4.243406e+00   0.65664540 8.397438e-04  1.164909    50         30
## 1072 1460 -2.089183e+01   2.31920578 1.619287e-03  1.155632    50         30
## 1073 1460 -2.678710e+01   3.58507481 5.303087e-04  1.148755    50         30
## 1074 1460  1.042911e+01  11.06109095 1.259943e-03  1.143827    50         30
## 1075 1460 -6.361345e+00 -25.11208264 4.757638e-04  1.139748    50         30
## 1076 1460 -2.158568e+01   3.54721098 2.881532e-03  1.135437    50         30
## 1077 1460  4.329044e+00  22.44539961 8.164504e-04  1.131049    50         30
## 1078 1460 -1.441909e-01   7.98345234 2.253319e-04  1.127886    50         30
## 1079 1460  1.819425e+01 -19.44504838 2.876382e-04  1.125117    50         30
## 1080 1460 -1.383772e+01 -10.02153423 1.413055e-03  1.123256    50         30
## 1081 1460  5.831098e+00 -11.00920940 5.112421e-04 73.771148    50         30
## 1082 1460 -1.144198e+01  12.96223503 9.371284e-04 71.150987    50         30
## 1083 1460 -4.435156e+00 -27.77659229 1.146039e-03 71.034367    50         30
## 1084 1460 -4.813117e+00  19.94900560 5.939228e-04 71.035404    50         30
## 1085 1460  1.994919e+01   7.54940443 5.303659e-04 71.037731    50         30
## 1086 1460 -2.210414e-01  -0.58001709 2.042410e-03  1.555216    50         30
## 1087 1460  3.900609e+01   4.99569252 1.181484e-03  1.312321    50         30
## 1088 1460  2.904169e+01   1.47959201 5.704814e-04  1.228241    50         30
## 1089 1460  3.894373e+01  -3.88794126 5.276992e-04  1.196858    50         30
## 1090 1460  1.431649e+01 -17.52117446 6.281480e-04  1.176920    50         30
## 1091 1460 -2.174912e+01  30.13354231 1.417364e-04  1.164909    50         30
## 1092 1460  3.824233e+01  -1.29794466 4.435356e-04  1.155632    50         30
## 1093 1460 -2.591579e+01   8.35332532 7.270456e-04  1.148755    50         30
## 1094 1460 -7.560737e+00  11.64821996 5.407934e-04  1.143827    50         30
## 1095 1460  3.255168e+00   6.13436882 4.724381e-04  1.139748    50         30
## 1096 1460 -7.731910e+00 -24.01352774 7.567033e-04  1.135437    50         30
## 1097 1460 -2.839410e+01  12.13425109 6.324476e-04  1.131049    50         30
## 1098 1460  1.556701e+01 -20.82423143 9.944073e-04  1.127886    50         30
## 1099 1460 -1.864419e+01   3.46990186 1.003315e-03  1.125117    50         30
## 1100 1460 -9.750588e+00  -6.55959103 1.575634e-03  1.123256    50         30
## 1101 1460 -1.657438e+01  16.63467097 9.757795e-04 73.771148    50         30
## 1102 1460 -2.286390e+00   8.11857246 1.262305e-03 71.150987    50         30
## 1103 1460 -1.028093e+01   9.51520354 1.370087e-03 71.034367    50         30
## 1104 1460  7.224637e-01  17.99542854 7.833013e-04 71.035404    50         30
## 1105 1460  4.207185e+01   0.89357968 2.464858e-04 71.037731    50         30
## 1106 1460  1.927078e+01  -5.69171672 5.116360e-04  1.555216    50         30
## 1107 1460 -6.319127e+00 -17.44892980 7.646354e-04  1.312321    50         30
## 1108 1460  3.059302e+01   3.00658068 2.990408e-04  1.228241    50         30
## 1109 1460  2.860724e+01   7.93169654 7.724965e-04  1.196858    50         30
## 1110 1460  2.342625e+00 -20.92381104 6.745184e-04  1.176920    50         30
## 1111 1460  1.942486e+01   6.74230739 6.666168e-04  1.164909    50         30
## 1112 1460  1.375941e+01  11.57648627 1.214632e-03  1.155632    50         30
## 1113 1460 -1.017098e+01   6.91305971 6.271881e-04  1.148755    50         30
## 1114 1460 -9.030985e+00   8.57849474 1.628434e-03  1.143827    50         30
## 1115 1460 -1.186297e+01   7.06521630 7.451035e-04  1.139748    50         30
## 1116 1460  7.020349e-01 -22.09189625 2.419479e-04  1.135437    50         30
## 1117 1460  2.087913e+01   5.26408781 3.467293e-04  1.131049    50         30
## 1118 1460 -7.699209e+00   8.92649953 8.856490e-04  1.127886    50         30
## 1119 1460  7.131393e+00  17.64318281 1.234086e-03  1.125117    50         30
## 1120 1460 -1.365253e+01  12.87736692 1.675510e-03  1.123256    50         30
## 1121 1460 -2.177901e+01  12.46767044 1.145040e-03 73.771148    50         30
## 1122 1460 -4.323909e+00 -25.93162286 7.241208e-04 71.150987    50         30
## 1123 1460 -1.488771e+01   2.33531476 4.678111e-04 71.034367    50         30
## 1124 1460  1.902285e+00  14.94254567 6.426207e-04 71.035404    50         30
## 1125 1460  2.323238e+01   8.48104911 1.391401e-03 71.037731    50         30
## 1126 1460 -1.525815e+01   4.41172360 9.412034e-04  1.555216    50         30
## 1127 1460  1.420263e+01 -23.79490437 1.792364e-04  1.312321    50         30
## 1128 1460 -6.784427e+00 -17.79898311 1.000777e-03  1.228241    50         30
## 1129 1460  2.790675e+01   6.10443510 6.654976e-04  1.196858    50         30
## 1130 1460  5.578832e-04  -4.11400103 1.264280e-03  1.176920    50         30
## 1131 1460 -2.311567e+01  -1.04893578 7.008254e-04  1.164909    50         30
## 1132 1460 -1.446506e+01  -9.81021520 1.316617e-03  1.155632    50         30
## 1133 1460 -2.472974e+01   2.15184306 5.626217e-04  1.148755    50         30
## 1134 1460  2.110838e+01   2.01568581 6.882406e-04  1.143827    50         30
## 1135 1460  2.752842e+01   7.72394426 6.590629e-04  1.139748    50         30
## 1136 1460 -1.625696e+01  10.31502777 1.470908e-03  1.135437    50         30
## 1137 1460 -2.431237e+01   9.01241964 2.325498e-03  1.131049    50         30
## 1138 1460 -2.671382e+01  14.03859705 7.014493e-04  1.127886    50         30
## 1139 1460 -2.908112e+00 -14.50276719 9.470780e-04  1.125117    50         30
## 1140 1460 -2.362709e+01  -3.71723207 1.711662e-03  1.123256    50         30
## 1141 1460 -1.006735e+01   6.59472056 3.169763e-04 73.771148    50         30
## 1142 1460  1.577277e+01   8.95402236 5.938933e-04 71.150987    50         30
## 1143 1460  2.326193e+01  -6.30793676 4.229547e-04 71.034367    50         30
## 1144 1460 -1.309979e+01   2.57857678 1.286458e-03 71.035404    50         30
## 1145 1460 -1.838513e+01   2.67581196 8.221708e-04 71.037731    50         30
## 1146 1460 -2.455448e+01   4.69107882 1.460148e-03  1.555216    50         30
## 1147 1460 -1.732819e+00 -15.43779647 1.165786e-03  1.312321    50         30
## 1148 1460 -2.136864e+01   3.06793655 1.482529e-03  1.228241    50         30
## 1149 1460 -2.541797e+01  11.08488888 8.971552e-04  1.196858    50         30
## 1150 1460 -2.861912e+01   3.94421667 1.545307e-03  1.176920    50         30
## 1151 1460 -2.111498e+01  12.94200347 6.416376e-04  1.164909    50         30
## 1152 1460  6.882393e+00   2.04552578 1.012599e-03  1.155632    50         30
## 1153 1460 -2.335847e+00  12.05244588 1.497803e-03  1.148755    50         30
## 1154 1460 -1.646850e+01  12.65731182 9.387315e-04  1.143827    50         30
## 1155 1460  1.668047e+01  14.58396039 8.523476e-04  1.139748    50         30
## 1156 1460  5.777439e+00  -1.61421878 8.586945e-04  1.135437    50         30
## 1157 1460  5.705424e+00 -10.96830026 4.983862e-04  1.131049    50         30
## 1158 1460  1.248023e+01 -21.54590171 6.122136e-04  1.127886    50         30
## 1159 1460 -2.927891e+00 -25.17525752 4.102469e-04  1.125117    50         30
## 1160 1460  1.377661e+01  11.45552110 8.218717e-04  1.123256    50         30
## 1161 1460  4.075486e+01   2.99703147 5.425477e-04 73.771148    50         30
## 1162 1460  6.696109e+00 -11.10798818 4.174358e-04 71.150987    50         30
## 1163 1460 -1.106164e+01   3.63380807 6.734053e-04 71.034367    50         30
## 1164 1460 -9.854036e+00  24.09378540 1.185915e-03 71.035404    50         30
## 1165 1460  1.886538e+00   8.17287176 7.848757e-04 71.037731    50         30
## 1166 1460 -3.207786e+00 -24.89152940 4.362029e-04  1.555216    50         30
## 1167 1460 -6.555557e+00 -27.88720360 6.219395e-04  1.312321    50         30
## 1168 1460  1.857838e+01   6.07486250 4.617541e-04  1.228241    50         30
## 1169 1460 -2.731390e+01  -3.16804614 1.461541e-03  1.196858    50         30
## 1170 1460  2.394386e+01  -7.47059207 5.124862e-04  1.176920    50         30
## 1171 1460  1.111988e+01  -3.22518254 6.495679e-04  1.164909    50         30
## 1172 1460 -5.232046e+00  20.51781611 7.428318e-04  1.155632    50         30
## 1173 1460  3.643738e+01  -2.71119230 5.408639e-04  1.148755    50         30
## 1174 1460 -3.847530e+01   5.30755199 2.723561e-04  1.143827    50         30
## 1175 1460 -1.324855e+01  18.74955209 2.468791e-03  1.139748    50         30
## 1176 1460  2.215166e+01  -3.98269169 5.667313e-04  1.135437    50         30
## 1177 1460 -6.623236e+00   5.12806702 5.869408e-04  1.131049    50         30
## 1178 1460 -2.853650e+01  13.76604497 6.920433e-04  1.127886    50         30
## 1179 1460 -2.645943e+01  10.46297446 6.947023e-04  1.125117    50         30
## 1180 1460 -2.011332e+01  28.90342472 2.898501e-05  1.123256    50         30
## 1181 1460  1.481600e+01   5.36193596 7.395257e-04 73.771148    50         30
## 1182 1460  6.736955e+00 -12.21303489 2.332707e-04 71.150987    50         30
## 1183 1460  1.154234e+01  -3.55128410 5.944638e-04 71.034367    50         30
## 1184 1460 -1.147857e+01   8.58264895 8.274665e-04 71.035404    50         30
## 1185 1460  6.746459e+00   1.43837173 2.765337e-04 71.037731    50         30
## 1186 1460 -2.837433e+01   7.51539665 1.158424e-03  1.555216    50         30
## 1187 1460 -2.659295e+01 -11.58906054 3.174480e-04  1.312321    50         30
## 1188 1460 -5.874203e+00 -16.65658335 1.412758e-03  1.228241    50         30
## 1189 1460  2.603268e+01   2.66571558 1.444675e-03  1.196858    50         30
## 1190 1460  2.593993e+01   7.03373175 5.563269e-04  1.176920    50         30
## 1191 1460 -1.889696e+00  -5.23128809 5.828768e-04  1.164909    50         30
## 1192 1460  3.951889e+01  -1.88633824 2.472624e-04  1.155632    50         30
## 1193 1460 -2.760298e+01  12.30026092 1.041782e-03  1.148755    50         30
## 1194 1460  2.005789e+01 -21.82105495 6.881331e-04  1.143827    50         30
## 1195 1460  1.040208e+01  11.09688786 8.550760e-04  1.139748    50         30
## 1196 1460  2.657702e+01   5.76044375 9.569298e-04  1.135437    50         30
## 1197 1460  2.867321e+01   6.20854607 2.368792e-04  1.131049    50         30
## 1198 1460 -2.587669e+01  10.24392548 8.321973e-04  1.127886    50         30
## 1199 1460 -7.889795e+00 -25.17995675 6.210642e-04  1.125117    50         30
## 1200 1460 -8.807661e+00  -2.72110931 1.391958e-03  1.123256    50         30
## 1201 1460 -1.442622e+01   3.91066794 1.123287e-03 73.771148    50         30
## 1202 1460  2.538944e+01   4.07563732 4.246981e-04 71.150987    50         30
## 1203 1460 -2.711044e+01  11.83053509 8.216213e-04 71.034367    50         30
## 1204 1460 -4.395245e+00 -27.95915051 3.286065e-04 71.035404    50         30
## 1205 1460 -5.540404e+00  -3.10662396 1.637921e-03 71.037731    50         30
## 1206 1460 -3.437525e+00 -11.57352414 7.628132e-04  1.555216    50         30
## 1207 1460 -1.224924e+01   1.23510876 1.093222e-03  1.312321    50         30
## 1208 1460 -2.228525e+00 -19.07317049 6.595967e-04  1.228241    50         30
## 1209 1460 -1.866669e+00   9.30115801 8.656144e-04  1.196858    50         30
## 1210 1460  9.769608e-01 -20.79071314 1.616656e-04  1.176920    50         30
## 1211 1460  7.496468e+00  25.83443119 1.217891e-03  1.164909    50         30
## 1212 1460  1.623134e+01   1.75041933 8.171104e-04  1.155632    50         30
## 1213 1460 -1.231975e+01   8.16510489 1.190880e-03  1.148755    50         30
## 1214 1460  1.188064e+00  16.44244860 4.235370e-04  1.143827    50         30
## 1215 1460 -3.003149e+00  -3.77376462 1.367820e-03  1.139748    50         30
## 1216 1460 -2.173778e+00   8.07927966 6.805363e-04  1.135437    50         30
## 1217 1460 -2.161580e+01  31.41839393 2.122230e-04  1.131049    50         30
## 1218 1460 -3.391459e+00 -20.17890218 3.500453e-04  1.127886    50         30
## 1219 1460 -2.045769e+01  28.01313571 1.910477e-04  1.125117    50         30
## 1220 1460  4.250691e+01   0.64155535 9.184533e-05  1.123256    50         30
## 1221 1460 -2.813641e+00   6.42023444 5.312029e-04 73.771148    50         30
## 1222 1460 -2.888345e+00   8.67955170 1.085611e-03 71.150987    50         30
## 1223 1460  1.253417e+01  10.17693910 1.535863e-03 71.034367    50         30
## 1224 1460 -9.590047e+00  -3.55697167 5.013378e-04 71.035404    50         30
## 1225 1460  1.891630e+01   5.08433348 5.587539e-04 71.037731    50         30
## 1226 1460  3.226715e+00  17.19553699 1.097474e-03  1.555216    50         30
## 1227 1460  2.545328e+01  -0.44929614 4.711555e-04  1.312321    50         30
## 1228 1460 -7.559439e+00  11.49657433 6.978101e-04  1.228241    50         30
## 1229 1460  1.275424e+01 -15.23083077 6.815360e-04  1.196858    50         30
## 1230 1460 -2.027348e+01  -0.64457492 1.494166e-03  1.176920    50         30
## 1231 1460  7.304213e+00  24.33729174 3.076218e-04  1.164909    50         30
## 1232 1460 -2.298007e+00  -2.93148379 1.209761e-03  1.155632    50         30
## 1233 1460 -2.171329e+01  30.35183687 1.667421e-04  1.148755    50         30
## 1234 1460 -6.631719e+00   0.99936389 5.054517e-04  1.143827    50         30
## 1235 1460 -2.377807e+01   2.17853681 5.650417e-04  1.139748    50         30
## 1236 1460 -2.452523e+01   2.51870359 5.885619e-04  1.135437    50         30
## 1237 1460  3.777672e+01  -2.70981236 3.715396e-04  1.131049    50         30
## 1238 1460  2.798300e+01   6.11889026 9.251118e-05  1.127886    50         30
## 1239 1460 -1.465409e+01 -12.01168423 6.902102e-04  1.125117    50         30
## 1240 1460 -2.195586e+00 -21.73201766 8.814921e-04  1.123256    50         30
## 1241 1460  2.004363e+01   0.37400684 1.079062e-03 73.771148    50         30
## 1242 1460 -4.748583e+00 -24.33522660 2.407952e-04 71.150987    50         30
## 1243 1460 -6.830488e-01 -10.12432917 5.708259e-04 71.034367    50         30
## 1244 1460  4.842665e+00 -20.46118357 8.297578e-04 71.035404    50         30
## 1245 1460 -2.540166e+01   5.14054193 4.846155e-04 71.037731    50         30
## 1246 1460  1.822073e+01  12.62852049 7.134899e-04  1.555216    50         30
## 1247 1460  3.059456e+01   4.26546151 4.838790e-04  1.312321    50         30
## 1248 1460 -3.884728e+00   0.52393439 6.720847e-04  1.228241    50         30
## 1249 1460 -2.652016e+01   7.27578547 7.951229e-04  1.196858    50         30
## 1250 1460 -2.734123e+00   8.74333801 7.943333e-04  1.176920    50         30
## 1251 1460 -7.047101e+00  -7.86275722 1.128152e-03  1.164909    50         30
## 1252 1460  1.268796e+01 -24.54415123 2.434529e-04  1.155632    50         30
## 1253 1460 -6.075204e+00  19.19902284 1.166881e-03  1.148755    50         30
## 1254 1460  1.095615e+01   6.11424815 1.171564e-03  1.143827    50         30
## 1255 1460  2.560167e+01   6.48476602 1.122767e-03  1.139748    50         30
## 1256 1460 -2.748764e+01  -1.86136962 1.131068e-03  1.135437    50         30
## 1257 1460  1.549194e+00 -18.77620954 6.145089e-04  1.131049    50         30
## 1258 1460 -1.714101e+01   7.83338498 2.365001e-04  1.127886    50         30
## 1259 1460  8.807345e+00 -20.01122653 1.837459e-03  1.125117    50         30
## 1260 1460  1.686083e+00   6.78015255 5.891155e-04  1.123256    50         30
## 1261 1460  2.650805e+01   8.79269085 3.557316e-04 73.771148    50         30
## 1262 1460 -1.224665e+01   4.58749803 1.519423e-03 71.150987    50         30
## 1263 1460 -2.301016e+01  -0.58319763 6.173417e-04 71.034367    50         30
## 1264 1460 -2.647977e+01   9.51812568 1.524213e-03 71.035404    50         30
## 1265 1460  1.335539e+01 -20.16209216 5.209157e-04 71.037731    50         30
## 1266 1460  3.804521e+01  -1.11009780 4.450407e-04  1.555216    50         30
## 1267 1460 -2.977194e+01  -9.99048355 4.511929e-04  1.312321    50         30
## 1268 1460 -8.546546e+00 -27.29141790 6.403968e-04  1.228241    50         30
## 1269 1460  1.315322e+01  16.03351545 1.596197e-03  1.196858    50         30
## 1270 1460 -2.079354e+01   1.53972731 2.011339e-03  1.176920    50         30
## 1271 1460  1.350818e+01 -10.08043664 9.514990e-04  1.164909    50         30
## 1272 1460 -1.140663e+01  -4.92229329 7.413112e-04  1.155632    50         30
## 1273 1460 -3.026996e+00   6.12620086 4.651014e-04  1.148755    50         30
## 1274 1460  4.900909e+00  -1.70005341 5.629987e-04  1.143827    50         30
## 1275 1460 -2.792041e+01  10.91173388 2.846806e-04  1.139748    50         30
## 1276 1460 -2.628841e+01 -12.58959628 6.336748e-04  1.135437    50         30
## 1277 1460  8.084532e+00  17.38720636 9.253381e-04  1.131049    50         30
## 1278 1460 -4.437983e+00  -1.00495019 7.486887e-04  1.127886    50         30
## 1279 1460  1.974963e+01   1.18861282 9.401900e-04  1.125117    50         30
## 1280 1460 -2.313806e+01  10.68184663 3.956677e-04  1.123256    50         30
## 1281 1460 -2.553256e+00 -18.28157578 8.377548e-04 73.771148    50         30
## 1282 1460  5.396652e+00  -0.33463111 6.964195e-04 71.150987    50         30
## 1283 1460  3.714374e+00   4.54991388 6.175788e-04 71.034367    50         30
## 1284 1460 -1.621096e+01  21.68983027 1.486470e-03 71.035404    50         30
## 1285 1460 -2.972198e+01   0.19433069 4.773389e-04 71.037731    50         30
## 1286 1460 -2.356292e+01   4.86935222 1.119647e-03  1.555216    50         30
## 1287 1460  1.529338e+00   3.31870083 8.585373e-04  1.312321    50         30
## 1288 1460  5.446334e+00  16.97106812 3.804077e-04  1.228241    50         30
## 1289 1460  1.250634e+01 -19.86023111 7.389092e-04  1.196858    50         30
## 1290 1460  2.749205e+01  -3.63065731 7.034816e-04  1.176920    50         30
## 1291 1460 -4.303314e+00  -0.20610935 5.811313e-04  1.164909    50         30
## 1292 1460  4.207010e+01   1.92191243 1.433816e-04  1.155632    50         30
## 1293 1460 -2.744753e+01 -11.35344998 4.411814e-04  1.148755    50         30
## 1294 1460  1.800078e+01  14.03130550 1.107602e-03  1.143827    50         30
## 1295 1460 -9.902561e+00   7.33933224 1.118413e-03  1.139748    50         30
## 1296 1460 -7.702431e+00  -0.47944687 3.341449e-04  1.135437    50         30
## 1297 1460 -6.533595e+00  -0.69021909 7.261761e-04  1.131049    50         30
## 1298 1460  2.054247e+01 -20.24396203 6.394960e-04  1.127886    50         30
## 1299 1460  1.176144e+01  -3.74954835 4.905038e-04  1.125117    50         30
## 1300 1460 -2.076496e-01   6.33577148 1.114348e-03  1.123256    50         30
## 1301 1460  2.123520e+01   0.38334018 7.094497e-04 73.771148    50         30
## 1302 1460 -2.731292e+01  -2.44252735 5.585333e-04 71.150987    50         30
## 1303 1460  2.052682e+01  -2.84287412 1.983558e-04 71.034367    50         30
## 1304 1460 -4.679950e+00 -26.44682402 5.531966e-04 71.035404    50         30
## 1305 1460  3.891173e+01  -3.89162125 5.901078e-04 71.037731    50         30
## 1306 1460  2.993982e+00 -19.08183295 1.795725e-04  1.555216    50         30
## 1307 1460  1.210126e+01 -24.62262605 6.037417e-04  1.312321    50         30
## 1308 1460 -1.261369e+01 -10.63398444 1.533238e-03  1.228241    50         30
## 1309 1460 -9.074730e-01  10.23020899 6.808699e-04  1.196858    50         30
## 1310 1460 -1.912910e+00 -15.86942742 1.029424e-03  1.176920    50         30
## 1311 1460 -7.686308e+00 -10.85756114 6.716461e-04  1.164909    50         30
## 1312 1460 -2.851621e+00 -18.77196002 2.266495e-04  1.155632    50         30
## 1313 1460  2.270620e+01  -2.53526167 6.592077e-04  1.148755    50         30
## 1314 1460  2.482795e+01  -2.04747028 5.244640e-04  1.143827    50         30
## 1315 1460 -1.191013e+01   8.10524631 1.300564e-03  1.139748    50         30
## 1316 1460  1.042493e+01   7.58144323 1.153833e-03  1.135437    50         30
## 1317 1460 -6.509026e+00 -28.67571521 9.103305e-04  1.131049    50         30
## 1318 1460  1.230147e+01 -25.57257527 7.496107e-04  1.127886    50         30
## 1319 1460 -3.301944e+00 -28.51996835 5.512957e-04  1.125117    50         30
## 1320 1460 -9.316102e+00   2.63327796 6.367968e-04  1.123256    50         30
## 1321 1460  4.951557e+00   4.72043121 5.022200e-04 73.771148    50         30
## 1322 1460 -2.007404e+01  27.99770980 1.867389e-04 71.150987    50         30
## 1323 1460  1.794273e+01   2.25681985 1.035978e-03 71.034367    50         30
## 1324 1460 -1.364476e+01   7.29529943 4.635868e-04 71.035404    50         30
## 1325 1460 -1.937071e+00 -25.39459310 1.798315e-04 71.037731    50         30
## 1326 1460 -2.028989e+01  15.28298993 6.660403e-04  1.555216    50         30
## 1327 1460 -1.602465e+01  14.85328847 2.948999e-04  1.312321    50         30
## 1328 1460  2.140701e+00  15.30602364 7.064330e-04  1.228241    50         30
## 1329 1460 -3.079910e+01  -2.87859875 1.576978e-03  1.196858    50         30
## 1330 1460  2.746870e+01   8.38715131 4.123686e-04  1.176920    50         30
## 1331 1460 -3.193789e+00 -27.99531387 4.237986e-04  1.164909    50         30
## 1332 1460 -1.379448e+00  -1.53323193 1.477692e-03  1.155632    50         30
## 1333 1460 -1.104080e+01   7.85451212 1.067980e-03  1.148755    50         30
## 1334 1460 -2.639026e+01  12.03696150 7.480435e-04  1.143827    50         30
## 1335 1460  4.313784e+01   2.67665727 3.102439e-04  1.139748    50         30
## 1336 1460  5.018972e+00  16.20276766 1.138778e-03  1.135437    50         30
## 1337 1460 -2.502603e+01 -13.33991386 3.055606e-04  1.131049    50         30
## 1338 1460 -1.675406e+01  10.10527106 4.260767e-04  1.127886    50         30
## 1339 1460  1.767987e+01   4.48867884 3.778574e-04  1.125117    50         30
## 1340 1460 -1.197186e+01   6.55698869 1.325789e-04  1.123256    50         30
## 1341 1460 -1.446913e+01   4.22400006 1.849201e-03 73.771148    50         30
## 1342 1460 -1.249353e+01 -11.01174687 1.456894e-03 71.150987    50         30
## 1343 1460  2.729598e+01  -1.16597113 1.898964e-03 71.034367    50         30
## 1344 1460 -2.356637e+01   5.37631394 7.713671e-04 71.035404    50         30
## 1345 1460  3.047090e+01   5.97558296 4.666967e-04 71.037731    50         30
## 1346 1460 -2.190837e+01  13.97418251 8.189207e-04  1.555216    50         30
## 1347 1460  6.762327e+00 -10.50273444 1.322443e-04  1.312321    50         30
## 1348 1460  4.318283e-01 -22.51522626 2.532287e-04  1.228241    50         30
## 1349 1460 -3.656722e+00 -16.62937037 1.278241e-03  1.196858    50         30
## 1350 1460 -3.702042e+01   5.17766375 2.694002e-04  1.176920    50         30
## 1351 1460 -2.584654e+01 -14.72906381 5.283051e-04  1.164909    50         30
## 1352 1460  1.701152e+01  13.87875352 1.497029e-03  1.155632    50         30
## 1353 1460 -1.961894e+01   9.07431859 9.310188e-04  1.148755    50         30
## 1354 1460  1.880640e+01  -5.27069659 4.004588e-04  1.143827    50         30
## 1355 1460  1.942626e+01   2.44647447 8.521893e-04  1.139748    50         30
## 1356 1460  1.515471e+01  11.29349565 5.487230e-04  1.135437    50         30
## 1357 1460 -9.867016e+00   0.77479541 9.631889e-04  1.131049    50         30
## 1358 1460 -6.964562e+00   8.84894628 9.500521e-04  1.127886    50         30
## 1359 1460  3.764908e+01  -0.34270177 4.035667e-04  1.125117    50         30
## 1360 1460  1.989695e+00 -19.84011817 5.314296e-04  1.123256    50         30
## 1361 1460 -2.919856e+01   9.65331295 3.336737e-04 73.771148    50         30
## 1362 1460  3.187539e-01 -17.76952879 6.637997e-04 71.150987    50         30
## 1363 1460 -2.174909e+01  -1.02780931 8.458363e-04 71.034367    50         30
## 1364 1460  3.013531e+01   6.10894286 4.053416e-04 71.035404    50         30
## 1365 1460  3.459583e+01  -3.96961758 6.101300e-04 71.037731    50         30
## 1366 1460  2.070526e+01   2.67537288 3.730291e-04  1.555216    50         30
## 1367 1460  2.000883e+01   0.32907817 8.719287e-04  1.312321    50         30
## 1368 1460  4.067834e+01   5.00298494 1.340106e-03  1.228241    50         30
## 1369 1460  1.824514e+01 -18.74733841 5.184798e-04  1.196858    50         30
## 1370 1460 -4.590964e+00 -13.73293333 8.141778e-04  1.176920    50         30
## 1371 1460 -2.399639e+01   9.66807337 4.438865e-04  1.164909    50         30
## 1372 1460  4.998440e+00  -1.82405653 1.209042e-03  1.155632    50         30
## 1373 1460  1.751266e+01   4.57877052 3.443515e-04  1.148755    50         30
## 1374 1460  2.916348e+00 -21.91188529 2.690864e-04  1.143827    50         30
## 1375 1460  2.906671e+01   1.57611099 7.561695e-04  1.139748    50         30
## 1376 1460 -2.366398e+00 -27.64143362 4.422657e-04  1.135437    50         30
## 1377 1460 -1.542553e+01  10.21345837 7.706226e-04  1.131049    50         30
## 1378 1460 -1.866683e+01  -1.05064069 1.516564e-03  1.127886    50         30
## 1379 1460  4.310220e+01   1.35819238 1.725718e-04  1.125117    50         30
## 1380 1460  2.622680e+01   6.10666584 3.817043e-04  1.123256    50         30
## 1381 1460 -1.895693e+01  15.72106196 7.224166e-04 73.771148    50         30
## 1382 1460 -7.306908e+00  -7.54582628 8.661589e-04 71.150987    50         30
## 1383 1460 -2.696610e+01   9.97051628 1.283917e-04 71.034367    50         30
## 1384 1460 -2.598000e+01  15.73877384 1.166908e-03 71.035404    50         30
## 1385 1460 -1.878012e+01   3.19652685 1.779332e-03 71.037731    50         30
## 1386 1460 -1.861003e+01   5.42054716 8.674972e-04  1.555216    50         30
## 1387 1460  1.135432e+01  -3.12270130 2.958409e-04  1.312321    50         30
## 1388 1460 -1.789877e+01  -1.58739302 9.518334e-04  1.228241    50         30
## 1389 1460  3.223137e+00 -18.76080570 1.670713e-04  1.196858    50         30
## 1390 1460 -2.826381e+01   3.99850850 1.621857e-03  1.176920    50         30
## 1391 1460 -1.942626e+00 -19.58142467 6.960169e-04  1.164909    50         30
## 1392 1460 -2.508929e+01 -12.95259306 3.634438e-04  1.155632    50         30
## 1393 1460 -3.217513e+00  -3.99328407 8.343260e-04  1.148755    50         30
## 1394 1460 -2.910464e+01  -9.66275390 7.397813e-04  1.143827    50         30
## 1395 1460  1.082041e+01 -20.99354492 6.115731e-04  1.139748    50         30
## 1396 1460  2.584270e+01  -1.61483855 6.766643e-04  1.135437    50         30
## 1397 1460  3.090891e+00   8.95257883 7.130339e-04  1.131049    50         30
## 1398 1460 -2.819301e+01  11.88027754 4.380803e-04  1.127886    50         30
## 1399 1460 -1.750433e+01   0.92893274 1.026517e-03  1.125117    50         30
## 1400 1460 -2.295668e+01   4.02285008 1.137997e-03  1.123256    50         30
## 1401 1460 -2.550102e+01  10.97773251 1.289437e-03 73.771148    50         30
## 1402 1460  1.906586e+01   5.92726893 6.251599e-04 71.150987    50         30
## 1403 1460 -6.030812e+00 -24.70304990 5.400615e-04 71.034367    50         30
## 1404 1460 -1.038455e+00 -19.29325654 9.850615e-05 71.035404    50         30
## 1405 1460 -2.386656e+01  11.36117545 8.398040e-05 71.037731    50         30
## 1406 1460  9.230135e+00 -17.38942026 5.442093e-04  1.555216    50         30
## 1407 1460 -9.327454e-01  -0.14965968 1.155527e-03  1.312321    50         30
## 1408 1460 -8.854525e+00   6.70130812 8.467396e-04  1.228241    50         30
## 1409 1460 -2.899469e+01  -0.85822727 4.657984e-04  1.196858    50         30
## 1410 1460  2.268907e+01   9.64053484 9.739213e-04  1.176920    50         30
## 1411 1460  2.006537e+01   2.54681089 9.351594e-04  1.164909    50         30
## 1412 1460 -2.078524e+01   3.16538571 6.392506e-04  1.155632    50         30
## 1413 1460 -2.179679e+01  30.22033195 1.942632e-04  1.148755    50         30
## 1414 1460  1.277761e+00 -18.70173162 3.241941e-04  1.143827    50         30
## 1415 1460 -2.830772e+01  -0.16233698 1.168225e-03  1.139748    50         30
## 1416 1460  1.580743e+01 -23.78245187 6.510689e-04  1.135437    50         30
## 1417 1460 -2.889879e+01 -10.13346604 7.792210e-04  1.131049    50         30
## 1418 1460  2.096871e+01  -4.48546571 3.990922e-04  1.127886    50         30
## 1419 1460 -2.770916e+00   8.40843064 1.196091e-03  1.125117    50         30
## 1420 1460 -6.531665e+00  -9.51499605 1.223070e-03  1.123256    50         30
## 1421 1460  1.716970e+01  13.71371564 5.184436e-04 73.771148    50         30
## 1422 1460  4.742453e+00  -4.95434696 9.666950e-04 71.150987    50         30
## 1423 1460  1.847358e+01 -19.11311497 3.802887e-04 71.034367    50         30
## 1424 1460  1.124661e+01  -3.27266249 5.747808e-04 71.035404    50         30
## 1425 1460  4.712412e-01   8.16717441 9.501021e-04 71.037731    50         30
## 1426 1460 -1.183659e+01  -1.05178630 4.994076e-04  1.555216    50         30
## 1427 1460  1.975865e+01  -2.33915744 1.054720e-03  1.312321    50         30
## 1428 1460 -2.033919e+01   1.81794261 1.478647e-03  1.228241    50         30
## 1429 1460 -1.087534e+01  11.77413812 6.370088e-04  1.196858    50         30
## 1430 1460 -8.826696e+00  -8.80315052 9.085545e-04  1.176920    50         30
## 1431 1460  2.810761e+01   6.71918546 1.235895e-05  1.164909    50         30
## 1432 1460  3.868118e+00  -5.37952424 6.288693e-04  1.155632    50         30
## 1433 1460 -1.661957e+01   5.17810626 1.096805e-03  1.148755    50         30
## 1434 1460  2.535641e+01   9.06612780 4.559541e-04  1.143827    50         30
## 1435 1460 -4.935467e+00  -4.11613447 1.539246e-03  1.139748    50         30
## 1436 1460 -6.494504e+00  10.44968801 6.199137e-04  1.135437    50         30
## 1437 1460 -1.050849e+01   5.68464705 1.963096e-03  1.131049    50         30
## 1438 1460  7.103009e+00 -11.60549147 2.151471e-04  1.127886    50         30
## 1439 1460 -9.786456e+00  13.71638794 6.997396e-04  1.125117    50         30
## 1440 1460  1.337203e+01  12.78608475 9.893252e-04  1.123256    50         30
## 1441 1460 -3.824934e+01   5.20511904 6.129777e-04 73.771148    50         30
## 1442 1460  1.791757e+01 -18.96874872 4.387507e-04 71.150987    50         30
## 1443 1460  2.088602e+01  -6.26097887 4.572060e-04 71.034367    50         30
## 1444 1460 -1.621145e+01  10.50017360 4.934299e-04 71.035404    50         30
## 1445 1460 -4.787609e+00 -27.51355008 4.254095e-04 71.037731    50         30
## 1446 1460 -1.659919e+00   5.01261706 6.946730e-04  1.555216    50         30
## 1447 1460 -8.850115e+00   0.23989059 3.445671e-04  1.312321    50         30
## 1448 1460  2.029528e+01  -1.74577380 4.550161e-04  1.228241    50         30
## 1449 1460 -2.112497e+01   7.39873074 8.625991e-04  1.196858    50         30
## 1450 1460  4.543679e+01   4.46023390 6.728958e-04  1.176920    50         30
## 1451 1460 -1.623457e+01  21.62679191 1.708126e-03  1.164909    50         30
## 1452 1460 -2.317150e+00 -25.15562445 3.244397e-04  1.155632    50         30
## 1453 1460  2.044313e+01 -20.20933600 9.929341e-04  1.148755    50         30
## 1454 1460 -1.486533e+01 -10.55844168 6.205043e-04  1.143827    50         30
## 1455 1460 -5.134882e+00 -19.33441084 9.290986e-04  1.139748    50         30
## 1456 1460  2.816420e+01   8.06133960 1.117811e-03  1.135437    50         30
## 1457 1460 -1.921733e+00 -12.02716207 8.692068e-04  1.131049    50         30
## 1458 1460  5.645777e+00  26.29267797 1.536823e-03  1.127886    50         30
## 1459 1460 -5.443215e-01   6.01642272 4.247624e-04  1.125117    50         30
## 1460 1460  5.800857e-01   7.68324594 8.081546e-04  1.123256    50         30
##      theta max_iter stop_lying_iter mom_switch_iter momentum final_momentum eta
## 1      0.5     1000             250             250      0.5            0.8 200
## 2      0.5     1000             250             250      0.5            0.8 200
## 3      0.5     1000             250             250      0.5            0.8 200
## 4      0.5     1000             250             250      0.5            0.8 200
## 5      0.5     1000             250             250      0.5            0.8 200
## 6      0.5     1000             250             250      0.5            0.8 200
## 7      0.5     1000             250             250      0.5            0.8 200
## 8      0.5     1000             250             250      0.5            0.8 200
## 9      0.5     1000             250             250      0.5            0.8 200
## 10     0.5     1000             250             250      0.5            0.8 200
## 11     0.5     1000             250             250      0.5            0.8 200
## 12     0.5     1000             250             250      0.5            0.8 200
## 13     0.5     1000             250             250      0.5            0.8 200
## 14     0.5     1000             250             250      0.5            0.8 200
## 15     0.5     1000             250             250      0.5            0.8 200
## 16     0.5     1000             250             250      0.5            0.8 200
## 17     0.5     1000             250             250      0.5            0.8 200
## 18     0.5     1000             250             250      0.5            0.8 200
## 19     0.5     1000             250             250      0.5            0.8 200
## 20     0.5     1000             250             250      0.5            0.8 200
## 21     0.5     1000             250             250      0.5            0.8 200
## 22     0.5     1000             250             250      0.5            0.8 200
## 23     0.5     1000             250             250      0.5            0.8 200
## 24     0.5     1000             250             250      0.5            0.8 200
## 25     0.5     1000             250             250      0.5            0.8 200
## 26     0.5     1000             250             250      0.5            0.8 200
## 27     0.5     1000             250             250      0.5            0.8 200
## 28     0.5     1000             250             250      0.5            0.8 200
## 29     0.5     1000             250             250      0.5            0.8 200
## 30     0.5     1000             250             250      0.5            0.8 200
## 31     0.5     1000             250             250      0.5            0.8 200
## 32     0.5     1000             250             250      0.5            0.8 200
## 33     0.5     1000             250             250      0.5            0.8 200
## 34     0.5     1000             250             250      0.5            0.8 200
## 35     0.5     1000             250             250      0.5            0.8 200
## 36     0.5     1000             250             250      0.5            0.8 200
## 37     0.5     1000             250             250      0.5            0.8 200
## 38     0.5     1000             250             250      0.5            0.8 200
## 39     0.5     1000             250             250      0.5            0.8 200
## 40     0.5     1000             250             250      0.5            0.8 200
## 41     0.5     1000             250             250      0.5            0.8 200
## 42     0.5     1000             250             250      0.5            0.8 200
## 43     0.5     1000             250             250      0.5            0.8 200
## 44     0.5     1000             250             250      0.5            0.8 200
## 45     0.5     1000             250             250      0.5            0.8 200
## 46     0.5     1000             250             250      0.5            0.8 200
## 47     0.5     1000             250             250      0.5            0.8 200
## 48     0.5     1000             250             250      0.5            0.8 200
## 49     0.5     1000             250             250      0.5            0.8 200
## 50     0.5     1000             250             250      0.5            0.8 200
## 51     0.5     1000             250             250      0.5            0.8 200
## 52     0.5     1000             250             250      0.5            0.8 200
## 53     0.5     1000             250             250      0.5            0.8 200
## 54     0.5     1000             250             250      0.5            0.8 200
## 55     0.5     1000             250             250      0.5            0.8 200
## 56     0.5     1000             250             250      0.5            0.8 200
## 57     0.5     1000             250             250      0.5            0.8 200
## 58     0.5     1000             250             250      0.5            0.8 200
## 59     0.5     1000             250             250      0.5            0.8 200
## 60     0.5     1000             250             250      0.5            0.8 200
## 61     0.5     1000             250             250      0.5            0.8 200
## 62     0.5     1000             250             250      0.5            0.8 200
## 63     0.5     1000             250             250      0.5            0.8 200
## 64     0.5     1000             250             250      0.5            0.8 200
## 65     0.5     1000             250             250      0.5            0.8 200
## 66     0.5     1000             250             250      0.5            0.8 200
## 67     0.5     1000             250             250      0.5            0.8 200
## 68     0.5     1000             250             250      0.5            0.8 200
## 69     0.5     1000             250             250      0.5            0.8 200
## 70     0.5     1000             250             250      0.5            0.8 200
## 71     0.5     1000             250             250      0.5            0.8 200
## 72     0.5     1000             250             250      0.5            0.8 200
## 73     0.5     1000             250             250      0.5            0.8 200
## 74     0.5     1000             250             250      0.5            0.8 200
## 75     0.5     1000             250             250      0.5            0.8 200
## 76     0.5     1000             250             250      0.5            0.8 200
## 77     0.5     1000             250             250      0.5            0.8 200
## 78     0.5     1000             250             250      0.5            0.8 200
## 79     0.5     1000             250             250      0.5            0.8 200
## 80     0.5     1000             250             250      0.5            0.8 200
## 81     0.5     1000             250             250      0.5            0.8 200
## 82     0.5     1000             250             250      0.5            0.8 200
## 83     0.5     1000             250             250      0.5            0.8 200
## 84     0.5     1000             250             250      0.5            0.8 200
## 85     0.5     1000             250             250      0.5            0.8 200
## 86     0.5     1000             250             250      0.5            0.8 200
## 87     0.5     1000             250             250      0.5            0.8 200
## 88     0.5     1000             250             250      0.5            0.8 200
## 89     0.5     1000             250             250      0.5            0.8 200
## 90     0.5     1000             250             250      0.5            0.8 200
## 91     0.5     1000             250             250      0.5            0.8 200
## 92     0.5     1000             250             250      0.5            0.8 200
## 93     0.5     1000             250             250      0.5            0.8 200
## 94     0.5     1000             250             250      0.5            0.8 200
## 95     0.5     1000             250             250      0.5            0.8 200
## 96     0.5     1000             250             250      0.5            0.8 200
## 97     0.5     1000             250             250      0.5            0.8 200
## 98     0.5     1000             250             250      0.5            0.8 200
## 99     0.5     1000             250             250      0.5            0.8 200
## 100    0.5     1000             250             250      0.5            0.8 200
## 101    0.5     1000             250             250      0.5            0.8 200
## 102    0.5     1000             250             250      0.5            0.8 200
## 103    0.5     1000             250             250      0.5            0.8 200
## 104    0.5     1000             250             250      0.5            0.8 200
## 105    0.5     1000             250             250      0.5            0.8 200
## 106    0.5     1000             250             250      0.5            0.8 200
## 107    0.5     1000             250             250      0.5            0.8 200
## 108    0.5     1000             250             250      0.5            0.8 200
## 109    0.5     1000             250             250      0.5            0.8 200
## 110    0.5     1000             250             250      0.5            0.8 200
## 111    0.5     1000             250             250      0.5            0.8 200
## 112    0.5     1000             250             250      0.5            0.8 200
## 113    0.5     1000             250             250      0.5            0.8 200
## 114    0.5     1000             250             250      0.5            0.8 200
## 115    0.5     1000             250             250      0.5            0.8 200
## 116    0.5     1000             250             250      0.5            0.8 200
## 117    0.5     1000             250             250      0.5            0.8 200
## 118    0.5     1000             250             250      0.5            0.8 200
## 119    0.5     1000             250             250      0.5            0.8 200
## 120    0.5     1000             250             250      0.5            0.8 200
## 121    0.5     1000             250             250      0.5            0.8 200
## 122    0.5     1000             250             250      0.5            0.8 200
## 123    0.5     1000             250             250      0.5            0.8 200
## 124    0.5     1000             250             250      0.5            0.8 200
## 125    0.5     1000             250             250      0.5            0.8 200
## 126    0.5     1000             250             250      0.5            0.8 200
## 127    0.5     1000             250             250      0.5            0.8 200
## 128    0.5     1000             250             250      0.5            0.8 200
## 129    0.5     1000             250             250      0.5            0.8 200
## 130    0.5     1000             250             250      0.5            0.8 200
## 131    0.5     1000             250             250      0.5            0.8 200
## 132    0.5     1000             250             250      0.5            0.8 200
## 133    0.5     1000             250             250      0.5            0.8 200
## 134    0.5     1000             250             250      0.5            0.8 200
## 135    0.5     1000             250             250      0.5            0.8 200
## 136    0.5     1000             250             250      0.5            0.8 200
## 137    0.5     1000             250             250      0.5            0.8 200
## 138    0.5     1000             250             250      0.5            0.8 200
## 139    0.5     1000             250             250      0.5            0.8 200
## 140    0.5     1000             250             250      0.5            0.8 200
## 141    0.5     1000             250             250      0.5            0.8 200
## 142    0.5     1000             250             250      0.5            0.8 200
## 143    0.5     1000             250             250      0.5            0.8 200
## 144    0.5     1000             250             250      0.5            0.8 200
## 145    0.5     1000             250             250      0.5            0.8 200
## 146    0.5     1000             250             250      0.5            0.8 200
## 147    0.5     1000             250             250      0.5            0.8 200
## 148    0.5     1000             250             250      0.5            0.8 200
## 149    0.5     1000             250             250      0.5            0.8 200
## 150    0.5     1000             250             250      0.5            0.8 200
## 151    0.5     1000             250             250      0.5            0.8 200
## 152    0.5     1000             250             250      0.5            0.8 200
## 153    0.5     1000             250             250      0.5            0.8 200
## 154    0.5     1000             250             250      0.5            0.8 200
## 155    0.5     1000             250             250      0.5            0.8 200
## 156    0.5     1000             250             250      0.5            0.8 200
## 157    0.5     1000             250             250      0.5            0.8 200
## 158    0.5     1000             250             250      0.5            0.8 200
## 159    0.5     1000             250             250      0.5            0.8 200
## 160    0.5     1000             250             250      0.5            0.8 200
## 161    0.5     1000             250             250      0.5            0.8 200
## 162    0.5     1000             250             250      0.5            0.8 200
## 163    0.5     1000             250             250      0.5            0.8 200
## 164    0.5     1000             250             250      0.5            0.8 200
## 165    0.5     1000             250             250      0.5            0.8 200
## 166    0.5     1000             250             250      0.5            0.8 200
## 167    0.5     1000             250             250      0.5            0.8 200
## 168    0.5     1000             250             250      0.5            0.8 200
## 169    0.5     1000             250             250      0.5            0.8 200
## 170    0.5     1000             250             250      0.5            0.8 200
## 171    0.5     1000             250             250      0.5            0.8 200
## 172    0.5     1000             250             250      0.5            0.8 200
## 173    0.5     1000             250             250      0.5            0.8 200
## 174    0.5     1000             250             250      0.5            0.8 200
## 175    0.5     1000             250             250      0.5            0.8 200
## 176    0.5     1000             250             250      0.5            0.8 200
## 177    0.5     1000             250             250      0.5            0.8 200
## 178    0.5     1000             250             250      0.5            0.8 200
## 179    0.5     1000             250             250      0.5            0.8 200
## 180    0.5     1000             250             250      0.5            0.8 200
## 181    0.5     1000             250             250      0.5            0.8 200
## 182    0.5     1000             250             250      0.5            0.8 200
## 183    0.5     1000             250             250      0.5            0.8 200
## 184    0.5     1000             250             250      0.5            0.8 200
## 185    0.5     1000             250             250      0.5            0.8 200
## 186    0.5     1000             250             250      0.5            0.8 200
## 187    0.5     1000             250             250      0.5            0.8 200
## 188    0.5     1000             250             250      0.5            0.8 200
## 189    0.5     1000             250             250      0.5            0.8 200
## 190    0.5     1000             250             250      0.5            0.8 200
## 191    0.5     1000             250             250      0.5            0.8 200
## 192    0.5     1000             250             250      0.5            0.8 200
## 193    0.5     1000             250             250      0.5            0.8 200
## 194    0.5     1000             250             250      0.5            0.8 200
## 195    0.5     1000             250             250      0.5            0.8 200
## 196    0.5     1000             250             250      0.5            0.8 200
## 197    0.5     1000             250             250      0.5            0.8 200
## 198    0.5     1000             250             250      0.5            0.8 200
## 199    0.5     1000             250             250      0.5            0.8 200
## 200    0.5     1000             250             250      0.5            0.8 200
## 201    0.5     1000             250             250      0.5            0.8 200
## 202    0.5     1000             250             250      0.5            0.8 200
## 203    0.5     1000             250             250      0.5            0.8 200
## 204    0.5     1000             250             250      0.5            0.8 200
## 205    0.5     1000             250             250      0.5            0.8 200
## 206    0.5     1000             250             250      0.5            0.8 200
## 207    0.5     1000             250             250      0.5            0.8 200
## 208    0.5     1000             250             250      0.5            0.8 200
## 209    0.5     1000             250             250      0.5            0.8 200
## 210    0.5     1000             250             250      0.5            0.8 200
## 211    0.5     1000             250             250      0.5            0.8 200
## 212    0.5     1000             250             250      0.5            0.8 200
## 213    0.5     1000             250             250      0.5            0.8 200
## 214    0.5     1000             250             250      0.5            0.8 200
## 215    0.5     1000             250             250      0.5            0.8 200
## 216    0.5     1000             250             250      0.5            0.8 200
## 217    0.5     1000             250             250      0.5            0.8 200
## 218    0.5     1000             250             250      0.5            0.8 200
## 219    0.5     1000             250             250      0.5            0.8 200
## 220    0.5     1000             250             250      0.5            0.8 200
## 221    0.5     1000             250             250      0.5            0.8 200
## 222    0.5     1000             250             250      0.5            0.8 200
## 223    0.5     1000             250             250      0.5            0.8 200
## 224    0.5     1000             250             250      0.5            0.8 200
## 225    0.5     1000             250             250      0.5            0.8 200
## 226    0.5     1000             250             250      0.5            0.8 200
## 227    0.5     1000             250             250      0.5            0.8 200
## 228    0.5     1000             250             250      0.5            0.8 200
## 229    0.5     1000             250             250      0.5            0.8 200
## 230    0.5     1000             250             250      0.5            0.8 200
## 231    0.5     1000             250             250      0.5            0.8 200
## 232    0.5     1000             250             250      0.5            0.8 200
## 233    0.5     1000             250             250      0.5            0.8 200
## 234    0.5     1000             250             250      0.5            0.8 200
## 235    0.5     1000             250             250      0.5            0.8 200
## 236    0.5     1000             250             250      0.5            0.8 200
## 237    0.5     1000             250             250      0.5            0.8 200
## 238    0.5     1000             250             250      0.5            0.8 200
## 239    0.5     1000             250             250      0.5            0.8 200
## 240    0.5     1000             250             250      0.5            0.8 200
## 241    0.5     1000             250             250      0.5            0.8 200
## 242    0.5     1000             250             250      0.5            0.8 200
## 243    0.5     1000             250             250      0.5            0.8 200
## 244    0.5     1000             250             250      0.5            0.8 200
## 245    0.5     1000             250             250      0.5            0.8 200
## 246    0.5     1000             250             250      0.5            0.8 200
## 247    0.5     1000             250             250      0.5            0.8 200
## 248    0.5     1000             250             250      0.5            0.8 200
## 249    0.5     1000             250             250      0.5            0.8 200
## 250    0.5     1000             250             250      0.5            0.8 200
## 251    0.5     1000             250             250      0.5            0.8 200
## 252    0.5     1000             250             250      0.5            0.8 200
## 253    0.5     1000             250             250      0.5            0.8 200
## 254    0.5     1000             250             250      0.5            0.8 200
## 255    0.5     1000             250             250      0.5            0.8 200
## 256    0.5     1000             250             250      0.5            0.8 200
## 257    0.5     1000             250             250      0.5            0.8 200
## 258    0.5     1000             250             250      0.5            0.8 200
## 259    0.5     1000             250             250      0.5            0.8 200
## 260    0.5     1000             250             250      0.5            0.8 200
## 261    0.5     1000             250             250      0.5            0.8 200
## 262    0.5     1000             250             250      0.5            0.8 200
## 263    0.5     1000             250             250      0.5            0.8 200
## 264    0.5     1000             250             250      0.5            0.8 200
## 265    0.5     1000             250             250      0.5            0.8 200
## 266    0.5     1000             250             250      0.5            0.8 200
## 267    0.5     1000             250             250      0.5            0.8 200
## 268    0.5     1000             250             250      0.5            0.8 200
## 269    0.5     1000             250             250      0.5            0.8 200
## 270    0.5     1000             250             250      0.5            0.8 200
## 271    0.5     1000             250             250      0.5            0.8 200
## 272    0.5     1000             250             250      0.5            0.8 200
## 273    0.5     1000             250             250      0.5            0.8 200
## 274    0.5     1000             250             250      0.5            0.8 200
## 275    0.5     1000             250             250      0.5            0.8 200
## 276    0.5     1000             250             250      0.5            0.8 200
## 277    0.5     1000             250             250      0.5            0.8 200
## 278    0.5     1000             250             250      0.5            0.8 200
## 279    0.5     1000             250             250      0.5            0.8 200
## 280    0.5     1000             250             250      0.5            0.8 200
## 281    0.5     1000             250             250      0.5            0.8 200
## 282    0.5     1000             250             250      0.5            0.8 200
## 283    0.5     1000             250             250      0.5            0.8 200
## 284    0.5     1000             250             250      0.5            0.8 200
## 285    0.5     1000             250             250      0.5            0.8 200
## 286    0.5     1000             250             250      0.5            0.8 200
## 287    0.5     1000             250             250      0.5            0.8 200
## 288    0.5     1000             250             250      0.5            0.8 200
## 289    0.5     1000             250             250      0.5            0.8 200
## 290    0.5     1000             250             250      0.5            0.8 200
## 291    0.5     1000             250             250      0.5            0.8 200
## 292    0.5     1000             250             250      0.5            0.8 200
## 293    0.5     1000             250             250      0.5            0.8 200
## 294    0.5     1000             250             250      0.5            0.8 200
## 295    0.5     1000             250             250      0.5            0.8 200
## 296    0.5     1000             250             250      0.5            0.8 200
## 297    0.5     1000             250             250      0.5            0.8 200
## 298    0.5     1000             250             250      0.5            0.8 200
## 299    0.5     1000             250             250      0.5            0.8 200
## 300    0.5     1000             250             250      0.5            0.8 200
## 301    0.5     1000             250             250      0.5            0.8 200
## 302    0.5     1000             250             250      0.5            0.8 200
## 303    0.5     1000             250             250      0.5            0.8 200
## 304    0.5     1000             250             250      0.5            0.8 200
## 305    0.5     1000             250             250      0.5            0.8 200
## 306    0.5     1000             250             250      0.5            0.8 200
## 307    0.5     1000             250             250      0.5            0.8 200
## 308    0.5     1000             250             250      0.5            0.8 200
## 309    0.5     1000             250             250      0.5            0.8 200
## 310    0.5     1000             250             250      0.5            0.8 200
## 311    0.5     1000             250             250      0.5            0.8 200
## 312    0.5     1000             250             250      0.5            0.8 200
## 313    0.5     1000             250             250      0.5            0.8 200
## 314    0.5     1000             250             250      0.5            0.8 200
## 315    0.5     1000             250             250      0.5            0.8 200
## 316    0.5     1000             250             250      0.5            0.8 200
## 317    0.5     1000             250             250      0.5            0.8 200
## 318    0.5     1000             250             250      0.5            0.8 200
## 319    0.5     1000             250             250      0.5            0.8 200
## 320    0.5     1000             250             250      0.5            0.8 200
## 321    0.5     1000             250             250      0.5            0.8 200
## 322    0.5     1000             250             250      0.5            0.8 200
## 323    0.5     1000             250             250      0.5            0.8 200
## 324    0.5     1000             250             250      0.5            0.8 200
## 325    0.5     1000             250             250      0.5            0.8 200
## 326    0.5     1000             250             250      0.5            0.8 200
## 327    0.5     1000             250             250      0.5            0.8 200
## 328    0.5     1000             250             250      0.5            0.8 200
## 329    0.5     1000             250             250      0.5            0.8 200
## 330    0.5     1000             250             250      0.5            0.8 200
## 331    0.5     1000             250             250      0.5            0.8 200
## 332    0.5     1000             250             250      0.5            0.8 200
## 333    0.5     1000             250             250      0.5            0.8 200
## 334    0.5     1000             250             250      0.5            0.8 200
## 335    0.5     1000             250             250      0.5            0.8 200
## 336    0.5     1000             250             250      0.5            0.8 200
## 337    0.5     1000             250             250      0.5            0.8 200
## 338    0.5     1000             250             250      0.5            0.8 200
## 339    0.5     1000             250             250      0.5            0.8 200
## 340    0.5     1000             250             250      0.5            0.8 200
## 341    0.5     1000             250             250      0.5            0.8 200
## 342    0.5     1000             250             250      0.5            0.8 200
## 343    0.5     1000             250             250      0.5            0.8 200
## 344    0.5     1000             250             250      0.5            0.8 200
## 345    0.5     1000             250             250      0.5            0.8 200
## 346    0.5     1000             250             250      0.5            0.8 200
## 347    0.5     1000             250             250      0.5            0.8 200
## 348    0.5     1000             250             250      0.5            0.8 200
## 349    0.5     1000             250             250      0.5            0.8 200
## 350    0.5     1000             250             250      0.5            0.8 200
## 351    0.5     1000             250             250      0.5            0.8 200
## 352    0.5     1000             250             250      0.5            0.8 200
## 353    0.5     1000             250             250      0.5            0.8 200
## 354    0.5     1000             250             250      0.5            0.8 200
## 355    0.5     1000             250             250      0.5            0.8 200
## 356    0.5     1000             250             250      0.5            0.8 200
## 357    0.5     1000             250             250      0.5            0.8 200
## 358    0.5     1000             250             250      0.5            0.8 200
## 359    0.5     1000             250             250      0.5            0.8 200
## 360    0.5     1000             250             250      0.5            0.8 200
## 361    0.5     1000             250             250      0.5            0.8 200
## 362    0.5     1000             250             250      0.5            0.8 200
## 363    0.5     1000             250             250      0.5            0.8 200
## 364    0.5     1000             250             250      0.5            0.8 200
## 365    0.5     1000             250             250      0.5            0.8 200
## 366    0.5     1000             250             250      0.5            0.8 200
## 367    0.5     1000             250             250      0.5            0.8 200
## 368    0.5     1000             250             250      0.5            0.8 200
## 369    0.5     1000             250             250      0.5            0.8 200
## 370    0.5     1000             250             250      0.5            0.8 200
## 371    0.5     1000             250             250      0.5            0.8 200
## 372    0.5     1000             250             250      0.5            0.8 200
## 373    0.5     1000             250             250      0.5            0.8 200
## 374    0.5     1000             250             250      0.5            0.8 200
## 375    0.5     1000             250             250      0.5            0.8 200
## 376    0.5     1000             250             250      0.5            0.8 200
## 377    0.5     1000             250             250      0.5            0.8 200
## 378    0.5     1000             250             250      0.5            0.8 200
## 379    0.5     1000             250             250      0.5            0.8 200
## 380    0.5     1000             250             250      0.5            0.8 200
## 381    0.5     1000             250             250      0.5            0.8 200
## 382    0.5     1000             250             250      0.5            0.8 200
## 383    0.5     1000             250             250      0.5            0.8 200
## 384    0.5     1000             250             250      0.5            0.8 200
## 385    0.5     1000             250             250      0.5            0.8 200
## 386    0.5     1000             250             250      0.5            0.8 200
## 387    0.5     1000             250             250      0.5            0.8 200
## 388    0.5     1000             250             250      0.5            0.8 200
## 389    0.5     1000             250             250      0.5            0.8 200
## 390    0.5     1000             250             250      0.5            0.8 200
## 391    0.5     1000             250             250      0.5            0.8 200
## 392    0.5     1000             250             250      0.5            0.8 200
## 393    0.5     1000             250             250      0.5            0.8 200
## 394    0.5     1000             250             250      0.5            0.8 200
## 395    0.5     1000             250             250      0.5            0.8 200
## 396    0.5     1000             250             250      0.5            0.8 200
## 397    0.5     1000             250             250      0.5            0.8 200
## 398    0.5     1000             250             250      0.5            0.8 200
## 399    0.5     1000             250             250      0.5            0.8 200
## 400    0.5     1000             250             250      0.5            0.8 200
## 401    0.5     1000             250             250      0.5            0.8 200
## 402    0.5     1000             250             250      0.5            0.8 200
## 403    0.5     1000             250             250      0.5            0.8 200
## 404    0.5     1000             250             250      0.5            0.8 200
## 405    0.5     1000             250             250      0.5            0.8 200
## 406    0.5     1000             250             250      0.5            0.8 200
## 407    0.5     1000             250             250      0.5            0.8 200
## 408    0.5     1000             250             250      0.5            0.8 200
## 409    0.5     1000             250             250      0.5            0.8 200
## 410    0.5     1000             250             250      0.5            0.8 200
## 411    0.5     1000             250             250      0.5            0.8 200
## 412    0.5     1000             250             250      0.5            0.8 200
## 413    0.5     1000             250             250      0.5            0.8 200
## 414    0.5     1000             250             250      0.5            0.8 200
## 415    0.5     1000             250             250      0.5            0.8 200
## 416    0.5     1000             250             250      0.5            0.8 200
## 417    0.5     1000             250             250      0.5            0.8 200
## 418    0.5     1000             250             250      0.5            0.8 200
## 419    0.5     1000             250             250      0.5            0.8 200
## 420    0.5     1000             250             250      0.5            0.8 200
## 421    0.5     1000             250             250      0.5            0.8 200
## 422    0.5     1000             250             250      0.5            0.8 200
## 423    0.5     1000             250             250      0.5            0.8 200
## 424    0.5     1000             250             250      0.5            0.8 200
## 425    0.5     1000             250             250      0.5            0.8 200
## 426    0.5     1000             250             250      0.5            0.8 200
## 427    0.5     1000             250             250      0.5            0.8 200
## 428    0.5     1000             250             250      0.5            0.8 200
## 429    0.5     1000             250             250      0.5            0.8 200
## 430    0.5     1000             250             250      0.5            0.8 200
## 431    0.5     1000             250             250      0.5            0.8 200
## 432    0.5     1000             250             250      0.5            0.8 200
## 433    0.5     1000             250             250      0.5            0.8 200
## 434    0.5     1000             250             250      0.5            0.8 200
## 435    0.5     1000             250             250      0.5            0.8 200
## 436    0.5     1000             250             250      0.5            0.8 200
## 437    0.5     1000             250             250      0.5            0.8 200
## 438    0.5     1000             250             250      0.5            0.8 200
## 439    0.5     1000             250             250      0.5            0.8 200
## 440    0.5     1000             250             250      0.5            0.8 200
## 441    0.5     1000             250             250      0.5            0.8 200
## 442    0.5     1000             250             250      0.5            0.8 200
## 443    0.5     1000             250             250      0.5            0.8 200
## 444    0.5     1000             250             250      0.5            0.8 200
## 445    0.5     1000             250             250      0.5            0.8 200
## 446    0.5     1000             250             250      0.5            0.8 200
## 447    0.5     1000             250             250      0.5            0.8 200
## 448    0.5     1000             250             250      0.5            0.8 200
## 449    0.5     1000             250             250      0.5            0.8 200
## 450    0.5     1000             250             250      0.5            0.8 200
## 451    0.5     1000             250             250      0.5            0.8 200
## 452    0.5     1000             250             250      0.5            0.8 200
## 453    0.5     1000             250             250      0.5            0.8 200
## 454    0.5     1000             250             250      0.5            0.8 200
## 455    0.5     1000             250             250      0.5            0.8 200
## 456    0.5     1000             250             250      0.5            0.8 200
## 457    0.5     1000             250             250      0.5            0.8 200
## 458    0.5     1000             250             250      0.5            0.8 200
## 459    0.5     1000             250             250      0.5            0.8 200
## 460    0.5     1000             250             250      0.5            0.8 200
## 461    0.5     1000             250             250      0.5            0.8 200
## 462    0.5     1000             250             250      0.5            0.8 200
## 463    0.5     1000             250             250      0.5            0.8 200
## 464    0.5     1000             250             250      0.5            0.8 200
## 465    0.5     1000             250             250      0.5            0.8 200
## 466    0.5     1000             250             250      0.5            0.8 200
## 467    0.5     1000             250             250      0.5            0.8 200
## 468    0.5     1000             250             250      0.5            0.8 200
## 469    0.5     1000             250             250      0.5            0.8 200
## 470    0.5     1000             250             250      0.5            0.8 200
## 471    0.5     1000             250             250      0.5            0.8 200
## 472    0.5     1000             250             250      0.5            0.8 200
## 473    0.5     1000             250             250      0.5            0.8 200
## 474    0.5     1000             250             250      0.5            0.8 200
## 475    0.5     1000             250             250      0.5            0.8 200
## 476    0.5     1000             250             250      0.5            0.8 200
## 477    0.5     1000             250             250      0.5            0.8 200
## 478    0.5     1000             250             250      0.5            0.8 200
## 479    0.5     1000             250             250      0.5            0.8 200
## 480    0.5     1000             250             250      0.5            0.8 200
## 481    0.5     1000             250             250      0.5            0.8 200
## 482    0.5     1000             250             250      0.5            0.8 200
## 483    0.5     1000             250             250      0.5            0.8 200
## 484    0.5     1000             250             250      0.5            0.8 200
## 485    0.5     1000             250             250      0.5            0.8 200
## 486    0.5     1000             250             250      0.5            0.8 200
## 487    0.5     1000             250             250      0.5            0.8 200
## 488    0.5     1000             250             250      0.5            0.8 200
## 489    0.5     1000             250             250      0.5            0.8 200
## 490    0.5     1000             250             250      0.5            0.8 200
## 491    0.5     1000             250             250      0.5            0.8 200
## 492    0.5     1000             250             250      0.5            0.8 200
## 493    0.5     1000             250             250      0.5            0.8 200
## 494    0.5     1000             250             250      0.5            0.8 200
## 495    0.5     1000             250             250      0.5            0.8 200
## 496    0.5     1000             250             250      0.5            0.8 200
## 497    0.5     1000             250             250      0.5            0.8 200
## 498    0.5     1000             250             250      0.5            0.8 200
## 499    0.5     1000             250             250      0.5            0.8 200
## 500    0.5     1000             250             250      0.5            0.8 200
## 501    0.5     1000             250             250      0.5            0.8 200
## 502    0.5     1000             250             250      0.5            0.8 200
## 503    0.5     1000             250             250      0.5            0.8 200
## 504    0.5     1000             250             250      0.5            0.8 200
## 505    0.5     1000             250             250      0.5            0.8 200
## 506    0.5     1000             250             250      0.5            0.8 200
## 507    0.5     1000             250             250      0.5            0.8 200
## 508    0.5     1000             250             250      0.5            0.8 200
## 509    0.5     1000             250             250      0.5            0.8 200
## 510    0.5     1000             250             250      0.5            0.8 200
## 511    0.5     1000             250             250      0.5            0.8 200
## 512    0.5     1000             250             250      0.5            0.8 200
## 513    0.5     1000             250             250      0.5            0.8 200
## 514    0.5     1000             250             250      0.5            0.8 200
## 515    0.5     1000             250             250      0.5            0.8 200
## 516    0.5     1000             250             250      0.5            0.8 200
## 517    0.5     1000             250             250      0.5            0.8 200
## 518    0.5     1000             250             250      0.5            0.8 200
## 519    0.5     1000             250             250      0.5            0.8 200
## 520    0.5     1000             250             250      0.5            0.8 200
## 521    0.5     1000             250             250      0.5            0.8 200
## 522    0.5     1000             250             250      0.5            0.8 200
## 523    0.5     1000             250             250      0.5            0.8 200
## 524    0.5     1000             250             250      0.5            0.8 200
## 525    0.5     1000             250             250      0.5            0.8 200
## 526    0.5     1000             250             250      0.5            0.8 200
## 527    0.5     1000             250             250      0.5            0.8 200
## 528    0.5     1000             250             250      0.5            0.8 200
## 529    0.5     1000             250             250      0.5            0.8 200
## 530    0.5     1000             250             250      0.5            0.8 200
## 531    0.5     1000             250             250      0.5            0.8 200
## 532    0.5     1000             250             250      0.5            0.8 200
## 533    0.5     1000             250             250      0.5            0.8 200
## 534    0.5     1000             250             250      0.5            0.8 200
## 535    0.5     1000             250             250      0.5            0.8 200
## 536    0.5     1000             250             250      0.5            0.8 200
## 537    0.5     1000             250             250      0.5            0.8 200
## 538    0.5     1000             250             250      0.5            0.8 200
## 539    0.5     1000             250             250      0.5            0.8 200
## 540    0.5     1000             250             250      0.5            0.8 200
## 541    0.5     1000             250             250      0.5            0.8 200
## 542    0.5     1000             250             250      0.5            0.8 200
## 543    0.5     1000             250             250      0.5            0.8 200
## 544    0.5     1000             250             250      0.5            0.8 200
## 545    0.5     1000             250             250      0.5            0.8 200
## 546    0.5     1000             250             250      0.5            0.8 200
## 547    0.5     1000             250             250      0.5            0.8 200
## 548    0.5     1000             250             250      0.5            0.8 200
## 549    0.5     1000             250             250      0.5            0.8 200
## 550    0.5     1000             250             250      0.5            0.8 200
## 551    0.5     1000             250             250      0.5            0.8 200
## 552    0.5     1000             250             250      0.5            0.8 200
## 553    0.5     1000             250             250      0.5            0.8 200
## 554    0.5     1000             250             250      0.5            0.8 200
## 555    0.5     1000             250             250      0.5            0.8 200
## 556    0.5     1000             250             250      0.5            0.8 200
## 557    0.5     1000             250             250      0.5            0.8 200
## 558    0.5     1000             250             250      0.5            0.8 200
## 559    0.5     1000             250             250      0.5            0.8 200
## 560    0.5     1000             250             250      0.5            0.8 200
## 561    0.5     1000             250             250      0.5            0.8 200
## 562    0.5     1000             250             250      0.5            0.8 200
## 563    0.5     1000             250             250      0.5            0.8 200
## 564    0.5     1000             250             250      0.5            0.8 200
## 565    0.5     1000             250             250      0.5            0.8 200
## 566    0.5     1000             250             250      0.5            0.8 200
## 567    0.5     1000             250             250      0.5            0.8 200
## 568    0.5     1000             250             250      0.5            0.8 200
## 569    0.5     1000             250             250      0.5            0.8 200
## 570    0.5     1000             250             250      0.5            0.8 200
## 571    0.5     1000             250             250      0.5            0.8 200
## 572    0.5     1000             250             250      0.5            0.8 200
## 573    0.5     1000             250             250      0.5            0.8 200
## 574    0.5     1000             250             250      0.5            0.8 200
## 575    0.5     1000             250             250      0.5            0.8 200
## 576    0.5     1000             250             250      0.5            0.8 200
## 577    0.5     1000             250             250      0.5            0.8 200
## 578    0.5     1000             250             250      0.5            0.8 200
## 579    0.5     1000             250             250      0.5            0.8 200
## 580    0.5     1000             250             250      0.5            0.8 200
## 581    0.5     1000             250             250      0.5            0.8 200
## 582    0.5     1000             250             250      0.5            0.8 200
## 583    0.5     1000             250             250      0.5            0.8 200
## 584    0.5     1000             250             250      0.5            0.8 200
## 585    0.5     1000             250             250      0.5            0.8 200
## 586    0.5     1000             250             250      0.5            0.8 200
## 587    0.5     1000             250             250      0.5            0.8 200
## 588    0.5     1000             250             250      0.5            0.8 200
## 589    0.5     1000             250             250      0.5            0.8 200
## 590    0.5     1000             250             250      0.5            0.8 200
## 591    0.5     1000             250             250      0.5            0.8 200
## 592    0.5     1000             250             250      0.5            0.8 200
## 593    0.5     1000             250             250      0.5            0.8 200
## 594    0.5     1000             250             250      0.5            0.8 200
## 595    0.5     1000             250             250      0.5            0.8 200
## 596    0.5     1000             250             250      0.5            0.8 200
## 597    0.5     1000             250             250      0.5            0.8 200
## 598    0.5     1000             250             250      0.5            0.8 200
## 599    0.5     1000             250             250      0.5            0.8 200
## 600    0.5     1000             250             250      0.5            0.8 200
## 601    0.5     1000             250             250      0.5            0.8 200
## 602    0.5     1000             250             250      0.5            0.8 200
## 603    0.5     1000             250             250      0.5            0.8 200
## 604    0.5     1000             250             250      0.5            0.8 200
## 605    0.5     1000             250             250      0.5            0.8 200
## 606    0.5     1000             250             250      0.5            0.8 200
## 607    0.5     1000             250             250      0.5            0.8 200
## 608    0.5     1000             250             250      0.5            0.8 200
## 609    0.5     1000             250             250      0.5            0.8 200
## 610    0.5     1000             250             250      0.5            0.8 200
## 611    0.5     1000             250             250      0.5            0.8 200
## 612    0.5     1000             250             250      0.5            0.8 200
## 613    0.5     1000             250             250      0.5            0.8 200
## 614    0.5     1000             250             250      0.5            0.8 200
## 615    0.5     1000             250             250      0.5            0.8 200
## 616    0.5     1000             250             250      0.5            0.8 200
## 617    0.5     1000             250             250      0.5            0.8 200
## 618    0.5     1000             250             250      0.5            0.8 200
## 619    0.5     1000             250             250      0.5            0.8 200
## 620    0.5     1000             250             250      0.5            0.8 200
## 621    0.5     1000             250             250      0.5            0.8 200
## 622    0.5     1000             250             250      0.5            0.8 200
## 623    0.5     1000             250             250      0.5            0.8 200
## 624    0.5     1000             250             250      0.5            0.8 200
## 625    0.5     1000             250             250      0.5            0.8 200
## 626    0.5     1000             250             250      0.5            0.8 200
## 627    0.5     1000             250             250      0.5            0.8 200
## 628    0.5     1000             250             250      0.5            0.8 200
## 629    0.5     1000             250             250      0.5            0.8 200
## 630    0.5     1000             250             250      0.5            0.8 200
## 631    0.5     1000             250             250      0.5            0.8 200
## 632    0.5     1000             250             250      0.5            0.8 200
## 633    0.5     1000             250             250      0.5            0.8 200
## 634    0.5     1000             250             250      0.5            0.8 200
## 635    0.5     1000             250             250      0.5            0.8 200
## 636    0.5     1000             250             250      0.5            0.8 200
## 637    0.5     1000             250             250      0.5            0.8 200
## 638    0.5     1000             250             250      0.5            0.8 200
## 639    0.5     1000             250             250      0.5            0.8 200
## 640    0.5     1000             250             250      0.5            0.8 200
## 641    0.5     1000             250             250      0.5            0.8 200
## 642    0.5     1000             250             250      0.5            0.8 200
## 643    0.5     1000             250             250      0.5            0.8 200
## 644    0.5     1000             250             250      0.5            0.8 200
## 645    0.5     1000             250             250      0.5            0.8 200
## 646    0.5     1000             250             250      0.5            0.8 200
## 647    0.5     1000             250             250      0.5            0.8 200
## 648    0.5     1000             250             250      0.5            0.8 200
## 649    0.5     1000             250             250      0.5            0.8 200
## 650    0.5     1000             250             250      0.5            0.8 200
## 651    0.5     1000             250             250      0.5            0.8 200
## 652    0.5     1000             250             250      0.5            0.8 200
## 653    0.5     1000             250             250      0.5            0.8 200
## 654    0.5     1000             250             250      0.5            0.8 200
## 655    0.5     1000             250             250      0.5            0.8 200
## 656    0.5     1000             250             250      0.5            0.8 200
## 657    0.5     1000             250             250      0.5            0.8 200
## 658    0.5     1000             250             250      0.5            0.8 200
## 659    0.5     1000             250             250      0.5            0.8 200
## 660    0.5     1000             250             250      0.5            0.8 200
## 661    0.5     1000             250             250      0.5            0.8 200
## 662    0.5     1000             250             250      0.5            0.8 200
## 663    0.5     1000             250             250      0.5            0.8 200
## 664    0.5     1000             250             250      0.5            0.8 200
## 665    0.5     1000             250             250      0.5            0.8 200
## 666    0.5     1000             250             250      0.5            0.8 200
## 667    0.5     1000             250             250      0.5            0.8 200
## 668    0.5     1000             250             250      0.5            0.8 200
## 669    0.5     1000             250             250      0.5            0.8 200
## 670    0.5     1000             250             250      0.5            0.8 200
## 671    0.5     1000             250             250      0.5            0.8 200
## 672    0.5     1000             250             250      0.5            0.8 200
## 673    0.5     1000             250             250      0.5            0.8 200
## 674    0.5     1000             250             250      0.5            0.8 200
## 675    0.5     1000             250             250      0.5            0.8 200
## 676    0.5     1000             250             250      0.5            0.8 200
## 677    0.5     1000             250             250      0.5            0.8 200
## 678    0.5     1000             250             250      0.5            0.8 200
## 679    0.5     1000             250             250      0.5            0.8 200
## 680    0.5     1000             250             250      0.5            0.8 200
## 681    0.5     1000             250             250      0.5            0.8 200
## 682    0.5     1000             250             250      0.5            0.8 200
## 683    0.5     1000             250             250      0.5            0.8 200
## 684    0.5     1000             250             250      0.5            0.8 200
## 685    0.5     1000             250             250      0.5            0.8 200
## 686    0.5     1000             250             250      0.5            0.8 200
## 687    0.5     1000             250             250      0.5            0.8 200
## 688    0.5     1000             250             250      0.5            0.8 200
## 689    0.5     1000             250             250      0.5            0.8 200
## 690    0.5     1000             250             250      0.5            0.8 200
## 691    0.5     1000             250             250      0.5            0.8 200
## 692    0.5     1000             250             250      0.5            0.8 200
## 693    0.5     1000             250             250      0.5            0.8 200
## 694    0.5     1000             250             250      0.5            0.8 200
## 695    0.5     1000             250             250      0.5            0.8 200
## 696    0.5     1000             250             250      0.5            0.8 200
## 697    0.5     1000             250             250      0.5            0.8 200
## 698    0.5     1000             250             250      0.5            0.8 200
## 699    0.5     1000             250             250      0.5            0.8 200
## 700    0.5     1000             250             250      0.5            0.8 200
## 701    0.5     1000             250             250      0.5            0.8 200
## 702    0.5     1000             250             250      0.5            0.8 200
## 703    0.5     1000             250             250      0.5            0.8 200
## 704    0.5     1000             250             250      0.5            0.8 200
## 705    0.5     1000             250             250      0.5            0.8 200
## 706    0.5     1000             250             250      0.5            0.8 200
## 707    0.5     1000             250             250      0.5            0.8 200
## 708    0.5     1000             250             250      0.5            0.8 200
## 709    0.5     1000             250             250      0.5            0.8 200
## 710    0.5     1000             250             250      0.5            0.8 200
## 711    0.5     1000             250             250      0.5            0.8 200
## 712    0.5     1000             250             250      0.5            0.8 200
## 713    0.5     1000             250             250      0.5            0.8 200
## 714    0.5     1000             250             250      0.5            0.8 200
## 715    0.5     1000             250             250      0.5            0.8 200
## 716    0.5     1000             250             250      0.5            0.8 200
## 717    0.5     1000             250             250      0.5            0.8 200
## 718    0.5     1000             250             250      0.5            0.8 200
## 719    0.5     1000             250             250      0.5            0.8 200
## 720    0.5     1000             250             250      0.5            0.8 200
## 721    0.5     1000             250             250      0.5            0.8 200
## 722    0.5     1000             250             250      0.5            0.8 200
## 723    0.5     1000             250             250      0.5            0.8 200
## 724    0.5     1000             250             250      0.5            0.8 200
## 725    0.5     1000             250             250      0.5            0.8 200
## 726    0.5     1000             250             250      0.5            0.8 200
## 727    0.5     1000             250             250      0.5            0.8 200
## 728    0.5     1000             250             250      0.5            0.8 200
## 729    0.5     1000             250             250      0.5            0.8 200
## 730    0.5     1000             250             250      0.5            0.8 200
## 731    0.5     1000             250             250      0.5            0.8 200
## 732    0.5     1000             250             250      0.5            0.8 200
## 733    0.5     1000             250             250      0.5            0.8 200
## 734    0.5     1000             250             250      0.5            0.8 200
## 735    0.5     1000             250             250      0.5            0.8 200
## 736    0.5     1000             250             250      0.5            0.8 200
## 737    0.5     1000             250             250      0.5            0.8 200
## 738    0.5     1000             250             250      0.5            0.8 200
## 739    0.5     1000             250             250      0.5            0.8 200
## 740    0.5     1000             250             250      0.5            0.8 200
## 741    0.5     1000             250             250      0.5            0.8 200
## 742    0.5     1000             250             250      0.5            0.8 200
## 743    0.5     1000             250             250      0.5            0.8 200
## 744    0.5     1000             250             250      0.5            0.8 200
## 745    0.5     1000             250             250      0.5            0.8 200
## 746    0.5     1000             250             250      0.5            0.8 200
## 747    0.5     1000             250             250      0.5            0.8 200
## 748    0.5     1000             250             250      0.5            0.8 200
## 749    0.5     1000             250             250      0.5            0.8 200
## 750    0.5     1000             250             250      0.5            0.8 200
## 751    0.5     1000             250             250      0.5            0.8 200
## 752    0.5     1000             250             250      0.5            0.8 200
## 753    0.5     1000             250             250      0.5            0.8 200
## 754    0.5     1000             250             250      0.5            0.8 200
## 755    0.5     1000             250             250      0.5            0.8 200
## 756    0.5     1000             250             250      0.5            0.8 200
## 757    0.5     1000             250             250      0.5            0.8 200
## 758    0.5     1000             250             250      0.5            0.8 200
## 759    0.5     1000             250             250      0.5            0.8 200
## 760    0.5     1000             250             250      0.5            0.8 200
## 761    0.5     1000             250             250      0.5            0.8 200
## 762    0.5     1000             250             250      0.5            0.8 200
## 763    0.5     1000             250             250      0.5            0.8 200
## 764    0.5     1000             250             250      0.5            0.8 200
## 765    0.5     1000             250             250      0.5            0.8 200
## 766    0.5     1000             250             250      0.5            0.8 200
## 767    0.5     1000             250             250      0.5            0.8 200
## 768    0.5     1000             250             250      0.5            0.8 200
## 769    0.5     1000             250             250      0.5            0.8 200
## 770    0.5     1000             250             250      0.5            0.8 200
## 771    0.5     1000             250             250      0.5            0.8 200
## 772    0.5     1000             250             250      0.5            0.8 200
## 773    0.5     1000             250             250      0.5            0.8 200
## 774    0.5     1000             250             250      0.5            0.8 200
## 775    0.5     1000             250             250      0.5            0.8 200
## 776    0.5     1000             250             250      0.5            0.8 200
## 777    0.5     1000             250             250      0.5            0.8 200
## 778    0.5     1000             250             250      0.5            0.8 200
## 779    0.5     1000             250             250      0.5            0.8 200
## 780    0.5     1000             250             250      0.5            0.8 200
## 781    0.5     1000             250             250      0.5            0.8 200
## 782    0.5     1000             250             250      0.5            0.8 200
## 783    0.5     1000             250             250      0.5            0.8 200
## 784    0.5     1000             250             250      0.5            0.8 200
## 785    0.5     1000             250             250      0.5            0.8 200
## 786    0.5     1000             250             250      0.5            0.8 200
## 787    0.5     1000             250             250      0.5            0.8 200
## 788    0.5     1000             250             250      0.5            0.8 200
## 789    0.5     1000             250             250      0.5            0.8 200
## 790    0.5     1000             250             250      0.5            0.8 200
## 791    0.5     1000             250             250      0.5            0.8 200
## 792    0.5     1000             250             250      0.5            0.8 200
## 793    0.5     1000             250             250      0.5            0.8 200
## 794    0.5     1000             250             250      0.5            0.8 200
## 795    0.5     1000             250             250      0.5            0.8 200
## 796    0.5     1000             250             250      0.5            0.8 200
## 797    0.5     1000             250             250      0.5            0.8 200
## 798    0.5     1000             250             250      0.5            0.8 200
## 799    0.5     1000             250             250      0.5            0.8 200
## 800    0.5     1000             250             250      0.5            0.8 200
## 801    0.5     1000             250             250      0.5            0.8 200
## 802    0.5     1000             250             250      0.5            0.8 200
## 803    0.5     1000             250             250      0.5            0.8 200
## 804    0.5     1000             250             250      0.5            0.8 200
## 805    0.5     1000             250             250      0.5            0.8 200
## 806    0.5     1000             250             250      0.5            0.8 200
## 807    0.5     1000             250             250      0.5            0.8 200
## 808    0.5     1000             250             250      0.5            0.8 200
## 809    0.5     1000             250             250      0.5            0.8 200
## 810    0.5     1000             250             250      0.5            0.8 200
## 811    0.5     1000             250             250      0.5            0.8 200
## 812    0.5     1000             250             250      0.5            0.8 200
## 813    0.5     1000             250             250      0.5            0.8 200
## 814    0.5     1000             250             250      0.5            0.8 200
## 815    0.5     1000             250             250      0.5            0.8 200
## 816    0.5     1000             250             250      0.5            0.8 200
## 817    0.5     1000             250             250      0.5            0.8 200
## 818    0.5     1000             250             250      0.5            0.8 200
## 819    0.5     1000             250             250      0.5            0.8 200
## 820    0.5     1000             250             250      0.5            0.8 200
## 821    0.5     1000             250             250      0.5            0.8 200
## 822    0.5     1000             250             250      0.5            0.8 200
## 823    0.5     1000             250             250      0.5            0.8 200
## 824    0.5     1000             250             250      0.5            0.8 200
## 825    0.5     1000             250             250      0.5            0.8 200
## 826    0.5     1000             250             250      0.5            0.8 200
## 827    0.5     1000             250             250      0.5            0.8 200
## 828    0.5     1000             250             250      0.5            0.8 200
## 829    0.5     1000             250             250      0.5            0.8 200
## 830    0.5     1000             250             250      0.5            0.8 200
## 831    0.5     1000             250             250      0.5            0.8 200
## 832    0.5     1000             250             250      0.5            0.8 200
## 833    0.5     1000             250             250      0.5            0.8 200
## 834    0.5     1000             250             250      0.5            0.8 200
## 835    0.5     1000             250             250      0.5            0.8 200
## 836    0.5     1000             250             250      0.5            0.8 200
## 837    0.5     1000             250             250      0.5            0.8 200
## 838    0.5     1000             250             250      0.5            0.8 200
## 839    0.5     1000             250             250      0.5            0.8 200
## 840    0.5     1000             250             250      0.5            0.8 200
## 841    0.5     1000             250             250      0.5            0.8 200
## 842    0.5     1000             250             250      0.5            0.8 200
## 843    0.5     1000             250             250      0.5            0.8 200
## 844    0.5     1000             250             250      0.5            0.8 200
## 845    0.5     1000             250             250      0.5            0.8 200
## 846    0.5     1000             250             250      0.5            0.8 200
## 847    0.5     1000             250             250      0.5            0.8 200
## 848    0.5     1000             250             250      0.5            0.8 200
## 849    0.5     1000             250             250      0.5            0.8 200
## 850    0.5     1000             250             250      0.5            0.8 200
## 851    0.5     1000             250             250      0.5            0.8 200
## 852    0.5     1000             250             250      0.5            0.8 200
## 853    0.5     1000             250             250      0.5            0.8 200
## 854    0.5     1000             250             250      0.5            0.8 200
## 855    0.5     1000             250             250      0.5            0.8 200
## 856    0.5     1000             250             250      0.5            0.8 200
## 857    0.5     1000             250             250      0.5            0.8 200
## 858    0.5     1000             250             250      0.5            0.8 200
## 859    0.5     1000             250             250      0.5            0.8 200
## 860    0.5     1000             250             250      0.5            0.8 200
## 861    0.5     1000             250             250      0.5            0.8 200
## 862    0.5     1000             250             250      0.5            0.8 200
## 863    0.5     1000             250             250      0.5            0.8 200
## 864    0.5     1000             250             250      0.5            0.8 200
## 865    0.5     1000             250             250      0.5            0.8 200
## 866    0.5     1000             250             250      0.5            0.8 200
## 867    0.5     1000             250             250      0.5            0.8 200
## 868    0.5     1000             250             250      0.5            0.8 200
## 869    0.5     1000             250             250      0.5            0.8 200
## 870    0.5     1000             250             250      0.5            0.8 200
## 871    0.5     1000             250             250      0.5            0.8 200
## 872    0.5     1000             250             250      0.5            0.8 200
## 873    0.5     1000             250             250      0.5            0.8 200
## 874    0.5     1000             250             250      0.5            0.8 200
## 875    0.5     1000             250             250      0.5            0.8 200
## 876    0.5     1000             250             250      0.5            0.8 200
## 877    0.5     1000             250             250      0.5            0.8 200
## 878    0.5     1000             250             250      0.5            0.8 200
## 879    0.5     1000             250             250      0.5            0.8 200
## 880    0.5     1000             250             250      0.5            0.8 200
## 881    0.5     1000             250             250      0.5            0.8 200
## 882    0.5     1000             250             250      0.5            0.8 200
## 883    0.5     1000             250             250      0.5            0.8 200
## 884    0.5     1000             250             250      0.5            0.8 200
## 885    0.5     1000             250             250      0.5            0.8 200
## 886    0.5     1000             250             250      0.5            0.8 200
## 887    0.5     1000             250             250      0.5            0.8 200
## 888    0.5     1000             250             250      0.5            0.8 200
## 889    0.5     1000             250             250      0.5            0.8 200
## 890    0.5     1000             250             250      0.5            0.8 200
## 891    0.5     1000             250             250      0.5            0.8 200
## 892    0.5     1000             250             250      0.5            0.8 200
## 893    0.5     1000             250             250      0.5            0.8 200
## 894    0.5     1000             250             250      0.5            0.8 200
## 895    0.5     1000             250             250      0.5            0.8 200
## 896    0.5     1000             250             250      0.5            0.8 200
## 897    0.5     1000             250             250      0.5            0.8 200
## 898    0.5     1000             250             250      0.5            0.8 200
## 899    0.5     1000             250             250      0.5            0.8 200
## 900    0.5     1000             250             250      0.5            0.8 200
## 901    0.5     1000             250             250      0.5            0.8 200
## 902    0.5     1000             250             250      0.5            0.8 200
## 903    0.5     1000             250             250      0.5            0.8 200
## 904    0.5     1000             250             250      0.5            0.8 200
## 905    0.5     1000             250             250      0.5            0.8 200
## 906    0.5     1000             250             250      0.5            0.8 200
## 907    0.5     1000             250             250      0.5            0.8 200
## 908    0.5     1000             250             250      0.5            0.8 200
## 909    0.5     1000             250             250      0.5            0.8 200
## 910    0.5     1000             250             250      0.5            0.8 200
## 911    0.5     1000             250             250      0.5            0.8 200
## 912    0.5     1000             250             250      0.5            0.8 200
## 913    0.5     1000             250             250      0.5            0.8 200
## 914    0.5     1000             250             250      0.5            0.8 200
## 915    0.5     1000             250             250      0.5            0.8 200
## 916    0.5     1000             250             250      0.5            0.8 200
## 917    0.5     1000             250             250      0.5            0.8 200
## 918    0.5     1000             250             250      0.5            0.8 200
## 919    0.5     1000             250             250      0.5            0.8 200
## 920    0.5     1000             250             250      0.5            0.8 200
## 921    0.5     1000             250             250      0.5            0.8 200
## 922    0.5     1000             250             250      0.5            0.8 200
## 923    0.5     1000             250             250      0.5            0.8 200
## 924    0.5     1000             250             250      0.5            0.8 200
## 925    0.5     1000             250             250      0.5            0.8 200
## 926    0.5     1000             250             250      0.5            0.8 200
## 927    0.5     1000             250             250      0.5            0.8 200
## 928    0.5     1000             250             250      0.5            0.8 200
## 929    0.5     1000             250             250      0.5            0.8 200
## 930    0.5     1000             250             250      0.5            0.8 200
## 931    0.5     1000             250             250      0.5            0.8 200
## 932    0.5     1000             250             250      0.5            0.8 200
## 933    0.5     1000             250             250      0.5            0.8 200
## 934    0.5     1000             250             250      0.5            0.8 200
## 935    0.5     1000             250             250      0.5            0.8 200
## 936    0.5     1000             250             250      0.5            0.8 200
## 937    0.5     1000             250             250      0.5            0.8 200
## 938    0.5     1000             250             250      0.5            0.8 200
## 939    0.5     1000             250             250      0.5            0.8 200
## 940    0.5     1000             250             250      0.5            0.8 200
## 941    0.5     1000             250             250      0.5            0.8 200
## 942    0.5     1000             250             250      0.5            0.8 200
## 943    0.5     1000             250             250      0.5            0.8 200
## 944    0.5     1000             250             250      0.5            0.8 200
## 945    0.5     1000             250             250      0.5            0.8 200
## 946    0.5     1000             250             250      0.5            0.8 200
## 947    0.5     1000             250             250      0.5            0.8 200
## 948    0.5     1000             250             250      0.5            0.8 200
## 949    0.5     1000             250             250      0.5            0.8 200
## 950    0.5     1000             250             250      0.5            0.8 200
## 951    0.5     1000             250             250      0.5            0.8 200
## 952    0.5     1000             250             250      0.5            0.8 200
## 953    0.5     1000             250             250      0.5            0.8 200
## 954    0.5     1000             250             250      0.5            0.8 200
## 955    0.5     1000             250             250      0.5            0.8 200
## 956    0.5     1000             250             250      0.5            0.8 200
## 957    0.5     1000             250             250      0.5            0.8 200
## 958    0.5     1000             250             250      0.5            0.8 200
## 959    0.5     1000             250             250      0.5            0.8 200
## 960    0.5     1000             250             250      0.5            0.8 200
## 961    0.5     1000             250             250      0.5            0.8 200
## 962    0.5     1000             250             250      0.5            0.8 200
## 963    0.5     1000             250             250      0.5            0.8 200
## 964    0.5     1000             250             250      0.5            0.8 200
## 965    0.5     1000             250             250      0.5            0.8 200
## 966    0.5     1000             250             250      0.5            0.8 200
## 967    0.5     1000             250             250      0.5            0.8 200
## 968    0.5     1000             250             250      0.5            0.8 200
## 969    0.5     1000             250             250      0.5            0.8 200
## 970    0.5     1000             250             250      0.5            0.8 200
## 971    0.5     1000             250             250      0.5            0.8 200
## 972    0.5     1000             250             250      0.5            0.8 200
## 973    0.5     1000             250             250      0.5            0.8 200
## 974    0.5     1000             250             250      0.5            0.8 200
## 975    0.5     1000             250             250      0.5            0.8 200
## 976    0.5     1000             250             250      0.5            0.8 200
## 977    0.5     1000             250             250      0.5            0.8 200
## 978    0.5     1000             250             250      0.5            0.8 200
## 979    0.5     1000             250             250      0.5            0.8 200
## 980    0.5     1000             250             250      0.5            0.8 200
## 981    0.5     1000             250             250      0.5            0.8 200
## 982    0.5     1000             250             250      0.5            0.8 200
## 983    0.5     1000             250             250      0.5            0.8 200
## 984    0.5     1000             250             250      0.5            0.8 200
## 985    0.5     1000             250             250      0.5            0.8 200
## 986    0.5     1000             250             250      0.5            0.8 200
## 987    0.5     1000             250             250      0.5            0.8 200
## 988    0.5     1000             250             250      0.5            0.8 200
## 989    0.5     1000             250             250      0.5            0.8 200
## 990    0.5     1000             250             250      0.5            0.8 200
## 991    0.5     1000             250             250      0.5            0.8 200
## 992    0.5     1000             250             250      0.5            0.8 200
## 993    0.5     1000             250             250      0.5            0.8 200
## 994    0.5     1000             250             250      0.5            0.8 200
## 995    0.5     1000             250             250      0.5            0.8 200
## 996    0.5     1000             250             250      0.5            0.8 200
## 997    0.5     1000             250             250      0.5            0.8 200
## 998    0.5     1000             250             250      0.5            0.8 200
## 999    0.5     1000             250             250      0.5            0.8 200
## 1000   0.5     1000             250             250      0.5            0.8 200
## 1001   0.5     1000             250             250      0.5            0.8 200
## 1002   0.5     1000             250             250      0.5            0.8 200
## 1003   0.5     1000             250             250      0.5            0.8 200
## 1004   0.5     1000             250             250      0.5            0.8 200
## 1005   0.5     1000             250             250      0.5            0.8 200
## 1006   0.5     1000             250             250      0.5            0.8 200
## 1007   0.5     1000             250             250      0.5            0.8 200
## 1008   0.5     1000             250             250      0.5            0.8 200
## 1009   0.5     1000             250             250      0.5            0.8 200
## 1010   0.5     1000             250             250      0.5            0.8 200
## 1011   0.5     1000             250             250      0.5            0.8 200
## 1012   0.5     1000             250             250      0.5            0.8 200
## 1013   0.5     1000             250             250      0.5            0.8 200
## 1014   0.5     1000             250             250      0.5            0.8 200
## 1015   0.5     1000             250             250      0.5            0.8 200
## 1016   0.5     1000             250             250      0.5            0.8 200
## 1017   0.5     1000             250             250      0.5            0.8 200
## 1018   0.5     1000             250             250      0.5            0.8 200
## 1019   0.5     1000             250             250      0.5            0.8 200
## 1020   0.5     1000             250             250      0.5            0.8 200
## 1021   0.5     1000             250             250      0.5            0.8 200
## 1022   0.5     1000             250             250      0.5            0.8 200
## 1023   0.5     1000             250             250      0.5            0.8 200
## 1024   0.5     1000             250             250      0.5            0.8 200
## 1025   0.5     1000             250             250      0.5            0.8 200
## 1026   0.5     1000             250             250      0.5            0.8 200
## 1027   0.5     1000             250             250      0.5            0.8 200
## 1028   0.5     1000             250             250      0.5            0.8 200
## 1029   0.5     1000             250             250      0.5            0.8 200
## 1030   0.5     1000             250             250      0.5            0.8 200
## 1031   0.5     1000             250             250      0.5            0.8 200
## 1032   0.5     1000             250             250      0.5            0.8 200
## 1033   0.5     1000             250             250      0.5            0.8 200
## 1034   0.5     1000             250             250      0.5            0.8 200
## 1035   0.5     1000             250             250      0.5            0.8 200
## 1036   0.5     1000             250             250      0.5            0.8 200
## 1037   0.5     1000             250             250      0.5            0.8 200
## 1038   0.5     1000             250             250      0.5            0.8 200
## 1039   0.5     1000             250             250      0.5            0.8 200
## 1040   0.5     1000             250             250      0.5            0.8 200
## 1041   0.5     1000             250             250      0.5            0.8 200
## 1042   0.5     1000             250             250      0.5            0.8 200
## 1043   0.5     1000             250             250      0.5            0.8 200
## 1044   0.5     1000             250             250      0.5            0.8 200
## 1045   0.5     1000             250             250      0.5            0.8 200
## 1046   0.5     1000             250             250      0.5            0.8 200
## 1047   0.5     1000             250             250      0.5            0.8 200
## 1048   0.5     1000             250             250      0.5            0.8 200
## 1049   0.5     1000             250             250      0.5            0.8 200
## 1050   0.5     1000             250             250      0.5            0.8 200
## 1051   0.5     1000             250             250      0.5            0.8 200
## 1052   0.5     1000             250             250      0.5            0.8 200
## 1053   0.5     1000             250             250      0.5            0.8 200
## 1054   0.5     1000             250             250      0.5            0.8 200
## 1055   0.5     1000             250             250      0.5            0.8 200
## 1056   0.5     1000             250             250      0.5            0.8 200
## 1057   0.5     1000             250             250      0.5            0.8 200
## 1058   0.5     1000             250             250      0.5            0.8 200
## 1059   0.5     1000             250             250      0.5            0.8 200
## 1060   0.5     1000             250             250      0.5            0.8 200
## 1061   0.5     1000             250             250      0.5            0.8 200
## 1062   0.5     1000             250             250      0.5            0.8 200
## 1063   0.5     1000             250             250      0.5            0.8 200
## 1064   0.5     1000             250             250      0.5            0.8 200
## 1065   0.5     1000             250             250      0.5            0.8 200
## 1066   0.5     1000             250             250      0.5            0.8 200
## 1067   0.5     1000             250             250      0.5            0.8 200
## 1068   0.5     1000             250             250      0.5            0.8 200
## 1069   0.5     1000             250             250      0.5            0.8 200
## 1070   0.5     1000             250             250      0.5            0.8 200
## 1071   0.5     1000             250             250      0.5            0.8 200
## 1072   0.5     1000             250             250      0.5            0.8 200
## 1073   0.5     1000             250             250      0.5            0.8 200
## 1074   0.5     1000             250             250      0.5            0.8 200
## 1075   0.5     1000             250             250      0.5            0.8 200
## 1076   0.5     1000             250             250      0.5            0.8 200
## 1077   0.5     1000             250             250      0.5            0.8 200
## 1078   0.5     1000             250             250      0.5            0.8 200
## 1079   0.5     1000             250             250      0.5            0.8 200
## 1080   0.5     1000             250             250      0.5            0.8 200
## 1081   0.5     1000             250             250      0.5            0.8 200
## 1082   0.5     1000             250             250      0.5            0.8 200
## 1083   0.5     1000             250             250      0.5            0.8 200
## 1084   0.5     1000             250             250      0.5            0.8 200
## 1085   0.5     1000             250             250      0.5            0.8 200
## 1086   0.5     1000             250             250      0.5            0.8 200
## 1087   0.5     1000             250             250      0.5            0.8 200
## 1088   0.5     1000             250             250      0.5            0.8 200
## 1089   0.5     1000             250             250      0.5            0.8 200
## 1090   0.5     1000             250             250      0.5            0.8 200
## 1091   0.5     1000             250             250      0.5            0.8 200
## 1092   0.5     1000             250             250      0.5            0.8 200
## 1093   0.5     1000             250             250      0.5            0.8 200
## 1094   0.5     1000             250             250      0.5            0.8 200
## 1095   0.5     1000             250             250      0.5            0.8 200
## 1096   0.5     1000             250             250      0.5            0.8 200
## 1097   0.5     1000             250             250      0.5            0.8 200
## 1098   0.5     1000             250             250      0.5            0.8 200
## 1099   0.5     1000             250             250      0.5            0.8 200
## 1100   0.5     1000             250             250      0.5            0.8 200
## 1101   0.5     1000             250             250      0.5            0.8 200
## 1102   0.5     1000             250             250      0.5            0.8 200
## 1103   0.5     1000             250             250      0.5            0.8 200
## 1104   0.5     1000             250             250      0.5            0.8 200
## 1105   0.5     1000             250             250      0.5            0.8 200
## 1106   0.5     1000             250             250      0.5            0.8 200
## 1107   0.5     1000             250             250      0.5            0.8 200
## 1108   0.5     1000             250             250      0.5            0.8 200
## 1109   0.5     1000             250             250      0.5            0.8 200
## 1110   0.5     1000             250             250      0.5            0.8 200
## 1111   0.5     1000             250             250      0.5            0.8 200
## 1112   0.5     1000             250             250      0.5            0.8 200
## 1113   0.5     1000             250             250      0.5            0.8 200
## 1114   0.5     1000             250             250      0.5            0.8 200
## 1115   0.5     1000             250             250      0.5            0.8 200
## 1116   0.5     1000             250             250      0.5            0.8 200
## 1117   0.5     1000             250             250      0.5            0.8 200
## 1118   0.5     1000             250             250      0.5            0.8 200
## 1119   0.5     1000             250             250      0.5            0.8 200
## 1120   0.5     1000             250             250      0.5            0.8 200
## 1121   0.5     1000             250             250      0.5            0.8 200
## 1122   0.5     1000             250             250      0.5            0.8 200
## 1123   0.5     1000             250             250      0.5            0.8 200
## 1124   0.5     1000             250             250      0.5            0.8 200
## 1125   0.5     1000             250             250      0.5            0.8 200
## 1126   0.5     1000             250             250      0.5            0.8 200
## 1127   0.5     1000             250             250      0.5            0.8 200
## 1128   0.5     1000             250             250      0.5            0.8 200
## 1129   0.5     1000             250             250      0.5            0.8 200
## 1130   0.5     1000             250             250      0.5            0.8 200
## 1131   0.5     1000             250             250      0.5            0.8 200
## 1132   0.5     1000             250             250      0.5            0.8 200
## 1133   0.5     1000             250             250      0.5            0.8 200
## 1134   0.5     1000             250             250      0.5            0.8 200
## 1135   0.5     1000             250             250      0.5            0.8 200
## 1136   0.5     1000             250             250      0.5            0.8 200
## 1137   0.5     1000             250             250      0.5            0.8 200
## 1138   0.5     1000             250             250      0.5            0.8 200
## 1139   0.5     1000             250             250      0.5            0.8 200
## 1140   0.5     1000             250             250      0.5            0.8 200
## 1141   0.5     1000             250             250      0.5            0.8 200
## 1142   0.5     1000             250             250      0.5            0.8 200
## 1143   0.5     1000             250             250      0.5            0.8 200
## 1144   0.5     1000             250             250      0.5            0.8 200
## 1145   0.5     1000             250             250      0.5            0.8 200
## 1146   0.5     1000             250             250      0.5            0.8 200
## 1147   0.5     1000             250             250      0.5            0.8 200
## 1148   0.5     1000             250             250      0.5            0.8 200
## 1149   0.5     1000             250             250      0.5            0.8 200
## 1150   0.5     1000             250             250      0.5            0.8 200
## 1151   0.5     1000             250             250      0.5            0.8 200
## 1152   0.5     1000             250             250      0.5            0.8 200
## 1153   0.5     1000             250             250      0.5            0.8 200
## 1154   0.5     1000             250             250      0.5            0.8 200
## 1155   0.5     1000             250             250      0.5            0.8 200
## 1156   0.5     1000             250             250      0.5            0.8 200
## 1157   0.5     1000             250             250      0.5            0.8 200
## 1158   0.5     1000             250             250      0.5            0.8 200
## 1159   0.5     1000             250             250      0.5            0.8 200
## 1160   0.5     1000             250             250      0.5            0.8 200
## 1161   0.5     1000             250             250      0.5            0.8 200
## 1162   0.5     1000             250             250      0.5            0.8 200
## 1163   0.5     1000             250             250      0.5            0.8 200
## 1164   0.5     1000             250             250      0.5            0.8 200
## 1165   0.5     1000             250             250      0.5            0.8 200
## 1166   0.5     1000             250             250      0.5            0.8 200
## 1167   0.5     1000             250             250      0.5            0.8 200
## 1168   0.5     1000             250             250      0.5            0.8 200
## 1169   0.5     1000             250             250      0.5            0.8 200
## 1170   0.5     1000             250             250      0.5            0.8 200
## 1171   0.5     1000             250             250      0.5            0.8 200
## 1172   0.5     1000             250             250      0.5            0.8 200
## 1173   0.5     1000             250             250      0.5            0.8 200
## 1174   0.5     1000             250             250      0.5            0.8 200
## 1175   0.5     1000             250             250      0.5            0.8 200
## 1176   0.5     1000             250             250      0.5            0.8 200
## 1177   0.5     1000             250             250      0.5            0.8 200
## 1178   0.5     1000             250             250      0.5            0.8 200
## 1179   0.5     1000             250             250      0.5            0.8 200
## 1180   0.5     1000             250             250      0.5            0.8 200
## 1181   0.5     1000             250             250      0.5            0.8 200
## 1182   0.5     1000             250             250      0.5            0.8 200
## 1183   0.5     1000             250             250      0.5            0.8 200
## 1184   0.5     1000             250             250      0.5            0.8 200
## 1185   0.5     1000             250             250      0.5            0.8 200
## 1186   0.5     1000             250             250      0.5            0.8 200
## 1187   0.5     1000             250             250      0.5            0.8 200
## 1188   0.5     1000             250             250      0.5            0.8 200
## 1189   0.5     1000             250             250      0.5            0.8 200
## 1190   0.5     1000             250             250      0.5            0.8 200
## 1191   0.5     1000             250             250      0.5            0.8 200
## 1192   0.5     1000             250             250      0.5            0.8 200
## 1193   0.5     1000             250             250      0.5            0.8 200
## 1194   0.5     1000             250             250      0.5            0.8 200
## 1195   0.5     1000             250             250      0.5            0.8 200
## 1196   0.5     1000             250             250      0.5            0.8 200
## 1197   0.5     1000             250             250      0.5            0.8 200
## 1198   0.5     1000             250             250      0.5            0.8 200
## 1199   0.5     1000             250             250      0.5            0.8 200
## 1200   0.5     1000             250             250      0.5            0.8 200
## 1201   0.5     1000             250             250      0.5            0.8 200
## 1202   0.5     1000             250             250      0.5            0.8 200
## 1203   0.5     1000             250             250      0.5            0.8 200
## 1204   0.5     1000             250             250      0.5            0.8 200
## 1205   0.5     1000             250             250      0.5            0.8 200
## 1206   0.5     1000             250             250      0.5            0.8 200
## 1207   0.5     1000             250             250      0.5            0.8 200
## 1208   0.5     1000             250             250      0.5            0.8 200
## 1209   0.5     1000             250             250      0.5            0.8 200
## 1210   0.5     1000             250             250      0.5            0.8 200
## 1211   0.5     1000             250             250      0.5            0.8 200
## 1212   0.5     1000             250             250      0.5            0.8 200
## 1213   0.5     1000             250             250      0.5            0.8 200
## 1214   0.5     1000             250             250      0.5            0.8 200
## 1215   0.5     1000             250             250      0.5            0.8 200
## 1216   0.5     1000             250             250      0.5            0.8 200
## 1217   0.5     1000             250             250      0.5            0.8 200
## 1218   0.5     1000             250             250      0.5            0.8 200
## 1219   0.5     1000             250             250      0.5            0.8 200
## 1220   0.5     1000             250             250      0.5            0.8 200
## 1221   0.5     1000             250             250      0.5            0.8 200
## 1222   0.5     1000             250             250      0.5            0.8 200
## 1223   0.5     1000             250             250      0.5            0.8 200
## 1224   0.5     1000             250             250      0.5            0.8 200
## 1225   0.5     1000             250             250      0.5            0.8 200
## 1226   0.5     1000             250             250      0.5            0.8 200
## 1227   0.5     1000             250             250      0.5            0.8 200
## 1228   0.5     1000             250             250      0.5            0.8 200
## 1229   0.5     1000             250             250      0.5            0.8 200
## 1230   0.5     1000             250             250      0.5            0.8 200
## 1231   0.5     1000             250             250      0.5            0.8 200
## 1232   0.5     1000             250             250      0.5            0.8 200
## 1233   0.5     1000             250             250      0.5            0.8 200
## 1234   0.5     1000             250             250      0.5            0.8 200
## 1235   0.5     1000             250             250      0.5            0.8 200
## 1236   0.5     1000             250             250      0.5            0.8 200
## 1237   0.5     1000             250             250      0.5            0.8 200
## 1238   0.5     1000             250             250      0.5            0.8 200
## 1239   0.5     1000             250             250      0.5            0.8 200
## 1240   0.5     1000             250             250      0.5            0.8 200
## 1241   0.5     1000             250             250      0.5            0.8 200
## 1242   0.5     1000             250             250      0.5            0.8 200
## 1243   0.5     1000             250             250      0.5            0.8 200
## 1244   0.5     1000             250             250      0.5            0.8 200
## 1245   0.5     1000             250             250      0.5            0.8 200
## 1246   0.5     1000             250             250      0.5            0.8 200
## 1247   0.5     1000             250             250      0.5            0.8 200
## 1248   0.5     1000             250             250      0.5            0.8 200
## 1249   0.5     1000             250             250      0.5            0.8 200
## 1250   0.5     1000             250             250      0.5            0.8 200
## 1251   0.5     1000             250             250      0.5            0.8 200
## 1252   0.5     1000             250             250      0.5            0.8 200
## 1253   0.5     1000             250             250      0.5            0.8 200
## 1254   0.5     1000             250             250      0.5            0.8 200
## 1255   0.5     1000             250             250      0.5            0.8 200
## 1256   0.5     1000             250             250      0.5            0.8 200
## 1257   0.5     1000             250             250      0.5            0.8 200
## 1258   0.5     1000             250             250      0.5            0.8 200
## 1259   0.5     1000             250             250      0.5            0.8 200
## 1260   0.5     1000             250             250      0.5            0.8 200
## 1261   0.5     1000             250             250      0.5            0.8 200
## 1262   0.5     1000             250             250      0.5            0.8 200
## 1263   0.5     1000             250             250      0.5            0.8 200
## 1264   0.5     1000             250             250      0.5            0.8 200
## 1265   0.5     1000             250             250      0.5            0.8 200
## 1266   0.5     1000             250             250      0.5            0.8 200
## 1267   0.5     1000             250             250      0.5            0.8 200
## 1268   0.5     1000             250             250      0.5            0.8 200
## 1269   0.5     1000             250             250      0.5            0.8 200
## 1270   0.5     1000             250             250      0.5            0.8 200
## 1271   0.5     1000             250             250      0.5            0.8 200
## 1272   0.5     1000             250             250      0.5            0.8 200
## 1273   0.5     1000             250             250      0.5            0.8 200
## 1274   0.5     1000             250             250      0.5            0.8 200
## 1275   0.5     1000             250             250      0.5            0.8 200
## 1276   0.5     1000             250             250      0.5            0.8 200
## 1277   0.5     1000             250             250      0.5            0.8 200
## 1278   0.5     1000             250             250      0.5            0.8 200
## 1279   0.5     1000             250             250      0.5            0.8 200
## 1280   0.5     1000             250             250      0.5            0.8 200
## 1281   0.5     1000             250             250      0.5            0.8 200
## 1282   0.5     1000             250             250      0.5            0.8 200
## 1283   0.5     1000             250             250      0.5            0.8 200
## 1284   0.5     1000             250             250      0.5            0.8 200
## 1285   0.5     1000             250             250      0.5            0.8 200
## 1286   0.5     1000             250             250      0.5            0.8 200
## 1287   0.5     1000             250             250      0.5            0.8 200
## 1288   0.5     1000             250             250      0.5            0.8 200
## 1289   0.5     1000             250             250      0.5            0.8 200
## 1290   0.5     1000             250             250      0.5            0.8 200
## 1291   0.5     1000             250             250      0.5            0.8 200
## 1292   0.5     1000             250             250      0.5            0.8 200
## 1293   0.5     1000             250             250      0.5            0.8 200
## 1294   0.5     1000             250             250      0.5            0.8 200
## 1295   0.5     1000             250             250      0.5            0.8 200
## 1296   0.5     1000             250             250      0.5            0.8 200
## 1297   0.5     1000             250             250      0.5            0.8 200
## 1298   0.5     1000             250             250      0.5            0.8 200
## 1299   0.5     1000             250             250      0.5            0.8 200
## 1300   0.5     1000             250             250      0.5            0.8 200
## 1301   0.5     1000             250             250      0.5            0.8 200
## 1302   0.5     1000             250             250      0.5            0.8 200
## 1303   0.5     1000             250             250      0.5            0.8 200
## 1304   0.5     1000             250             250      0.5            0.8 200
## 1305   0.5     1000             250             250      0.5            0.8 200
## 1306   0.5     1000             250             250      0.5            0.8 200
## 1307   0.5     1000             250             250      0.5            0.8 200
## 1308   0.5     1000             250             250      0.5            0.8 200
## 1309   0.5     1000             250             250      0.5            0.8 200
## 1310   0.5     1000             250             250      0.5            0.8 200
## 1311   0.5     1000             250             250      0.5            0.8 200
## 1312   0.5     1000             250             250      0.5            0.8 200
## 1313   0.5     1000             250             250      0.5            0.8 200
## 1314   0.5     1000             250             250      0.5            0.8 200
## 1315   0.5     1000             250             250      0.5            0.8 200
## 1316   0.5     1000             250             250      0.5            0.8 200
## 1317   0.5     1000             250             250      0.5            0.8 200
## 1318   0.5     1000             250             250      0.5            0.8 200
## 1319   0.5     1000             250             250      0.5            0.8 200
## 1320   0.5     1000             250             250      0.5            0.8 200
## 1321   0.5     1000             250             250      0.5            0.8 200
## 1322   0.5     1000             250             250      0.5            0.8 200
## 1323   0.5     1000             250             250      0.5            0.8 200
## 1324   0.5     1000             250             250      0.5            0.8 200
## 1325   0.5     1000             250             250      0.5            0.8 200
## 1326   0.5     1000             250             250      0.5            0.8 200
## 1327   0.5     1000             250             250      0.5            0.8 200
## 1328   0.5     1000             250             250      0.5            0.8 200
## 1329   0.5     1000             250             250      0.5            0.8 200
## 1330   0.5     1000             250             250      0.5            0.8 200
## 1331   0.5     1000             250             250      0.5            0.8 200
## 1332   0.5     1000             250             250      0.5            0.8 200
## 1333   0.5     1000             250             250      0.5            0.8 200
## 1334   0.5     1000             250             250      0.5            0.8 200
## 1335   0.5     1000             250             250      0.5            0.8 200
## 1336   0.5     1000             250             250      0.5            0.8 200
## 1337   0.5     1000             250             250      0.5            0.8 200
## 1338   0.5     1000             250             250      0.5            0.8 200
## 1339   0.5     1000             250             250      0.5            0.8 200
## 1340   0.5     1000             250             250      0.5            0.8 200
## 1341   0.5     1000             250             250      0.5            0.8 200
## 1342   0.5     1000             250             250      0.5            0.8 200
## 1343   0.5     1000             250             250      0.5            0.8 200
## 1344   0.5     1000             250             250      0.5            0.8 200
## 1345   0.5     1000             250             250      0.5            0.8 200
## 1346   0.5     1000             250             250      0.5            0.8 200
## 1347   0.5     1000             250             250      0.5            0.8 200
## 1348   0.5     1000             250             250      0.5            0.8 200
## 1349   0.5     1000             250             250      0.5            0.8 200
## 1350   0.5     1000             250             250      0.5            0.8 200
## 1351   0.5     1000             250             250      0.5            0.8 200
## 1352   0.5     1000             250             250      0.5            0.8 200
## 1353   0.5     1000             250             250      0.5            0.8 200
## 1354   0.5     1000             250             250      0.5            0.8 200
## 1355   0.5     1000             250             250      0.5            0.8 200
## 1356   0.5     1000             250             250      0.5            0.8 200
## 1357   0.5     1000             250             250      0.5            0.8 200
## 1358   0.5     1000             250             250      0.5            0.8 200
## 1359   0.5     1000             250             250      0.5            0.8 200
## 1360   0.5     1000             250             250      0.5            0.8 200
## 1361   0.5     1000             250             250      0.5            0.8 200
## 1362   0.5     1000             250             250      0.5            0.8 200
## 1363   0.5     1000             250             250      0.5            0.8 200
## 1364   0.5     1000             250             250      0.5            0.8 200
## 1365   0.5     1000             250             250      0.5            0.8 200
## 1366   0.5     1000             250             250      0.5            0.8 200
## 1367   0.5     1000             250             250      0.5            0.8 200
## 1368   0.5     1000             250             250      0.5            0.8 200
## 1369   0.5     1000             250             250      0.5            0.8 200
## 1370   0.5     1000             250             250      0.5            0.8 200
## 1371   0.5     1000             250             250      0.5            0.8 200
## 1372   0.5     1000             250             250      0.5            0.8 200
## 1373   0.5     1000             250             250      0.5            0.8 200
## 1374   0.5     1000             250             250      0.5            0.8 200
## 1375   0.5     1000             250             250      0.5            0.8 200
## 1376   0.5     1000             250             250      0.5            0.8 200
## 1377   0.5     1000             250             250      0.5            0.8 200
## 1378   0.5     1000             250             250      0.5            0.8 200
## 1379   0.5     1000             250             250      0.5            0.8 200
## 1380   0.5     1000             250             250      0.5            0.8 200
## 1381   0.5     1000             250             250      0.5            0.8 200
## 1382   0.5     1000             250             250      0.5            0.8 200
## 1383   0.5     1000             250             250      0.5            0.8 200
## 1384   0.5     1000             250             250      0.5            0.8 200
## 1385   0.5     1000             250             250      0.5            0.8 200
## 1386   0.5     1000             250             250      0.5            0.8 200
## 1387   0.5     1000             250             250      0.5            0.8 200
## 1388   0.5     1000             250             250      0.5            0.8 200
## 1389   0.5     1000             250             250      0.5            0.8 200
## 1390   0.5     1000             250             250      0.5            0.8 200
## 1391   0.5     1000             250             250      0.5            0.8 200
## 1392   0.5     1000             250             250      0.5            0.8 200
## 1393   0.5     1000             250             250      0.5            0.8 200
## 1394   0.5     1000             250             250      0.5            0.8 200
## 1395   0.5     1000             250             250      0.5            0.8 200
## 1396   0.5     1000             250             250      0.5            0.8 200
## 1397   0.5     1000             250             250      0.5            0.8 200
## 1398   0.5     1000             250             250      0.5            0.8 200
## 1399   0.5     1000             250             250      0.5            0.8 200
## 1400   0.5     1000             250             250      0.5            0.8 200
## 1401   0.5     1000             250             250      0.5            0.8 200
## 1402   0.5     1000             250             250      0.5            0.8 200
## 1403   0.5     1000             250             250      0.5            0.8 200
## 1404   0.5     1000             250             250      0.5            0.8 200
## 1405   0.5     1000             250             250      0.5            0.8 200
## 1406   0.5     1000             250             250      0.5            0.8 200
## 1407   0.5     1000             250             250      0.5            0.8 200
## 1408   0.5     1000             250             250      0.5            0.8 200
## 1409   0.5     1000             250             250      0.5            0.8 200
## 1410   0.5     1000             250             250      0.5            0.8 200
## 1411   0.5     1000             250             250      0.5            0.8 200
## 1412   0.5     1000             250             250      0.5            0.8 200
## 1413   0.5     1000             250             250      0.5            0.8 200
## 1414   0.5     1000             250             250      0.5            0.8 200
## 1415   0.5     1000             250             250      0.5            0.8 200
## 1416   0.5     1000             250             250      0.5            0.8 200
## 1417   0.5     1000             250             250      0.5            0.8 200
## 1418   0.5     1000             250             250      0.5            0.8 200
## 1419   0.5     1000             250             250      0.5            0.8 200
## 1420   0.5     1000             250             250      0.5            0.8 200
## 1421   0.5     1000             250             250      0.5            0.8 200
## 1422   0.5     1000             250             250      0.5            0.8 200
## 1423   0.5     1000             250             250      0.5            0.8 200
## 1424   0.5     1000             250             250      0.5            0.8 200
## 1425   0.5     1000             250             250      0.5            0.8 200
## 1426   0.5     1000             250             250      0.5            0.8 200
## 1427   0.5     1000             250             250      0.5            0.8 200
## 1428   0.5     1000             250             250      0.5            0.8 200
## 1429   0.5     1000             250             250      0.5            0.8 200
## 1430   0.5     1000             250             250      0.5            0.8 200
## 1431   0.5     1000             250             250      0.5            0.8 200
## 1432   0.5     1000             250             250      0.5            0.8 200
## 1433   0.5     1000             250             250      0.5            0.8 200
## 1434   0.5     1000             250             250      0.5            0.8 200
## 1435   0.5     1000             250             250      0.5            0.8 200
## 1436   0.5     1000             250             250      0.5            0.8 200
## 1437   0.5     1000             250             250      0.5            0.8 200
## 1438   0.5     1000             250             250      0.5            0.8 200
## 1439   0.5     1000             250             250      0.5            0.8 200
## 1440   0.5     1000             250             250      0.5            0.8 200
## 1441   0.5     1000             250             250      0.5            0.8 200
## 1442   0.5     1000             250             250      0.5            0.8 200
## 1443   0.5     1000             250             250      0.5            0.8 200
## 1444   0.5     1000             250             250      0.5            0.8 200
## 1445   0.5     1000             250             250      0.5            0.8 200
## 1446   0.5     1000             250             250      0.5            0.8 200
## 1447   0.5     1000             250             250      0.5            0.8 200
## 1448   0.5     1000             250             250      0.5            0.8 200
## 1449   0.5     1000             250             250      0.5            0.8 200
## 1450   0.5     1000             250             250      0.5            0.8 200
## 1451   0.5     1000             250             250      0.5            0.8 200
## 1452   0.5     1000             250             250      0.5            0.8 200
## 1453   0.5     1000             250             250      0.5            0.8 200
## 1454   0.5     1000             250             250      0.5            0.8 200
## 1455   0.5     1000             250             250      0.5            0.8 200
## 1456   0.5     1000             250             250      0.5            0.8 200
## 1457   0.5     1000             250             250      0.5            0.8 200
## 1458   0.5     1000             250             250      0.5            0.8 200
## 1459   0.5     1000             250             250      0.5            0.8 200
## 1460   0.5     1000             250             250      0.5            0.8 200
##      exaggeration_factor cluster
## 1                     12       1
## 2                     12       2
## 3                     12       1
## 4                     12       3
## 5                     12       1
## 6                     12       4
## 7                     12       5
## 8                     12       2
## 9                     12       6
## 10                    12       7
## 11                    12       8
## 12                    12       1
## 13                    12       9
## 14                    12       5
## 15                    12       7
## 16                    12       3
## 17                    12      10
## 18                    12      11
## 19                    12       7
## 20                    12       8
## 21                    12       1
## 22                    12       3
## 23                    12       5
## 24                    12       4
## 25                    12       9
## 26                    12       5
## 27                    12       2
## 28                    12       5
## 29                    12       7
## 30                    12       3
## 31                    12       3
## 32                    12       7
## 33                    12       5
## 34                    12       2
## 35                    12      12
## 36                    12       1
## 37                    12       7
## 38                    12       2
## 39                    12       8
## 40                    12      11
## 41                    12       7
## 42                    12       2
## 43                    12       9
## 44                    12       9
## 45                    12       9
## 46                    12      12
## 47                    12       4
## 48                    12       5
## 49                    12       6
## 50                    12       8
## 51                    12       2
## 52                    12      13
## 53                    12       9
## 54                    12       4
## 55                    12       7
## 56                    12       4
## 57                    12      14
## 58                    12       1
## 59                    12       1
## 60                    12       8
## 61                    12       7
## 62                    12       3
## 63                    12      12
## 64                    12       3
## 65                    12       1
## 66                    12       1
## 67                    12       7
## 68                    12       5
## 69                    12       3
## 70                    12       3
## 71                    12       7
## 72                    12       8
## 73                    12      15
## 74                    12       9
## 75                    12       6
## 76                    12      14
## 77                    12       8
## 78                    12       3
## 79                    12       6
## 80                    12       3
## 81                    12      15
## 82                    12      12
## 83                    12       5
## 84                    12       7
## 85                    12       2
## 86                    12       1
## 87                    12       1
## 88                    12      14
## 89                    12      13
## 90                    12       7
## 91                    12      11
## 92                    12       7
## 93                    12       3
## 94                    12       6
## 95                    12       1
## 96                    12       2
## 97                    12       5
## 98                    12       7
## 99                    12      10
## 100                   12      10
## 101                   12       5
## 102                   12       1
## 103                   12      11
## 104                   12       5
## 105                   12       3
## 106                   12       1
## 107                   12      10
## 108                   12       9
## 109                   12       3
## 110                   12       7
## 111                   12       3
## 112                   12       1
## 113                   12       1
## 114                   12       7
## 115                   12      15
## 116                   12      14
## 117                   12       2
## 118                   12       7
## 119                   12       1
## 120                   12       1
## 121                   12       4
## 122                   12       3
## 123                   12       9
## 124                   12      12
## 125                   12       7
## 126                   12      13
## 127                   12       4
## 128                   12       3
## 129                   12      15
## 130                   12       4
## 131                   12      15
## 132                   12       1
## 133                   12       8
## 134                   12       5
## 135                   12       7
## 136                   12       7
## 137                   12       7
## 138                   12       6
## 139                   12       1
## 140                   12       1
## 141                   12       8
## 142                   12       5
## 143                   12       3
## 144                   12       5
## 145                   12       6
## 146                   12      14
## 147                   12       3
## 148                   12       1
## 149                   12       7
## 150                   12       3
## 151                   12       8
## 152                   12       5
## 153                   12      15
## 154                   12       9
## 155                   12       3
## 156                   12       3
## 157                   12      11
## 158                   12       1
## 159                   12       1
## 160                   12       4
## 161                   12       7
## 162                   12       1
## 163                   12       5
## 164                   12       3
## 165                   12       3
## 166                   12       6
## 167                   12       9
## 168                   12       1
## 169                   12       1
## 170                   12       5
## 171                   12      13
## 172                   12       7
## 173                   12       1
## 174                   12       9
## 175                   12       7
## 176                   12       7
## 177                   12       2
## 178                   12       3
## 179                   12       5
## 180                   12       3
## 181                   12      14
## 182                   12       3
## 183                   12      11
## 184                   12       1
## 185                   12       3
## 186                   12      13
## 187                   12       7
## 188                   12      13
## 189                   12      10
## 190                   12       4
## 191                   12      10
## 192                   12      15
## 193                   12       5
## 194                   12      14
## 195                   12       8
## 196                   12      14
## 197                   12       5
## 198                   12       9
## 199                   12      13
## 200                   12       5
## 201                   12       5
## 202                   12       2
## 203                   12       3
## 204                   12      12
## 205                   12       3
## 206                   12       4
## 207                   12       7
## 208                   12       9
## 209                   12       1
## 210                   12       7
## 211                   12       3
## 212                   12       5
## 213                   12       1
## 214                   12       2
## 215                   12       2
## 216                   12       2
## 217                   12       5
## 218                   12       3
## 219                   12       2
## 220                   12      12
## 221                   12       5
## 222                   12       1
## 223                   12       1
## 224                   12       9
## 225                   12       5
## 226                   12      14
## 227                   12       1
## 228                   12      14
## 229                   12       8
## 230                   12      12
## 231                   12       9
## 232                   12       1
## 233                   12      14
## 234                   12       9
## 235                   12       1
## 236                   12      14
## 237                   12       5
## 238                   12       4
## 239                   12       5
## 240                   12       3
## 241                   12       5
## 242                   12       3
## 243                   12       3
## 244                   12       1
## 245                   12       1
## 246                   12       2
## 247                   12       6
## 248                   12       7
## 249                   12       1
## 250                   12       2
## 251                   12      10
## 252                   12      12
## 253                   12       1
## 254                   12       2
## 255                   12       8
## 256                   12       1
## 257                   12       1
## 258                   12       5
## 259                   12       4
## 260                   12      11
## 261                   12       9
## 262                   12       1
## 263                   12       7
## 264                   12      13
## 265                   12       3
## 266                   12       7
## 267                   12       1
## 268                   12      13
## 269                   12       9
## 270                   12       7
## 271                   12       1
## 272                   12       9
## 273                   12       1
## 274                   12       7
## 275                   12       8
## 276                   12       3
## 277                   12       5
## 278                   12       8
## 279                   12       5
## 280                   12      15
## 281                   12       4
## 282                   12       5
## 283                   12      12
## 284                   12       5
## 285                   12      12
## 286                   12      14
## 287                   12       3
## 288                   12       8
## 289                   12       8
## 290                   12       3
## 291                   12       1
## 292                   12       3
## 293                   12       3
## 294                   12      15
## 295                   12       7
## 296                   12       7
## 297                   12       3
## 298                   12      15
## 299                   12       2
## 300                   12       2
## 301                   12       7
## 302                   12       1
## 303                   12       5
## 304                   12       8
## 305                   12      10
## 306                   12       5
## 307                   12       1
## 308                   12       3
## 309                   12       8
## 310                   12       5
## 311                   12       1
## 312                   12       8
## 313                   12       3
## 314                   12       9
## 315                   12       3
## 316                   12       1
## 317                   12      15
## 318                   12       1
## 319                   12       1
## 320                   12       7
## 321                   12       1
## 322                   12       1
## 323                   12      15
## 324                   12       3
## 325                   12       1
## 326                   12       3
## 327                   12      12
## 328                   12       7
## 329                   12       3
## 330                   12       3
## 331                   12       6
## 332                   12       8
## 333                   12       5
## 334                   12      12
## 335                   12       1
## 336                   12       9
## 337                   12       5
## 338                   12       5
## 339                   12       7
## 340                   12       9
## 341                   12       1
## 342                   12       3
## 343                   12      11
## 344                   12      12
## 345                   12      14
## 346                   12       3
## 347                   12      10
## 348                   12       7
## 349                   12      14
## 350                   12       1
## 351                   12      12
## 352                   12       4
## 353                   12       2
## 354                   12       3
## 355                   12       3
## 356                   12       5
## 357                   12       5
## 358                   12       4
## 359                   12       2
## 360                   12       1
## 361                   12       9
## 362                   12       3
## 363                   12      11
## 364                   12      14
## 365                   12       1
## 366                   12       3
## 367                   12       9
## 368                   12       2
## 369                   12       7
## 370                   12       9
## 371                   12       1
## 372                   12      11
## 373                   12       9
## 374                   12       9
## 375                   12       1
## 376                   12       3
## 377                   12       7
## 378                   12       1
## 379                   12       5
## 380                   12       1
## 381                   12       3
## 382                   12       5
## 383                   12       1
## 384                   12       3
## 385                   12       1
## 386                   12      12
## 387                   12       3
## 388                   12       7
## 389                   12       5
## 390                   12       1
## 391                   12       3
## 392                   12       1
## 393                   12      11
## 394                   12       8
## 395                   12       3
## 396                   12       8
## 397                   12       8
## 398                   12      15
## 399                   12       3
## 400                   12       1
## 401                   12       4
## 402                   12       5
## 403                   12       3
## 404                   12       1
## 405                   12       1
## 406                   12       7
## 407                   12      13
## 408                   12       3
## 409                   12       1
## 410                   12       1
## 411                   12       8
## 412                   12       7
## 413                   12       5
## 414                   12       3
## 415                   12       2
## 416                   12       5
## 417                   12      15
## 418                   12      10
## 419                   12       3
## 420                   12       8
## 421                   12       6
## 422                   12       2
## 423                   12       8
## 424                   12       1
## 425                   12       7
## 426                   12       3
## 427                   12      12
## 428                   12       8
## 429                   12       5
## 430                   12       7
## 431                   12      14
## 432                   12       3
## 433                   12      14
## 434                   12       1
## 435                   12      14
## 436                   12       1
## 437                   12       3
## 438                   12       3
## 439                   12       3
## 440                   12      10
## 441                   12       5
## 442                   12       6
## 443                   12       3
## 444                   12      12
## 445                   12       1
## 446                   12       7
## 447                   12       7
## 448                   12       1
## 449                   12       3
## 450                   12       3
## 451                   12       3
## 452                   12       7
## 453                   12       1
## 454                   12       1
## 455                   12       6
## 456                   12       7
## 457                   12       3
## 458                   12       7
## 459                   12       3
## 460                   12       3
## 461                   12       1
## 462                   12       7
## 463                   12       9
## 464                   12       3
## 465                   12       7
## 466                   12      12
## 467                   12       9
## 468                   12      15
## 469                   12       5
## 470                   12       1
## 471                   12       4
## 472                   12      15
## 473                   12      12
## 474                   12       5
## 475                   12      12
## 476                   12       9
## 477                   12       5
## 478                   12       1
## 479                   12       5
## 480                   12       8
## 481                   12       5
## 482                   12       5
## 483                   12       3
## 484                   12      12
## 485                   12       8
## 486                   12       8
## 487                   12       7
## 488                   12       9
## 489                   12       6
## 490                   12      14
## 491                   12      14
## 492                   12       3
## 493                   12       1
## 494                   12       9
## 495                   12       3
## 496                   12       3
## 497                   12       5
## 498                   12       3
## 499                   12       7
## 500                   12       2
## 501                   12      14
## 502                   12       1
## 503                   12      10
## 504                   12       9
## 505                   12      14
## 506                   12       6
## 507                   12       1
## 508                   12       5
## 509                   12       3
## 510                   12       7
## 511                   12      10
## 512                   12      12
## 513                   12       9
## 514                   12       8
## 515                   12       3
## 516                   12       5
## 517                   12      15
## 518                   12       1
## 519                   12       1
## 520                   12       3
## 521                   12      11
## 522                   12       7
## 523                   12       3
## 524                   12       1
## 525                   12       1
## 526                   12       5
## 527                   12       8
## 528                   12       1
## 529                   12       3
## 530                   12       5
## 531                   12       7
## 532                   12       3
## 533                   12      11
## 534                   12      11
## 535                   12       1
## 536                   12       3
## 537                   12       1
## 538                   12       8
## 539                   12       7
## 540                   12       7
## 541                   12       5
## 542                   12       1
## 543                   12       5
## 544                   12      12
## 545                   12       1
## 546                   12       1
## 547                   12       4
## 548                   12       7
## 549                   12       9
## 550                   12       1
## 551                   12       4
## 552                   12       8
## 553                   12       5
## 554                   12      11
## 555                   12       1
## 556                   12       3
## 557                   12       9
## 558                   12       3
## 559                   12       2
## 560                   12      12
## 561                   12       9
## 562                   12       9
## 563                   12       8
## 564                   12       3
## 565                   12       1
## 566                   12       3
## 567                   12       1
## 568                   12       5
## 569                   12       4
## 570                   12       7
## 571                   12       6
## 572                   12       7
## 573                   12       1
## 574                   12       1
## 575                   12       2
## 576                   12       3
## 577                   12       3
## 578                   12       9
## 579                   12      14
## 580                   12       3
## 581                   12       2
## 582                   12       5
## 583                   12       7
## 584                   12      10
## 585                   12       3
## 586                   12       5
## 587                   12       9
## 588                   12       7
## 589                   12       9
## 590                   12      13
## 591                   12       1
## 592                   12       1
## 593                   12       8
## 594                   12      12
## 595                   12       8
## 596                   12       5
## 597                   12       3
## 598                   12      12
## 599                   12       7
## 600                   12      14
## 601                   12       1
## 602                   12       3
## 603                   12       1
## 604                   12      14
## 605                   12       5
## 606                   12      15
## 607                   12       7
## 608                   12       3
## 609                   12      10
## 610                   12       7
## 611                   12       1
## 612                   12       2
## 613                   12       1
## 614                   12       7
## 615                   12      14
## 616                   12       7
## 617                   12       1
## 618                   12       8
## 619                   12       5
## 620                   12       1
## 621                   12       3
## 622                   12      15
## 623                   12       7
## 624                   12      14
## 625                   12      15
## 626                   12       9
## 627                   12      10
## 628                   12       9
## 629                   12       2
## 630                   12       9
## 631                   12       3
## 632                   12      12
## 633                   12       7
## 634                   12       2
## 635                   12      10
## 636                   12      13
## 637                   12       3
## 638                   12       6
## 639                   12       3
## 640                   12      12
## 641                   12      12
## 642                   12       1
## 643                   12       1
## 644                   12      15
## 645                   12       5
## 646                   12       9
## 647                   12      11
## 648                   12       9
## 649                   12      15
## 650                   12      14
## 651                   12       1
## 652                   12       3
## 653                   12       1
## 654                   12       3
## 655                   12       5
## 656                   12      14
## 657                   12       8
## 658                   12       3
## 659                   12       3
## 660                   12       8
## 661                   12      15
## 662                   12       1
## 663                   12       7
## 664                   12       9
## 665                   12       5
## 666                   12       1
## 667                   12      15
## 668                   12       5
## 669                   12       8
## 670                   12       3
## 671                   12       1
## 672                   12       3
## 673                   12       7
## 674                   12       9
## 675                   12       8
## 676                   12      14
## 677                   12       6
## 678                   12       3
## 679                   12       5
## 680                   12       7
## 681                   12       4
## 682                   12       3
## 683                   12      12
## 684                   12       5
## 685                   12       1
## 686                   12       1
## 687                   12       1
## 688                   12      14
## 689                   12       5
## 690                   12      12
## 691                   12      12
## 692                   12       1
## 693                   12       1
## 694                   12       3
## 695                   12       3
## 696                   12       7
## 697                   12       3
## 698                   12       2
## 699                   12       9
## 700                   12      12
## 701                   12       5
## 702                   12       7
## 703                   12       1
## 704                   12       6
## 705                   12       4
## 706                   12      11
## 707                   12       7
## 708                   12      12
## 709                   12       1
## 710                   12       7
## 711                   12       3
## 712                   12       3
## 713                   12      12
## 714                   12       7
## 715                   12      15
## 716                   12       7
## 717                   12       3
## 718                   12       2
## 719                   12       1
## 720                   12       8
## 721                   12      12
## 722                   12      12
## 723                   12       8
## 724                   12       3
## 725                   12       5
## 726                   12      10
## 727                   12       4
## 728                   12       5
## 729                   12       6
## 730                   12      13
## 731                   12      12
## 732                   12      12
## 733                   12       1
## 734                   12      10
## 735                   12       8
## 736                   12       3
## 737                   12      11
## 738                   12       1
## 739                   12       6
## 740                   12       1
## 741                   12       3
## 742                   12       2
## 743                   12       5
## 744                   12       2
## 745                   12       4
## 746                   12       2
## 747                   12       1
## 748                   12       3
## 749                   12       5
## 750                   12      11
## 751                   12       3
## 752                   12       1
## 753                   12       5
## 754                   12       1
## 755                   12       9
## 756                   12      14
## 757                   12       1
## 758                   12      15
## 759                   12      14
## 760                   12       1
## 761                   12      10
## 762                   12       8
## 763                   12       1
## 764                   12       1
## 765                   12       4
## 766                   12       5
## 767                   12       2
## 768                   12       2
## 769                   12       5
## 770                   12       1
## 771                   12       7
## 772                   12       7
## 773                   12       9
## 774                   12       8
## 775                   12       5
## 776                   12      12
## 777                   12       5
## 778                   12       8
## 779                   12      11
## 780                   12       7
## 781                   12       5
## 782                   12       1
## 783                   12       5
## 784                   12       7
## 785                   12       3
## 786                   12       9
## 787                   12       3
## 788                   12       1
## 789                   12       3
## 790                   12      15
## 791                   12      12
## 792                   12       7
## 793                   12       1
## 794                   12       5
## 795                   12       2
## 796                   12      15
## 797                   12       7
## 798                   12       8
## 799                   12       1
## 800                   12       3
## 801                   12       2
## 802                   12       3
## 803                   12       1
## 804                   12       1
## 805                   12       8
## 806                   12       5
## 807                   12       9
## 808                   12       1
## 809                   12       9
## 810                   12       6
## 811                   12       9
## 812                   12      12
## 813                   12      10
## 814                   12      10
## 815                   12       3
## 816                   12       5
## 817                   12       8
## 818                   12       5
## 819                   12       7
## 820                   12      12
## 821                   12       1
## 822                   12       3
## 823                   12       1
## 824                   12       3
## 825                   12       5
## 826                   12       5
## 827                   12       3
## 828                   12       5
## 829                   12       2
## 830                   12      14
## 831                   12       9
## 832                   12      14
## 833                   12       1
## 834                   12       9
## 835                   12       7
## 836                   12       8
## 837                   12       8
## 838                   12      14
## 839                   12       7
## 840                   12       3
## 841                   12       3
## 842                   12       3
## 843                   12       9
## 844                   12       6
## 845                   12       3
## 846                   12       7
## 847                   12       1
## 848                   12       8
## 849                   12       3
## 850                   12      15
## 851                   12      12
## 852                   12      12
## 853                   12       3
## 854                   12       7
## 855                   12       9
## 856                   12       8
## 857                   12       9
## 858                   12       1
## 859                   12       7
## 860                   12      15
## 861                   12       3
## 862                   12       7
## 863                   12       7
## 864                   12       8
## 865                   12       5
## 866                   12       7
## 867                   12       5
## 868                   12      10
## 869                   12      11
## 870                   12       1
## 871                   12       8
## 872                   12       1
## 873                   12       3
## 874                   12      13
## 875                   12       3
## 876                   12       1
## 877                   12       8
## 878                   12       1
## 879                   12      10
## 880                   12       8
## 881                   12       7
## 882                   12       1
## 883                   12       1
## 884                   12      13
## 885                   12       7
## 886                   12      12
## 887                   12       6
## 888                   12       3
## 889                   12       5
## 890                   12       4
## 891                   12      10
## 892                   12      15
## 893                   12       2
## 894                   12       7
## 895                   12      11
## 896                   12      15
## 897                   12       3
## 898                   12      11
## 899                   12       5
## 900                   12       8
## 901                   12       8
## 902                   12       8
## 903                   12       1
## 904                   12       5
## 905                   12       7
## 906                   12       9
## 907                   12       5
## 908                   12       3
## 909                   12       9
## 910                   12       1
## 911                   12       6
## 912                   12       8
## 913                   12      10
## 914                   12       6
## 915                   12      14
## 916                   12      14
## 917                   12       3
## 918                   12       8
## 919                   12       1
## 920                   12       9
## 921                   12       2
## 922                   12      10
## 923                   12       5
## 924                   12      12
## 925                   12       7
## 926                   12       2
## 927                   12       1
## 928                   12      15
## 929                   12       5
## 930                   12       1
## 931                   12       5
## 932                   12       2
## 933                   12       5
## 934                   12       5
## 935                   12       5
## 936                   12       3
## 937                   12       5
## 938                   12       1
## 939                   12       1
## 940                   12       3
## 941                   12       6
## 942                   12       4
## 943                   12       6
## 944                   12       6
## 945                   12       2
## 946                   12      13
## 947                   12       9
## 948                   12       5
## 949                   12       1
## 950                   12       8
## 951                   12       9
## 952                   12       8
## 953                   12       2
## 954                   12       2
## 955                   12       2
## 956                   12       6
## 957                   12      14
## 958                   12       8
## 959                   12       5
## 960                   12      14
## 961                   12       8
## 962                   12      15
## 963                   12      14
## 964                   12       5
## 965                   12       1
## 966                   12       1
## 967                   12       3
## 968                   12       7
## 969                   12       3
## 970                   12       7
## 971                   12       3
## 972                   12      14
## 973                   12       4
## 974                   12       5
## 975                   12       3
## 976                   12      14
## 977                   12       3
## 978                   12      12
## 979                   12       8
## 980                   12       8
## 981                   12      15
## 982                   12       1
## 983                   12      12
## 984                   12       1
## 985                   12      11
## 986                   12       7
## 987                   12       3
## 988                   12       5
## 989                   12      15
## 990                   12       1
## 991                   12       1
## 992                   12       3
## 993                   12      15
## 994                   12       1
## 995                   12       5
## 996                   12       3
## 997                   12       8
## 998                   12       7
## 999                   12       3
## 1000                  12       5
## 1001                  12      11
## 1002                  12       3
## 1003                  12       5
## 1004                  12       6
## 1005                  12      12
## 1006                  12       7
## 1007                  12       2
## 1008                  12      14
## 1009                  12       5
## 1010                  12      13
## 1011                  12       3
## 1012                  12      11
## 1013                  12       3
## 1014                  12       9
## 1015                  12       7
## 1016                  12       1
## 1017                  12       5
## 1018                  12      12
## 1019                  12       1
## 1020                  12      12
## 1021                  12       7
## 1022                  12       5
## 1023                  12       3
## 1024                  12      12
## 1025                  12       7
## 1026                  12       9
## 1027                  12       9
## 1028                  12       5
## 1029                  12       3
## 1030                  12      14
## 1031                  12       6
## 1032                  12      13
## 1033                  12       1
## 1034                  12       5
## 1035                  12       3
## 1036                  12      11
## 1037                  12       5
## 1038                  12      15
## 1039                  12      14
## 1040                  12      14
## 1041                  12       7
## 1042                  12       2
## 1043                  12      12
## 1044                  12       1
## 1045                  12       5
## 1046                  12      11
## 1047                  12       1
## 1048                  12       2
## 1049                  12      11
## 1050                  12      11
## 1051                  12       5
## 1052                  12       5
## 1053                  12       2
## 1054                  12       7
## 1055                  12       1
## 1056                  12       2
## 1057                  12      12
## 1058                  12       1
## 1059                  12       1
## 1060                  12      15
## 1061                  12      12
## 1062                  12      10
## 1063                  12       6
## 1064                  12       3
## 1065                  12       9
## 1066                  12       1
## 1067                  12       1
## 1068                  12      15
## 1069                  12       1
## 1070                  12       2
## 1071                  12       9
## 1072                  12       3
## 1073                  12       3
## 1074                  12      15
## 1075                  12       5
## 1076                  12       3
## 1077                  12       2
## 1078                  12       9
## 1079                  12      12
## 1080                  12       7
## 1081                  12       4
## 1082                  12       8
## 1083                  12       5
## 1084                  12      10
## 1085                  12       1
## 1086                  12       7
## 1087                  12      14
## 1088                  12       1
## 1089                  12      14
## 1090                  12      12
## 1091                  12      11
## 1092                  12      14
## 1093                  12       3
## 1094                  12       8
## 1095                  12       9
## 1096                  12       5
## 1097                  12       3
## 1098                  12      12
## 1099                  12       3
## 1100                  12       7
## 1101                  12       3
## 1102                  12       9
## 1103                  12       8
## 1104                  12       2
## 1105                  12      14
## 1106                  12       1
## 1107                  12       5
## 1108                  12       1
## 1109                  12       1
## 1110                  12       5
## 1111                  12       1
## 1112                  12      15
## 1113                  12       8
## 1114                  12       8
## 1115                  12       8
## 1116                  12       5
## 1117                  12       1
## 1118                  12       8
## 1119                  12       2
## 1120                  12       8
## 1121                  12       3
## 1122                  12       5
## 1123                  12       8
## 1124                  12       2
## 1125                  12       1
## 1126                  12       8
## 1127                  12      12
## 1128                  12       5
## 1129                  12       1
## 1130                  12       7
## 1131                  12       3
## 1132                  12       7
## 1133                  12       3
## 1134                  12       1
## 1135                  12       1
## 1136                  12       3
## 1137                  12       3
## 1138                  12       3
## 1139                  12       5
## 1140                  12       3
## 1141                  12       8
## 1142                  12      15
## 1143                  12       1
## 1144                  12       8
## 1145                  12       3
## 1146                  12       3
## 1147                  12       5
## 1148                  12       3
## 1149                  12       3
## 1150                  12       3
## 1151                  12       3
## 1152                  12       9
## 1153                  12       9
## 1154                  12       3
## 1155                  12      15
## 1156                  12       9
## 1157                  12       4
## 1158                  12      12
## 1159                  12       5
## 1160                  12      15
## 1161                  12      14
## 1162                  12       4
## 1163                  12       8
## 1164                  12      10
## 1165                  12       9
## 1166                  12       5
## 1167                  12       5
## 1168                  12       1
## 1169                  12       3
## 1170                  12       1
## 1171                  12       9
## 1172                  12      10
## 1173                  12      14
## 1174                  12      13
## 1175                  12      10
## 1176                  12       1
## 1177                  12       8
## 1178                  12       3
## 1179                  12       3
## 1180                  12      11
## 1181                  12       1
## 1182                  12       4
## 1183                  12       9
## 1184                  12       8
## 1185                  12       9
## 1186                  12       3
## 1187                  12       6
## 1188                  12       5
## 1189                  12       1
## 1190                  12       1
## 1191                  12       7
## 1192                  12      14
## 1193                  12       3
## 1194                  12      12
## 1195                  12      15
## 1196                  12       1
## 1197                  12       1
## 1198                  12       3
## 1199                  12       5
## 1200                  12       7
## 1201                  12       8
## 1202                  12       1
## 1203                  12       3
## 1204                  12       5
## 1205                  12       7
## 1206                  12       7
## 1207                  12       7
## 1208                  12       5
## 1209                  12       9
## 1210                  12       5
## 1211                  12       2
## 1212                  12       1
## 1213                  12       8
## 1214                  12       2
## 1215                  12       7
## 1216                  12       9
## 1217                  12      11
## 1218                  12       5
## 1219                  12      11
## 1220                  12      14
## 1221                  12       9
## 1222                  12       9
## 1223                  12      15
## 1224                  12       7
## 1225                  12       1
## 1226                  12       2
## 1227                  12       1
## 1228                  12       8
## 1229                  12       4
## 1230                  12       3
## 1231                  12       2
## 1232                  12       7
## 1233                  12      11
## 1234                  12       7
## 1235                  12       3
## 1236                  12       3
## 1237                  12      14
## 1238                  12       1
## 1239                  12       7
## 1240                  12       5
## 1241                  12       1
## 1242                  12       5
## 1243                  12       7
## 1244                  12       5
## 1245                  12       3
## 1246                  12      15
## 1247                  12       1
## 1248                  12       7
## 1249                  12       3
## 1250                  12       9
## 1251                  12       7
## 1252                  12      12
## 1253                  12      10
## 1254                  12      15
## 1255                  12       1
## 1256                  12       3
## 1257                  12       5
## 1258                  12       3
## 1259                  12      12
## 1260                  12       9
## 1261                  12       1
## 1262                  12       8
## 1263                  12       3
## 1264                  12       3
## 1265                  12      12
## 1266                  12      14
## 1267                  12       6
## 1268                  12       5
## 1269                  12       2
## 1270                  12       3
## 1271                  12       4
## 1272                  12       7
## 1273                  12       9
## 1274                  12       9
## 1275                  12       3
## 1276                  12       6
## 1277                  12       2
## 1278                  12       7
## 1279                  12       1
## 1280                  12       3
## 1281                  12       5
## 1282                  12       9
## 1283                  12       9
## 1284                  12      10
## 1285                  12       3
## 1286                  12       3
## 1287                  12       9
## 1288                  12       2
## 1289                  12      12
## 1290                  12       1
## 1291                  12       7
## 1292                  12      14
## 1293                  12       6
## 1294                  12      15
## 1295                  12       8
## 1296                  12       7
## 1297                  12       7
## 1298                  12      12
## 1299                  12       9
## 1300                  12       9
## 1301                  12       1
## 1302                  12       3
## 1303                  12       1
## 1304                  12       5
## 1305                  12      14
## 1306                  12       5
## 1307                  12      12
## 1308                  12       7
## 1309                  12       9
## 1310                  12       5
## 1311                  12       7
## 1312                  12       5
## 1313                  12       1
## 1314                  12       1
## 1315                  12       8
## 1316                  12      15
## 1317                  12       5
## 1318                  12      12
## 1319                  12       5
## 1320                  12       8
## 1321                  12       9
## 1322                  12      11
## 1323                  12       1
## 1324                  12       3
## 1325                  12       5
## 1326                  12       3
## 1327                  12       3
## 1328                  12       2
## 1329                  12       3
## 1330                  12       1
## 1331                  12       5
## 1332                  12       7
## 1333                  12       8
## 1334                  12       3
## 1335                  12      14
## 1336                  12       2
## 1337                  12       6
## 1338                  12       3
## 1339                  12       1
## 1340                  12       8
## 1341                  12       8
## 1342                  12       7
## 1343                  12       1
## 1344                  12       3
## 1345                  12       1
## 1346                  12       3
## 1347                  12       4
## 1348                  12       5
## 1349                  12       5
## 1350                  12      13
## 1351                  12       6
## 1352                  12      15
## 1353                  12       3
## 1354                  12       1
## 1355                  12       1
## 1356                  12      15
## 1357                  12       7
## 1358                  12       8
## 1359                  12      14
## 1360                  12       5
## 1361                  12       3
## 1362                  12       5
## 1363                  12       3
## 1364                  12       1
## 1365                  12      14
## 1366                  12       1
## 1367                  12       1
## 1368                  12      14
## 1369                  12      12
## 1370                  12       5
## 1371                  12       3
## 1372                  12       9
## 1373                  12       1
## 1374                  12       5
## 1375                  12       1
## 1376                  12       5
## 1377                  12       3
## 1378                  12       3
## 1379                  12      14
## 1380                  12       1
## 1381                  12       3
## 1382                  12       7
## 1383                  12       3
## 1384                  12       3
## 1385                  12       3
## 1386                  12       3
## 1387                  12       9
## 1388                  12       3
## 1389                  12       5
## 1390                  12       3
## 1391                  12       5
## 1392                  12       6
## 1393                  12       7
## 1394                  12       6
## 1395                  12      12
## 1396                  12       1
## 1397                  12       9
## 1398                  12       3
## 1399                  12       3
## 1400                  12       3
## 1401                  12       3
## 1402                  12       1
## 1403                  12       5
## 1404                  12       5
## 1405                  12       3
## 1406                  12      12
## 1407                  12       7
## 1408                  12       8
## 1409                  12       3
## 1410                  12       1
## 1411                  12       1
## 1412                  12       3
## 1413                  12      11
## 1414                  12       5
## 1415                  12       3
## 1416                  12      12
## 1417                  12       6
## 1418                  12       1
## 1419                  12       9
## 1420                  12       7
## 1421                  12      15
## 1422                  12       4
## 1423                  12      12
## 1424                  12       9
## 1425                  12       9
## 1426                  12       7
## 1427                  12       1
## 1428                  12       3
## 1429                  12       8
## 1430                  12       7
## 1431                  12       1
## 1432                  12       4
## 1433                  12       8
## 1434                  12       1
## 1435                  12       7
## 1436                  12       8
## 1437                  12       8
## 1438                  12       4
## 1439                  12       8
## 1440                  12      15
## 1441                  12      13
## 1442                  12      12
## 1443                  12       1
## 1444                  12       3
## 1445                  12       5
## 1446                  12       9
## 1447                  12       7
## 1448                  12       1
## 1449                  12       3
## 1450                  12      14
## 1451                  12      10
## 1452                  12       5
## 1453                  12      12
## 1454                  12       7
## 1455                  12       5
## 1456                  12       1
## 1457                  12       7
## 1458                  12       2
## 1459                  12       9
## 1460                  12       9
ggplot(tsne_df, aes(x=Y.1, y=Y.2, color=y)) +
  geom_point() +
  scale_color_gradientn(colours = heat.colors(10))

ggplot(data.frame(table(tsne_df$cluster)), aes(x=Var1, y=Freq)) +
  geom_bar(stat = "identity") +
  coord_flip()

ggplot(tsne_df, aes(x=Y.1, y=Y.2, color=cluster)) +
  geom_point() +
  scale_color_viridis() +
  scale_fill_viridis(discrete = T) +
  geom_point(data = data.frame(centroids), aes(x=X1, y=X2), color="black", fill="white", shape=21, size=8) +
  geom_text(data = data.frame(centroids), aes(x=X1, y=X2, label=1:k), color="black")

fviz_silhouette(silhouette(cutree(hclust_avg, k = k), dist_mat))
##    cluster size ave.sil.width
## 1        1  241          0.32
## 2        2   71          0.48
## 3        3  240          0.19
## 4        4   39          0.50
## 5        5  175          0.52
## 6        6   42          0.83
## 7        7  152          0.17
## 8        8  104          0.52
## 9        9  105          0.32
## 10      10   35          0.57
## 11      11   37          0.85
## 12      12   77          0.60
## 13      13   21          0.90
## 14      14   66          0.72
## 15      15   55          0.56

Baselines

Sets up empty lists to store RMSE values for baseline models on the training and testing datasets.

Calculate performance metrics (MAE, MAPE, RMSE, MSE, R2) by converting predicted and actual values from transformed to original scale.

Focus on data structures and the metrics calculation function.

baselines_rmse <- list()

baselines_rmse_test <- list()
actual_metrics_test <- list()

metrics_fusion <- function(y_pred, y) {
  y_pred_inv <- expm1(y_pred)
  y_inv <- expm1(y)

  a <- mae(y_pred_inv, y_inv)
  b <- mape(y_pred_inv, y_inv)
  c <- rmse(y_pred_inv, y_inv)
  d <- mse(y_pred_inv, y_inv)
  e <- R2(y_pred_inv, y_inv)

  return(c("mae" = a, "mape" = b, "rmse" = c, "mse" = d, "r2" = e))
}

Linear Regression

Evaluates the performance of a linear regression model for a regression problem.

Cross-validation used to train the model on the training and validation data.

Resulting model is applied to make predictions on the validation dataset.

Root mean squared error (RMSE) is calculated as a measure of prediction accuracy for the model on the validation data.

Trained linear regression model used to make predictions on the test dataset.

###3 RMSE is calculated by comparing the predicted values with the actual test values. #### Stores additional performance metrics (MAE, MAPE, RMSE, MSE, R2) for the linear regression model on the test data.

linreg_tc <- trainControl(method = "cv", number = 5)
linreg_cv <- caret::train(
  SalePrice ~ .,
  data = cbind(X_train_val, SalePrice = y_train_val),
  trControl = linreg_tc,
  method = "lm"
)
## Warning in predict.lm(modelFit, newdata): prediction from a rank-deficient fit
## may be misleading

## Warning in predict.lm(modelFit, newdata): prediction from a rank-deficient fit
## may be misleading

## Warning in predict.lm(modelFit, newdata): prediction from a rank-deficient fit
## may be misleading

## Warning in predict.lm(modelFit, newdata): prediction from a rank-deficient fit
## may be misleading

## Warning in predict.lm(modelFit, newdata): prediction from a rank-deficient fit
## may be misleading
# Validation predictions and metrics
score_val <- linreg_cv$results$RMSE
baselines_rmse$linear_regression <- score_val

# Test predictions and metrics
linreg <- lm(SalePrice ~ ., data = cbind(X_train_val, SalePrice = y_train_val))

y_pred_test <- predict(linreg, newdata = X_test)
## Warning in predict.lm(linreg, newdata = X_test): prediction from a
## rank-deficient fit may be misleading
score_test <- rmse(y_pred_test, y_test)
baselines_rmse_test$linear_regression <- score_test
actual_metrics_test$linear_regression <- metrics_fusion(y_pred_test, y_test)

# Display scores
score_val
## [1] 0.1549031
score_test
## [1] 0.1218889

Lasso Regression

Lasso Regression applied to a regression problem.

Model trained by using cross-validation and selects the optimal regularization parameter.

Root mean squared error (RMSE) calculated for the validation set.

For the test set, target variable predicted by using the trained model, calculates the RMSE

Actual performance metrics (MAE, MAPE, RMSE, MSE, R2) computed for the Lasso Regression model on the test set

Displays the validation RMSE and test RMSE.

lasso <- cv.glmnet(x = as.matrix(X_train_val), y = y_train_val, alpha = 1)

# Validation predictions and metrics
score_val <- mean(sqrt(lasso$cvm))
baselines_rmse$lasso <- score_val

# Test predictions and metrics
y_pred_test <- predict(lasso, newx = as.matrix(X_test))
score_test <- rmse(y_pred_test, y_test)
baselines_rmse_test$lasso <- score_test
actual_metrics_test$lasso <- metrics_fusion(y_pred_test, y_test)

# Display scores
score_val
## [1] 0.1712791
score_test
## [1] 0.1148247

Ridge Regression

Ridge Regression applied to a regression problem.

Model trained by using cross-validation and selects the optimal regularization parameter.

Root mean squared error (RMSE) calculated for the validation set.

For the test set, it predicts the target variable using the trained model, calculates the RMSE.

Actual performance metrics (MAE, MAPE, RMSE, MSE, R2) computed for the Ridge Regression model on the test set.

Validation RMSE and test RMSE dsiplayed.

ridge <- cv.glmnet(x = as.matrix(X_train_val), y = y_train_val, alpha = 0)

# Validation predictions and metrics
score_val <- mean(sqrt(ridge$cvm))
baselines_rmse$ridge <- score_val

# Test predictions and metrics
y_pred_test <- predict(ridge, newx = as.matrix(X_test))
score_test <- rmse(y_pred_test, y_test)
baselines_rmse_test$ridge <- score_test
actual_metrics_test$ridge <- metrics_fusion(y_pred_test, y_test)

# Display scores
score_val
## [1] 0.2462979
score_test
## [1] 0.1265604

Elastic Net

Elastic Net Regression applied to a regression problem.

Cross-validation peformed to select the optimal alpha parameter, which controls the balance between L1 (Lasso) and L2 (Ridge) regularization.

The root mean squared error (RMSE) calculated for the validation set.

For the test set, it predicts the target variable using the trained Elastic Net model with the selected alpha value, calculates the RMSE.

Actual performance metrics (MAE, MAPE, RMSE, MSE, R2) computed for the Elastic Net model on the test set.

Selected alpha, validation RMSE, and test RMSE.

results <- data.frame()

for (i in 0:20) {
  elasticnet <- cv.glmnet(x = as.matrix(X_train_val), y = y_train_val, alpha = i/20)

  row <- data.frame(alpha = i/20, rmse_val = mean(sqrt(elasticnet$cvm)))
  results <- rbind(results, row)
}

best_alpha <- results$alpha[which.min(results$rmse_val)]

# Validation predictions and metrics
score_val <- min(results$rmse_val)
baselines_rmse$elasticnet <- score_val

# Test predictions and metrics
elasticnet <- cv.glmnet(x = as.matrix(X_train_val), y = y_train_val, alpha = best_alpha)

y_pred_test <- predict(elasticnet, newx = as.matrix(X_test))
score_test <- rmse(y_pred_test, y_test)
baselines_rmse_test$elasticnet <- score_test
actual_metrics_test$elasticnet <- metrics_fusion(y_pred_test, y_test)

# Display scores
best_alpha
## [1] 1
score_val
## [1] 0.1711617
score_test
## [1] 0.1173051

K-Nearest Neighbors Regression

K-Nearest Neighbors Regression applied to the data

Calculates the RMSE for validation and test sets, and stores the results.

Additional performance metrics computed and displays the RMSE values.

knn_tc <- trainControl(method = "cv", number = 5)
knn_cv <- caret::train(
  SalePrice ~ .,
  data = cbind(X_train_val, SalePrice = y_train_val),
  trControl = knn_tc,
  method = "knn"
)

# Validation predictions and metrics
score_val <- mean(knn_cv$results$RMSE)
baselines_rmse$knn <- score_val

# Test predictions and metrics
knn <- knnreg(x = X_train_val, y = y_train_val)

y_pred_test <- predict(knn, newdata = X_test)
score_test <- rmse(y_pred_test, y_test)
baselines_rmse_test$knn <- score_test
actual_metrics_test$knn <- metrics_fusion(y_pred_test, y_test)

# Display scores
score_val
## [1] 0.1832919
score_test
## [1] 0.1792911

Support Vector Regression

Support Vector Regression (SVR) applied to the data

Calculates the RMSE for validation and test sets, and stores the results.

Additional performance metrics computed and displays the RMSE values.

svr_tc <- trainControl(method = "cv", number = 5)
svr_cv <- caret::train(
  SalePrice ~ .,
  data = cbind(X_train_val, SalePrice = y_train_val),
  trControl = svr_tc,
  method = "svmLinear2"
)
## Warning in svm.default(x = as.matrix(x), y = y, kernel = "linear", cost =
## param$cost, : Variable(s) 'UtilitiesAllPub' and 'UtilitiesNoSeWa' and
## 'Condition2RRAe' and 'Condition2RRAn' and 'RoofStyleShed' and 'RoofMatlMembran'
## and 'RoofMatlMetal' and 'Exterior1stAsphShn' and 'Exterior1stCBlock' and
## 'Exterior1stImStucc' and 'Exterior1stStone' and 'ExterCondPo' and 'BsmtCondPo'
## and 'HeatingFloor' and 'HeatingQCPo' and 'ElectricalMix' and 'GarageQualPo'
## constant. Cannot scale data.

## Warning in svm.default(x = as.matrix(x), y = y, kernel = "linear", cost =
## param$cost, : Variable(s) 'UtilitiesAllPub' and 'UtilitiesNoSeWa' and
## 'Condition2RRAe' and 'Condition2RRAn' and 'RoofStyleShed' and 'RoofMatlMembran'
## and 'RoofMatlMetal' and 'Exterior1stAsphShn' and 'Exterior1stCBlock' and
## 'Exterior1stImStucc' and 'Exterior1stStone' and 'ExterCondPo' and 'BsmtCondPo'
## and 'HeatingFloor' and 'HeatingQCPo' and 'ElectricalMix' and 'GarageQualPo'
## constant. Cannot scale data.

## Warning in svm.default(x = as.matrix(x), y = y, kernel = "linear", cost =
## param$cost, : Variable(s) 'UtilitiesAllPub' and 'UtilitiesNoSeWa' and
## 'Condition2RRAe' and 'Condition2RRAn' and 'RoofStyleShed' and 'RoofMatlMembran'
## and 'RoofMatlMetal' and 'Exterior1stAsphShn' and 'Exterior1stCBlock' and
## 'Exterior1stImStucc' and 'Exterior1stStone' and 'ExterCondPo' and 'BsmtCondPo'
## and 'HeatingFloor' and 'HeatingQCPo' and 'ElectricalMix' and 'GarageQualPo'
## constant. Cannot scale data.
## Warning in svm.default(x = as.matrix(x), y = y, kernel = "linear", cost =
## param$cost, : Variable(s) 'UtilitiesAllPub' and 'UtilitiesNoSeWa' and
## 'Condition1RRNe' and 'Condition2PosA' and 'Condition2RRAe' and 'Condition2RRAn'
## and 'RoofStyleShed' and 'RoofMatlClyTile' and 'RoofMatlMembran' and
## 'RoofMatlMetal' and 'Exterior1stBrkComm' and 'Exterior1stCBlock' and
## 'Exterior1stStone' and 'ExterCondPo' and 'HeatingFloor' and 'HeatingQCPo' and
## 'ElectricalMix' constant. Cannot scale data.

## Warning in svm.default(x = as.matrix(x), y = y, kernel = "linear", cost =
## param$cost, : Variable(s) 'UtilitiesAllPub' and 'UtilitiesNoSeWa' and
## 'Condition1RRNe' and 'Condition2PosA' and 'Condition2RRAe' and 'Condition2RRAn'
## and 'RoofStyleShed' and 'RoofMatlClyTile' and 'RoofMatlMembran' and
## 'RoofMatlMetal' and 'Exterior1stBrkComm' and 'Exterior1stCBlock' and
## 'Exterior1stStone' and 'ExterCondPo' and 'HeatingFloor' and 'HeatingQCPo' and
## 'ElectricalMix' constant. Cannot scale data.

## Warning in svm.default(x = as.matrix(x), y = y, kernel = "linear", cost =
## param$cost, : Variable(s) 'UtilitiesAllPub' and 'UtilitiesNoSeWa' and
## 'Condition1RRNe' and 'Condition2PosA' and 'Condition2RRAe' and 'Condition2RRAn'
## and 'RoofStyleShed' and 'RoofMatlClyTile' and 'RoofMatlMembran' and
## 'RoofMatlMetal' and 'Exterior1stBrkComm' and 'Exterior1stCBlock' and
## 'Exterior1stStone' and 'ExterCondPo' and 'HeatingFloor' and 'HeatingQCPo' and
## 'ElectricalMix' constant. Cannot scale data.
## Warning in svm.default(x = as.matrix(x), y = y, kernel = "linear", cost =
## param$cost, : Variable(s) 'UtilitiesAllPub' and 'UtilitiesNoSeWa' and
## 'NeighborhoodBlueste' and 'Condition2RRAe' and 'Condition2RRAn' and
## 'RoofStyleShed' and 'RoofMatlMembran' and 'RoofMatlMetal' and
## 'Exterior1stCBlock' and 'Exterior1stStone' and 'ExterCondPo' and 'HeatingFloor'
## and 'HeatingQCPo' and 'ElectricalMix' constant. Cannot scale data.

## Warning in svm.default(x = as.matrix(x), y = y, kernel = "linear", cost =
## param$cost, : Variable(s) 'UtilitiesAllPub' and 'UtilitiesNoSeWa' and
## 'NeighborhoodBlueste' and 'Condition2RRAe' and 'Condition2RRAn' and
## 'RoofStyleShed' and 'RoofMatlMembran' and 'RoofMatlMetal' and
## 'Exterior1stCBlock' and 'Exterior1stStone' and 'ExterCondPo' and 'HeatingFloor'
## and 'HeatingQCPo' and 'ElectricalMix' constant. Cannot scale data.

## Warning in svm.default(x = as.matrix(x), y = y, kernel = "linear", cost =
## param$cost, : Variable(s) 'UtilitiesAllPub' and 'UtilitiesNoSeWa' and
## 'NeighborhoodBlueste' and 'Condition2RRAe' and 'Condition2RRAn' and
## 'RoofStyleShed' and 'RoofMatlMembran' and 'RoofMatlMetal' and
## 'Exterior1stCBlock' and 'Exterior1stStone' and 'ExterCondPo' and 'HeatingFloor'
## and 'HeatingQCPo' and 'ElectricalMix' constant. Cannot scale data.
## Warning in svm.default(x = as.matrix(x), y = y, kernel = "linear", cost =
## param$cost, : Variable(s) 'UtilitiesAllPub' and 'UtilitiesNoSeWa' and
## 'Condition2RRAe' and 'Condition2RRAn' and 'RoofStyleShed' and 'RoofMatlMembran'
## and 'RoofMatlMetal' and 'RoofMatlWdShake' and 'Exterior1stCBlock' and
## 'Exterior1stStone' and 'ExterCondPo' and 'FoundationWood' and 'HeatingFloor'
## and 'HeatingQCPo' and 'ElectricalMix' and 'FunctionalSev' and
## 'SaleConditionAdjLand' constant. Cannot scale data.

## Warning in svm.default(x = as.matrix(x), y = y, kernel = "linear", cost =
## param$cost, : Variable(s) 'UtilitiesAllPub' and 'UtilitiesNoSeWa' and
## 'Condition2RRAe' and 'Condition2RRAn' and 'RoofStyleShed' and 'RoofMatlMembran'
## and 'RoofMatlMetal' and 'RoofMatlWdShake' and 'Exterior1stCBlock' and
## 'Exterior1stStone' and 'ExterCondPo' and 'FoundationWood' and 'HeatingFloor'
## and 'HeatingQCPo' and 'ElectricalMix' and 'FunctionalSev' and
## 'SaleConditionAdjLand' constant. Cannot scale data.

## Warning in svm.default(x = as.matrix(x), y = y, kernel = "linear", cost =
## param$cost, : Variable(s) 'UtilitiesAllPub' and 'UtilitiesNoSeWa' and
## 'Condition2RRAe' and 'Condition2RRAn' and 'RoofStyleShed' and 'RoofMatlMembran'
## and 'RoofMatlMetal' and 'RoofMatlWdShake' and 'Exterior1stCBlock' and
## 'Exterior1stStone' and 'ExterCondPo' and 'FoundationWood' and 'HeatingFloor'
## and 'HeatingQCPo' and 'ElectricalMix' and 'FunctionalSev' and
## 'SaleConditionAdjLand' constant. Cannot scale data.
## Warning in svm.default(x = as.matrix(x), y = y, kernel = "linear", cost =
## param$cost, : Variable(s) 'UtilitiesAllPub' and 'UtilitiesNoSeWa' and
## 'Condition2RRAe' and 'Condition2RRAn' and 'RoofStyleShed' and 'RoofMatlMembran'
## and 'RoofMatlMetal' and 'Exterior1stCBlock' and 'Exterior1stStone' and
## 'ExterCondPo' and 'HeatingFloor' and 'HeatingQCPo' and 'ElectricalMix' and
## 'GarageCondEx' constant. Cannot scale data.

## Warning in svm.default(x = as.matrix(x), y = y, kernel = "linear", cost =
## param$cost, : Variable(s) 'UtilitiesAllPub' and 'UtilitiesNoSeWa' and
## 'Condition2RRAe' and 'Condition2RRAn' and 'RoofStyleShed' and 'RoofMatlMembran'
## and 'RoofMatlMetal' and 'Exterior1stCBlock' and 'Exterior1stStone' and
## 'ExterCondPo' and 'HeatingFloor' and 'HeatingQCPo' and 'ElectricalMix' and
## 'GarageCondEx' constant. Cannot scale data.

## Warning in svm.default(x = as.matrix(x), y = y, kernel = "linear", cost =
## param$cost, : Variable(s) 'UtilitiesAllPub' and 'UtilitiesNoSeWa' and
## 'Condition2RRAe' and 'Condition2RRAn' and 'RoofStyleShed' and 'RoofMatlMembran'
## and 'RoofMatlMetal' and 'Exterior1stCBlock' and 'Exterior1stStone' and
## 'ExterCondPo' and 'HeatingFloor' and 'HeatingQCPo' and 'ElectricalMix' and
## 'GarageCondEx' constant. Cannot scale data.
## Warning in svm.default(x = as.matrix(x), y = y, kernel = "linear", cost =
## param$cost, : Variable(s) 'UtilitiesAllPub' and 'UtilitiesNoSeWa' and
## 'Condition2RRAe' and 'Condition2RRAn' and 'RoofStyleShed' and 'RoofMatlMembran'
## and 'RoofMatlMetal' and 'Exterior1stCBlock' and 'Exterior1stStone' and
## 'ExterCondPo' and 'HeatingFloor' and 'HeatingQCPo' and 'ElectricalMix'
## constant. Cannot scale data.
# Validation predictions and metrics
score_val <- mean(svr_cv$results$RMSE)
baselines_rmse$svr <- score_val

# Test predictions and metrics
svr <- e1071::svm(SalePrice ~ ., data = cbind(X_train_val, SalePrice = y_train_val))
## Warning in svm.default(x, y, scale = scale, ..., na.action = na.action):
## Variable(s) 'UtilitiesAllPub' and 'UtilitiesNoSeWa' and 'Condition2RRAe' and
## 'Condition2RRAn' and 'RoofStyleShed' and 'RoofMatlMembran' and 'RoofMatlMetal'
## and 'Exterior1stCBlock' and 'Exterior1stStone' and 'ExterCondPo' and
## 'HeatingFloor' and 'HeatingQCPo' and 'ElectricalMix' constant. Cannot scale
## data.
y_pred_test <- predict(svr, newdata = X_test)
score_test <- rmse(y_pred_test, y_test)
baselines_rmse_test$svr <- score_test
actual_metrics_test$svr <- metrics_fusion(y_pred_test, y_test)

# Display scores
score_val
## [1] 0.146061
score_test
## [1] 0.1069807

Decision Tree

Decision Tree regression applied to the data.

Calculates the RMSE for validation and test sets, and stores the results.

Additional performance metrics computed and displays the RMSE values.

dt_tc <- trainControl(method = "cv", number = 5)
dt_cv <- caret::train(
  SalePrice ~ .,
  data = cbind(X_train_val, SalePrice = y_train_val),
  trControl = dt_tc,
  method = "rpart"
)
## Warning in nominalTrainWorkflow(x = x, y = y, wts = weights, info = trainInfo,
## : There were missing values in resampled performance measures.
# Validation predictions and metrics
score_val <- mean(dt_cv$results$RMSE, na.rm = TRUE)
baselines_rmse$decision_tree <- score_val

# Test predictions and metrics
dt <- caret::train(x = X_train_val, y = y_train_val, method = "rpart")
## Warning in nominalTrainWorkflow(x = x, y = y, wts = weights, info = trainInfo,
## : There were missing values in resampled performance measures.
y_pred_test <- predict(dt, newdata = X_test)
score_test <- rmse(y_pred_test, y_test)
baselines_rmse_test$decision_tree <- score_test
actual_metrics_test$decision_tree <- metrics_fusion(y_pred_test, y_test)

# Display scores
score_val
## [1] 0.3029599
score_test
## [1] 0.2648677

Ensemble Learning

Empty lists initialized that will be used to store the RMSE values and actual performance metrics for ensemble learning models.

Empty lists will be populated with values in subsequent steps of the code.

ensemble_rmse <- list()
ensemble_actual_metrics <- list()

ensemble_rmse_test <- list()
ensemble_actual_metrics_test <- list()

Random Forest

Random forest algorithm implemented for regression tasks using ensemble learning.

Rrandom forest model trained on the training and validation data.

Its performance is evaluated using root mean squared error (RMSE) on the validation and test datasets.

Calculate feature importance using the random forest model and creates a bar plot to visualize the top 30 important features.

rf_tc <- trainControl(method = "cv", number = 5)
rf_cv <- caret::train(
  SalePrice ~ .,
  data = cbind(X_train_val, SalePrice = y_train_val),
  trControl = rf_tc,
  method = "rf"
)

# Validation predictions and metrics
score_val <- mean(rf_cv$results$RMSE)
ensemble_rmse$random_forest <- score_val

# Test predictions and metrics
rf <- randomForest(x = X_train_val, y = y_train_val, proximity = T)

y_pred_test_rf <- predict(rf, newdata = X_test)
score_test <- rmse(y_pred_test_rf, y_test)
ensemble_rmse_test$random_forest <- score_test
ensemble_actual_metrics_test$random_forest <- metrics_fusion(y_pred_test_rf, y_test)

y_pred_train_rf <- predict(rf, newdata = X_train_val)
# Display scores
score_val
## [1] 0.167545
score_test
## [1] 0.1239416
rf_df <- data.frame(rf$importance) %>%
  mutate(Feature = rownames(rf$importance)) %>%
  arrange(desc(IncNodePurity)) %>%
  head(30)

rf_df
##                 IncNodePurity         Feature
## OverallQual        39.3317144     OverallQual
## GrLivArea          23.3829345       GrLivArea
## YearBuilt          18.0851631       YearBuilt
## GarageArea          7.7513679      GarageArea
## TotalBsmtSF         5.2122830     TotalBsmtSF
## FullBath            5.1360600        FullBath
## X1stFlrSF           5.1002968       X1stFlrSF
## YearRemodAdd        4.5115344    YearRemodAdd
## ExterQualTA         3.0327954     ExterQualTA
## GarageFinishUnf     2.8712788 GarageFinishUnf
## LotArea             2.7641380         LotArea
## X2ndFlrSF           2.6220777       X2ndFlrSF
## CentralAirN         2.3953955     CentralAirN
## KitchenQualTA       2.3324030   KitchenQualTA
## BsmtFinSF1          2.2961851      BsmtFinSF1
## CentralAirY         2.2914090     CentralAirY
## Fireplaces          2.2350229      Fireplaces
## LotFrontage         1.9015351     LotFrontage
## BsmtQualTA          1.5372494      BsmtQualTA
## FoundationPConc     1.2024432 FoundationPConc
## BsmtQualEx          1.1726103      BsmtQualEx
## KitchenQualEx       0.9373911   KitchenQualEx
## OverallCond         0.9236530     OverallCond
## BsmtUnfSF           0.9024310       BsmtUnfSF
## OpenPorchSF         0.8647029     OpenPorchSF
## BsmtQualGd          0.7743535      BsmtQualGd
## MasVnrArea          0.6959345      MasVnrArea
## BedroomAbvGr        0.6883436    BedroomAbvGr
## WoodDeckSF          0.6112699      WoodDeckSF
## KitchenQualGd       0.5909569   KitchenQualGd
ggplot(data = rf_df, aes(x = reorder(Feature, IncNodePurity), y = IncNodePurity)) +
  geom_bar(stat = "identity") +
  coord_flip()

Gradient-Boosted Trees

Gradient-Boosted Trees (GBT) using XGBoost, LightGBM, and CatBoost libraries implemented for regression tasks.

The models are trained on the training and validation data, and their performance is evaluated using RMSE on the validation and test datasets.

The best hyperparameters are determined through cross-validation, and the models are then used to make predictions on the test data.

The RMSE scores and other evaluation metrics are recorded for each model.

The feature importance of the GBT model is visualized using a bar chart.

Code snippet showcases the application of ensemble learning techniques for regression tasks using boosting algorithms.

dtrain_val <- xgb.DMatrix(data = as.matrix(X_train_val), label = y_train_val)
dtest <- xgb.DMatrix(data = as.matrix(X_test), label = y_test)

xgb_params = list(
  eta = 0.01,
  gamma = 0.0468,
  max_depth = 6,
  min_child_weight = 1.41,
  subsample = 0.769,
  colsample_bytree = 0.283
)

xgb_cv <- xgb.cv(
  params = xgb_params,
  data = dtrain_val,
  nround = 10000,
  nfold = 5,
  prediction = F,
  showsd = T,
  metrics = "rmse",
  verbose = 1,
  print_every_n = 500,
  early_stopping_rounds = 25
)
## [1]  train-rmse:11.415094+0.004943   test-rmse:11.415006+0.019759 
## Multiple eval metrics are present. Will use test_rmse for early stopping.
## Will train until test_rmse hasn't improved in 25 rounds.
## 
## [501]    train-rmse:0.123204+0.000852    test-rmse:0.162023+0.009912 
## [1001]   train-rmse:0.067810+0.000528    test-rmse:0.129432+0.014106 
## [1501]   train-rmse:0.064470+0.000336    test-rmse:0.127999+0.013950 
## [2001]   train-rmse:0.062999+0.000382    test-rmse:0.127396+0.013698 
## [2501]   train-rmse:0.061982+0.000391    test-rmse:0.126990+0.013605 
## [3001]   train-rmse:0.061281+0.000436    test-rmse:0.126734+0.013585 
## Stopping. Best iteration:
## [3301]   train-rmse:0.060918+0.000425    test-rmse:0.126586+0.013508
# Validation predictions and metrics
score_val <- xgb_cv$evaluation_log$test_rmse_mean %>% min
ensemble_rmse$xgboost <- score_val

# Test predictions and metrics
xgb <- xgboost(
  params = xgb_params,
  data = dtrain_val,
  nround = 10000,
  eval_metric = "rmse",
  verbose = 1,
  print_every_n = 500,
  early_stopping_rounds = 25
)
## [1]  train-rmse:11.415130 
## Will train until train_rmse hasn't improved in 25 rounds.
## 
## [501]    train-rmse:0.122812 
## [1001]   train-rmse:0.067480 
## [1501]   train-rmse:0.063925 
## [2001]   train-rmse:0.062216 
## Stopping. Best iteration:
## [2208]   train-rmse:0.061725
y_pred_test_xgb <- predict(xgb, newdata = dtest)
score_test <- rmse(y_pred_test_xgb, y_test)
ensemble_rmse_test$xgboost_test <- score_test
ensemble_actual_metrics_test$xgboost_test <- metrics_fusion(y_pred_test_xgb, y_test)

y_pred_train_xgb <- predict(xgb, newdata = dtrain_val)

# Display scores
score_val
## [1] 0.1265857
score_test
## [1] 0.1099328
xgb_df <- xgb.importance(model = xgb) %>% head(30)

xgb_df
##                 Feature        Gain       Cover   Frequency
##  1:         OverallQual 0.223583835 0.058366696 0.043129861
##  2:           GrLivArea 0.192673044 0.091216449 0.073650719
##  3:           YearBuilt 0.061567751 0.033700748 0.030638699
##  4:         TotalBsmtSF 0.057968033 0.038530505 0.045133160
##  5:          GarageArea 0.053090442 0.036053993 0.038298374
##  6:           X1stFlrSF 0.036595006 0.028218689 0.041715767
##  7:          Fireplaces 0.031446071 0.012856771 0.009309451
##  8:        YearRemodAdd 0.027022009 0.023839746 0.023686071
##  9:     GarageFinishUnf 0.023343008 0.003431918 0.002238982
## 10:             LotArea 0.022658833 0.049547352 0.051850106
## 11:          BsmtFinSF1 0.021328304 0.038846878 0.034291775
## 12:            FullBath 0.018354795 0.014619173 0.008248881
## 13:         CentralAirN 0.016944106 0.008585731 0.007659675
## 14:         OverallCond 0.014003635 0.055172582 0.042069291
## 15:           X2ndFlrSF 0.012836399 0.026386796 0.023450389
## 16:          BsmtQualEx 0.011919525 0.004003206 0.003063870
## 17:         LotFrontage 0.007554254 0.018685584 0.020740042
## 18:         CentralAirY 0.007187775 0.005697863 0.004949328
## 19:       KitchenQualTA 0.006882377 0.003711625 0.005774216
## 20:          WoodDeckSF 0.006688944 0.020476970 0.018147537
## 21:      BsmtExposureNo 0.005776640 0.012996450 0.009073769
## 22:           BsmtUnfSF 0.005677273 0.023804477 0.030049493
## 23:          BsmtQualTA 0.005616715 0.001527392 0.001178412
## 24:     MSZoningC..all. 0.005542325 0.010853073 0.010487862
## 25:       KitchenQualEx 0.005470795 0.003679848 0.002710346
## 26:        BsmtFullBath 0.004639231 0.014215850 0.010252180
## 27: SaleConditionFamily 0.004021150 0.008337800 0.010134339
## 28:         OpenPorchSF 0.003669641 0.014007728 0.017440490
## 29:         ExterQualTA 0.003612649 0.001287493 0.001767617
## 30:     BsmtFinType1Unf 0.003359587 0.004583573 0.005656375
##                 Feature        Gain       Cover   Frequency
ggplot(data = xgb_df, aes(x = reorder(Feature, Gain), y = Gain)) +
  geom_bar(stat = "identity") +
  coord_flip()

objective_fn <- makeSingleObjectiveFunction(
  fn = function(x) {
    params = list(
      booster = "gbtree",
      eta = x["eta"],
      gamma = x["gamma"],
      max_depth = x["max_depth"],
      min_child_weight = x["min_child_weight"],
      subsample = x["subsample"],
      colsample_bytree = x["colsample_bytree"],
      max_delta_step = x["max_delta_step"]
    )

    cv <- xgb.cv(
      params = params,
      data = dtrain_val,
      nround = 10000,
      nfold = 5,
      prediction = F,
      showsd = T,
      metrics = "rmse",
      verbose = 1,
      print_every_n = 500,
      early_stopping_rounds = 25
    )

    cv$evaluation_log$test_rmse_mean %>% min
  },
  par.set = makeParamSet(
    makeNumericParam("eta", lower = 0.005, upper = 0.01),
    makeNumericParam("gamma", lower = 0.01, upper = 5),
    makeIntegerParam("max_depth", lower = 2, upper = 10),
    makeIntegerParam("min_child_weight", lower = 1, upper = 2000),
    makeNumericParam("subsample", lower = 0.20,  upper = 0.8),
    makeNumericParam("colsample_bytree", lower = 0.20, upper = 0.8),
    makeNumericParam("max_delta_step", lower = 0, upper = 5)
  ),
  minimize = TRUE
)

#Train model
design <- generateDesign(n = 1000, par.set = getParamSet(objective_fn), fun = lhs::randomLHS)
control <- makeMBOControl() %>% setMBOControlTermination(., iters = 10)

#run <- mbo(
#  fun = objective_fn,
#  design = design,
#  learner = makeLearner("regr.km", predict.type = "se", covtype = "matern3_2", control = list(trace = FALSE)),
#  control = control,
#  show.info = TRUE
#)
# Best parameters
#run$x
lgb_train_val <- lgb.Dataset(data = as.matrix(X_train_val), label = y_train_val)
lgb_test <- lgb.Dataset(data = as.matrix(X_test), label = y_test)

params <- list(
  objective = "regression",
  metric = "rmse",
  boosting_type = "gbdt",
  num_boost_round = 100,
  num_leaves = 15,
  learning_rate = 0.1,
  feature_fraction = 0.9,
  bagging_fraction = 0.8,
  bagging_freq = 5
)

lgb_cv <- lgb.cv(
  params = params,
  data = lgb_train_val,
  early_stopping_rounds = 25,
  verbose = 0
)
## [LightGBM] [Warning] Auto-choosing row-wise multi-threading, the overhead of testing was 0.000693 seconds.
## You can set `force_row_wise=true` to remove the overhead.
## And if memory is not enough, you can set `force_col_wise=true`.
## [LightGBM] [Warning] Auto-choosing row-wise multi-threading, the overhead of testing was 0.000526 seconds.
## You can set `force_row_wise=true` to remove the overhead.
## And if memory is not enough, you can set `force_col_wise=true`.
## [LightGBM] [Warning] Auto-choosing row-wise multi-threading, the overhead of testing was 0.000568 seconds.
## You can set `force_row_wise=true` to remove the overhead.
## And if memory is not enough, you can set `force_col_wise=true`.
## [LightGBM] [Info] Start training from score 12.014045
## [LightGBM] [Info] Start training from score 12.014641
## [LightGBM] [Info] Start training from score 12.040380
# Validation predictions and metrics
score_val <- min(unlist(lgb_cv$record_evals$valid$rmse$eval))
ensemble_rmse$lightgbm <- score_val

# Test predictions and metrics
lgb <- lgb.train(
  params = params,
  data = lgb_train_val,
  verbose = 0
)
## [LightGBM] [Warning] Auto-choosing row-wise multi-threading, the overhead of testing was 0.000722 seconds.
## You can set `force_row_wise=true` to remove the overhead.
## And if memory is not enough, you can set `force_col_wise=true`.
y_pred_test_lgb <- predict(lgb, data = as.matrix(X_test))
score_test <- rmse(y_pred_test_lgb, y_test)
ensemble_rmse_test$lightgbm <- score_test
ensemble_actual_metrics_test$lightgbm <- metrics_fusion(y_pred_test_lgb, y_test)

y_pred_train_lgb <- predict(lgb, data = as.matrix(X_train_val))
# Display scores
score_val
## [1] 0.1317233
score_test
## [1] 0.1145342
lgb_df <- lgb.importance(model = lgb) %>% head(30)

lgb_df
##                  Feature        Gain       Cover   Frequency
##  1:          OverallQual 0.437537456 0.055313343 0.038571429
##  2:            GrLivArea 0.168184420 0.081907389 0.087142857
##  3:            YearBuilt 0.054298849 0.049860419 0.055000000
##  4:           GarageArea 0.048860844 0.062384908 0.067142857
##  5:        KitchenQualTA 0.026934104 0.003939391 0.007142857
##  6:          CentralAirN 0.025805810 0.018320062 0.012857143
##  7:          TotalBsmtSF 0.024949278 0.046557973 0.055000000
##  8:            X1stFlrSF 0.024066406 0.049152001 0.053571429
##  9:         YearRemodAdd 0.022061462 0.020411681 0.026428571
## 10:              LotArea 0.017418772 0.064524877 0.068571429
## 11:           BsmtFinSF1 0.014189495 0.023373582 0.030000000
## 12:          OverallCond 0.011982742 0.035288454 0.033571429
## 13:      GarageFinishUnf 0.009883550 0.002123151 0.002857143
## 14:           BsmtQualEx 0.007786983 0.001076290 0.002142857
## 15:           Fireplaces 0.007671615 0.007124118 0.007857143
## 16:             FullBath 0.007012259 0.012698967 0.007142857
## 17:         BsmtFullBath 0.006989644 0.012415179 0.010714286
## 18:          OpenPorchSF 0.005697021 0.060564464 0.047142857
## 19:           WoodDeckSF 0.004939344 0.018595441 0.021428571
## 20:          LotFrontage 0.004691219 0.025301235 0.027142857
## 21:            X2ndFlrSF 0.004547048 0.019526684 0.015000000
## 22:            BsmtUnfSF 0.004206325 0.018750999 0.030000000
## 23:       BsmtExposureNo 0.004176088 0.009364989 0.008571429
## 24:           MasVnrArea 0.002984632 0.017073499 0.016428571
## 25:          PavedDriveN 0.002671038 0.001744768 0.001428571
## 26:          PavedDriveY 0.002601930 0.006251734 0.005000000
## 27:      BsmtFinType1Unf 0.002592272 0.001444163 0.004285714
## 28:           MSZoningRM 0.002434767 0.002287117 0.003571429
## 29:       LandContourLvl 0.002431043 0.001774198 0.003571429
## 30: SaleConditionAbnorml 0.001954281 0.016508026 0.009285714
##                  Feature        Gain       Cover   Frequency
ggplot(data = xgb_df, aes(x = reorder(Feature, Gain), y = Gain)) +
  geom_bar(stat = "identity") +
  coord_flip()

train_val_pool <- catboost.load_pool(data = X_train_val, label = y_train_val)
test_pool <- catboost.load_pool(data = X_test, label = y_test)

params <- list(
  loss_function = "RMSE",
  iterations = 10000,
  learning_rate = 0.01,
  metric_period = 1000
)

catb_cv <- catboost.cv(
  train_val_pool,
  params = params,
  fold_count = 5,
  early_stopping_rounds = 25
)
## Warning: Overfitting detector is active, thus evaluation metric is calculated on every iteration. 'metric_period' is ignored for evaluation metric.
## 0:   learn: 11.9131669   test: 11.9135090    best: 11.9135090 (0)    total: 109ms    remaining: 18m 7s
## 1000:    learn: 0.1300238    test: 0.2351916 best: 0.2351916 (1000)  total: 34.5s    remaining: 5m 10s
## 2000:    learn: 0.0718702    test: 0.2058939 best: 0.2058939 (2000)  total: 1m 9s    remaining: 4m 39s
## 3000:    learn: 0.0477858    test: 0.1985011 best: 0.1985011 (3000)  total: 1m 43s   remaining: 4m 2s
## 4000:    learn: 0.0333253    test: 0.1953407 best: 0.1953407 (4000)  total: 2m 18s   remaining: 3m 27s
## 5000:    learn: 0.0237993    test: 0.1939864 best: 0.1939864 (5000)  total: 2m 52s   remaining: 2m 52s
## 6000:    learn: 0.0174452    test: 0.1934132 best: 0.1934092 (5976)  total: 3m 27s   remaining: 2m 18s
## Stopped by overfitting detector  (25 iterations wait)
# Validation predictions and metrics
score_val <- min(catb_cv$test.RMSE.mean)
ensemble_rmse$catboost <- score_val

# Test predictions and metrics
catb <- catboost.train(
  params = params,
  learn_pool = train_val_pool
)
## 0:   learn: 0.4014370    total: 4.85ms   remaining: 48.5s
## 1000:    learn: 0.0823546    total: 4.6s remaining: 41.4s
## 2000:    learn: 0.0523925    total: 8.94s    remaining: 35.7s
## 3000:    learn: 0.0371214    total: 12.8s    remaining: 29.9s
## 4000:    learn: 0.0268016    total: 16.3s    remaining: 24.5s
## 5000:    learn: 0.0197163    total: 19.9s    remaining: 19.9s
## 6000:    learn: 0.0148433    total: 23.4s    remaining: 15.6s
## 7000:    learn: 0.0112215    total: 27s  remaining: 11.5s
## 8000:    learn: 0.0086462    total: 30.5s    remaining: 7.62s
## 9000:    learn: 0.0068226    total: 34s  remaining: 3.78s
## 9999:    learn: 0.0054538    total: 37.5s    remaining: 0us
y_pred_test_catboost <- catboost.predict(catb, test_pool)
score_test <- rmse(y_pred_test_catboost, y_test)
ensemble_rmse_test$catboost <- score_test
ensemble_actual_metrics_test$catboost <- metrics_fusion(y_pred_test_catboost, y_test)

y_pred_train_catboost <- catboost.predict(catb, train_val_pool)
# Display scores
score_val
## [1] 0.1934132
score_test
## [1] 0.1075237
catb_df <- data.frame(catboost.get_feature_importance(catb))
catb_df <- catb_df %>%
  mutate(Feature = rownames(catb_df)) %>%
  rename(Importance = catboost.get_feature_importance.catb.) %>%
  arrange(desc(Importance)) %>%
  head(30)

catb_df
##                 Importance         Feature
## OverallQual     20.8412958     OverallQual
## GrLivArea       13.7476338       GrLivArea
## YearBuilt        5.8871821       YearBuilt
## TotalBsmtSF      4.1368143     TotalBsmtSF
## GarageArea       4.0947282      GarageArea
## X1stFlrSF        3.6570384       X1stFlrSF
## Fireplaces       2.8957613      Fireplaces
## YearRemodAdd     2.8781681    YearRemodAdd
## LotArea          2.8516231         LotArea
## BsmtFinSF1       2.2897609      BsmtFinSF1
## OverallCond      2.0943099     OverallCond
## CentralAirY      1.8612928     CentralAirY
## FullBath         1.4684400        FullBath
## X2ndFlrSF        1.4440066       X2ndFlrSF
## CentralAirN      1.3363753     CentralAirN
## LotFrontage      1.2350676     LotFrontage
## BsmtFullBath     1.2289655    BsmtFullBath
## GarageFinishUnf  1.0894208 GarageFinishUnf
## BsmtQualGd       1.0699817      BsmtQualGd
## KitchenQualTA    0.8872915   KitchenQualTA
## WoodDeckSF       0.8509923      WoodDeckSF
## OpenPorchSF      0.8400538     OpenPorchSF
## BsmtExposureNo   0.8054760  BsmtExposureNo
## BsmtUnfSF        0.8007778       BsmtUnfSF
## KitchenQualGd    0.6979207   KitchenQualGd
## BedroomAbvGr     0.6597603    BedroomAbvGr
## BsmtFinType1Unf  0.6596745 BsmtFinType1Unf
## BsmtQualEx       0.6432281      BsmtQualEx
## HalfBath         0.6094491        HalfBath
## BsmtQualTA       0.5995891      BsmtQualTA
ggplot(data = catb_df, aes(x = reorder(Feature, Importance), y = Importance)) +
  geom_bar(stat = "identity") +
  coord_flip()

Association Rule Mining on Housing Characteristics

Code snippet performs association rule mining on housing characteristics using the Apriori algorithm.

Converts categorical data into transactions and applies the Apriori algorithm to find frequent itemsets.

Generate association rules using given support and confidence thresholds.

The code includes a dictionary to map column names and values to their corresponding descriptions for better rule interpretation.

Top ten association rules with their corresponding explanations displayed, including the antecedent (IF) and consequent (THEN) parts along with their descriptions and confidence percentages.

transactions <- transactions(categorical_data)
## Warning: Column(s) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
## 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37
## not logical or factor. Applying default discretization (see '? discretizeDF').
summary(transactions)
## transactions as itemMatrix in sparse format with
##  1460 rows (elements/itemsets/transactions) and
##  218 columns (items) and a density of 0.1697248 
## 
## most frequent items:
## Utilities=AllPub      Street=Pave  Condition2=Norm RoofMatl=CompShg 
##             1459             1454             1445             1434 
##     Heating=GasA          (Other) 
##             1428            46800 
## 
## element (itemset/transaction) length distribution:
## sizes
##   37 
## 1460 
## 
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##      37      37      37      37      37      37 
## 
## includes extended item information - examples:
##             labels variables  levels
## 1 MSZoning=C (all)  MSZoning C (all)
## 2      MSZoning=FV  MSZoning      FV
## 3      MSZoning=RH  MSZoning      RH
## 
## includes extended transaction information - examples:
##   transactionID
## 1             1
## 2             2
## 3             3
inspect(head(transactions, n = 1))
##     items                   transactionID
## [1] {MSZoning=RL,                        
##      Street=Pave,                        
##      LotShape=Reg,                       
##      LandContour=Lvl,                    
##      Utilities=AllPub,                   
##      LotConfig=Inside,                   
##      LandSlope=Gtl,                      
##      Neighborhood=CollgCr,               
##      Condition1=Norm,                    
##      Condition2=Norm,                    
##      BldgType=1Fam,                      
##      HouseStyle=2Story,                  
##      RoofStyle=Gable,                    
##      RoofMatl=CompShg,                   
##      Exterior1st=VinylSd,                
##      MasVnrType=BrkFace,                 
##      ExterQual=Gd,                       
##      ExterCond=TA,                       
##      Foundation=PConc,                   
##      BsmtQual=Gd,                        
##      BsmtCond=TA,                        
##      BsmtExposure=No,                    
##      BsmtFinType1=GLQ,                   
##      BsmtFinType2=Unf,                   
##      Heating=GasA,                       
##      HeatingQC=Ex,                       
##      CentralAir=Y,                       
##      Electrical=SBrkr,                   
##      KitchenQual=Gd,                     
##      Functional=Typ,                     
##      GarageType=Attchd,                  
##      GarageFinish=RFn,                   
##      GarageQual=TA,                      
##      GarageCond=TA,                      
##      PavedDrive=Y,                       
##      SaleType=WD,                        
##      SaleCondition=Normal}              1
rules <- apriori(transactions, parameter = list(support = 0.95, confidence = 0.95))
## Apriori
## 
## Parameter specification:
##  confidence minval smax arem  aval originalSupport maxtime support minlen
##        0.95    0.1    1 none FALSE            TRUE       5    0.95      1
##  maxlen target  ext
##      10  rules TRUE
## 
## Algorithmic control:
##  filter tree heap memopt load sort verbose
##     0.1 TRUE TRUE  FALSE TRUE    2    TRUE
## 
## Absolute minimum support count: 1387 
## 
## set item appearances ...[0 item(s)] done [0.00s].
## set transactions ...[218 item(s), 1460 transaction(s)] done [0.00s].
## sorting and recoding items ... [7 item(s)] done [0.00s].
## creating transaction tree ... done [0.00s].
## checking subsets of size 1 2 3 4 done [0.00s].
## writing ... [94 rule(s)] done [0.00s].
## creating S4 object  ... done [0.00s].
summary(rules)
## set of 94 rules
## 
## rule length distribution (lhs + rhs):sizes
##  1  2  3  4 
##  7 28 39 20 
## 
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   1.000   2.000   3.000   2.766   3.000   4.000 
## 
## summary of quality measures:
##     support         confidence        coverage           lift       
##  Min.   :0.9500   Min.   :0.9534   Min.   :0.9507   Min.   :0.9996  
##  1st Qu.:0.9562   1st Qu.:0.9793   1st Qu.:0.9678   1st Qu.:0.9998  
##  Median :0.9637   Median :0.9895   Median :0.9781   Median :1.0000  
##  Mean   :0.9664   Mean   :0.9871   Mean   :0.9791   Mean   :1.0000  
##  3rd Qu.:0.9740   3rd Qu.:0.9958   3rd Qu.:0.9897   3rd Qu.:1.0000  
##  Max.   :0.9993   Max.   :0.9993   Max.   :1.0000   Max.   :1.0010  
##      count     
##  Min.   :1387  
##  1st Qu.:1396  
##  Median :1407  
##  Mean   :1411  
##  3rd Qu.:1422  
##  Max.   :1459  
## 
## mining info:
##          data ntransactions support confidence
##  transactions          1460    0.95       0.95
##                                                                               call
##  apriori(data = transactions, parameter = list(support = 0.95, confidence = 0.95))
con <- file("data_description.txt", open = "r")

column_dictionary <- list()
value_dictionary <- list()

repeat {
  line <- readLines(con, n = 1)

  if (length(line) == 0) {
    break
  }

  first_character <- substr(line, 1, 1)

  if (first_character == "") {
    next
  }

  if (first_character != " ") {
    column_name <- sub(":.*", "", line)
    column_description <- trimws(sub(".*:", "", line))

    column_dictionary[[column_name]] <- column_description
    value_dictionary[[column_name]] <- list()
  } else {
    pairs <- unlist(strsplit(line, "\t"))
    key <- trimws(pairs[1])
    value <- trimws(pairs[2])

    value_dictionary[[column_name]][[key]] <- value
  }
}

close(con)
rules_top_ten_df <- data.frame(
  lhs = labels(lhs(rules)),
  rhs = labels(rhs(rules)),
  rules@quality
) %>% arrange(desc(lift)) %>% head(n = 20)
for (i in 1:nrow(rules_top_ten_df)) {
  row <- rules_top_ten_df[i, ]

  explanation <- ""
  lhs <- unlist(strsplit(gsub('^.|.$', '', row["lhs"]), ","))

  for (i in 1:length(lhs)) {
    pair <- unlist(strsplit(lhs[i], "="))
    key <- pair[1]
    value <- pair[2]

    key_t <- column_dictionary[[key]]
    value_t <- value_dictionary[[key]][[value]]

    if (i == 1) {
      explanation <- paste("IF", key_t, "=", value_t)
    } else {
      explanation <- paste(explanation, "AND", key_t, "=", value_t)
    }
  }

  rhs <- unlist(strsplit(gsub('^.|.$', '', row["rhs"]), "="))
  key <- rhs[1]
  value <- rhs[2]

  key_t <- column_dictionary[[key]]
  value_t <- value_dictionary[[key]][[value]]

  confidence_pct <- format(round(row["confidence"] * 100, 2), 2)

  explanation <- paste(explanation, "THEN", key_t, "=", value_t, "(Confidence:", paste0(confidence_pct, "%)"))
  print(explanation)
  cat("\n")
}
## [1] "IF Proximity to various conditions (if more than one is present) = Normal THEN Garage condition = Typical/Average (Confidence: 96.47%)"
## 
## [1] "IF Garage condition = Typical/Average THEN Proximity to various conditions (if more than one is present) = Normal (Confidence: 99.08%)"
## 
## [1] "IF Type of utilities available = All public Utilities (E,G,W,& S) AND Garage condition = Typical/Average THEN Proximity to various conditions (if more than one is present) = Normal (Confidence: 99.08%)"
## 
## [1] "IF Type of utilities available = All public Utilities (E,G,W,& S) AND Proximity to various conditions (if more than one is present) = Normal THEN Garage condition = Typical/Average (Confidence: 96.47%)"
## 
## [1] "IF Type of road access to property = Paved AND Garage condition = Typical/Average THEN Proximity to various conditions (if more than one is present) = Normal (Confidence: 99.07%)"
## 
## [1] "IF Type of road access to property = Paved AND Type of utilities available = All public Utilities (E,G,W,& S) AND Garage condition = Typical/Average THEN Proximity to various conditions (if more than one is present) = Normal (Confidence: 99.07%)"
## 
## [1] "IF Type of road access to property = Paved AND Proximity to various conditions (if more than one is present) = Normal THEN Garage condition = Typical/Average (Confidence: 96.46%)"
## 
## [1] "IF Type of road access to property = Paved AND Type of utilities available = All public Utilities (E,G,W,& S) AND Proximity to various conditions (if more than one is present) = Normal THEN Garage condition = Typical/Average (Confidence: 96.45%)"
## 
## [1] "IF Type of heating = Gas forced warm air furnace THEN Roof material = Standard (Composite) Shingle (Confidence: 98.25%)"
## 
## [1] "IF Roof material = Standard (Composite) Shingle THEN Type of heating = Gas forced warm air furnace (Confidence: 97.84%)"
## 
## [1] "IF Type of utilities available = All public Utilities (E,G,W,& S) AND Type of heating = Gas forced warm air furnace THEN Roof material = Standard (Composite) Shingle (Confidence: 98.25%)"
## 
## [1] "IF Type of utilities available = All public Utilities (E,G,W,& S) AND Roof material = Standard (Composite) Shingle THEN Type of heating = Gas forced warm air furnace (Confidence: 97.84%)"
## 
## [1] "IF Type of road access to property = Paved AND Type of heating = Gas forced warm air furnace THEN Roof material = Standard (Composite) Shingle (Confidence: 98.24%)"
## 
## [1] "IF Type of road access to property = Paved AND Type of utilities available = All public Utilities (E,G,W,& S) AND Type of heating = Gas forced warm air furnace THEN Roof material = Standard (Composite) Shingle (Confidence: 98.24%)"
## 
## [1] "IF Type of road access to property = Paved AND Roof material = Standard (Composite) Shingle THEN Type of heating = Gas forced warm air furnace (Confidence: 97.83%)"
## 
## [1] "IF Type of road access to property = Paved AND Type of utilities available = All public Utilities (E,G,W,& S) AND Roof material = Standard (Composite) Shingle THEN Type of heating = Gas forced warm air furnace (Confidence: 97.83%)"
## 
## [1] "IF Proximity to various conditions (if more than one is present) = Normal AND Type of heating = Gas forced warm air furnace THEN Roof material = Standard (Composite) Shingle (Confidence: 98.23%)"
## 
## [1] "IF Type of utilities available = All public Utilities (E,G,W,& S) AND Proximity to various conditions (if more than one is present) = Normal AND Type of heating = Gas forced warm air furnace THEN Roof material = Standard (Composite) Shingle (Confidence: 98.23%)"
## 
## [1] "IF Proximity to various conditions (if more than one is present) = Normal AND Roof material = Standard (Composite) Shingle THEN Type of heating = Gas forced warm air furnace (Confidence: 97.82%)"
## 
## [1] "IF Type of utilities available = All public Utilities (E,G,W,& S) AND Proximity to various conditions (if more than one is present) = Normal AND Roof material = Standard (Composite) Shingle THEN Type of heating = Gas forced warm air furnace (Confidence: 97.81%)"

Stacking

Stacking is performed by combining the predictions from different models (Random Forest, XGBoost, LightGBM, CatBoost) into a new dataset.

Linear regression model is trained on the stacked dataset to learn the relationship between ensemble predictions and the actual target values.

Model’s predictions on the test dataset are evaluated using root mean squared error (RMSE).

Metrics fusion function is applied to assess the performance of the stacking ensemble.

stacked_data <- data.frame(y = y_train_val, prediction_rf = y_pred_train_rf, prediction_xgb = y_pred_train_xgb, prediction_lgb = y_pred_train_lgb, prediction_catboost = y_pred_train_catboost)

stacked_data_test <- data.frame(y = y_test, prediction_rf = y_pred_test_rf, prediction_xgb = y_pred_test_xgb, prediction_lgb = y_pred_test_lgb, prediction_catboost = y_pred_test_catboost)

model_meta <- caret::train(y ~ ., data = stacked_data, method = "lm")
predictions_meta <- predict(model_meta, newdata = stacked_data_test)

ensemble_rmse_test$stacking_score <- rmse(predictions_meta, y_test)
ensemble_actual_metrics_test$stacking <- metrics_fusion(predictions_meta, y_test)

Comparison

Compares the performance of different models and ensembles using the root mean squared error (RMSE) metric.

Bar charts created to display the RMSE values, with the x-axis representing the models and the y-axis representing the RMSE.

First set of plots focuses on the baseline models on both the training and test sets.

Second set focuses on the ensemble models on both the training and test sets.

Purpose is to compare the models’ performance and determine which ones have the lowest RMSE, indicating better predictive accuracy.

# Plot RMSE for baseline models
df <- data.frame(models = names(baselines_rmse), rmse = unlist(baselines_rmse))
df
##                              models      rmse
## linear_regression linear_regression 0.1549031
## lasso                         lasso 0.1712791
## ridge                         ridge 0.2462979
## elasticnet               elasticnet 0.1711617
## knn                             knn 0.1832919
## svr                             svr 0.1460610
## decision_tree         decision_tree 0.3029599
ggplot(df, aes(x = models, y = rmse)) +
  geom_bar(stat = "identity", fill = "steelblue") +
  xlab("Models") +
  ylab("RMSE") +
  ylim(0, 0.35) +
  ggtitle("Baseline RMSE") +
  theme_minimal()

# Plot RMSE for ensemble models
df <- data.frame(models = names(ensemble_rmse), rmse = unlist(ensemble_rmse))
df
##                      models      rmse
## random_forest random_forest 0.1675450
## xgboost             xgboost 0.1265857
## lightgbm           lightgbm 0.1317233
## catboost           catboost 0.1934132
ggplot(df, aes(x = models, y = rmse)) +
  geom_bar(stat = "identity", fill = "steelblue") +
  xlab("Models") +
  ylab("RMSE") +
  ylim(0, 0.35) +
  ggtitle("Ensemble RMSE") +
  theme_minimal()

# Plot RMSE for baseline models on the test set
df <- data.frame(models = names(baselines_rmse_test), rmse = unlist(baselines_rmse_test))
df
##                              models      rmse
## linear_regression linear_regression 0.1218889
## lasso                         lasso 0.1148247
## ridge                         ridge 0.1265604
## elasticnet               elasticnet 0.1173051
## knn                             knn 0.1792911
## svr                             svr 0.1069807
## decision_tree         decision_tree 0.2648677
ggplot(df, aes(x = models, y = rmse)) +
  geom_bar(stat = "identity", fill = "steelblue") +
  xlab("Models") +
  ylab("RMSE") +
  ylim(0, 0.35) +
  ggtitle("Baseline RMSE") +
  theme_minimal()

# Plot RMSE for ensemble models on the test set
df <- data.frame(models = names(ensemble_rmse_test), rmse = unlist(ensemble_rmse_test))
df
##                        models      rmse
## random_forest   random_forest 0.1239416
## xgboost_test     xgboost_test 0.1099328
## lightgbm             lightgbm 0.1145342
## catboost             catboost 0.1075237
## stacking_score stacking_score 0.1078134
ggplot(df, aes(x = models, y = rmse)) +
  geom_bar(stat = "identity", fill = "steelblue") +
  xlab("Models") +
  ylab("RMSE") +
  ylim(0, 0.35) +
  ggtitle("Ensemble RMSE") +
  theme_minimal()

data.frame(t(data.frame(actual_metrics_test))) %>% arrange(desc(r2))
##                        mae       mape     rmse        mse        r2
## linear_regression 14935.65 0.08766533 22326.23  498460523 0.9208717
## lasso             15956.16 0.08582267 26423.02  698175905 0.9041092
## svr               15056.32 0.08159073 25228.70  636487525 0.9019092
## elasticnet        16344.68 0.08756502 27331.17  746992779 0.8986378
## ridge             18051.14 0.09831870 28817.58  830453105 0.8920696
## knn               24675.74 0.14031078 38013.83 1445051148 0.7907291
## decision_tree     37197.20 0.20696292 53865.51 2901493541 0.5424929
data.frame(t(data.frame(ensemble_actual_metrics_test))) %>% arrange(desc(r2))
##                    mae       mape     rmse       mse        r2
## catboost      14067.55 0.07714256 23360.30 545703544 0.9138881
## stacking      14087.02 0.07722054 23453.79 550080445 0.9132716
## xgboost_test  14927.04 0.08141034 23843.04 568490734 0.9109508
## lightgbm      15367.22 0.08351224 25701.52 660568315 0.8963502
## random_forest 16655.08 0.09036259 27900.36 778430138 0.8875507
save(list=ls(), file="assignment_model")