The-Complete-ggplot2-Part3
April James Palermo
2023-06-15

# Mindanao State University
# General Santos City
# John Michael H. Macawili
# May 5,2023
# GGPLOT2 Tutorial 3 - MASTERLIST
# install.packages("ggplot2")
# load package and data
options(scipen=999)  # turn-off scientific notation like 1e+48
library(ggplot2)
theme_set(theme_bw())  # pre-set the bw theme.
data("midwest", package = "ggplot2")
# midwest <- read.csv("http://goo.gl/G1K41K")  # bkup data source
# Scatterplot
gg <- ggplot(midwest, aes(x=area, y=poptotal)) + 
  geom_point(aes(col=state, size=popdensity)) + 
  geom_smooth(method="loess", se=F) + 
  xlim(c(0, 0.1)) + 
  ylim(c(0, 500000)) + 
  labs(subtitle="Area Vs Population", 
       y="Population", 
       x="Area", 
       title="Scatterplot", 
       caption = "Source: midwest")

plot(gg)
## `geom_smooth()` using formula = 'y ~ x'

## Warning: Removed 15 rows containing non-finite values (`stat_smooth()`).

## Warning: Removed 15 rows containing missing values (`geom_point()`).

# install 'ggalt' pkg
# devtools::install_github("hrbrmstr/ggalt")
options(scipen = 999)
library(ggplot2)
library(ggalt)
## Registered S3 methods overwritten by 'ggalt':
##   method                  from   
##   grid.draw.absoluteGrob  ggplot2
##   grobHeight.absoluteGrob ggplot2
##   grobWidth.absoluteGrob  ggplot2
##   grobX.absoluteGrob      ggplot2
##   grobY.absoluteGrob      ggplot2

midwest_select <- midwest[midwest$poptotal > 350000 & 
                            midwest$poptotal <= 500000 & 
                            midwest$area > 0.01 & 
                            midwest$area < 0.1, ]

# Plot
ggplot(midwest, aes(x=area, y=poptotal)) + 
  geom_point(aes(col=state, size=popdensity)) +   # draw points
  geom_smooth(method="loess", se=F) + 
  xlim(c(0, 0.1)) + 
  ylim(c(0, 500000)) +   # draw smoothing line
  geom_encircle(aes(x=area, y=poptotal), 
                data=midwest_select, 
                color="red", 
                size=2, 
                expand=0.08) +   # encircle
  labs(subtitle="Area Vs Population", 
       y="Population", 
       x="Area", 
       title="Scatterplot + Encircle", 
       caption="Source: midwest")

## `geom_smooth()` using formula = 'y ~ x'

## Warning: Removed 15 rows containing non-finite values (`stat_smooth()`).
## Removed 15 rows containing missing values (`geom_point()`).

# load package and data
library(ggplot2)
data(mpg, package="ggplot2") # alternate source: "http://goo.gl/uEeRGu")
theme_set(theme_bw())  # pre-set the bw theme.

g <- ggplot(mpg, aes(cty, hwy))

# Scatterplot
g + geom_point() + 
  geom_smooth(method="lm", se=F) +
  labs(subtitle="mpg: city vs highway mileage", 
       y="hwy", 
       x="cty", 
       title="Scatterplot with overlapping points", 
       caption="Source: midwest")

## `geom_smooth()` using formula = 'y ~ x'

dim(mpg)

## [1] 234  11

# load package and data
library(ggplot2)
data(mpg, package="ggplot2")
# mpg <- read.csv("http://goo.gl/uEeRGu")

# Scatterplot
theme_set(theme_bw())  # pre-set the bw theme.
g <- ggplot(mpg, aes(cty, hwy))
g + geom_jitter(width = .5, size=1) +
  labs(subtitle="mpg: city vs highway mileage", 
       y="hwy", 
       x="cty", 
       title="Jittered Points")

# load package and data
library(ggplot2)
data(mpg, package="ggplot2")
# mpg <- read.csv("http://goo.gl/uEeRGu")

# Scatterplot
theme_set(theme_bw())  # pre-set the bw theme.
g <- ggplot(mpg, aes(cty, hwy))
g + geom_count(col="tomato3", show.legend=F) +
  labs(subtitle="mpg: city vs highway mileage", 
       y="hwy", 
       x="cty", 
       title="Counts Plot")

# load package and data
library(ggplot2)
data(mpg, package="ggplot2")
# mpg <- read.csv("http://goo.gl/uEeRGu")

mpg_select <- mpg[mpg$manufacturer %in% c("audi", "ford", "honda", "hyundai"), ]

# Scatterplot
theme_set(theme_bw())  # pre-set the bw theme.
g <- ggplot(mpg_select, aes(displ, cty)) + 
  labs(subtitle="mpg: Displacement vs City Mileage",
       title="Bubble chart")

g + geom_jitter(aes(col=manufacturer, size=hwy)) + 
  geom_smooth(aes(col=manufacturer), method="lm", se=F)

## `geom_smooth()` using formula = 'y ~ x'

# load package and data
library(ggplot2)
library(ggExtra)
data(mpg, package="ggplot2")
# mpg <- read.csv("http://goo.gl/uEeRGu")

# Scatterplot
theme_set(theme_bw())  # pre-set the bw theme.
mpg_select <- mpg[mpg$hwy >= 35 & mpg$cty > 27, ]
g <- ggplot(mpg, aes(cty, hwy)) + 
  geom_count() + 
  geom_smooth(method="lm", se=F)

ggMarginal(g, type = "histogram", fill="transparent")

## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'

ggMarginal(g, type = "boxplot", fill="transparent")

## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'

## Warning: Continuous x aesthetic
## ℹ did you forget `aes(group = ...)`?

## Warning: Continuous x aesthetic
## ℹ did you forget `aes(group = ...)`?

# ggMarginal(g, type = "density", fill="transparent")

# devtools::install_github("kassambara/ggcorrplot")
library(ggplot2)
library(ggcorrplot)

# Correlation matrix
data(mtcars)
corr <- round(cor(mtcars), 1)

# Plot
ggcorrplot(corr, hc.order = TRUE, 
           type = "lower", 
           lab = TRUE, 
           lab_size = 3, 
           method="circle", 
           colors = c("tomato2", "white", "springgreen3"), 
           title="Correlogram of mtcars", 
           ggtheme=theme_bw)

library(ggplot2)
theme_set(theme_bw())  

# Data Prep
data("mtcars")  # load data
mtcars$`car name` <- rownames(mtcars)  # create new column for car names
mtcars$mpg_z <- round((mtcars$mpg - mean(mtcars$mpg))/sd(mtcars$mpg), 2)  # compute normalized mpg
mtcars$mpg_type <- ifelse(mtcars$mpg_z < 0, "below", "above")  # above / below avg flag
mtcars <- mtcars[order(mtcars$mpg_z), ]  # sort
mtcars$`car name` <- factor(mtcars$`car name`, levels = mtcars$`car name`)  # convert to factor to retain sorted order in plot.

# Diverging Barcharts
ggplot(mtcars, aes(x=`car name`, y=mpg_z, label=mpg_z)) + 
  geom_bar(stat='identity', aes(fill=mpg_type), width=.5)  +
  scale_fill_manual(name="Mileage", 
                    labels = c("Above Average", "Below Average"), 
                    values = c("above"="#00ba38", "below"="#f8766d")) + 
  labs(subtitle="Normalised mileage from 'mtcars'", 
       title= "Diverging Bars") + 
  coord_flip()

library(ggplot2)
theme_set(theme_bw())

ggplot(mtcars, aes(x=`car name`, y=mpg_z, label=mpg_z)) + 
  geom_point(stat='identity', fill="black", size=6)  +
  geom_segment(aes(y = 0, 
                   x = `car name`, 
                   yend = mpg_z, 
                   xend = `car name`), 
               color = "black") +
  geom_text(color="white", size=2) +
  labs(title="Diverging Lollipop Chart", 
       subtitle="Normalized mileage from 'mtcars': Lollipop") + 
  ylim(-2.5, 2.5) +
  coord_flip()

library(ggplot2)
theme_set(theme_bw())

# Plot
ggplot(mtcars, aes(x=`car name`, y=mpg_z, label=mpg_z)) + 
  geom_point(stat='identity', aes(col=mpg_type), size=6)  +
  scale_color_manual(name="Mileage", 
                     labels = c("Above Average", "Below Average"), 
                     values = c("above"="#00ba38", "below"="#f8766d")) + 
  geom_text(color="white", size=2) +
  labs(title="Diverging Dot Plot", 
       subtitle="Normalized mileage from 'mtcars': Dotplot") + 
  ylim(-2.5, 2.5) +
  coord_flip()

library(ggplot2)
library(quantmod)

## Loading required package: xts
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## 
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## 
## Loading required package: TTR
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo

data("economics", package = "ggplot2")

# Compute % Returns
economics$returns_perc <- c(0, diff(economics$psavert)/economics$psavert[-length(economics$psavert)])

# Create break points and labels for axis ticks
brks <- economics$date[seq(1, length(economics$date), 12)]
lbls <- lubridate::year(economics$date[seq(1, length(economics$date), 12)])

# Plot
ggplot(economics[1:100, ], aes(date, returns_perc)) + 
  geom_area() + 
  scale_x_date(breaks=brks, labels=lbls) + 
  theme(axis.text.x = element_text(angle=90)) + 
  labs(title="Area Chart", 
       subtitle = "Perc Returns for Personal Savings", 
       y="% Returns for Personal savings", 
       caption="Source: economics")

# Prepare data: group mean city mileage by manufacturer.
cty_mpg <- aggregate(mpg$cty, by=list(mpg$manufacturer), FUN=mean)  # aggregate
colnames(cty_mpg) <- c("make", "mileage")  # change column names
cty_mpg <- cty_mpg[order(cty_mpg$mileage), ]  # sort
cty_mpg$make <- factor(cty_mpg$make, levels = cty_mpg$make)  # to retain the order in plot.
head(cty_mpg, 4)

##          make  mileage
## 9     lincoln 11.33333
## 8  land rover 11.50000
## 3       dodge 13.13514
## 10    mercury 13.25000

library(ggplot2)
theme_set(theme_bw())

# Draw plot
ggplot(cty_mpg, aes(x=make, y=mileage)) + 
  geom_bar(stat="identity", width=.5, fill="tomato3") + 
  labs(title="Ordered Bar Chart", 
       subtitle="Make Vs Avg. Mileage", 
       caption="source: mpg") + 
  theme(axis.text.x = element_text(angle=65, vjust=0.6))

library(ggplot2)
theme_set(theme_bw())

# Plot
ggplot(cty_mpg, aes(x=make, y=mileage)) + 
  geom_point(size=3) + 
  geom_segment(aes(x=make, 
                   xend=make, 
                   y=0, 
                   yend=mileage)) + 
  labs(title="Lollipop Chart", 
       subtitle="Make Vs Avg. Mileage", 
       caption="source: mpg") + 
  theme(axis.text.x = element_text(angle=65, vjust=0.6))

library(ggplot2)
library(scales)
theme_set(theme_classic())

# Plot
ggplot(cty_mpg, aes(x=make, y=mileage)) + 
  geom_point(col="tomato2", size=3) +   # Draw points
  geom_segment(aes(x=make, 
                   xend=make, 
                   y=min(mileage), 
                   yend=max(mileage)), 
               linetype="dashed", 
               size=0.1) +   # Draw dashed lines
  labs(title="Dot Plot", 
       subtitle="Make Vs Avg. Mileage", 
       caption="source: mpg") +  
  coord_flip()

## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.

library(ggplot2)
library(scales)
theme_set(theme_classic())

# prep data
df <- read.csv("https://raw.githubusercontent.com/selva86/datasets/master/gdppercap.csv")
colnames(df) <- c("continent", "1952", "1957")
left_label <- paste(df$continent, round(df$`1952`),sep=", ")
right_label <- paste(df$continent, round(df$`1957`),sep=", ")
df$class <- ifelse((df$`1957` - df$`1952`) < 0, "red", "green")

# Plot
p <- ggplot(df) + geom_segment(aes(x=1, xend=2, y=`1952`, yend=`1957`, col=class), size=.75, show.legend=F) + 
  geom_vline(xintercept=1, linetype="dashed", size=.1) + 
  geom_vline(xintercept=2, linetype="dashed", size=.1) +
  scale_color_manual(labels = c("Up", "Down"), 
                     values = c("green"="#00ba38", "red"="#f8766d")) +  # color of lines
  labs(x="", y="Mean GdpPerCap") +  # Axis labels
  xlim(.5, 2.5) + ylim(0,(1.1*(max(df$`1952`, df$`1957`))))  # X and Y axis limits

# Add texts
p <- p + geom_text(label=left_label, y=df$`1952`, x=rep(1, NROW(df)), hjust=1.1, size=3.5)
p <- p + geom_text(label=right_label, y=df$`1957`, x=rep(2, NROW(df)), hjust=-0.1, size=3.5)
p <- p + geom_text(label="Time 1", x=1, y=1.1*(max(df$`1952`, df$`1957`)), hjust=1.2, size=5)  # title
p <- p + geom_text(label="Time 2", x=2, y=1.1*(max(df$`1952`, df$`1957`)), hjust=-0.1, size=5)  # title

# Minify theme
p + theme(panel.background = element_blank(), 
          panel.grid = element_blank(),
          axis.ticks = element_blank(),
          axis.text.x = element_blank(),
          panel.border = element_blank(),
          plot.margin = unit(c(1,2,1,2), "cm"))

# devtools::install_github("hrbrmstr/ggalt")
library(ggplot2)
library(ggalt)
theme_set(theme_classic())

health <- read.csv("https://raw.githubusercontent.com/selva86/datasets/master/health.csv")
health$Area <- factor(health$Area, levels=as.character(health$Area))  # for right ordering of the dumbells

# health$Area <- factor(health$Area)
gg <- ggplot(health, aes(x=pct_2013, xend=pct_2014, y=Area, group=Area)) + 
  geom_dumbbell(color="#a3c4dc", 
                size=0.75, 
                point.colour.l="#0e668b") + 
  scale_x_continuous(label=percent) + 
  labs(x=NULL, 
       y=NULL, 
       title="Dumbbell Chart", 
       subtitle="Pct Change: 2013 vs 2014", 
       caption="Source: https://github.com/hrbrmstr/ggalt") +
  theme(plot.title = element_text(hjust=0.5, face="bold"),
        plot.background=element_rect(fill="#f7f7f7"),
        panel.background=element_rect(fill="#f7f7f7"),
        panel.grid.minor=element_blank(),
        panel.grid.major.y=element_blank(),
        panel.grid.major.x=element_line(),
        axis.ticks=element_blank(),
        legend.position="top",
        panel.border=element_blank())

## Warning in geom_dumbbell(color = "#a3c4dc", size = 0.75, point.colour.l =
## "#0e668b"): Ignoring unknown parameters: `point.colour.l`

plot(gg)

## Warning: Using the `size` aesthetic with geom_segment was deprecated in ggplot2 3.4.0.
## ℹ Please use the `linewidth` aesthetic instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.

library(ggplot2)
theme_set(theme_classic())

# Histogram on a Continuous (Numeric) Variable
g <- ggplot(mpg, aes(displ)) + scale_fill_brewer(palette = "Spectral")

g + geom_histogram(aes(fill=class), 
                   binwidth = .1, 
                   col="black", 
                   size=.1) +  # change binwidth
  labs(title="Histogram with Auto Binning", 
       subtitle="Engine Displacement across Vehicle Classes")  

g + geom_histogram(aes(fill=class), 
                   bins=5, 
                   col="black", 
                   size=.1) +   # change number of bins
  labs(title="Histogram with Fixed Bins", 
       subtitle="Engine Displacement across Vehicle Classes") 

library(ggplot2)
theme_set(theme_classic())

# Histogram on a Categorical variable
g <- ggplot(mpg, aes(manufacturer))
g + geom_bar(aes(fill=class), width = 0.5) + 
  theme(axis.text.x = element_text(angle=65, vjust=0.6)) + 
  labs(title="Histogram on Categorical Variable", 
       subtitle="Manufacturer across Vehicle Classes") 

library(ggplot2)
theme_set(theme_classic())

# Plot
g <- ggplot(mpg, aes(cty))
g + geom_density(aes(fill=factor(cyl)), alpha=0.8) + 
  labs(title="Density plot", 
       subtitle="City Mileage Grouped by Number of cylinders",
       caption="Source: mpg",
       x="City Mileage",
       fill="# Cylinders")

library(ggplot2)
theme_set(theme_bw())

# plot
g <- ggplot(mpg, aes(manufacturer, cty))
g + geom_boxplot() + 
  geom_dotplot(binaxis='y', 
               stackdir='center', 
               dotsize = .5, 
               fill="red") +
  theme(axis.text.x = element_text(angle=65, vjust=0.6)) + 
  labs(title="Box plot + Dot plot", 
       subtitle="City Mileage vs Class: Each dot represents 1 row in source data",
       caption="Source: mpg",
       x="Class of Vehicle",
       y="City Mileage")

## Bin width defaults to 1/30 of the range of the data. Pick better value with
## `binwidth`.

library(ggplot2)
theme_set(theme_bw())

# plot
g <- ggplot(mpg, aes(manufacturer, cty))
g + geom_boxplot() + 
  geom_dotplot(binaxis='y', 
               stackdir='center', 
               dotsize = .5, 
               fill="red") +
  theme(axis.text.x = element_text(angle=65, vjust=0.6)) + 
  labs(title="Box plot + Dot plot", 
       subtitle="City Mileage vs Class: Each dot represents 1 row in source data",
       caption="Source: mpg",
       x="Class of Vehicle",
       y="City Mileage")

## Bin width defaults to 1/30 of the range of the data. Pick better value with
## `binwidth`.

library(ggthemes)
library(ggplot2)
theme_set(theme_tufte())  # from ggthemes

# plot
g <- ggplot(mpg, aes(manufacturer, cty))
g + geom_tufteboxplot() + 
  theme(axis.text.x = element_text(angle=65, vjust=0.6)) + 
  labs(title="Tufte Styled Boxplot", 
       subtitle="City Mileage grouped by Class of vehicle",
       caption="Source: mpg",
       x="Class of Vehicle",
       y="City Mileage")

## Warning: The following aesthetics were dropped during statistical transformation: y
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

## Warning: Using the `size` aesthetic in this geom was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` in the `default_aes` field and elsewhere instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.

library(ggplot2)
theme_set(theme_bw())

# plot
g <- ggplot(mpg, aes(class, cty))
g + geom_violin() + 
  labs(title="Violin plot", 
       subtitle="City Mileage vs Class of vehicle",
       caption="Source: mpg",
       x="Class of Vehicle",
       y="City Mileage")

library(ggplot2)
library(ggthemes)
options(scipen = 999)  # turns of scientific notations like 1e+40

# Read data
email_campaign_funnel <- read.csv("https://raw.githubusercontent.com/selva86/datasets/master/email_campaign_funnel.csv")

# X Axis Breaks and Labels 
brks <- seq(-15000000, 15000000, 5000000)
lbls = paste0(as.character(c(seq(15, 0, -5), seq(5, 15, 5))), "m")

# Plot
ggplot(email_campaign_funnel, aes(x = Stage, y = Users, fill = Gender)) +   # Fill column
  geom_bar(stat = "identity", width = .6) +   # draw the bars
  scale_y_continuous(breaks = brks,   # Breaks
                     labels = lbls) + # Labels
  coord_flip() +  # Flip axes
  labs(title="Email Campaign Funnel") +
  theme_tufte() +  # Tufte theme from ggfortify
  theme(plot.title = element_text(hjust = .5), 
        axis.ticks = element_blank()) +   # Centre plot title
  scale_fill_brewer(palette = "Dark2")  # Color palette

var <- mpg$class  # the categorical data 

nrows <- 10
df <- expand.grid(y = 1:nrows, x = 1:nrows)
categ_table <- round(table(var) * ((nrows*nrows)/(length(var))))
categ_table

## var
##    2seater    compact    midsize    minivan     pickup subcompact        suv 
##          2         20         18          5         14         15         26

df$category <- factor(rep(names(categ_table), categ_table))  
# NOTE: if sum(categ_table) is not 100 (i.e. nrows^2), it will need adjustment to make the sum to 100.
ggplot(df, aes(x = x, y = y, fill = category)) + 
  geom_tile(color = "black", size = 0.5) +
  scale_x_continuous(expand = c(0, 0)) +
  scale_y_continuous(expand = c(0, 0), trans = 'reverse') +
  scale_fill_brewer(palette = "Set3") +
  labs(title="Waffle Chart", subtitle="'Class' of vehicles",
       caption="Source: mpg") + 
  theme(panel.border = element_rect(size = 2),
        plot.title = element_text(size = rel(1.2)),
        axis.text = element_blank(),
        axis.title = element_blank(),
        axis.ticks = element_blank(),
        legend.title = element_blank(),
        legend.position = "right")

## Warning: The `size` argument of `element_rect()` is deprecated as of ggplot2 3.4.0.
## ℹ Please use the `linewidth` argument instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.

library(ggplot2)
theme_set(theme_classic())

# Source: Frequency table
df <- as.data.frame(table(mpg$class))
colnames(df) <- c("class", "freq")
pie <- ggplot(df, aes(x = "", y=freq, fill = factor(class))) + 
  geom_bar(width = 1, stat = "identity") +
  theme(axis.line = element_blank(), 
        plot.title = element_text(hjust=0.5)) + 
  labs(fill="class", 
       x=NULL, 
       y=NULL, 
       title="Pie Chart of class", 
       caption="Source: mpg")

pie + coord_polar(theta = "y", start=0)

# Source: Categorical variable.
# mpg$class
pie <- ggplot(mpg, aes(x = "", fill = factor(class))) + 
  geom_bar(width = 1) +
  theme(axis.line = element_blank(), 
        plot.title = element_text(hjust=0.5)) + 
  labs(fill="class", 
       x=NULL, 
       y=NULL, 
       title="Pie Chart of class", 
       caption="Source: mpg")

pie + coord_polar(theta = "y", start=0)

# http://www.r-graph-gallery.com/128-ring-or-donut-plot/

library(ggplot2) 
library(treemapify)
proglangs <- read.csv("https://raw.githubusercontent.com/selva86/datasets/master/proglanguages.csv")

# plot
treeMapCoordinates <- treemapify(proglangs,
                                 area = "value",
                                 fill = "parent",
                                 label = "id",
                                 group = "parent")

## Warning in treemapify(proglangs, area = "value", fill = "parent", label = "id",
## : `group` is deprecated, use `subgroup` instead

## Warning in treemapify(proglangs, area = "value", fill = "parent", label = "id",
## : `fill` is deprecated

## Warning in treemapify(proglangs, area = "value", fill = "parent", label = "id",
## : `label` is deprecated

# prep frequency table
freqtable <- table(mpg$manufacturer)
df <- as.data.frame.table(freqtable)
head(df)

##        Var1 Freq
## 1      audi   18
## 2 chevrolet   19
## 3     dodge   37
## 4      ford   25
## 5     honda    9
## 6   hyundai   14

# plot
library(ggplot2)
theme_set(theme_classic())

# Plot
g <- ggplot(df, aes(Var1, Freq))
g + geom_bar(stat="identity", width = 0.5, fill="tomato2") + 
  labs(title="Bar Chart", 
       subtitle="Manufacturer of vehicles", 
       caption="Source: Frequency of Manufacturers from 'mpg' dataset") +
  theme(axis.text.x = element_text(angle=65, vjust=0.6))

# From on a categorical column variable
g <- ggplot(mpg, aes(manufacturer))
g + geom_bar(aes(fill=class), width = 0.5) + 
  theme(axis.text.x = element_text(angle=65, vjust=0.6)) +
  labs(title="Categorywise Bar Chart", 
       subtitle="Manufacturer of vehicles", 
       caption="Source: Manufacturers from 'mpg' dataset")

## From Timeseries object (ts)
library(ggplot2)
library(ggfortify)

## Registered S3 method overwritten by 'ggfortify':
##   method        from 
##   fortify.table ggalt

theme_set(theme_classic())

# Plot 
autoplot(AirPassengers) + 
  labs(title="AirPassengers") + 
  theme(plot.title = element_text(hjust=0.5))

library(ggplot2)
theme_set(theme_classic())

# Allow Default X Axis Labels
ggplot(economics, aes(x=date)) + 
  geom_line(aes(y=returns_perc)) + 
  labs(title="Time Series Chart", 
       subtitle="Returns Percentage from 'Economics' Dataset", 
       caption="Source: Economics", 
       y="Returns %")

library(ggplot2)
library(lubridate)

## 
## Attaching package: 'lubridate'
## 
## The following objects are masked from 'package:base':
## 
##     date, intersect, setdiff, union

theme_set(theme_bw())

economics_m <- economics[1:24, ]

# labels and breaks for X axis text
lbls <- paste0(month.abb[month(economics_m$date)], " ", lubridate::year(economics_m$date))
brks <- economics_m$date

# plot
ggplot(economics_m, aes(x=date)) + 
  geom_line(aes(y=returns_perc)) + 
  labs(title="Monthly Time Series", 
       subtitle="Returns Percentage from Economics Dataset", 
       caption="Source: Economics", 
       y="Returns %") +  # title and caption
  scale_x_date(labels = lbls, 
               breaks = brks) +  # change to monthly ticks and labels
  theme(axis.text.x = element_text(angle = 90, vjust=0.5),  # rotate x axis text
        panel.grid.minor = element_blank())  # turn off minor grid

library(ggplot2)
library(lubridate)
theme_set(theme_bw())

economics_y <- economics[1:90, ]

# labels and breaks for X axis text
brks <- economics_y$date[seq(1, length(economics_y$date), 12)]
lbls <- lubridate::year(brks)

# plot
ggplot(economics_y, aes(x=date)) + 
  geom_line(aes(y=returns_perc)) + 
  labs(title="Yearly Time Series", 
       subtitle="Returns Percentage from Economics Dataset", 
       caption="Source: Economics", 
       y="Returns %") +  # title and caption
  scale_x_date(labels = lbls, 
               breaks = brks) +  # change to monthly ticks and labels
  theme(axis.text.x = element_text(angle = 90, vjust=0.5),  # rotate x axis text
        panel.grid.minor = element_blank())  # turn off minor grid

data(economics_long, package = "ggplot2")
head(economics_long)

## # A tibble: 6 × 4
##   date       variable value  value01
##   <date>     <chr>    <dbl>    <dbl>
## 1 1967-07-01 pce       507. 0       
## 2 1967-08-01 pce       510. 0.000265
## 3 1967-09-01 pce       516. 0.000762
## 4 1967-10-01 pce       512. 0.000471
## 5 1967-11-01 pce       517. 0.000916
## 6 1967-12-01 pce       525. 0.00157

library(ggplot2)
library(lubridate)
theme_set(theme_bw())

df <- economics_long[economics_long$variable %in% c("psavert", "uempmed"), ]
df <- df[lubridate::year(df$date) %in% c(1967:1981), ]

# labels and breaks for X axis text
brks <- df$date[seq(1, length(df$date), 12)]
lbls <- lubridate::year(brks)

# plot
ggplot(df, aes(x=date)) + 
  geom_line(aes(y=value, col=variable)) + 
  labs(title="Time Series of Returns Percentage", 
       subtitle="Drawn from Long Data format", 
       caption="Source: Economics", 
       y="Returns %", 
       color=NULL) +  # title and caption
  scale_x_date(labels = lbls, breaks = brks) +  # change to monthly ticks and labels
  scale_color_manual(labels = c("psavert", "uempmed"), 
                     values = c("psavert"="#00ba38", "uempmed"="#f8766d")) +  # line color
  theme(axis.text.x = element_text(angle = 90, vjust=0.5, size = 8),  # rotate x axis text
        panel.grid.minor = element_blank())  # turn off minor grid

library(ggplot2)
library(lubridate)
theme_set(theme_bw())

df <- economics[, c("date", "psavert", "uempmed")]
df <- df[lubridate::year(df$date) %in% c(1967:1981), ]

# labels and breaks for X axis text
brks <- df$date[seq(1, length(df$date), 12)]
lbls <- lubridate::year(brks)

# plot
ggplot(df, aes(x=date)) + 
  geom_line(aes(y=psavert, col="psavert")) + 
  geom_line(aes(y=uempmed, col="uempmed")) + 
  labs(title="Time Series of Returns Percentage", 
       subtitle="Drawn From Wide Data format", 
       caption="Source: Economics", y="Returns %") +  # title and caption
  scale_x_date(labels = lbls, breaks = brks) +  # change to monthly ticks and labels
  scale_color_manual(name="", 
                     values = c("psavert"="#00ba38", "uempmed"="#f8766d")) +  # line color
  theme(panel.grid.minor = element_blank())  # turn off minor grid

library(ggplot2)
library(lubridate)
theme_set(theme_bw())

df <- economics[, c("date", "psavert", "uempmed")]
df <- df[lubridate::year(df$date) %in% c(1967:1981), ]

# labels and breaks for X axis text
brks <- df$date[seq(1, length(df$date), 12)]
lbls <- lubridate::year(brks)

# plot
ggplot(df, aes(x=date)) + 
  geom_area(aes(y=psavert+uempmed, fill="psavert")) + 
  geom_area(aes(y=uempmed, fill="uempmed")) + 
  labs(title="Area Chart of Returns Percentage", 
       subtitle="From Wide Data format", 
       caption="Source: Economics", 
       y="Returns %") +  # title and caption
  scale_x_date(labels = lbls, breaks = brks) +  # change to monthly ticks and labels
  scale_fill_manual(name="", 
                    values = c("psavert"="#00ba38", "uempmed"="#f8766d")) +  # line color
  theme(panel.grid.minor = element_blank())  # turn off minor grid

# http://margintale.blogspot.in/2012/04/ggplot2-time-series-heatmaps.html
library(ggplot2)
library(plyr)
library(scales)
library(zoo)

df <- read.csv("https://raw.githubusercontent.com/selva86/datasets/master/yahoo.csv")
df$date <- as.Date(df$date)  # format date
df <- df[df$year >= 2012, ]  # filter reqd years

# Create Month Week
df$yearmonth <- as.yearmon(df$date)
df$yearmonthf <- factor(df$yearmonth)
df <- ddply(df,.(yearmonthf), transform, monthweek=1+week-min(week))  # compute week number of month
df <- df[, c("year", "yearmonthf", "monthf", "week", "monthweek", "weekdayf", "VIX.Close")]
head(df)

##   year yearmonthf monthf week monthweek weekdayf VIX.Close
## 1 2012   Jan 2012    Jan    1         1      Tue     22.97
## 2 2012   Jan 2012    Jan    1         1      Wed     22.22
## 3 2012   Jan 2012    Jan    1         1      Thu     21.48
## 4 2012   Jan 2012    Jan    1         1      Fri     20.63
## 5 2012   Jan 2012    Jan    2         2      Mon     21.07
## 6 2012   Jan 2012    Jan    2         2      Tue     20.69

# Plot
ggplot(df, aes(monthweek, weekdayf, fill = VIX.Close)) + 
  geom_tile(colour = "white") + 
  facet_grid(year~monthf) + 
  scale_fill_gradient(low="red", high="green") +
  labs(x="Week of Month",
       y="",
       title = "Time-Series Calendar Heatmap", 
       subtitle="Yahoo Closing Price", 
       fill="Close")

library(dplyr)

## 
## ######################### Warning from 'xts' package ##########################
## #                                                                             #
## # The dplyr lag() function breaks how base R's lag() function is supposed to  #
## # work, which breaks lag(my_xts). Calls to lag(my_xts) that you type or       #
## # source() into this session won't work correctly.                            #
## #                                                                             #
## # Use stats::lag() to make sure you're not using dplyr::lag(), or you can add #
## # conflictRules('dplyr', exclude = 'lag') to your .Rprofile to stop           #
## # dplyr from breaking base R's lag() function.                                #
## #                                                                             #
## # Code in packages is not affected. It's protected by R's namespace mechanism #
## # Set `options(xts.warn_dplyr_breaks_lag = FALSE)` to suppress this warning.  #
## #                                                                             #
## ###############################################################################
## 
## Attaching package: 'dplyr'
## 
## The following objects are masked from 'package:plyr':
## 
##     arrange, count, desc, failwith, id, mutate, rename, summarise,
##     summarize
## 
## The following objects are masked from 'package:xts':
## 
##     first, last
## 
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## 
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union

theme_set(theme_classic())
source_df <- read.csv("https://raw.githubusercontent.com/jkeirstead/r-slopegraph/master/cancer_survival_rates.csv")

# Define functions. Source: https://github.com/jkeirstead/r-slopegraph
tufte_sort <- function(df, x="year", y="value", group="group", method="tufte", min.space=0.05) {
  ## First rename the columns for consistency
  ids <- match(c(x, y, group), names(df))
  df <- df[,ids]
  names(df) <- c("x", "y", "group")
  
  ## Expand grid to ensure every combination has a defined value
  tmp <- expand.grid(x=unique(df$x), group=unique(df$group))
  tmp <- merge(df, tmp, all.y=TRUE)
  df <- mutate(tmp, y=ifelse(is.na(y), 0, y))
  
  ## Cast into a matrix shape and arrange by first column
  require(reshape2)
  tmp <- dcast(df, group ~ x, value.var="y")
  ord <- order(tmp[,2])
  tmp <- tmp[ord,]
  
  min.space <- min.space*diff(range(tmp[,-1]))
  yshift <- numeric(nrow(tmp))
  ## Start at "bottom" row
  ## Repeat for rest of the rows until you hit the top
  for (i in 2:nrow(tmp)) {
    ## Shift subsequent row up by equal space so gap between
    ## two entries is >= minimum
    mat <- as.matrix(tmp[(i-1):i, -1])
    d.min <- min(diff(mat))
    yshift[i] <- ifelse(d.min < min.space, min.space - d.min, 0)
  }
  
  
  tmp <- cbind(tmp, yshift=cumsum(yshift))
  
  scale <- 1
  tmp <- melt(tmp, id=c("group", "yshift"), variable.name="x", value.name="y")
  ## Store these gaps in a separate variable so that they can be scaled ypos = a*yshift + y
  
  tmp <- transform(tmp, ypos=y + scale*yshift)
  return(tmp)
  
}

plot_slopegraph <- function(df) {
  ylabs <- subset(df, x==head(x,1))$group
  yvals <- subset(df, x==head(x,1))$ypos
  fontSize <- 3
  gg <- ggplot(df,aes(x=x,y=ypos)) +
    geom_line(aes(group=group),colour="grey80") +
    geom_point(colour="white",size=8) +
    geom_text(aes(label=y), size=fontSize, family="American Typewriter") +
    scale_y_continuous(name="", breaks=yvals, labels=ylabs)
  return(gg)
}    

## Prepare data    
df <- tufte_sort(source_df, 
                 x="year", 
                 y="value", 
                 group="group", 
                 method="tufte", 
                 min.space=0.05)

## Loading required package: reshape2

df <- transform(df, 
                x=factor(x, levels=c(5,10,15,20), 
                         labels=c("5 years","10 years","15 years","20 years")), 
                y=round(y))

## Plot
plot_slopegraph(df) + labs(title="Estimates of % survival rates") + 
  theme(axis.title=element_blank(),
        axis.ticks = element_blank(),
        plot.title = element_text(hjust=0.5,
                                  family = "American Typewriter",
                                  face="bold"),
        axis.text = element_text(family = "American Typewriter",
                                 face="bold"))

## Warning in grid.Call(C_stringMetric, as.graphicsAnnot(x$label)): font family
## not found in Windows font database

## Warning in grid.Call(C_stringMetric, as.graphicsAnnot(x$label)): font family
## not found in Windows font database

## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

## Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
## font family not found in Windows font database

## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

library(ggplot2)
library(forecast)

## Registered S3 methods overwritten by 'forecast':
##   method                 from     
##   autoplot.Arima         ggfortify
##   autoplot.acf           ggfortify
##   autoplot.ar            ggfortify
##   autoplot.bats          ggfortify
##   autoplot.decomposed.ts ggfortify
##   autoplot.ets           ggfortify
##   autoplot.forecast      ggfortify
##   autoplot.stl           ggfortify
##   autoplot.ts            ggfortify
##   fitted.ar              ggfortify
##   fortify.ts             ggfortify
##   residuals.ar           ggfortify

theme_set(theme_classic())

# Subset data
nottem_small <- window(nottem, start=c(1920, 1), end=c(1925, 12))  # subset a smaller timewindow

# Plot
ggseasonplot(AirPassengers) + labs(title="Seasonal plot: International Airline Passengers")

ggseasonplot(nottem_small) + labs(title="Seasonal plot: Air temperatures at Nottingham Castle")

# install.packages("ggdendro")
library(ggplot2)
library(ggdendro)
theme_set(theme_bw())

hc <- hclust(dist(USArrests), "ave")  # hierarchical clustering

# plot
ggdendrogram(hc, rotate = TRUE, size = 2)

# devtools::install_github("hrbrmstr/ggalt")
library(ggplot2)
library(ggalt)
library(ggfortify)
theme_set(theme_classic())

# Compute data with principal components ------------------
df <- iris[c(1, 2, 3, 4)]
pca_mod <- prcomp(df)  # compute principal components

# Data frame of principal components ----------------------
df_pc <- data.frame(pca_mod$x, Species=iris$Species)  # dataframe of principal components
df_pc_vir <- df_pc[df_pc$Species == "virginica", ]  # df for 'virginica'
df_pc_set <- df_pc[df_pc$Species == "setosa", ]  # df for 'setosa'
df_pc_ver <- df_pc[df_pc$Species == "versicolor", ]  # df for 'versicolor'

# Plot ----------------------------------------------------
ggplot(df_pc, aes(PC1, PC2, col=Species)) + 
  geom_point(aes(shape=Species), size=2) +   # draw points
  labs(title="Iris Clustering", 
       subtitle="With principal components PC1 and PC2 as X and Y axis",
       caption="Source: Iris") + 
  coord_cartesian(xlim = 1.2 * c(min(df_pc$PC1), max(df_pc$PC1)), 
                  ylim = 1.2 * c(min(df_pc$PC2), max(df_pc$PC2))) +   # change axis limits
  geom_encircle(data = df_pc_vir, aes(x=PC1, y=PC2)) +   # draw circles
  geom_encircle(data = df_pc_set, aes(x=PC1, y=PC2)) + 
  geom_encircle(data = df_pc_ver, aes(x=PC1, y=PC2))