NAMA : ZULFA ULINNUHA

NIM : 220605110075

KELAS : LINEAR ALGEBRA C

DOSEN PENGAMPU : PROF. Dr. SUHARTONO, M.Kom

JURUSAN TEKNIK INFORMATIKA

FAKULTAS SAINS DAN TEKNOLOGI

UNIVERSITAS ISLAM NEGERI MAULANA MALIK IBRAHIM MALANG

PENERAPAN DETERMINAN

x <- c(-1, 1, 1, 3, 1+sqrt(2))
y <- c(1, -1, 3, 1, 1+sqrt(2))
## Initializing
M1 <- matrix(rep(0, 5*6), nrow = 5, ncol = 6)
## Make the last column of M1 have all 1.
M1[, 6] <- rep(1, 5)
## Creating the first column of M1
for(i in 1:5)
M1[i, 1] <- x[i]*x[i]
## Creating the second column of M1
for(i in 1:5)
M1[i, 2] <- x[i]*y[i]
## Creating the third column of M1
for(i in 1:5)
M1[i, 3] <- y[i]*y[i]
## Creating the fourth column of M1
for(i in 1:5)
M1[i, 4] <- x[i]
## Creating the fifth column of M1
for(i in 1:5)
M1[i, 5] <- y[i]
a <- det(M1[, -1])
#determinant of the matrix deleting the first column of M1
b <- -det(M1[, -2])
#determinant of the matrix deleting the second column of M1
c <- det(M1[, -3])
#determinant of the matrix deleting the third column of M1
d <- -det(M1[, -4])
#determinant of the matrix deleting the fourth column of M1
e <- det(M1[, -5])
#determinant of the matrix deleting the fifth column of M1
f <- -det(M1[, -6])
#determinant of the matrix deleting the sixth column of M1