Introducción

En este cuaderno se exponen dos tecnicas de interpolación, estas son: IDW (Distancia Inversa Ponderada) y OK (kriging Ordinario). Ambas tecnicas se usan para tener una superficie continua del carbono organico del suelo (SOC) a una profundidad de 15 - 30 cm a partir de muestras obtenidas de SoilGrids 250m.

Configuración

Primero limpiremos la memeoria

rm(list=ls())

Cargar la librerias necesarias para el trabajo. Antes de cargarlas, verifica que estas hayan sido instaladas previamente.

library(sp)
library(terra)
library(sf)
library(stars)
library(gstat)
library(automap)
library(leaflet)
library(leafem)
library(ggplot2)
library(dplyr)
library(curl)
h <- new_handle()
handle_setopt(h, http_version = 2)

Leer los datos de entrada

Con el fin de imitar los datos del mundo real, vamos a leer la capa SOC que descargamos de ISRIC hacinedo uso de la libreria terra.

archivo <- ('C:/Users/LENOVO/Desktop/Geomatica/R/SOC15.tif')
(soc <- rast(archivo))
## class       : SpatRaster 
## dimensions  : 728, 816, 1  (nrow, ncol, nlyr)
## resolution  : 0.002261029, 0.00239011  (x, y)
## extent      : -76.4, -74.555, 4.06, 5.8  (xmin, xmax, ymin, ymax)
## coord. ref. : lon/lat WGS 84 (EPSG:4326) 
## source      : SOC15.tif 
## name        : SOC15

Ahora convertiremos los datos de SOC en porcentaje.

soc.perc <-  soc/10

Transformación de este CRS al CRS WGS84

geog ="+proj=longlat +datum=WGS84"
(geog.soc = project(soc.perc, geog))
## class       : SpatRaster 
## dimensions  : 750, 796, 1  (nrow, ncol, nlyr)
## resolution  : 0.002319123, 0.002319123  (x, y)
## extent      : -76.4, -74.55398, 4.060658, 5.8  (xmin, xmax, ymin, ymax)
## coord. ref. : +proj=longlat +datum=WGS84 +no_defs 
## source(s)   : memory
## name        :    SOC15 
## min value   :   0.0000 
## max value   : 287.2864

Convirtamos la capa SpatRaster en un stars object

stars.soc = st_as_stars(geog.soc)

Ahora relizamos un mapa

m <- leaflet() %>%
  addTiles() %>%  
  leafem:::addGeoRaster(
      stars.soc,
      opacity = 0.8,                
      colorOptions = colorOptions(palette = c("orange", "yellow", "cyan", "green"), 
                                  domain = 8:130)
    ) 

m  

Muestreo del mundo real

A continuación obtendremos una muestra de aproximadamente 500 sitios del mundo real utilizando una muestra localizada aleatoriamente.

set.seed(123456)

# Muestreo aleatoreo de 500 puntos
(samples <- spatSample(geog.soc, 500, "random", as.points=TRUE))
##  class       : SpatVector 
##  geometry    : points 
##  dimensions  : 500, 1  (geometries, attributes)
##  extent      : -76.39884, -74.55514, 4.061817, 5.79884  (xmin, xmax, ymin, ymax)
##  coord. ref. : +proj=longlat +datum=WGS84 +no_defs 
##  names       : SOC15
##  type        : <num>
##  values      : 201.5
##                72.28
##                20.74

Debemos describir las principales caracteristicas del objeto muestra

Ahora, tenemos que convertir el objeto SpatVector en un objeto feature simple

(muestras <- sf::st_as_sf(samples))
## Simple feature collection with 500 features and 1 field
## Geometry type: POINT
## Dimension:     XY
## Bounding box:  xmin: -76.39884 ymin: 4.061817 xmax: -74.55514 ymax: 5.79884
## Geodetic CRS:  GEOGCRS["unknown",
##     DATUM["World Geodetic System 1984",
##         ELLIPSOID["WGS 84",6378137,298.257223563,
##             LENGTHUNIT["metre",1]],
##         ID["EPSG",6326]],
##     PRIMEM["Greenwich",0,
##         ANGLEUNIT["degree",0.0174532925199433],
##         ID["EPSG",8901]],
##     CS[ellipsoidal,2],
##         AXIS["longitude",east,
##             ORDER[1],
##             ANGLEUNIT["degree",0.0174532925199433,
##                 ID["EPSG",9122]]],
##         AXIS["latitude",north,
##             ORDER[2],
##             ANGLEUNIT["degree",0.0174532925199433,
##                 ID["EPSG",9122]]]]
## First 10 features:
##        SOC15                   geometry
## 1  201.52055 POINT (-76.32695 5.662012)
## 2   72.27789 POINT (-76.19244 5.703756)
## 3   20.73886  POINT (-74.62703 5.50895)
## 4   47.95502 POINT (-75.63121 5.251527)
## 5  124.67467  POINT (-76.1878 5.272399)
## 6   76.56056 POINT (-75.13724 5.629544)
## 7   40.15657  POINT (-75.6544 4.910616)
## 8   69.90199 POINT (-75.49902 4.989466)
## 9   59.86207  POINT (-75.5454 4.263581)
## 10  71.97430 POINT (-74.99809 5.290952)
nmuestras <- na.omit(muestras)

Visualicemos las muestras

longit <- st_coordinates(muestras)[,1]
latit <- st_coordinates(muestras)[,2]
soc <- muestras$`SOC15`
id <- seq(1,500,1)
(sitios <- data.frame(id, longit, latit, soc))
##      id    longit    latit       soc
## 1     1 -76.32695 5.662012 201.52055
## 2     2 -76.19244 5.703756  72.27789
## 3     3 -74.62703 5.508950  20.73886
## 4     4 -75.63121 5.251527  47.95502
## 5     5 -76.18780 5.272399 124.67467
## 6     6 -75.13724 5.629544  76.56056
## 7     7 -75.65440 4.910616  40.15657
## 8     8 -75.49902 4.989466  69.90199
## 9     9 -75.54540 4.263581  59.86207
## 10   10 -74.99809 5.290952  71.97430
## 11   11 -75.05839 4.636960  50.51255
## 12   12 -76.37333 4.428239  57.62215
## 13   13 -75.02360 5.056721  38.62682
## 14   14 -75.81674 4.261262  43.72710
## 15   15 -75.19290 4.683342  61.44553
## 16   16 -76.22723 4.323878  38.82331
## 17   17 -75.26711 5.471844  46.19360
## 18   18 -74.73835 4.428239  28.56844
## 19   19 -75.89327 4.785384  21.73819
## 20   20 -75.91414 5.052083  36.93518
## 21   21 -76.23186 4.799298  80.77451
## 22   22 -76.11823 5.397632  71.49570
## 23   23 -74.72211 4.794660  31.32504
## 24   24 -76.31535 4.347069  34.51189
## 25   25 -75.38075 4.841043  60.32081
## 26   26 -75.42249 5.520546  68.77285
## 27   27 -75.08854 4.502451  30.97017
## 28   28 -75.16043 4.316921  25.39914
## 29   29 -75.82834 5.346611  81.76941
## 30   30 -74.91228 5.151805  18.97350
## 31   31 -75.83529 4.745959  31.70366
## 32   32 -76.38493 5.323420 202.16402
## 33   33 -75.30421 5.615630  87.04891
## 34   34 -75.66136 4.583620  32.33415
## 35   35 -75.01200 4.701895  51.55478
## 36   36 -75.97908 5.587800  88.49506
## 37   37 -75.27638 4.994105  91.60019
## 38   38 -74.91692 4.980190  14.68068
## 39   39 -76.27361 5.699118 210.02744
## 40   40 -75.94429 5.082231  33.12442
## 41   41 -76.07416 5.775649  88.23778
## 42   42 -75.03056 4.899021  37.60353
## 43   43 -75.85848 4.553471  22.85792
## 44   44 -76.25505 5.413866  85.88729
## 45   45 -75.81210 4.996424  54.20700
## 46   46 -75.96516 5.314144  75.78416
## 47   47 -76.03474 5.485759  84.47990
## 48   48 -75.16739 5.634183  79.91557
## 49   49 -75.33900 5.740862  79.03806
## 50   50 -74.69660 4.627683  21.09813
## 51   51 -76.03242 5.798840  51.23314
## 52   52 -74.62471 4.961637  34.51562
## 53   53 -75.51525 4.340112  64.27803
## 54   54 -75.47351 4.558110  58.20721
## 55   55 -75.87704 5.587800  67.74659
## 56   56 -76.21331 4.296049  31.80994
## 57   57 -74.89605 5.617949  40.20790
## 58   58 -75.95357 5.437057  72.18578
## 59   59 -76.09504 5.383717 103.99932
## 60   60 -74.86822 4.899021  20.62325
## 61   61 -75.35060 4.968594  76.72750
## 62   62 -74.84503 4.616088  26.47302
## 63   63 -74.78241 5.399951  29.74304
## 64   64 -76.30608 5.733905 207.71841
## 65   65 -75.03056 5.411547  72.02105
## 66   66 -75.88400 5.729267  39.06286
## 67   67 -74.84735 5.219060  22.26441
## 68   68 -75.32972 4.970913  82.65242
## 69   69 -74.96562 4.892063  22.14250
## 70   70 -75.66600 5.010339  30.04202
## 71   71 -74.65718 4.456068  18.03535
## 72   72 -76.31999 4.219518  40.51371
## 73   73 -74.67109 5.369803  22.04003
## 74   74 -74.81256 5.323420  25.73774
## 75   75 -74.88677 5.052083  31.20816
## 76   76 -76.23418 4.108200  21.37657
## 77   77 -75.35060 4.407367  47.65518
## 78   78 -74.95171 4.954680  23.81960
## 79   79 -75.48743 4.154582  57.41858
## 80   80 -76.17620 4.917574  45.73792
## 81   81 -75.03520 5.787245  84.38670
## 82   82 -76.29680 4.377218  37.03043
## 83   83 -75.99995 5.281676  70.97961
## 84   84 -74.74994 4.910616  29.41244
## 85   85 -75.35755 4.516365  59.52303
## 86   86 -74.87750 5.142529  26.00034
## 87   87 -75.74021 4.289091  39.91345
## 88   88 -74.84967 5.093827  26.16858
## 89   89 -76.34550 5.121656  68.21684
## 90   90 -76.22027 5.659693  89.53503
## 91   91 -74.91460 4.395771  22.59951
## 92   92 -76.01387 4.418962  27.69436
## 93   93 -76.09040 4.574343  34.79508
## 94   94 -76.34782 5.253846  63.53163
## 95   95 -74.66646 4.952360  21.95909
## 96   96 -76.34318 5.103103 167.53801
## 97   97 -75.37843 4.423600  37.92899
## 98   98 -76.36869 5.149486 101.55622
## 99   99 -75.57323 5.492716  22.11757
## 100 100 -74.59456 5.731586  43.83821
## 101 101 -75.25087 4.892063  41.55177
## 102 102 -74.85894 5.553013  28.27991
## 103 103 -75.89327 5.158762  70.89523
## 104 104 -75.42017 4.739001  53.98671
## 105 105 -75.04911 4.681023  42.27928
## 106 106 -75.07926 4.509408  33.89439
## 107 107 -75.98604 4.743639  26.05119
## 108 108 -75.82138 4.497812  31.52474
## 109 109 -75.50830 4.068775  52.83618
## 110 110 -74.68733 5.383717  14.81945
## 111 111 -75.56164 5.172677  44.42630
## 112 112 -75.87936 4.497812  41.02774
## 113 113 -75.15811 5.427781  97.39099
## 114 114 -75.40394 4.912935  74.77482
## 115 115 -75.23464 5.121656  59.51937
## 116 116 -74.55978 4.472302  19.71486
## 117 117 -76.16925 5.205145  77.85058
## 118 118 -75.77268 4.465345  28.68978
## 119 119 -74.90069 5.019615  26.10528
## 120 120 -74.56441 5.358207  28.86674
## 121 121 -75.75644 4.356346  30.11922
## 122 122 -74.71980 5.369803  19.82598
## 123 123 -75.58947 5.353569  34.26962
## 124 124 -75.11868 4.386494  25.46462
## 125 125 -75.51757 4.421281  59.41553
## 126 126 -75.60802 4.546514  48.15900
## 127 127 -75.54308 5.265442  49.99116
## 128 128 -75.68687 4.854957  36.98854
## 129 129 -75.86544 4.145306  47.93303
## 130 130 -75.31813 5.283995  91.10052
## 131 131 -75.13492 4.372580  24.67740
## 132 132 -75.17898 5.604034  67.86404
## 133 133 -75.29030 4.664789  76.62095
## 134 134 -75.82138 5.399951  75.20388
## 135 135 -75.46423 5.666650  36.24298
## 136 136 -75.41321 4.915255  75.99418
## 137 137 -74.98649 4.277496  17.96448
## 138 138 -74.63167 4.354027  21.03227
## 139 139 -74.91692 4.386494  24.29609
## 140 140 -74.96794 5.392994  81.92366
## 141 141 -76.31303 4.296049  42.27014
## 142 142 -75.78891 5.082231  49.21795
## 143 143 -74.81256 4.762192  24.14493
## 144 144 -76.14142 4.987147  79.86626
## 145 145 -75.85617 5.534460  71.80640
## 146 146 -75.54076 4.778426  61.51423
## 147 147 -75.18362 4.231113  40.61172
## 148 148 -75.95821 4.187050  41.27877
## 149 149 -75.03288 5.613311  55.60994
## 150 150 -75.32509 4.430558  49.13714
## 151 151 -76.06257 4.527961  12.05819
## 152 152 -75.50598 5.258485  36.67609
## 153 153 -75.59410 4.982509  47.11262
## 154 154 -76.22954 4.796979  84.55001
## 155 155 -76.29680 4.444472  62.45730
## 156 156 -75.12564 4.189369  22.76152
## 157 157 -75.30885 4.486217  60.69719
## 158 158 -74.93779 4.973233  28.10496
## 159 159 -75.17202 5.188911  71.41530
## 160 160 -75.58715 4.950041  39.95219
## 161 161 -74.79865 5.620268  22.95167
## 162 162 -75.75876 5.675927  62.54049
## 163 163 -76.03242 4.954680  38.76371
## 164 164 -74.80560 4.207922  29.06642
## 165 165 -75.73325 5.056721  41.78933
## 166 166 -75.17202 5.722309  98.14680
## 167 167 -76.35014 4.959318 166.83795
## 168 168 -74.93779 4.820170  15.04502
## 169 169 -74.88909 5.719990  30.20971
## 170 170 -75.76804 5.784926  57.48024
## 171 171 -76.06952 4.641598  23.73936
## 172 172 -75.21377 5.687523  95.18273
## 173 173 -75.68223 5.151805  39.59844
## 174 174 -75.17666 4.852638  70.15720
## 175 175 -74.93779 4.827128  19.35872
## 176 176 -76.37333 4.773788  81.17926
## 177 177 -75.67295 4.643917  33.16896
## 178 178 -74.62007 4.905978  36.61684
## 179 179 -75.68223 5.675927  36.88802
## 180 180 -75.39466 5.388356  86.80972
## 181 181 -75.81210 5.406909  69.08334
## 182 182 -74.95171 4.769150  19.13299
## 183 183 -76.00923 4.780745  28.62143
## 184 184 -75.63121 5.437057  41.03154
## 185 185 -74.59920 5.008019  31.91558
## 186 186 -74.80096 5.181954  16.83360
## 187 187 -76.30839 4.646236  48.79911
## 188 188 -75.17434 4.994105  70.07392
## 189 189 -75.95357 4.544195  24.94905
## 190 190 -75.55932 4.532599  55.18196
## 191 191 -74.89373 4.963956  15.90436
## 192 192 -74.90301 5.446334  39.33212
## 193 193 -76.38956 4.298368  57.07085
## 194 194 -76.10895 4.537237  24.82437
## 195 195 -74.73139 5.200507  27.72493
## 196 196 -75.88168 4.514046  31.25830
## 197 197 -75.71470 5.467206  59.73858
## 198 198 -75.74485 4.161539  66.59209
## 199 199 -75.14883 5.457929  71.14524
## 200 200 -75.48047 4.699576  54.59289
## 201 201 -76.29912 4.439834  55.39295
## 202 202 -76.29448 5.643459 212.46605
## 203 203 -74.55978 4.715810  55.90011
## 204 204 -76.24114 4.889744  63.63413
## 205 205 -74.55746 5.617949  19.73918
## 206 206 -74.70356 5.513588  25.18712
## 207 207 -75.81210 4.407367  27.36800
## 208 208 -75.31813 4.848000  75.00483
## 209 209 -74.68269 4.518684  33.46196
## 210 210 -76.06489 5.281676  35.72081
## 211 211 -76.21331 5.773330  41.83852
## 212 212 -74.76154 5.137890  28.21614
## 213 213 -76.07416 5.003381  88.62145
## 214 214 -75.75412 4.124433  53.60117
## 215 215 -75.44568 4.300687  66.76106
## 216 216 -74.58297 4.912935  37.61859
## 217 217 -74.89837 5.506631  32.19286
## 218 218 -74.82416 5.137890  25.57558
## 219 219 -75.57787 4.460706  60.21014
## 220 220 -75.03752 5.631864  40.17430
## 221 221 -76.31767 5.003381  65.24503
## 222 222 -74.98649 5.613311  42.96283
## 223 223 -74.86590 4.166178  15.36836
## 224 224 -74.96794 4.604492  27.45223
## 225 225 -76.06025 4.699576  33.72531
## 226 226 -76.35710 4.219518  39.28138
## 227 227 -74.61543 5.617949  20.90310
## 228 228 -75.09085 5.246889  50.15996
## 229 229 -75.13492 4.159220  19.62386
## 230 230 -75.14188 4.122114  24.00604
## 231 231 -75.43872 4.713491  55.53471
## 232 232 -75.55468 4.425920  76.14365
## 233 233 -75.71934 5.188911  52.04658
## 234 234 -76.35710 4.296049  33.26006
## 235 235 -74.93315 5.270080  33.25670
## 236 236 -75.91414 4.490855  36.42155
## 237 237 -75.91182 5.650417  56.63265
## 238 238 -75.93038 4.184731  37.17283
## 239 239 -75.28798 5.645778  71.24511
## 240 240 -76.00691 4.848000  28.24664
## 241 241 -74.80792 4.449111  23.24479
## 242 242 -76.36637 4.926850  60.37689
## 243 243 -76.19012 5.706076  75.31876
## 244 244 -75.63353 4.328516  63.53475
## 245 245 -75.48047 5.379079  52.30526
## 246 246 -75.27870 4.080370  43.32001
## 247 247 -76.30608 4.950041 202.49684
## 248 248 -75.47583 4.544195  53.49971
## 249 249 -75.93038 4.275177  20.15918
## 250 250 -75.32509 4.947722  54.27903
## 251 251 -76.28752 4.660151  49.46734
## 252 252 -75.20913 5.397632  76.82912
## 253 253 -76.07184 5.156443  97.08533
## 254 254 -76.24810 5.223698  93.86734
## 255 255 -75.98604 5.251527  84.05339
## 256 256 -75.48511 4.205603  63.65168
## 257 257 -76.28288 5.042806  56.40915
## 258 258 -76.10199 5.710714  76.19220
## 259 259 -75.04215 5.757096  84.03456
## 260 260 -76.31767 5.743181 212.54294
## 261 261 -75.16739 5.453291  64.23039
## 262 262 -75.65904 5.019615  39.32290
## 263 263 -75.27175 5.274719  65.54462
## 264 264 -75.79123 4.908297  30.18651
## 265 265 -74.79169 5.441695  17.57552
## 266 266 -75.07230 5.787245  50.86767
## 267 267 -75.50134 5.279357  67.09540
## 268 268 -75.41321 4.745959  65.97716
## 269 269 -74.59456 4.282134  24.76080
## 270 270 -74.74531 5.070636  31.13146
## 271 271 -74.86126 5.740862  39.35171
## 272 272 -75.67991 4.769150  35.31337
## 273 273 -76.34086 4.590577  50.99593
## 274 274 -75.50134 5.156443  77.66748
## 275 275 -76.13910 4.581301  70.04039
## 276 276 -74.98186 4.544195  23.05536
## 277 277 -74.56209 4.597535  22.87782
## 278 278 -75.36683 4.196326  32.60001
## 279 279 -76.05561 4.133710  55.35421
## 280 280 -74.90069 4.474621  17.82059
## 281 281 -75.84921 5.295591  63.80224
## 282 282 -74.57601 5.251527  25.73482
## 283 283 -75.22073 4.755235  65.39145
## 284 284 -74.75226 4.238071  26.04608
## 285 285 -75.23696 4.495493  60.43322
## 286 286 -75.27407 5.128614  64.37532
## 287 287 -74.75226 5.587800  45.18285
## 288 288 -75.79819 4.156901  46.73880
## 289 289 -76.39884 5.671289 246.57156
## 290 290 -74.97258 5.666650  72.27001
## 291 291 -76.11127 4.483898  25.30139
## 292 292 -75.58715 5.469525  29.79581
## 293 293 -74.86822 4.175454  15.37320
## 294 294 -74.56441 4.187050  39.89615
## 295 295 -75.98140 5.121656  83.21144
## 296 296 -75.66368 5.518227  78.93192
## 297 297 -74.82879 4.432877  22.20138
## 298 298 -75.84689 5.383717  64.30980
## 299 299 -75.46423 5.529822  68.70696
## 300 300 -75.94661 5.040487  44.91479
## 301 301 -74.82879 5.580843  20.07048
## 302 302 -75.01664 4.991786  34.51947
## 303 303 -75.32277 5.156443  69.49125
## 304 304 -75.79355 4.690300  31.78513
## 305 305 -75.38075 4.226475  51.60001
## 306 306 -76.37333 5.617949 223.85925
## 307 307 -74.76850 4.602173  22.13812
## 308 308 -76.29912 5.117018  84.78854
## 309 309 -75.33900 4.885106  53.05539
## 310 310 -75.70078 5.070636  33.79643
## 311 311 -76.01155 5.655055  82.72884
## 312 312 -76.26201 5.193549 191.44817
## 313 313 -75.60802 4.435196  57.37254
## 314 314 -74.88677 4.351708  23.70607
## 315 315 -75.31349 5.708395   0.00000
## 316 316 -76.06257 4.068775  37.82544
## 317 317 -75.74021 4.922212  39.03683
## 318 318 -76.28752 4.061817  21.62743
## 319 319 -74.83111 4.755235  26.82022
## 320 320 -75.64744 5.126295  26.81999
## 321 321 -75.43872 5.376760  72.69934
## 322 322 -76.23650 4.771469  52.65630
## 323 323 -74.64790 4.555790  23.09578
## 324 324 -74.64095 4.495493  22.02462
## 325 325 -75.06998 4.845681  52.25227
## 326 326 -76.16693 4.766831  62.37632
## 327 327 -74.55514 4.523323  18.64496
## 328 328 -75.85153 5.024253  20.91977
## 329 329 -76.20171 5.559971 192.59389
## 330 330 -75.19290 4.785384  69.48573
## 331 331 -75.02360 5.773330  81.59269
## 332 332 -75.32972 4.954680  60.24314
## 333 333 -75.65440 5.775649  23.44702
## 334 334 -75.18130 4.372580  23.63216
## 335 335 -75.86776 4.676385  30.30295
## 336 336 -74.90996 4.815532  23.47956
## 337 337 -74.73835 4.279815  21.65641
## 338 338 -75.62889 4.347069  61.20875
## 339 339 -74.71284 4.548833  24.13613
## 340 340 -75.50830 5.726948  62.24360
## 341 341 -75.77036 4.268219  55.29541
## 342 342 -76.31999 4.061817  21.68181
## 343 343 -74.80328 4.456068  23.13152
## 344 344 -74.91692 5.228336  21.72222
## 345 345 -75.20217 5.265442  82.00424
## 346 346 -75.65904 4.792341  40.78756
## 347 347 -74.63167 4.834085  32.56137
## 348 348 -75.67759 5.200507  29.60692
## 349 349 -75.06998 5.207464  48.28332
## 350 350 -75.57323 5.001062  37.90054
## 351 351 -74.73835 5.119337  22.98896
## 352 352 -76.33390 5.237613  95.89774
## 353 353 -75.42249 4.681023  66.80602
## 354 354 -76.19012 5.198188  73.31627
## 355 355 -76.05329 5.527503 113.80224
## 356 356 -76.16229 4.277496  20.91250
## 357 357 -74.82416 4.358665  20.79509
## 358 358 -74.95635 5.207464  31.42168
## 359 359 -75.84689 5.063678  25.67172
## 360 360 -75.32972 4.611449  61.83695
## 361 361 -76.29680 5.784926  65.58174
## 362 362 -76.08808 4.333155  25.45052
## 363 363 -76.13910 4.572024  71.84538
## 364 364 -75.43872 4.432877  53.62717
## 365 365 -75.01896 4.249666  19.92265
## 366 366 -74.90301 4.284453  16.84386
## 367 367 -76.11591 5.754777  68.60464
## 368 368 -74.58065 4.456068  24.65936
## 369 369 -75.04447 4.451430  19.79432
## 370 370 -74.57369 5.272399  23.92711
## 371 371 -74.68733 4.108200  32.01759
## 372 372 -76.31071 4.889744  99.67415
## 373 373 -74.76850 5.450972  24.33921
## 374 374 -75.88168 5.089189  23.19234
## 375 375 -75.72398 4.616088  34.90303
## 376 376 -75.14883 5.655055  47.94374
## 377 377 -75.74021 5.010339  38.22617
## 378 378 -76.35014 4.792341  49.16828
## 379 379 -75.54540 5.123976  48.50538
## 380 380 -75.00969 4.984828  27.40895
## 381 381 -76.19940 4.091966   0.00000
## 382 382 -74.85430 4.284453  20.18382
## 383 383 -76.33622 5.423142 222.05420
## 384 384 -75.41553 5.597077  66.81011
## 385 385 -75.78427 4.347069  27.65158
## 386 386 -75.16739 5.012658  63.05899
## 387 387 -75.25551 5.685203  91.89825
## 388 388 -76.00459 5.692161  70.78352
## 389 389 -75.58019 5.212102  50.89899
## 390 390 -76.00459 4.270538  25.20052
## 391 391 -75.41089 4.799298  59.24374
## 392 392 -74.69892 5.446334  28.56255
## 393 393 -75.96285 4.539557  20.62407
## 394 394 -76.03474 5.100784 107.95598
## 395 395 -75.56164 4.548833  62.48239
## 396 396 -75.84689 5.381398  68.31615
## 397 397 -74.75922 4.258943  25.30676
## 398 398 -76.12982 5.272399  89.91652
## 399 399 -75.34828 4.238071  56.97986
## 400 400 -75.27870 5.049764  69.88731
## 401 401 -75.08390 5.304867  51.82898
## 402 402 -76.16461 5.460248  73.35531
## 403 403 -74.95866 5.168039  41.97486
## 404 404 -74.71284 5.244570  18.95735
## 405 405 -76.05793 4.149944  35.51830
## 406 406 -75.30885 5.411547  77.49171
## 407 407 -74.97026 5.151805  71.02966
## 408 408 -76.21331 5.270080  72.28096
## 409 409 -76.35246 5.163401 164.32655
## 410 410 -76.15533 4.126753  24.60173
## 411 411 -75.23696 5.186592  67.46825
## 412 412 -75.29726 5.318782  55.75346
## 413 413 -75.04215 4.402728  18.94314
## 414 414 -74.88677 5.031211  18.69214
## 415 415 -75.88168 5.791883  39.73401
## 416 416 -74.58761 4.523323  34.50966
## 417 417 -75.86312 5.501993  93.30278
## 418 418 -75.64513 4.834085  41.15916
## 419 419 -75.71470 5.003381  31.00526
## 420 420 -75.01200 4.245028  18.53606
## 421 421 -74.90996 4.245028  21.53582
## 422 422 -76.15069 4.699576  34.85075
## 423 423 -74.87286 5.536780  24.26187
## 424 424 -75.53149 4.384175  58.82573
## 425 425 -75.15811 4.903659  71.30268
## 426 426 -75.00273 4.136029  14.37605
## 427 427 -75.75181 5.367484  61.64387
## 428 428 -74.91692 5.594758  28.67395
## 429 429 -75.15347 5.750139  86.83689
## 430 430 -74.62703 4.739001  33.26605
## 431 431 -74.74531 4.110519  15.55320
## 432 432 -76.39884 5.056721 184.73198
## 433 433 -75.56628 4.743639  52.50283
## 434 434 -76.28057 4.126753  18.43217
## 435 435 -75.44800 4.474621  89.49364
## 436 436 -74.72907 4.437515  22.99113
## 437 437 -75.08390 4.105881  31.50039
## 438 438 -74.57833 5.314144  63.08957
## 439 439 -75.41785 5.471844  66.73744
## 440 440 -75.84921 4.407367  26.74456
## 441 441 -75.85385 4.548833  26.42059
## 442 442 -74.95171 4.138348  18.34733
## 443 443 -76.28057 4.678704  51.70436
## 444 444 -75.93965 4.407367  27.72754
## 445 445 -75.55236 4.736682  56.53277
## 446 446 -75.39930 5.687523  40.03516
## 447 447 -74.87054 5.226017  21.21263
## 448 448 -75.44568 5.144848  69.67031
## 449 449 -75.25087 4.189369  26.73174
## 450 450 -75.86544 4.080370  55.80783
## 451 451 -75.70078 5.302548  92.06828
## 452 452 -75.43872 4.732044  65.55432
## 453 453 -75.47119 5.251527  52.35936
## 454 454 -75.55236 4.061817  50.73089
## 455 455 -75.98604 5.450972  72.99322
## 456 456 -76.28984 4.175454  21.21450
## 457 457 -74.57369 4.676385  34.84175
## 458 458 -75.99995 5.481121  85.66775
## 459 459 -75.90487 5.752458  39.53645
## 460 460 -76.27129 4.989466  63.06372
## 461 461 -74.61543 4.954680  27.96161
## 462 462 -74.66182 4.905978  28.52035
## 463 463 -74.98881 5.775649  42.95164
## 464 464 -75.02824 5.437057  53.05967
## 465 465 -75.27175 5.195868  74.47117
## 466 466 -76.31535 4.333155  43.04797
## 467 467 -74.90069 5.017296  22.65612
## 468 468 -75.11173 4.815532  64.20106
## 469 469 -76.27129 4.956999  77.76530
## 470 470 -75.04215 4.490855  20.94310
## 471 471 -74.57601 5.302548  27.51717
## 472 472 -75.57323 4.219518  69.09544
## 473 473 -75.23928 4.421281  26.37920
## 474 474 -76.30839 5.571566 190.69368
## 475 475 -74.96098 4.685661  23.85669
## 476 476 -75.50830 4.395771  52.45917
## 477 477 -76.25505 5.497354 171.58464
## 478 478 -75.05143 4.312282  13.95514
## 479 479 -75.12796 5.476482  57.76789
## 480 480 -76.06257 4.476940  26.75782
## 481 481 -75.23696 5.553013  87.20108
## 482 482 -75.55468 5.142529  38.09097
## 483 483 -74.79169 4.544195  17.88832
## 484 484 -75.60338 4.676385  50.12939
## 485 485 -75.48974 4.643917  66.56770
## 486 486 -75.43640 4.704214  63.59487
## 487 487 -75.94429 4.701895  17.68264
## 488 488 -74.94243 5.548375  55.45159
## 489 489 -75.66368 5.177315  26.25048
## 490 490 -75.99299 5.369803  38.65867
## 491 491 -75.39466 5.328058  73.23988
## 492 492 -75.81906 4.931488  36.25452
## 493 493 -75.96285 4.984828  33.63740
## 494 494 -74.64095 5.191230  33.01804
## 495 495 -76.30376 4.490855  42.95618
## 496 496 -75.79123 4.838723  26.77345
## 497 497 -76.16693 4.316921  23.02101
## 498 498 -74.94475 5.515907  48.53756
## 499 499 -75.55700 5.796521  39.42776
## 500 500 -74.78937 5.019615  32.81052

Ahora borraremos los valores NA

sitios <- na.omit(sitios)
head(sitios)
##   id    longit    latit       soc
## 1  1 -76.32695 5.662012 201.52055
## 2  2 -76.19244 5.703756  72.27789
## 3  3 -74.62703 5.508950  20.73886
## 4  4 -75.63121 5.251527  47.95502
## 5  5 -76.18780 5.272399 124.67467
## 6  6 -75.13724 5.629544  76.56056

Visualizemos las muestras

m <- leaflet() %>%
  addTiles() %>%  
  leafem:::addGeoRaster(
      stars.soc,
      opacity = 0.7,                
      colorOptions = colorOptions(palette = c("orange", "yellow", "cyan", "green"), 
                                  domain = 8:130)
    ) %>%
  addMarkers(lng=sitios$longit,lat=sitios$latit, popup=sitios$soc, clusterOptions = markerClusterOptions())
m  # Print the map

Interpolación

Creación de objeto´gstat

Para interpolar, primero necesitamos crear un objeto de la clase gstat.

Un objeto gstat contiene toda la información necesaria para realizar la interpolación espacial.

Vamos a utilizar tres parámetros de la función gstat: - Fórmula: la “fórmula” de predicción que especifica las variables dependientes e independientes - Data: los datos de calibración - Modelo: el modelo de variograma

Interpolación IDW

Para interpolar utilizando este metodo creamos el siguinte objeto gstat, especificando unicamente la formula y los datos:

g1 = gstat(formula = SOC15  ~  1, data = nmuestras)

Ahora que el modelo de interpolación g1 está definido, podemos utilizar la función predict para interpolar.

Vamos a crear un objeto raster con valores de celda iguales a 1:

rrr = aggregate(geog.soc, 4)

¿Que es rrr?

rrr
## class       : SpatRaster 
## dimensions  : 188, 199, 1  (nrow, ncol, nlyr)
## resolution  : 0.009276493, 0.009276493  (x, y)
## extent      : -76.4, -74.55398, 4.056019, 5.8  (xmin, xmax, ymin, ymax)
## coord. ref. : +proj=longlat +datum=WGS84 +no_defs 
## source(s)   : memory
## name        :    SOC15 
## min value   :   0.0000 
## max value   : 255.0888

Definiremos nuevos valores para rrr

values(rrr) <-1

Definiremos nuevos nombres para rrr

names(rrr) <- "valor"

Ahora rrr es:

rrr
## class       : SpatRaster 
## dimensions  : 188, 199, 1  (nrow, ncol, nlyr)
## resolution  : 0.009276493, 0.009276493  (x, y)
## extent      : -76.4, -74.55398, 4.056019, 5.8  (xmin, xmax, ymin, ymax)
## coord. ref. : +proj=longlat +datum=WGS84 +no_defs 
## source(s)   : memory
## name        : valor 
## min value   :     1 
## max value   :     1
stars.rrr = st_as_stars(rrr)

El siguiente codigo interpola los valores SOC según el modelo definido en g1 y la plantilla raster definida en stars.rrr:

z1 = predict(g1, stars.rrr)
## [inverse distance weighted interpolation]

¿Que es Z1?

z1
## stars object with 2 dimensions and 2 attributes
## attribute(s):
##                 Min.  1st Qu.   Median     Mean  3rd Qu.     Max.  NA's
## var1.pred  0.9032976 34.64183 48.23325 51.72116 60.39388 242.9888     0
## var1.var          NA       NA       NA      NaN       NA       NA 37412
## dimension(s):
##   from  to offset       delta                       refsys x/y
## x    1 199  -76.4  0.00927649 +proj=longlat +datum=WGS8... [x]
## y    1 188    5.8 -0.00927649 +proj=longlat +datum=WGS8... [y]

El objeto z1 dos atributos, podemos subconjuntar sólo el primer atributo y renombrarlo a “soc”:

z1 = z1["var1.pred",,]
names(z1) = "soc"

Necesitrampos una paleta de colores

paleta <- colorNumeric(palette = c("red", "yellow", "cyan", "green"), domain = 10:100, na.color = "transparent")

El raster SOC interpolado lo podemos observar a continuación:

m <- leaflet() %>%
  addTiles() %>%  
  leafem:::addGeoRaster(
      z1,
      opacity = 0.7,                
      colorOptions = colorOptions(palette = c("red", "yellow", "cyan", "green"), 
                                  domain = 11:55)
    ) %>%
  addMarkers(lng=sitios$longit,lat=sitios$latit, popup=sitios$soc, clusterOptions = markerClusterOptions()) %>%
    addLegend("bottomright", pal=paleta, values= z1$soc,
    title = "IDW SOC interpolation [%]"
    )
## Warning in pal(c(r[1], cuts, r[2])): Some values were outside the color scale
## and will be treated as NA
m  # Print the map

Interpolación OK

Primeramente calcularemos y examinaremos el variograma empírico utilizando laa función Variogram.

La función requiere dos argumentos: formula y datos

El siguiente codigo calcula el variograma empirico de muestras, sin covariables.

v_emp_ok = variogram(SOC15 ~ 1, data=nmuestras)

Ilustermos el variograma:

plot(v_emp_ok)    

Utilizaremos la función autofitVariogram para ajustar un modelo de variograma a un variograma empirico.

v_mod_ok = autofitVariogram(SOC15 ~ 1, as(nmuestras, "Spatial"))

La función elige el tipo de modelo que mejor se ajusta y también afina sus parámetros.

El modelo ajustado puede representarse con plot:

plot(v_mod_ok)

El objeto resultante es en realidad una lista con varios componentes, incluyendo el variograma empírico y el modelo de variograma ajustado. El componente $var_model del objeto resultante contiene el modelo real:

v_mod_ok$var_model
##   model      psill    range kappa
## 1   Nug   20.52881  0.00000   0.0
## 2   Ste 1171.51991 79.38399   0.3

El modelo puedo pasarse a la función gstat para asi poder continuar con la interpolación OK:

g2 = gstat(formula = SOC15 ~ 1, model = v_mod_ok$var_model, data = nmuestras)
z2= predict(g2, stars.rrr)
## [using ordinary kriging]

Nuevamente vamos a subconjuntar el atributo de valores predichos y cambiaremos el nombre:

z2 = z2["var1.pred",,]
names(z2) = "soc"

Las prediciones de Kriging ordinario se puede ver a continuación.

m <- leaflet() %>%
  addTiles() %>%  
  leafem:::addGeoRaster(
      z2,
      opacity = 0.7,                
      colorOptions = colorOptions(palette = c("orange", "yellow", "cyan", "green"), 
                                  domain = 11:55)
    ) %>%
  addMarkers(lng=sitios$longit,lat=sitios$latit, popup=sitios$soc, clusterOptions = markerClusterOptions()) %>%
    addLegend("bottomright", pal = paleta, values= z2$soc,
    title = "OK SOC interpolation [%]"
    )
## Warning in pal(c(r[1], cuts, r[2])): Some values were outside the color scale
## and will be treated as NA
m  # Print the map

Evaluación de los resultados

Evaluación cualitativa

Otra forma de visualizar los tres resultados de interpolación:

colores <- colorOptions(palette = c("orange", "yellow", "cyan", "green"), domain = 10:100, na.color = "transparent")
m <- leaflet() %>%
  addTiles() %>%  
  addGeoRaster(stars.soc, opacity = 0.8, colorOptions = colores, group="RealWorld") %>%
  addGeoRaster(z1, colorOptions = colores, opacity = 0.8, group= "IDW")  %>%
  addGeoRaster(z2, colorOptions = colores, opacity = 0.8, group= "OK")  %>%
  # Add layers controls
  addLayersControl(
    overlayGroups = c("RealWorld", "IDW", "OK"),
    options = layersControlOptions(collapsed = FALSE)
  ) %>% 
    addLegend("bottomright", pal = paleta, values= z1$soc,
    title = "Soil organic carbon [%]"
)
## Warning in pal(c(r[1], cuts, r[2])): Some values were outside the color scale
## and will be treated as NA
m  # Print the map

Validación cruzada

Validación cruzada Leave-One-Out

cv1 = gstat.cv(g1)
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
cv2 = gstat.cv(g2)
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
cv1 = na.omit(cv1)
cv1
## class       : SpatialPointsDataFrame 
## features    : 500 
## extent      : -76.39884, -74.55514, 4.061817, 5.79884  (xmin, xmax, ymin, ymax)
## crs         : +proj=longlat +datum=WGS84 +no_defs 
## variables   : 6
## names       :        var1.pred, var1.var,         observed,          residual, zscore, fold 
## min values  : 17.2576789621635,       NA,                0, -83.6916712396385,     NA,    1 
## max values  :  184.56223330443,       NA, 246.571563720703,  118.695562119791,     NA,  500

Convertiremos el objeto cv1

cv1 = st_as_sf(cv1)

Ahora trazemos los residuales

sp::bubble(as(cv1[, "residual"], "Spatial"))

Ahora calcularemos los indices de precisión de la predicción, como tambien el error cuadratico medio (RMSE)

sqrt(sum((cv1$var1.pred - cv1$observed)^2) / nrow(cv1))
## [1] 21.26027

repetiremos el proceso para los resultados de OK

Conversión:

cv2 = st_as_sf(cv2)

calculo de RSME para OK

sqrt(sum((cv2$var1.pred - cv2$observed)^2) / nrow(cv2))
## [1] 18.94742

Referencias

Este trabajo se realizó tomando como guía el cuaderno: Lizarazo, I. 2023, Spatial interpolation of soil organic carbon.

Cite este trabajo así: Cely, N., 2023. Interpolación espacial del carbono organico del suelo. Disponible en https://rpubs.com/ncely/1048046