En este cuaderno se exponen dos tecnicas de interpolación, estas son: IDW (Distancia Inversa Ponderada) y OK (kriging Ordinario). Ambas tecnicas se usan para tener una superficie continua del carbono organico del suelo (SOC) a una profundidad de 15 - 30 cm a partir de muestras obtenidas de SoilGrids 250m.
Primero limpiremos la memeoria
rm(list=ls())
Cargar la librerias necesarias para el trabajo. Antes de cargarlas, verifica que estas hayan sido instaladas previamente.
library(sp)
library(terra)
library(sf)
library(stars)
library(gstat)
library(automap)
library(leaflet)
library(leafem)
library(ggplot2)
library(dplyr)
library(curl)
h <- new_handle()
handle_setopt(h, http_version = 2)
Con el fin de imitar los datos del mundo real, vamos a leer la capa SOC que descargamos de ISRIC hacinedo uso de la libreria terra.
archivo <- ('C:/Users/LENOVO/Desktop/Geomatica/R/SOC15.tif')
(soc <- rast(archivo))
## class : SpatRaster
## dimensions : 728, 816, 1 (nrow, ncol, nlyr)
## resolution : 0.002261029, 0.00239011 (x, y)
## extent : -76.4, -74.555, 4.06, 5.8 (xmin, xmax, ymin, ymax)
## coord. ref. : lon/lat WGS 84 (EPSG:4326)
## source : SOC15.tif
## name : SOC15
Ahora convertiremos los datos de SOC en porcentaje.
soc.perc <- soc/10
Transformación de este CRS al CRS WGS84
geog ="+proj=longlat +datum=WGS84"
(geog.soc = project(soc.perc, geog))
## class : SpatRaster
## dimensions : 750, 796, 1 (nrow, ncol, nlyr)
## resolution : 0.002319123, 0.002319123 (x, y)
## extent : -76.4, -74.55398, 4.060658, 5.8 (xmin, xmax, ymin, ymax)
## coord. ref. : +proj=longlat +datum=WGS84 +no_defs
## source(s) : memory
## name : SOC15
## min value : 0.0000
## max value : 287.2864
Convirtamos la capa SpatRaster en un stars object
stars.soc = st_as_stars(geog.soc)
Ahora relizamos un mapa
m <- leaflet() %>%
addTiles() %>%
leafem:::addGeoRaster(
stars.soc,
opacity = 0.8,
colorOptions = colorOptions(palette = c("orange", "yellow", "cyan", "green"),
domain = 8:130)
)
m
A continuación obtendremos una muestra de aproximadamente 500 sitios del mundo real utilizando una muestra localizada aleatoriamente.
set.seed(123456)
# Muestreo aleatoreo de 500 puntos
(samples <- spatSample(geog.soc, 500, "random", as.points=TRUE))
## class : SpatVector
## geometry : points
## dimensions : 500, 1 (geometries, attributes)
## extent : -76.39884, -74.55514, 4.061817, 5.79884 (xmin, xmax, ymin, ymax)
## coord. ref. : +proj=longlat +datum=WGS84 +no_defs
## names : SOC15
## type : <num>
## values : 201.5
## 72.28
## 20.74
Debemos describir las principales caracteristicas del objeto muestra
Ahora, tenemos que convertir el objeto SpatVector en un objeto feature simple
(muestras <- sf::st_as_sf(samples))
## Simple feature collection with 500 features and 1 field
## Geometry type: POINT
## Dimension: XY
## Bounding box: xmin: -76.39884 ymin: 4.061817 xmax: -74.55514 ymax: 5.79884
## Geodetic CRS: GEOGCRS["unknown",
## DATUM["World Geodetic System 1984",
## ELLIPSOID["WGS 84",6378137,298.257223563,
## LENGTHUNIT["metre",1]],
## ID["EPSG",6326]],
## PRIMEM["Greenwich",0,
## ANGLEUNIT["degree",0.0174532925199433],
## ID["EPSG",8901]],
## CS[ellipsoidal,2],
## AXIS["longitude",east,
## ORDER[1],
## ANGLEUNIT["degree",0.0174532925199433,
## ID["EPSG",9122]]],
## AXIS["latitude",north,
## ORDER[2],
## ANGLEUNIT["degree",0.0174532925199433,
## ID["EPSG",9122]]]]
## First 10 features:
## SOC15 geometry
## 1 201.52055 POINT (-76.32695 5.662012)
## 2 72.27789 POINT (-76.19244 5.703756)
## 3 20.73886 POINT (-74.62703 5.50895)
## 4 47.95502 POINT (-75.63121 5.251527)
## 5 124.67467 POINT (-76.1878 5.272399)
## 6 76.56056 POINT (-75.13724 5.629544)
## 7 40.15657 POINT (-75.6544 4.910616)
## 8 69.90199 POINT (-75.49902 4.989466)
## 9 59.86207 POINT (-75.5454 4.263581)
## 10 71.97430 POINT (-74.99809 5.290952)
nmuestras <- na.omit(muestras)
Visualicemos las muestras
longit <- st_coordinates(muestras)[,1]
latit <- st_coordinates(muestras)[,2]
soc <- muestras$`SOC15`
id <- seq(1,500,1)
(sitios <- data.frame(id, longit, latit, soc))
## id longit latit soc
## 1 1 -76.32695 5.662012 201.52055
## 2 2 -76.19244 5.703756 72.27789
## 3 3 -74.62703 5.508950 20.73886
## 4 4 -75.63121 5.251527 47.95502
## 5 5 -76.18780 5.272399 124.67467
## 6 6 -75.13724 5.629544 76.56056
## 7 7 -75.65440 4.910616 40.15657
## 8 8 -75.49902 4.989466 69.90199
## 9 9 -75.54540 4.263581 59.86207
## 10 10 -74.99809 5.290952 71.97430
## 11 11 -75.05839 4.636960 50.51255
## 12 12 -76.37333 4.428239 57.62215
## 13 13 -75.02360 5.056721 38.62682
## 14 14 -75.81674 4.261262 43.72710
## 15 15 -75.19290 4.683342 61.44553
## 16 16 -76.22723 4.323878 38.82331
## 17 17 -75.26711 5.471844 46.19360
## 18 18 -74.73835 4.428239 28.56844
## 19 19 -75.89327 4.785384 21.73819
## 20 20 -75.91414 5.052083 36.93518
## 21 21 -76.23186 4.799298 80.77451
## 22 22 -76.11823 5.397632 71.49570
## 23 23 -74.72211 4.794660 31.32504
## 24 24 -76.31535 4.347069 34.51189
## 25 25 -75.38075 4.841043 60.32081
## 26 26 -75.42249 5.520546 68.77285
## 27 27 -75.08854 4.502451 30.97017
## 28 28 -75.16043 4.316921 25.39914
## 29 29 -75.82834 5.346611 81.76941
## 30 30 -74.91228 5.151805 18.97350
## 31 31 -75.83529 4.745959 31.70366
## 32 32 -76.38493 5.323420 202.16402
## 33 33 -75.30421 5.615630 87.04891
## 34 34 -75.66136 4.583620 32.33415
## 35 35 -75.01200 4.701895 51.55478
## 36 36 -75.97908 5.587800 88.49506
## 37 37 -75.27638 4.994105 91.60019
## 38 38 -74.91692 4.980190 14.68068
## 39 39 -76.27361 5.699118 210.02744
## 40 40 -75.94429 5.082231 33.12442
## 41 41 -76.07416 5.775649 88.23778
## 42 42 -75.03056 4.899021 37.60353
## 43 43 -75.85848 4.553471 22.85792
## 44 44 -76.25505 5.413866 85.88729
## 45 45 -75.81210 4.996424 54.20700
## 46 46 -75.96516 5.314144 75.78416
## 47 47 -76.03474 5.485759 84.47990
## 48 48 -75.16739 5.634183 79.91557
## 49 49 -75.33900 5.740862 79.03806
## 50 50 -74.69660 4.627683 21.09813
## 51 51 -76.03242 5.798840 51.23314
## 52 52 -74.62471 4.961637 34.51562
## 53 53 -75.51525 4.340112 64.27803
## 54 54 -75.47351 4.558110 58.20721
## 55 55 -75.87704 5.587800 67.74659
## 56 56 -76.21331 4.296049 31.80994
## 57 57 -74.89605 5.617949 40.20790
## 58 58 -75.95357 5.437057 72.18578
## 59 59 -76.09504 5.383717 103.99932
## 60 60 -74.86822 4.899021 20.62325
## 61 61 -75.35060 4.968594 76.72750
## 62 62 -74.84503 4.616088 26.47302
## 63 63 -74.78241 5.399951 29.74304
## 64 64 -76.30608 5.733905 207.71841
## 65 65 -75.03056 5.411547 72.02105
## 66 66 -75.88400 5.729267 39.06286
## 67 67 -74.84735 5.219060 22.26441
## 68 68 -75.32972 4.970913 82.65242
## 69 69 -74.96562 4.892063 22.14250
## 70 70 -75.66600 5.010339 30.04202
## 71 71 -74.65718 4.456068 18.03535
## 72 72 -76.31999 4.219518 40.51371
## 73 73 -74.67109 5.369803 22.04003
## 74 74 -74.81256 5.323420 25.73774
## 75 75 -74.88677 5.052083 31.20816
## 76 76 -76.23418 4.108200 21.37657
## 77 77 -75.35060 4.407367 47.65518
## 78 78 -74.95171 4.954680 23.81960
## 79 79 -75.48743 4.154582 57.41858
## 80 80 -76.17620 4.917574 45.73792
## 81 81 -75.03520 5.787245 84.38670
## 82 82 -76.29680 4.377218 37.03043
## 83 83 -75.99995 5.281676 70.97961
## 84 84 -74.74994 4.910616 29.41244
## 85 85 -75.35755 4.516365 59.52303
## 86 86 -74.87750 5.142529 26.00034
## 87 87 -75.74021 4.289091 39.91345
## 88 88 -74.84967 5.093827 26.16858
## 89 89 -76.34550 5.121656 68.21684
## 90 90 -76.22027 5.659693 89.53503
## 91 91 -74.91460 4.395771 22.59951
## 92 92 -76.01387 4.418962 27.69436
## 93 93 -76.09040 4.574343 34.79508
## 94 94 -76.34782 5.253846 63.53163
## 95 95 -74.66646 4.952360 21.95909
## 96 96 -76.34318 5.103103 167.53801
## 97 97 -75.37843 4.423600 37.92899
## 98 98 -76.36869 5.149486 101.55622
## 99 99 -75.57323 5.492716 22.11757
## 100 100 -74.59456 5.731586 43.83821
## 101 101 -75.25087 4.892063 41.55177
## 102 102 -74.85894 5.553013 28.27991
## 103 103 -75.89327 5.158762 70.89523
## 104 104 -75.42017 4.739001 53.98671
## 105 105 -75.04911 4.681023 42.27928
## 106 106 -75.07926 4.509408 33.89439
## 107 107 -75.98604 4.743639 26.05119
## 108 108 -75.82138 4.497812 31.52474
## 109 109 -75.50830 4.068775 52.83618
## 110 110 -74.68733 5.383717 14.81945
## 111 111 -75.56164 5.172677 44.42630
## 112 112 -75.87936 4.497812 41.02774
## 113 113 -75.15811 5.427781 97.39099
## 114 114 -75.40394 4.912935 74.77482
## 115 115 -75.23464 5.121656 59.51937
## 116 116 -74.55978 4.472302 19.71486
## 117 117 -76.16925 5.205145 77.85058
## 118 118 -75.77268 4.465345 28.68978
## 119 119 -74.90069 5.019615 26.10528
## 120 120 -74.56441 5.358207 28.86674
## 121 121 -75.75644 4.356346 30.11922
## 122 122 -74.71980 5.369803 19.82598
## 123 123 -75.58947 5.353569 34.26962
## 124 124 -75.11868 4.386494 25.46462
## 125 125 -75.51757 4.421281 59.41553
## 126 126 -75.60802 4.546514 48.15900
## 127 127 -75.54308 5.265442 49.99116
## 128 128 -75.68687 4.854957 36.98854
## 129 129 -75.86544 4.145306 47.93303
## 130 130 -75.31813 5.283995 91.10052
## 131 131 -75.13492 4.372580 24.67740
## 132 132 -75.17898 5.604034 67.86404
## 133 133 -75.29030 4.664789 76.62095
## 134 134 -75.82138 5.399951 75.20388
## 135 135 -75.46423 5.666650 36.24298
## 136 136 -75.41321 4.915255 75.99418
## 137 137 -74.98649 4.277496 17.96448
## 138 138 -74.63167 4.354027 21.03227
## 139 139 -74.91692 4.386494 24.29609
## 140 140 -74.96794 5.392994 81.92366
## 141 141 -76.31303 4.296049 42.27014
## 142 142 -75.78891 5.082231 49.21795
## 143 143 -74.81256 4.762192 24.14493
## 144 144 -76.14142 4.987147 79.86626
## 145 145 -75.85617 5.534460 71.80640
## 146 146 -75.54076 4.778426 61.51423
## 147 147 -75.18362 4.231113 40.61172
## 148 148 -75.95821 4.187050 41.27877
## 149 149 -75.03288 5.613311 55.60994
## 150 150 -75.32509 4.430558 49.13714
## 151 151 -76.06257 4.527961 12.05819
## 152 152 -75.50598 5.258485 36.67609
## 153 153 -75.59410 4.982509 47.11262
## 154 154 -76.22954 4.796979 84.55001
## 155 155 -76.29680 4.444472 62.45730
## 156 156 -75.12564 4.189369 22.76152
## 157 157 -75.30885 4.486217 60.69719
## 158 158 -74.93779 4.973233 28.10496
## 159 159 -75.17202 5.188911 71.41530
## 160 160 -75.58715 4.950041 39.95219
## 161 161 -74.79865 5.620268 22.95167
## 162 162 -75.75876 5.675927 62.54049
## 163 163 -76.03242 4.954680 38.76371
## 164 164 -74.80560 4.207922 29.06642
## 165 165 -75.73325 5.056721 41.78933
## 166 166 -75.17202 5.722309 98.14680
## 167 167 -76.35014 4.959318 166.83795
## 168 168 -74.93779 4.820170 15.04502
## 169 169 -74.88909 5.719990 30.20971
## 170 170 -75.76804 5.784926 57.48024
## 171 171 -76.06952 4.641598 23.73936
## 172 172 -75.21377 5.687523 95.18273
## 173 173 -75.68223 5.151805 39.59844
## 174 174 -75.17666 4.852638 70.15720
## 175 175 -74.93779 4.827128 19.35872
## 176 176 -76.37333 4.773788 81.17926
## 177 177 -75.67295 4.643917 33.16896
## 178 178 -74.62007 4.905978 36.61684
## 179 179 -75.68223 5.675927 36.88802
## 180 180 -75.39466 5.388356 86.80972
## 181 181 -75.81210 5.406909 69.08334
## 182 182 -74.95171 4.769150 19.13299
## 183 183 -76.00923 4.780745 28.62143
## 184 184 -75.63121 5.437057 41.03154
## 185 185 -74.59920 5.008019 31.91558
## 186 186 -74.80096 5.181954 16.83360
## 187 187 -76.30839 4.646236 48.79911
## 188 188 -75.17434 4.994105 70.07392
## 189 189 -75.95357 4.544195 24.94905
## 190 190 -75.55932 4.532599 55.18196
## 191 191 -74.89373 4.963956 15.90436
## 192 192 -74.90301 5.446334 39.33212
## 193 193 -76.38956 4.298368 57.07085
## 194 194 -76.10895 4.537237 24.82437
## 195 195 -74.73139 5.200507 27.72493
## 196 196 -75.88168 4.514046 31.25830
## 197 197 -75.71470 5.467206 59.73858
## 198 198 -75.74485 4.161539 66.59209
## 199 199 -75.14883 5.457929 71.14524
## 200 200 -75.48047 4.699576 54.59289
## 201 201 -76.29912 4.439834 55.39295
## 202 202 -76.29448 5.643459 212.46605
## 203 203 -74.55978 4.715810 55.90011
## 204 204 -76.24114 4.889744 63.63413
## 205 205 -74.55746 5.617949 19.73918
## 206 206 -74.70356 5.513588 25.18712
## 207 207 -75.81210 4.407367 27.36800
## 208 208 -75.31813 4.848000 75.00483
## 209 209 -74.68269 4.518684 33.46196
## 210 210 -76.06489 5.281676 35.72081
## 211 211 -76.21331 5.773330 41.83852
## 212 212 -74.76154 5.137890 28.21614
## 213 213 -76.07416 5.003381 88.62145
## 214 214 -75.75412 4.124433 53.60117
## 215 215 -75.44568 4.300687 66.76106
## 216 216 -74.58297 4.912935 37.61859
## 217 217 -74.89837 5.506631 32.19286
## 218 218 -74.82416 5.137890 25.57558
## 219 219 -75.57787 4.460706 60.21014
## 220 220 -75.03752 5.631864 40.17430
## 221 221 -76.31767 5.003381 65.24503
## 222 222 -74.98649 5.613311 42.96283
## 223 223 -74.86590 4.166178 15.36836
## 224 224 -74.96794 4.604492 27.45223
## 225 225 -76.06025 4.699576 33.72531
## 226 226 -76.35710 4.219518 39.28138
## 227 227 -74.61543 5.617949 20.90310
## 228 228 -75.09085 5.246889 50.15996
## 229 229 -75.13492 4.159220 19.62386
## 230 230 -75.14188 4.122114 24.00604
## 231 231 -75.43872 4.713491 55.53471
## 232 232 -75.55468 4.425920 76.14365
## 233 233 -75.71934 5.188911 52.04658
## 234 234 -76.35710 4.296049 33.26006
## 235 235 -74.93315 5.270080 33.25670
## 236 236 -75.91414 4.490855 36.42155
## 237 237 -75.91182 5.650417 56.63265
## 238 238 -75.93038 4.184731 37.17283
## 239 239 -75.28798 5.645778 71.24511
## 240 240 -76.00691 4.848000 28.24664
## 241 241 -74.80792 4.449111 23.24479
## 242 242 -76.36637 4.926850 60.37689
## 243 243 -76.19012 5.706076 75.31876
## 244 244 -75.63353 4.328516 63.53475
## 245 245 -75.48047 5.379079 52.30526
## 246 246 -75.27870 4.080370 43.32001
## 247 247 -76.30608 4.950041 202.49684
## 248 248 -75.47583 4.544195 53.49971
## 249 249 -75.93038 4.275177 20.15918
## 250 250 -75.32509 4.947722 54.27903
## 251 251 -76.28752 4.660151 49.46734
## 252 252 -75.20913 5.397632 76.82912
## 253 253 -76.07184 5.156443 97.08533
## 254 254 -76.24810 5.223698 93.86734
## 255 255 -75.98604 5.251527 84.05339
## 256 256 -75.48511 4.205603 63.65168
## 257 257 -76.28288 5.042806 56.40915
## 258 258 -76.10199 5.710714 76.19220
## 259 259 -75.04215 5.757096 84.03456
## 260 260 -76.31767 5.743181 212.54294
## 261 261 -75.16739 5.453291 64.23039
## 262 262 -75.65904 5.019615 39.32290
## 263 263 -75.27175 5.274719 65.54462
## 264 264 -75.79123 4.908297 30.18651
## 265 265 -74.79169 5.441695 17.57552
## 266 266 -75.07230 5.787245 50.86767
## 267 267 -75.50134 5.279357 67.09540
## 268 268 -75.41321 4.745959 65.97716
## 269 269 -74.59456 4.282134 24.76080
## 270 270 -74.74531 5.070636 31.13146
## 271 271 -74.86126 5.740862 39.35171
## 272 272 -75.67991 4.769150 35.31337
## 273 273 -76.34086 4.590577 50.99593
## 274 274 -75.50134 5.156443 77.66748
## 275 275 -76.13910 4.581301 70.04039
## 276 276 -74.98186 4.544195 23.05536
## 277 277 -74.56209 4.597535 22.87782
## 278 278 -75.36683 4.196326 32.60001
## 279 279 -76.05561 4.133710 55.35421
## 280 280 -74.90069 4.474621 17.82059
## 281 281 -75.84921 5.295591 63.80224
## 282 282 -74.57601 5.251527 25.73482
## 283 283 -75.22073 4.755235 65.39145
## 284 284 -74.75226 4.238071 26.04608
## 285 285 -75.23696 4.495493 60.43322
## 286 286 -75.27407 5.128614 64.37532
## 287 287 -74.75226 5.587800 45.18285
## 288 288 -75.79819 4.156901 46.73880
## 289 289 -76.39884 5.671289 246.57156
## 290 290 -74.97258 5.666650 72.27001
## 291 291 -76.11127 4.483898 25.30139
## 292 292 -75.58715 5.469525 29.79581
## 293 293 -74.86822 4.175454 15.37320
## 294 294 -74.56441 4.187050 39.89615
## 295 295 -75.98140 5.121656 83.21144
## 296 296 -75.66368 5.518227 78.93192
## 297 297 -74.82879 4.432877 22.20138
## 298 298 -75.84689 5.383717 64.30980
## 299 299 -75.46423 5.529822 68.70696
## 300 300 -75.94661 5.040487 44.91479
## 301 301 -74.82879 5.580843 20.07048
## 302 302 -75.01664 4.991786 34.51947
## 303 303 -75.32277 5.156443 69.49125
## 304 304 -75.79355 4.690300 31.78513
## 305 305 -75.38075 4.226475 51.60001
## 306 306 -76.37333 5.617949 223.85925
## 307 307 -74.76850 4.602173 22.13812
## 308 308 -76.29912 5.117018 84.78854
## 309 309 -75.33900 4.885106 53.05539
## 310 310 -75.70078 5.070636 33.79643
## 311 311 -76.01155 5.655055 82.72884
## 312 312 -76.26201 5.193549 191.44817
## 313 313 -75.60802 4.435196 57.37254
## 314 314 -74.88677 4.351708 23.70607
## 315 315 -75.31349 5.708395 0.00000
## 316 316 -76.06257 4.068775 37.82544
## 317 317 -75.74021 4.922212 39.03683
## 318 318 -76.28752 4.061817 21.62743
## 319 319 -74.83111 4.755235 26.82022
## 320 320 -75.64744 5.126295 26.81999
## 321 321 -75.43872 5.376760 72.69934
## 322 322 -76.23650 4.771469 52.65630
## 323 323 -74.64790 4.555790 23.09578
## 324 324 -74.64095 4.495493 22.02462
## 325 325 -75.06998 4.845681 52.25227
## 326 326 -76.16693 4.766831 62.37632
## 327 327 -74.55514 4.523323 18.64496
## 328 328 -75.85153 5.024253 20.91977
## 329 329 -76.20171 5.559971 192.59389
## 330 330 -75.19290 4.785384 69.48573
## 331 331 -75.02360 5.773330 81.59269
## 332 332 -75.32972 4.954680 60.24314
## 333 333 -75.65440 5.775649 23.44702
## 334 334 -75.18130 4.372580 23.63216
## 335 335 -75.86776 4.676385 30.30295
## 336 336 -74.90996 4.815532 23.47956
## 337 337 -74.73835 4.279815 21.65641
## 338 338 -75.62889 4.347069 61.20875
## 339 339 -74.71284 4.548833 24.13613
## 340 340 -75.50830 5.726948 62.24360
## 341 341 -75.77036 4.268219 55.29541
## 342 342 -76.31999 4.061817 21.68181
## 343 343 -74.80328 4.456068 23.13152
## 344 344 -74.91692 5.228336 21.72222
## 345 345 -75.20217 5.265442 82.00424
## 346 346 -75.65904 4.792341 40.78756
## 347 347 -74.63167 4.834085 32.56137
## 348 348 -75.67759 5.200507 29.60692
## 349 349 -75.06998 5.207464 48.28332
## 350 350 -75.57323 5.001062 37.90054
## 351 351 -74.73835 5.119337 22.98896
## 352 352 -76.33390 5.237613 95.89774
## 353 353 -75.42249 4.681023 66.80602
## 354 354 -76.19012 5.198188 73.31627
## 355 355 -76.05329 5.527503 113.80224
## 356 356 -76.16229 4.277496 20.91250
## 357 357 -74.82416 4.358665 20.79509
## 358 358 -74.95635 5.207464 31.42168
## 359 359 -75.84689 5.063678 25.67172
## 360 360 -75.32972 4.611449 61.83695
## 361 361 -76.29680 5.784926 65.58174
## 362 362 -76.08808 4.333155 25.45052
## 363 363 -76.13910 4.572024 71.84538
## 364 364 -75.43872 4.432877 53.62717
## 365 365 -75.01896 4.249666 19.92265
## 366 366 -74.90301 4.284453 16.84386
## 367 367 -76.11591 5.754777 68.60464
## 368 368 -74.58065 4.456068 24.65936
## 369 369 -75.04447 4.451430 19.79432
## 370 370 -74.57369 5.272399 23.92711
## 371 371 -74.68733 4.108200 32.01759
## 372 372 -76.31071 4.889744 99.67415
## 373 373 -74.76850 5.450972 24.33921
## 374 374 -75.88168 5.089189 23.19234
## 375 375 -75.72398 4.616088 34.90303
## 376 376 -75.14883 5.655055 47.94374
## 377 377 -75.74021 5.010339 38.22617
## 378 378 -76.35014 4.792341 49.16828
## 379 379 -75.54540 5.123976 48.50538
## 380 380 -75.00969 4.984828 27.40895
## 381 381 -76.19940 4.091966 0.00000
## 382 382 -74.85430 4.284453 20.18382
## 383 383 -76.33622 5.423142 222.05420
## 384 384 -75.41553 5.597077 66.81011
## 385 385 -75.78427 4.347069 27.65158
## 386 386 -75.16739 5.012658 63.05899
## 387 387 -75.25551 5.685203 91.89825
## 388 388 -76.00459 5.692161 70.78352
## 389 389 -75.58019 5.212102 50.89899
## 390 390 -76.00459 4.270538 25.20052
## 391 391 -75.41089 4.799298 59.24374
## 392 392 -74.69892 5.446334 28.56255
## 393 393 -75.96285 4.539557 20.62407
## 394 394 -76.03474 5.100784 107.95598
## 395 395 -75.56164 4.548833 62.48239
## 396 396 -75.84689 5.381398 68.31615
## 397 397 -74.75922 4.258943 25.30676
## 398 398 -76.12982 5.272399 89.91652
## 399 399 -75.34828 4.238071 56.97986
## 400 400 -75.27870 5.049764 69.88731
## 401 401 -75.08390 5.304867 51.82898
## 402 402 -76.16461 5.460248 73.35531
## 403 403 -74.95866 5.168039 41.97486
## 404 404 -74.71284 5.244570 18.95735
## 405 405 -76.05793 4.149944 35.51830
## 406 406 -75.30885 5.411547 77.49171
## 407 407 -74.97026 5.151805 71.02966
## 408 408 -76.21331 5.270080 72.28096
## 409 409 -76.35246 5.163401 164.32655
## 410 410 -76.15533 4.126753 24.60173
## 411 411 -75.23696 5.186592 67.46825
## 412 412 -75.29726 5.318782 55.75346
## 413 413 -75.04215 4.402728 18.94314
## 414 414 -74.88677 5.031211 18.69214
## 415 415 -75.88168 5.791883 39.73401
## 416 416 -74.58761 4.523323 34.50966
## 417 417 -75.86312 5.501993 93.30278
## 418 418 -75.64513 4.834085 41.15916
## 419 419 -75.71470 5.003381 31.00526
## 420 420 -75.01200 4.245028 18.53606
## 421 421 -74.90996 4.245028 21.53582
## 422 422 -76.15069 4.699576 34.85075
## 423 423 -74.87286 5.536780 24.26187
## 424 424 -75.53149 4.384175 58.82573
## 425 425 -75.15811 4.903659 71.30268
## 426 426 -75.00273 4.136029 14.37605
## 427 427 -75.75181 5.367484 61.64387
## 428 428 -74.91692 5.594758 28.67395
## 429 429 -75.15347 5.750139 86.83689
## 430 430 -74.62703 4.739001 33.26605
## 431 431 -74.74531 4.110519 15.55320
## 432 432 -76.39884 5.056721 184.73198
## 433 433 -75.56628 4.743639 52.50283
## 434 434 -76.28057 4.126753 18.43217
## 435 435 -75.44800 4.474621 89.49364
## 436 436 -74.72907 4.437515 22.99113
## 437 437 -75.08390 4.105881 31.50039
## 438 438 -74.57833 5.314144 63.08957
## 439 439 -75.41785 5.471844 66.73744
## 440 440 -75.84921 4.407367 26.74456
## 441 441 -75.85385 4.548833 26.42059
## 442 442 -74.95171 4.138348 18.34733
## 443 443 -76.28057 4.678704 51.70436
## 444 444 -75.93965 4.407367 27.72754
## 445 445 -75.55236 4.736682 56.53277
## 446 446 -75.39930 5.687523 40.03516
## 447 447 -74.87054 5.226017 21.21263
## 448 448 -75.44568 5.144848 69.67031
## 449 449 -75.25087 4.189369 26.73174
## 450 450 -75.86544 4.080370 55.80783
## 451 451 -75.70078 5.302548 92.06828
## 452 452 -75.43872 4.732044 65.55432
## 453 453 -75.47119 5.251527 52.35936
## 454 454 -75.55236 4.061817 50.73089
## 455 455 -75.98604 5.450972 72.99322
## 456 456 -76.28984 4.175454 21.21450
## 457 457 -74.57369 4.676385 34.84175
## 458 458 -75.99995 5.481121 85.66775
## 459 459 -75.90487 5.752458 39.53645
## 460 460 -76.27129 4.989466 63.06372
## 461 461 -74.61543 4.954680 27.96161
## 462 462 -74.66182 4.905978 28.52035
## 463 463 -74.98881 5.775649 42.95164
## 464 464 -75.02824 5.437057 53.05967
## 465 465 -75.27175 5.195868 74.47117
## 466 466 -76.31535 4.333155 43.04797
## 467 467 -74.90069 5.017296 22.65612
## 468 468 -75.11173 4.815532 64.20106
## 469 469 -76.27129 4.956999 77.76530
## 470 470 -75.04215 4.490855 20.94310
## 471 471 -74.57601 5.302548 27.51717
## 472 472 -75.57323 4.219518 69.09544
## 473 473 -75.23928 4.421281 26.37920
## 474 474 -76.30839 5.571566 190.69368
## 475 475 -74.96098 4.685661 23.85669
## 476 476 -75.50830 4.395771 52.45917
## 477 477 -76.25505 5.497354 171.58464
## 478 478 -75.05143 4.312282 13.95514
## 479 479 -75.12796 5.476482 57.76789
## 480 480 -76.06257 4.476940 26.75782
## 481 481 -75.23696 5.553013 87.20108
## 482 482 -75.55468 5.142529 38.09097
## 483 483 -74.79169 4.544195 17.88832
## 484 484 -75.60338 4.676385 50.12939
## 485 485 -75.48974 4.643917 66.56770
## 486 486 -75.43640 4.704214 63.59487
## 487 487 -75.94429 4.701895 17.68264
## 488 488 -74.94243 5.548375 55.45159
## 489 489 -75.66368 5.177315 26.25048
## 490 490 -75.99299 5.369803 38.65867
## 491 491 -75.39466 5.328058 73.23988
## 492 492 -75.81906 4.931488 36.25452
## 493 493 -75.96285 4.984828 33.63740
## 494 494 -74.64095 5.191230 33.01804
## 495 495 -76.30376 4.490855 42.95618
## 496 496 -75.79123 4.838723 26.77345
## 497 497 -76.16693 4.316921 23.02101
## 498 498 -74.94475 5.515907 48.53756
## 499 499 -75.55700 5.796521 39.42776
## 500 500 -74.78937 5.019615 32.81052
Ahora borraremos los valores NA
sitios <- na.omit(sitios)
head(sitios)
## id longit latit soc
## 1 1 -76.32695 5.662012 201.52055
## 2 2 -76.19244 5.703756 72.27789
## 3 3 -74.62703 5.508950 20.73886
## 4 4 -75.63121 5.251527 47.95502
## 5 5 -76.18780 5.272399 124.67467
## 6 6 -75.13724 5.629544 76.56056
Visualizemos las muestras
m <- leaflet() %>%
addTiles() %>%
leafem:::addGeoRaster(
stars.soc,
opacity = 0.7,
colorOptions = colorOptions(palette = c("orange", "yellow", "cyan", "green"),
domain = 8:130)
) %>%
addMarkers(lng=sitios$longit,lat=sitios$latit, popup=sitios$soc, clusterOptions = markerClusterOptions())
m # Print the map
Para interpolar, primero necesitamos crear un objeto de la clase gstat.
Un objeto gstat contiene toda la información necesaria para realizar la interpolación espacial.
Vamos a utilizar tres parámetros de la función gstat: - Fórmula: la “fórmula” de predicción que especifica las variables dependientes e independientes - Data: los datos de calibración - Modelo: el modelo de variograma
Para interpolar utilizando este metodo creamos el siguinte objeto gstat, especificando unicamente la formula y los datos:
g1 = gstat(formula = SOC15 ~ 1, data = nmuestras)
Ahora que el modelo de interpolación g1 está definido, podemos utilizar la función predict para interpolar.
Vamos a crear un objeto raster con valores de celda iguales a 1:
rrr = aggregate(geog.soc, 4)
¿Que es rrr?
rrr
## class : SpatRaster
## dimensions : 188, 199, 1 (nrow, ncol, nlyr)
## resolution : 0.009276493, 0.009276493 (x, y)
## extent : -76.4, -74.55398, 4.056019, 5.8 (xmin, xmax, ymin, ymax)
## coord. ref. : +proj=longlat +datum=WGS84 +no_defs
## source(s) : memory
## name : SOC15
## min value : 0.0000
## max value : 255.0888
Definiremos nuevos valores para rrr
values(rrr) <-1
Definiremos nuevos nombres para rrr
names(rrr) <- "valor"
Ahora rrr es:
rrr
## class : SpatRaster
## dimensions : 188, 199, 1 (nrow, ncol, nlyr)
## resolution : 0.009276493, 0.009276493 (x, y)
## extent : -76.4, -74.55398, 4.056019, 5.8 (xmin, xmax, ymin, ymax)
## coord. ref. : +proj=longlat +datum=WGS84 +no_defs
## source(s) : memory
## name : valor
## min value : 1
## max value : 1
stars.rrr = st_as_stars(rrr)
El siguiente codigo interpola los valores SOC según el modelo definido en g1 y la plantilla raster definida en stars.rrr:
z1 = predict(g1, stars.rrr)
## [inverse distance weighted interpolation]
¿Que es Z1?
z1
## stars object with 2 dimensions and 2 attributes
## attribute(s):
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## var1.pred 0.9032976 34.64183 48.23325 51.72116 60.39388 242.9888 0
## var1.var NA NA NA NaN NA NA 37412
## dimension(s):
## from to offset delta refsys x/y
## x 1 199 -76.4 0.00927649 +proj=longlat +datum=WGS8... [x]
## y 1 188 5.8 -0.00927649 +proj=longlat +datum=WGS8... [y]
El objeto z1 dos atributos, podemos subconjuntar sólo el primer atributo y renombrarlo a “soc”:
z1 = z1["var1.pred",,]
names(z1) = "soc"
Necesitrampos una paleta de colores
paleta <- colorNumeric(palette = c("red", "yellow", "cyan", "green"), domain = 10:100, na.color = "transparent")
El raster SOC interpolado lo podemos observar a continuación:
m <- leaflet() %>%
addTiles() %>%
leafem:::addGeoRaster(
z1,
opacity = 0.7,
colorOptions = colorOptions(palette = c("red", "yellow", "cyan", "green"),
domain = 11:55)
) %>%
addMarkers(lng=sitios$longit,lat=sitios$latit, popup=sitios$soc, clusterOptions = markerClusterOptions()) %>%
addLegend("bottomright", pal=paleta, values= z1$soc,
title = "IDW SOC interpolation [%]"
)
## Warning in pal(c(r[1], cuts, r[2])): Some values were outside the color scale
## and will be treated as NA
m # Print the map
Primeramente calcularemos y examinaremos el variograma empírico utilizando laa función Variogram.
La función requiere dos argumentos: formula y datos
El siguiente codigo calcula el variograma empirico de muestras, sin covariables.
v_emp_ok = variogram(SOC15 ~ 1, data=nmuestras)
Ilustermos el variograma:
plot(v_emp_ok)
Utilizaremos la función autofitVariogram para ajustar un modelo de variograma a un variograma empirico.
v_mod_ok = autofitVariogram(SOC15 ~ 1, as(nmuestras, "Spatial"))
La función elige el tipo de modelo que mejor se ajusta y también afina sus parámetros.
El modelo ajustado puede representarse con plot:
plot(v_mod_ok)
El objeto resultante es en realidad una lista con varios componentes, incluyendo el variograma empírico y el modelo de variograma ajustado. El componente $var_model del objeto resultante contiene el modelo real:
v_mod_ok$var_model
## model psill range kappa
## 1 Nug 20.52881 0.00000 0.0
## 2 Ste 1171.51991 79.38399 0.3
El modelo puedo pasarse a la función gstat para asi poder continuar con la interpolación OK:
g2 = gstat(formula = SOC15 ~ 1, model = v_mod_ok$var_model, data = nmuestras)
z2= predict(g2, stars.rrr)
## [using ordinary kriging]
Nuevamente vamos a subconjuntar el atributo de valores predichos y cambiaremos el nombre:
z2 = z2["var1.pred",,]
names(z2) = "soc"
Las prediciones de Kriging ordinario se puede ver a continuación.
m <- leaflet() %>%
addTiles() %>%
leafem:::addGeoRaster(
z2,
opacity = 0.7,
colorOptions = colorOptions(palette = c("orange", "yellow", "cyan", "green"),
domain = 11:55)
) %>%
addMarkers(lng=sitios$longit,lat=sitios$latit, popup=sitios$soc, clusterOptions = markerClusterOptions()) %>%
addLegend("bottomright", pal = paleta, values= z2$soc,
title = "OK SOC interpolation [%]"
)
## Warning in pal(c(r[1], cuts, r[2])): Some values were outside the color scale
## and will be treated as NA
m # Print the map
Otra forma de visualizar los tres resultados de interpolación:
colores <- colorOptions(palette = c("orange", "yellow", "cyan", "green"), domain = 10:100, na.color = "transparent")
m <- leaflet() %>%
addTiles() %>%
addGeoRaster(stars.soc, opacity = 0.8, colorOptions = colores, group="RealWorld") %>%
addGeoRaster(z1, colorOptions = colores, opacity = 0.8, group= "IDW") %>%
addGeoRaster(z2, colorOptions = colores, opacity = 0.8, group= "OK") %>%
# Add layers controls
addLayersControl(
overlayGroups = c("RealWorld", "IDW", "OK"),
options = layersControlOptions(collapsed = FALSE)
) %>%
addLegend("bottomright", pal = paleta, values= z1$soc,
title = "Soil organic carbon [%]"
)
## Warning in pal(c(r[1], cuts, r[2])): Some values were outside the color scale
## and will be treated as NA
m # Print the map
Validación cruzada Leave-One-Out
cv1 = gstat.cv(g1)
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
## [inverse distance weighted interpolation]
cv2 = gstat.cv(g2)
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
## [using ordinary kriging]
cv1 = na.omit(cv1)
cv1
## class : SpatialPointsDataFrame
## features : 500
## extent : -76.39884, -74.55514, 4.061817, 5.79884 (xmin, xmax, ymin, ymax)
## crs : +proj=longlat +datum=WGS84 +no_defs
## variables : 6
## names : var1.pred, var1.var, observed, residual, zscore, fold
## min values : 17.2576789621635, NA, 0, -83.6916712396385, NA, 1
## max values : 184.56223330443, NA, 246.571563720703, 118.695562119791, NA, 500
Convertiremos el objeto cv1
cv1 = st_as_sf(cv1)
Ahora trazemos los residuales
sp::bubble(as(cv1[, "residual"], "Spatial"))
Ahora calcularemos los indices de precisión de la predicción, como tambien el error cuadratico medio (RMSE)
sqrt(sum((cv1$var1.pred - cv1$observed)^2) / nrow(cv1))
## [1] 21.26027
repetiremos el proceso para los resultados de OK
Conversión:
cv2 = st_as_sf(cv2)
calculo de RSME para OK
sqrt(sum((cv2$var1.pred - cv2$observed)^2) / nrow(cv2))
## [1] 18.94742
Este trabajo se realizó tomando como guía el cuaderno: Lizarazo, I. 2023, Spatial interpolation of soil organic carbon.
Cite este trabajo así: Cely, N., 2023. Interpolación espacial del carbono organico del suelo. Disponible en https://rpubs.com/ncely/1048046