Using the Boston dataset, fit classification models in order to predict whether a given suburb has a crime rate above or below the median. Explore logistic regression, LDA, naive Bayes, and KNN models using various subsets of the predictors. Describe your findings.
boston <- Boston
boston <- boston %>%
mutate(chas = factor(chas),
crime_factor = factor(ifelse(crim > median(crim),
'High', 'Low'),
levels = c('High', 'Low')))
kbl(boston, caption = "Boston data with classification by crime rate factor")%>%
row_spec(row =0, bold= TRUE, color = "black", background = "#F9EBEA") %>%
kable_styling(bootstrap_options = "striped", full_width = F, position = "center")
| crim | zn | indus | chas | nox | rm | age | dis | rad | tax | ptratio | black | lstat | medv | crime_factor |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.00632 | 18.0 | 2.31 | 0 | 0.5380 | 6.575 | 65.2 | 4.0900 | 1 | 296 | 15.3 | 396.90 | 4.98 | 24.0 | Low |
| 0.02731 | 0.0 | 7.07 | 0 | 0.4690 | 6.421 | 78.9 | 4.9671 | 2 | 242 | 17.8 | 396.90 | 9.14 | 21.6 | Low |
| 0.02729 | 0.0 | 7.07 | 0 | 0.4690 | 7.185 | 61.1 | 4.9671 | 2 | 242 | 17.8 | 392.83 | 4.03 | 34.7 | Low |
| 0.03237 | 0.0 | 2.18 | 0 | 0.4580 | 6.998 | 45.8 | 6.0622 | 3 | 222 | 18.7 | 394.63 | 2.94 | 33.4 | Low |
| 0.06905 | 0.0 | 2.18 | 0 | 0.4580 | 7.147 | 54.2 | 6.0622 | 3 | 222 | 18.7 | 396.90 | 5.33 | 36.2 | Low |
| 0.02985 | 0.0 | 2.18 | 0 | 0.4580 | 6.430 | 58.7 | 6.0622 | 3 | 222 | 18.7 | 394.12 | 5.21 | 28.7 | Low |
| 0.08829 | 12.5 | 7.87 | 0 | 0.5240 | 6.012 | 66.6 | 5.5605 | 5 | 311 | 15.2 | 395.60 | 12.43 | 22.9 | Low |
| 0.14455 | 12.5 | 7.87 | 0 | 0.5240 | 6.172 | 96.1 | 5.9505 | 5 | 311 | 15.2 | 396.90 | 19.15 | 27.1 | Low |
| 0.21124 | 12.5 | 7.87 | 0 | 0.5240 | 5.631 | 100.0 | 6.0821 | 5 | 311 | 15.2 | 386.63 | 29.93 | 16.5 | Low |
| 0.17004 | 12.5 | 7.87 | 0 | 0.5240 | 6.004 | 85.9 | 6.5921 | 5 | 311 | 15.2 | 386.71 | 17.10 | 18.9 | Low |
| 0.22489 | 12.5 | 7.87 | 0 | 0.5240 | 6.377 | 94.3 | 6.3467 | 5 | 311 | 15.2 | 392.52 | 20.45 | 15.0 | Low |
| 0.11747 | 12.5 | 7.87 | 0 | 0.5240 | 6.009 | 82.9 | 6.2267 | 5 | 311 | 15.2 | 396.90 | 13.27 | 18.9 | Low |
| 0.09378 | 12.5 | 7.87 | 0 | 0.5240 | 5.889 | 39.0 | 5.4509 | 5 | 311 | 15.2 | 390.50 | 15.71 | 21.7 | Low |
| 0.62976 | 0.0 | 8.14 | 0 | 0.5380 | 5.949 | 61.8 | 4.7075 | 4 | 307 | 21.0 | 396.90 | 8.26 | 20.4 | High |
| 0.63796 | 0.0 | 8.14 | 0 | 0.5380 | 6.096 | 84.5 | 4.4619 | 4 | 307 | 21.0 | 380.02 | 10.26 | 18.2 | High |
| 0.62739 | 0.0 | 8.14 | 0 | 0.5380 | 5.834 | 56.5 | 4.4986 | 4 | 307 | 21.0 | 395.62 | 8.47 | 19.9 | High |
| 1.05393 | 0.0 | 8.14 | 0 | 0.5380 | 5.935 | 29.3 | 4.4986 | 4 | 307 | 21.0 | 386.85 | 6.58 | 23.1 | High |
| 0.78420 | 0.0 | 8.14 | 0 | 0.5380 | 5.990 | 81.7 | 4.2579 | 4 | 307 | 21.0 | 386.75 | 14.67 | 17.5 | High |
| 0.80271 | 0.0 | 8.14 | 0 | 0.5380 | 5.456 | 36.6 | 3.7965 | 4 | 307 | 21.0 | 288.99 | 11.69 | 20.2 | High |
| 0.72580 | 0.0 | 8.14 | 0 | 0.5380 | 5.727 | 69.5 | 3.7965 | 4 | 307 | 21.0 | 390.95 | 11.28 | 18.2 | High |
| 1.25179 | 0.0 | 8.14 | 0 | 0.5380 | 5.570 | 98.1 | 3.7979 | 4 | 307 | 21.0 | 376.57 | 21.02 | 13.6 | High |
| 0.85204 | 0.0 | 8.14 | 0 | 0.5380 | 5.965 | 89.2 | 4.0123 | 4 | 307 | 21.0 | 392.53 | 13.83 | 19.6 | High |
| 1.23247 | 0.0 | 8.14 | 0 | 0.5380 | 6.142 | 91.7 | 3.9769 | 4 | 307 | 21.0 | 396.90 | 18.72 | 15.2 | High |
| 0.98843 | 0.0 | 8.14 | 0 | 0.5380 | 5.813 | 100.0 | 4.0952 | 4 | 307 | 21.0 | 394.54 | 19.88 | 14.5 | High |
| 0.75026 | 0.0 | 8.14 | 0 | 0.5380 | 5.924 | 94.1 | 4.3996 | 4 | 307 | 21.0 | 394.33 | 16.30 | 15.6 | High |
| 0.84054 | 0.0 | 8.14 | 0 | 0.5380 | 5.599 | 85.7 | 4.4546 | 4 | 307 | 21.0 | 303.42 | 16.51 | 13.9 | High |
| 0.67191 | 0.0 | 8.14 | 0 | 0.5380 | 5.813 | 90.3 | 4.6820 | 4 | 307 | 21.0 | 376.88 | 14.81 | 16.6 | High |
| 0.95577 | 0.0 | 8.14 | 0 | 0.5380 | 6.047 | 88.8 | 4.4534 | 4 | 307 | 21.0 | 306.38 | 17.28 | 14.8 | High |
| 0.77299 | 0.0 | 8.14 | 0 | 0.5380 | 6.495 | 94.4 | 4.4547 | 4 | 307 | 21.0 | 387.94 | 12.80 | 18.4 | High |
| 1.00245 | 0.0 | 8.14 | 0 | 0.5380 | 6.674 | 87.3 | 4.2390 | 4 | 307 | 21.0 | 380.23 | 11.98 | 21.0 | High |
| 1.13081 | 0.0 | 8.14 | 0 | 0.5380 | 5.713 | 94.1 | 4.2330 | 4 | 307 | 21.0 | 360.17 | 22.60 | 12.7 | High |
| 1.35472 | 0.0 | 8.14 | 0 | 0.5380 | 6.072 | 100.0 | 4.1750 | 4 | 307 | 21.0 | 376.73 | 13.04 | 14.5 | High |
| 1.38799 | 0.0 | 8.14 | 0 | 0.5380 | 5.950 | 82.0 | 3.9900 | 4 | 307 | 21.0 | 232.60 | 27.71 | 13.2 | High |
| 1.15172 | 0.0 | 8.14 | 0 | 0.5380 | 5.701 | 95.0 | 3.7872 | 4 | 307 | 21.0 | 358.77 | 18.35 | 13.1 | High |
| 1.61282 | 0.0 | 8.14 | 0 | 0.5380 | 6.096 | 96.9 | 3.7598 | 4 | 307 | 21.0 | 248.31 | 20.34 | 13.5 | High |
| 0.06417 | 0.0 | 5.96 | 0 | 0.4990 | 5.933 | 68.2 | 3.3603 | 5 | 279 | 19.2 | 396.90 | 9.68 | 18.9 | Low |
| 0.09744 | 0.0 | 5.96 | 0 | 0.4990 | 5.841 | 61.4 | 3.3779 | 5 | 279 | 19.2 | 377.56 | 11.41 | 20.0 | Low |
| 0.08014 | 0.0 | 5.96 | 0 | 0.4990 | 5.850 | 41.5 | 3.9342 | 5 | 279 | 19.2 | 396.90 | 8.77 | 21.0 | Low |
| 0.17505 | 0.0 | 5.96 | 0 | 0.4990 | 5.966 | 30.2 | 3.8473 | 5 | 279 | 19.2 | 393.43 | 10.13 | 24.7 | Low |
| 0.02763 | 75.0 | 2.95 | 0 | 0.4280 | 6.595 | 21.8 | 5.4011 | 3 | 252 | 18.3 | 395.63 | 4.32 | 30.8 | Low |
| 0.03359 | 75.0 | 2.95 | 0 | 0.4280 | 7.024 | 15.8 | 5.4011 | 3 | 252 | 18.3 | 395.62 | 1.98 | 34.9 | Low |
| 0.12744 | 0.0 | 6.91 | 0 | 0.4480 | 6.770 | 2.9 | 5.7209 | 3 | 233 | 17.9 | 385.41 | 4.84 | 26.6 | Low |
| 0.14150 | 0.0 | 6.91 | 0 | 0.4480 | 6.169 | 6.6 | 5.7209 | 3 | 233 | 17.9 | 383.37 | 5.81 | 25.3 | Low |
| 0.15936 | 0.0 | 6.91 | 0 | 0.4480 | 6.211 | 6.5 | 5.7209 | 3 | 233 | 17.9 | 394.46 | 7.44 | 24.7 | Low |
| 0.12269 | 0.0 | 6.91 | 0 | 0.4480 | 6.069 | 40.0 | 5.7209 | 3 | 233 | 17.9 | 389.39 | 9.55 | 21.2 | Low |
| 0.17142 | 0.0 | 6.91 | 0 | 0.4480 | 5.682 | 33.8 | 5.1004 | 3 | 233 | 17.9 | 396.90 | 10.21 | 19.3 | Low |
| 0.18836 | 0.0 | 6.91 | 0 | 0.4480 | 5.786 | 33.3 | 5.1004 | 3 | 233 | 17.9 | 396.90 | 14.15 | 20.0 | Low |
| 0.22927 | 0.0 | 6.91 | 0 | 0.4480 | 6.030 | 85.5 | 5.6894 | 3 | 233 | 17.9 | 392.74 | 18.80 | 16.6 | Low |
| 0.25387 | 0.0 | 6.91 | 0 | 0.4480 | 5.399 | 95.3 | 5.8700 | 3 | 233 | 17.9 | 396.90 | 30.81 | 14.4 | Low |
| 0.21977 | 0.0 | 6.91 | 0 | 0.4480 | 5.602 | 62.0 | 6.0877 | 3 | 233 | 17.9 | 396.90 | 16.20 | 19.4 | Low |
| 0.08873 | 21.0 | 5.64 | 0 | 0.4390 | 5.963 | 45.7 | 6.8147 | 4 | 243 | 16.8 | 395.56 | 13.45 | 19.7 | Low |
| 0.04337 | 21.0 | 5.64 | 0 | 0.4390 | 6.115 | 63.0 | 6.8147 | 4 | 243 | 16.8 | 393.97 | 9.43 | 20.5 | Low |
| 0.05360 | 21.0 | 5.64 | 0 | 0.4390 | 6.511 | 21.1 | 6.8147 | 4 | 243 | 16.8 | 396.90 | 5.28 | 25.0 | Low |
| 0.04981 | 21.0 | 5.64 | 0 | 0.4390 | 5.998 | 21.4 | 6.8147 | 4 | 243 | 16.8 | 396.90 | 8.43 | 23.4 | Low |
| 0.01360 | 75.0 | 4.00 | 0 | 0.4100 | 5.888 | 47.6 | 7.3197 | 3 | 469 | 21.1 | 396.90 | 14.80 | 18.9 | Low |
| 0.01311 | 90.0 | 1.22 | 0 | 0.4030 | 7.249 | 21.9 | 8.6966 | 5 | 226 | 17.9 | 395.93 | 4.81 | 35.4 | Low |
| 0.02055 | 85.0 | 0.74 | 0 | 0.4100 | 6.383 | 35.7 | 9.1876 | 2 | 313 | 17.3 | 396.90 | 5.77 | 24.7 | Low |
| 0.01432 | 100.0 | 1.32 | 0 | 0.4110 | 6.816 | 40.5 | 8.3248 | 5 | 256 | 15.1 | 392.90 | 3.95 | 31.6 | Low |
| 0.15445 | 25.0 | 5.13 | 0 | 0.4530 | 6.145 | 29.2 | 7.8148 | 8 | 284 | 19.7 | 390.68 | 6.86 | 23.3 | Low |
| 0.10328 | 25.0 | 5.13 | 0 | 0.4530 | 5.927 | 47.2 | 6.9320 | 8 | 284 | 19.7 | 396.90 | 9.22 | 19.6 | Low |
| 0.14932 | 25.0 | 5.13 | 0 | 0.4530 | 5.741 | 66.2 | 7.2254 | 8 | 284 | 19.7 | 395.11 | 13.15 | 18.7 | Low |
| 0.17171 | 25.0 | 5.13 | 0 | 0.4530 | 5.966 | 93.4 | 6.8185 | 8 | 284 | 19.7 | 378.08 | 14.44 | 16.0 | Low |
| 0.11027 | 25.0 | 5.13 | 0 | 0.4530 | 6.456 | 67.8 | 7.2255 | 8 | 284 | 19.7 | 396.90 | 6.73 | 22.2 | Low |
| 0.12650 | 25.0 | 5.13 | 0 | 0.4530 | 6.762 | 43.4 | 7.9809 | 8 | 284 | 19.7 | 395.58 | 9.50 | 25.0 | Low |
| 0.01951 | 17.5 | 1.38 | 0 | 0.4161 | 7.104 | 59.5 | 9.2229 | 3 | 216 | 18.6 | 393.24 | 8.05 | 33.0 | Low |
| 0.03584 | 80.0 | 3.37 | 0 | 0.3980 | 6.290 | 17.8 | 6.6115 | 4 | 337 | 16.1 | 396.90 | 4.67 | 23.5 | Low |
| 0.04379 | 80.0 | 3.37 | 0 | 0.3980 | 5.787 | 31.1 | 6.6115 | 4 | 337 | 16.1 | 396.90 | 10.24 | 19.4 | Low |
| 0.05789 | 12.5 | 6.07 | 0 | 0.4090 | 5.878 | 21.4 | 6.4980 | 4 | 345 | 18.9 | 396.21 | 8.10 | 22.0 | Low |
| 0.13554 | 12.5 | 6.07 | 0 | 0.4090 | 5.594 | 36.8 | 6.4980 | 4 | 345 | 18.9 | 396.90 | 13.09 | 17.4 | Low |
| 0.12816 | 12.5 | 6.07 | 0 | 0.4090 | 5.885 | 33.0 | 6.4980 | 4 | 345 | 18.9 | 396.90 | 8.79 | 20.9 | Low |
| 0.08826 | 0.0 | 10.81 | 0 | 0.4130 | 6.417 | 6.6 | 5.2873 | 4 | 305 | 19.2 | 383.73 | 6.72 | 24.2 | Low |
| 0.15876 | 0.0 | 10.81 | 0 | 0.4130 | 5.961 | 17.5 | 5.2873 | 4 | 305 | 19.2 | 376.94 | 9.88 | 21.7 | Low |
| 0.09164 | 0.0 | 10.81 | 0 | 0.4130 | 6.065 | 7.8 | 5.2873 | 4 | 305 | 19.2 | 390.91 | 5.52 | 22.8 | Low |
| 0.19539 | 0.0 | 10.81 | 0 | 0.4130 | 6.245 | 6.2 | 5.2873 | 4 | 305 | 19.2 | 377.17 | 7.54 | 23.4 | Low |
| 0.07896 | 0.0 | 12.83 | 0 | 0.4370 | 6.273 | 6.0 | 4.2515 | 5 | 398 | 18.7 | 394.92 | 6.78 | 24.1 | Low |
| 0.09512 | 0.0 | 12.83 | 0 | 0.4370 | 6.286 | 45.0 | 4.5026 | 5 | 398 | 18.7 | 383.23 | 8.94 | 21.4 | Low |
| 0.10153 | 0.0 | 12.83 | 0 | 0.4370 | 6.279 | 74.5 | 4.0522 | 5 | 398 | 18.7 | 373.66 | 11.97 | 20.0 | Low |
| 0.08707 | 0.0 | 12.83 | 0 | 0.4370 | 6.140 | 45.8 | 4.0905 | 5 | 398 | 18.7 | 386.96 | 10.27 | 20.8 | Low |
| 0.05646 | 0.0 | 12.83 | 0 | 0.4370 | 6.232 | 53.7 | 5.0141 | 5 | 398 | 18.7 | 386.40 | 12.34 | 21.2 | Low |
| 0.08387 | 0.0 | 12.83 | 0 | 0.4370 | 5.874 | 36.6 | 4.5026 | 5 | 398 | 18.7 | 396.06 | 9.10 | 20.3 | Low |
| 0.04113 | 25.0 | 4.86 | 0 | 0.4260 | 6.727 | 33.5 | 5.4007 | 4 | 281 | 19.0 | 396.90 | 5.29 | 28.0 | Low |
| 0.04462 | 25.0 | 4.86 | 0 | 0.4260 | 6.619 | 70.4 | 5.4007 | 4 | 281 | 19.0 | 395.63 | 7.22 | 23.9 | Low |
| 0.03659 | 25.0 | 4.86 | 0 | 0.4260 | 6.302 | 32.2 | 5.4007 | 4 | 281 | 19.0 | 396.90 | 6.72 | 24.8 | Low |
| 0.03551 | 25.0 | 4.86 | 0 | 0.4260 | 6.167 | 46.7 | 5.4007 | 4 | 281 | 19.0 | 390.64 | 7.51 | 22.9 | Low |
| 0.05059 | 0.0 | 4.49 | 0 | 0.4490 | 6.389 | 48.0 | 4.7794 | 3 | 247 | 18.5 | 396.90 | 9.62 | 23.9 | Low |
| 0.05735 | 0.0 | 4.49 | 0 | 0.4490 | 6.630 | 56.1 | 4.4377 | 3 | 247 | 18.5 | 392.30 | 6.53 | 26.6 | Low |
| 0.05188 | 0.0 | 4.49 | 0 | 0.4490 | 6.015 | 45.1 | 4.4272 | 3 | 247 | 18.5 | 395.99 | 12.86 | 22.5 | Low |
| 0.07151 | 0.0 | 4.49 | 0 | 0.4490 | 6.121 | 56.8 | 3.7476 | 3 | 247 | 18.5 | 395.15 | 8.44 | 22.2 | Low |
| 0.05660 | 0.0 | 3.41 | 0 | 0.4890 | 7.007 | 86.3 | 3.4217 | 2 | 270 | 17.8 | 396.90 | 5.50 | 23.6 | Low |
| 0.05302 | 0.0 | 3.41 | 0 | 0.4890 | 7.079 | 63.1 | 3.4145 | 2 | 270 | 17.8 | 396.06 | 5.70 | 28.7 | Low |
| 0.04684 | 0.0 | 3.41 | 0 | 0.4890 | 6.417 | 66.1 | 3.0923 | 2 | 270 | 17.8 | 392.18 | 8.81 | 22.6 | Low |
| 0.03932 | 0.0 | 3.41 | 0 | 0.4890 | 6.405 | 73.9 | 3.0921 | 2 | 270 | 17.8 | 393.55 | 8.20 | 22.0 | Low |
| 0.04203 | 28.0 | 15.04 | 0 | 0.4640 | 6.442 | 53.6 | 3.6659 | 4 | 270 | 18.2 | 395.01 | 8.16 | 22.9 | Low |
| 0.02875 | 28.0 | 15.04 | 0 | 0.4640 | 6.211 | 28.9 | 3.6659 | 4 | 270 | 18.2 | 396.33 | 6.21 | 25.0 | Low |
| 0.04294 | 28.0 | 15.04 | 0 | 0.4640 | 6.249 | 77.3 | 3.6150 | 4 | 270 | 18.2 | 396.90 | 10.59 | 20.6 | Low |
| 0.12204 | 0.0 | 2.89 | 0 | 0.4450 | 6.625 | 57.8 | 3.4952 | 2 | 276 | 18.0 | 357.98 | 6.65 | 28.4 | Low |
| 0.11504 | 0.0 | 2.89 | 0 | 0.4450 | 6.163 | 69.6 | 3.4952 | 2 | 276 | 18.0 | 391.83 | 11.34 | 21.4 | Low |
| 0.12083 | 0.0 | 2.89 | 0 | 0.4450 | 8.069 | 76.0 | 3.4952 | 2 | 276 | 18.0 | 396.90 | 4.21 | 38.7 | Low |
| 0.08187 | 0.0 | 2.89 | 0 | 0.4450 | 7.820 | 36.9 | 3.4952 | 2 | 276 | 18.0 | 393.53 | 3.57 | 43.8 | Low |
| 0.06860 | 0.0 | 2.89 | 0 | 0.4450 | 7.416 | 62.5 | 3.4952 | 2 | 276 | 18.0 | 396.90 | 6.19 | 33.2 | Low |
| 0.14866 | 0.0 | 8.56 | 0 | 0.5200 | 6.727 | 79.9 | 2.7778 | 5 | 384 | 20.9 | 394.76 | 9.42 | 27.5 | Low |
| 0.11432 | 0.0 | 8.56 | 0 | 0.5200 | 6.781 | 71.3 | 2.8561 | 5 | 384 | 20.9 | 395.58 | 7.67 | 26.5 | Low |
| 0.22876 | 0.0 | 8.56 | 0 | 0.5200 | 6.405 | 85.4 | 2.7147 | 5 | 384 | 20.9 | 70.80 | 10.63 | 18.6 | Low |
| 0.21161 | 0.0 | 8.56 | 0 | 0.5200 | 6.137 | 87.4 | 2.7147 | 5 | 384 | 20.9 | 394.47 | 13.44 | 19.3 | Low |
| 0.13960 | 0.0 | 8.56 | 0 | 0.5200 | 6.167 | 90.0 | 2.4210 | 5 | 384 | 20.9 | 392.69 | 12.33 | 20.1 | Low |
| 0.13262 | 0.0 | 8.56 | 0 | 0.5200 | 5.851 | 96.7 | 2.1069 | 5 | 384 | 20.9 | 394.05 | 16.47 | 19.5 | Low |
| 0.17120 | 0.0 | 8.56 | 0 | 0.5200 | 5.836 | 91.9 | 2.2110 | 5 | 384 | 20.9 | 395.67 | 18.66 | 19.5 | Low |
| 0.13117 | 0.0 | 8.56 | 0 | 0.5200 | 6.127 | 85.2 | 2.1224 | 5 | 384 | 20.9 | 387.69 | 14.09 | 20.4 | Low |
| 0.12802 | 0.0 | 8.56 | 0 | 0.5200 | 6.474 | 97.1 | 2.4329 | 5 | 384 | 20.9 | 395.24 | 12.27 | 19.8 | Low |
| 0.26363 | 0.0 | 8.56 | 0 | 0.5200 | 6.229 | 91.2 | 2.5451 | 5 | 384 | 20.9 | 391.23 | 15.55 | 19.4 | High |
| 0.10793 | 0.0 | 8.56 | 0 | 0.5200 | 6.195 | 54.4 | 2.7778 | 5 | 384 | 20.9 | 393.49 | 13.00 | 21.7 | Low |
| 0.10084 | 0.0 | 10.01 | 0 | 0.5470 | 6.715 | 81.6 | 2.6775 | 6 | 432 | 17.8 | 395.59 | 10.16 | 22.8 | Low |
| 0.12329 | 0.0 | 10.01 | 0 | 0.5470 | 5.913 | 92.9 | 2.3534 | 6 | 432 | 17.8 | 394.95 | 16.21 | 18.8 | Low |
| 0.22212 | 0.0 | 10.01 | 0 | 0.5470 | 6.092 | 95.4 | 2.5480 | 6 | 432 | 17.8 | 396.90 | 17.09 | 18.7 | Low |
| 0.14231 | 0.0 | 10.01 | 0 | 0.5470 | 6.254 | 84.2 | 2.2565 | 6 | 432 | 17.8 | 388.74 | 10.45 | 18.5 | Low |
| 0.17134 | 0.0 | 10.01 | 0 | 0.5470 | 5.928 | 88.2 | 2.4631 | 6 | 432 | 17.8 | 344.91 | 15.76 | 18.3 | Low |
| 0.13158 | 0.0 | 10.01 | 0 | 0.5470 | 6.176 | 72.5 | 2.7301 | 6 | 432 | 17.8 | 393.30 | 12.04 | 21.2 | Low |
| 0.15098 | 0.0 | 10.01 | 0 | 0.5470 | 6.021 | 82.6 | 2.7474 | 6 | 432 | 17.8 | 394.51 | 10.30 | 19.2 | Low |
| 0.13058 | 0.0 | 10.01 | 0 | 0.5470 | 5.872 | 73.1 | 2.4775 | 6 | 432 | 17.8 | 338.63 | 15.37 | 20.4 | Low |
| 0.14476 | 0.0 | 10.01 | 0 | 0.5470 | 5.731 | 65.2 | 2.7592 | 6 | 432 | 17.8 | 391.50 | 13.61 | 19.3 | Low |
| 0.06899 | 0.0 | 25.65 | 0 | 0.5810 | 5.870 | 69.7 | 2.2577 | 2 | 188 | 19.1 | 389.15 | 14.37 | 22.0 | Low |
| 0.07165 | 0.0 | 25.65 | 0 | 0.5810 | 6.004 | 84.1 | 2.1974 | 2 | 188 | 19.1 | 377.67 | 14.27 | 20.3 | Low |
| 0.09299 | 0.0 | 25.65 | 0 | 0.5810 | 5.961 | 92.9 | 2.0869 | 2 | 188 | 19.1 | 378.09 | 17.93 | 20.5 | Low |
| 0.15038 | 0.0 | 25.65 | 0 | 0.5810 | 5.856 | 97.0 | 1.9444 | 2 | 188 | 19.1 | 370.31 | 25.41 | 17.3 | Low |
| 0.09849 | 0.0 | 25.65 | 0 | 0.5810 | 5.879 | 95.8 | 2.0063 | 2 | 188 | 19.1 | 379.38 | 17.58 | 18.8 | Low |
| 0.16902 | 0.0 | 25.65 | 0 | 0.5810 | 5.986 | 88.4 | 1.9929 | 2 | 188 | 19.1 | 385.02 | 14.81 | 21.4 | Low |
| 0.38735 | 0.0 | 25.65 | 0 | 0.5810 | 5.613 | 95.6 | 1.7572 | 2 | 188 | 19.1 | 359.29 | 27.26 | 15.7 | High |
| 0.25915 | 0.0 | 21.89 | 0 | 0.6240 | 5.693 | 96.0 | 1.7883 | 4 | 437 | 21.2 | 392.11 | 17.19 | 16.2 | High |
| 0.32543 | 0.0 | 21.89 | 0 | 0.6240 | 6.431 | 98.8 | 1.8125 | 4 | 437 | 21.2 | 396.90 | 15.39 | 18.0 | High |
| 0.88125 | 0.0 | 21.89 | 0 | 0.6240 | 5.637 | 94.7 | 1.9799 | 4 | 437 | 21.2 | 396.90 | 18.34 | 14.3 | High |
| 0.34006 | 0.0 | 21.89 | 0 | 0.6240 | 6.458 | 98.9 | 2.1185 | 4 | 437 | 21.2 | 395.04 | 12.60 | 19.2 | High |
| 1.19294 | 0.0 | 21.89 | 0 | 0.6240 | 6.326 | 97.7 | 2.2710 | 4 | 437 | 21.2 | 396.90 | 12.26 | 19.6 | High |
| 0.59005 | 0.0 | 21.89 | 0 | 0.6240 | 6.372 | 97.9 | 2.3274 | 4 | 437 | 21.2 | 385.76 | 11.12 | 23.0 | High |
| 0.32982 | 0.0 | 21.89 | 0 | 0.6240 | 5.822 | 95.4 | 2.4699 | 4 | 437 | 21.2 | 388.69 | 15.03 | 18.4 | High |
| 0.97617 | 0.0 | 21.89 | 0 | 0.6240 | 5.757 | 98.4 | 2.3460 | 4 | 437 | 21.2 | 262.76 | 17.31 | 15.6 | High |
| 0.55778 | 0.0 | 21.89 | 0 | 0.6240 | 6.335 | 98.2 | 2.1107 | 4 | 437 | 21.2 | 394.67 | 16.96 | 18.1 | High |
| 0.32264 | 0.0 | 21.89 | 0 | 0.6240 | 5.942 | 93.5 | 1.9669 | 4 | 437 | 21.2 | 378.25 | 16.90 | 17.4 | High |
| 0.35233 | 0.0 | 21.89 | 0 | 0.6240 | 6.454 | 98.4 | 1.8498 | 4 | 437 | 21.2 | 394.08 | 14.59 | 17.1 | High |
| 0.24980 | 0.0 | 21.89 | 0 | 0.6240 | 5.857 | 98.2 | 1.6686 | 4 | 437 | 21.2 | 392.04 | 21.32 | 13.3 | Low |
| 0.54452 | 0.0 | 21.89 | 0 | 0.6240 | 6.151 | 97.9 | 1.6687 | 4 | 437 | 21.2 | 396.90 | 18.46 | 17.8 | High |
| 0.29090 | 0.0 | 21.89 | 0 | 0.6240 | 6.174 | 93.6 | 1.6119 | 4 | 437 | 21.2 | 388.08 | 24.16 | 14.0 | High |
| 1.62864 | 0.0 | 21.89 | 0 | 0.6240 | 5.019 | 100.0 | 1.4394 | 4 | 437 | 21.2 | 396.90 | 34.41 | 14.4 | High |
| 3.32105 | 0.0 | 19.58 | 1 | 0.8710 | 5.403 | 100.0 | 1.3216 | 5 | 403 | 14.7 | 396.90 | 26.82 | 13.4 | High |
| 4.09740 | 0.0 | 19.58 | 0 | 0.8710 | 5.468 | 100.0 | 1.4118 | 5 | 403 | 14.7 | 396.90 | 26.42 | 15.6 | High |
| 2.77974 | 0.0 | 19.58 | 0 | 0.8710 | 4.903 | 97.8 | 1.3459 | 5 | 403 | 14.7 | 396.90 | 29.29 | 11.8 | High |
| 2.37934 | 0.0 | 19.58 | 0 | 0.8710 | 6.130 | 100.0 | 1.4191 | 5 | 403 | 14.7 | 172.91 | 27.80 | 13.8 | High |
| 2.15505 | 0.0 | 19.58 | 0 | 0.8710 | 5.628 | 100.0 | 1.5166 | 5 | 403 | 14.7 | 169.27 | 16.65 | 15.6 | High |
| 2.36862 | 0.0 | 19.58 | 0 | 0.8710 | 4.926 | 95.7 | 1.4608 | 5 | 403 | 14.7 | 391.71 | 29.53 | 14.6 | High |
| 2.33099 | 0.0 | 19.58 | 0 | 0.8710 | 5.186 | 93.8 | 1.5296 | 5 | 403 | 14.7 | 356.99 | 28.32 | 17.8 | High |
| 2.73397 | 0.0 | 19.58 | 0 | 0.8710 | 5.597 | 94.9 | 1.5257 | 5 | 403 | 14.7 | 351.85 | 21.45 | 15.4 | High |
| 1.65660 | 0.0 | 19.58 | 0 | 0.8710 | 6.122 | 97.3 | 1.6180 | 5 | 403 | 14.7 | 372.80 | 14.10 | 21.5 | High |
| 1.49632 | 0.0 | 19.58 | 0 | 0.8710 | 5.404 | 100.0 | 1.5916 | 5 | 403 | 14.7 | 341.60 | 13.28 | 19.6 | High |
| 1.12658 | 0.0 | 19.58 | 1 | 0.8710 | 5.012 | 88.0 | 1.6102 | 5 | 403 | 14.7 | 343.28 | 12.12 | 15.3 | High |
| 2.14918 | 0.0 | 19.58 | 0 | 0.8710 | 5.709 | 98.5 | 1.6232 | 5 | 403 | 14.7 | 261.95 | 15.79 | 19.4 | High |
| 1.41385 | 0.0 | 19.58 | 1 | 0.8710 | 6.129 | 96.0 | 1.7494 | 5 | 403 | 14.7 | 321.02 | 15.12 | 17.0 | High |
| 3.53501 | 0.0 | 19.58 | 1 | 0.8710 | 6.152 | 82.6 | 1.7455 | 5 | 403 | 14.7 | 88.01 | 15.02 | 15.6 | High |
| 2.44668 | 0.0 | 19.58 | 0 | 0.8710 | 5.272 | 94.0 | 1.7364 | 5 | 403 | 14.7 | 88.63 | 16.14 | 13.1 | High |
| 1.22358 | 0.0 | 19.58 | 0 | 0.6050 | 6.943 | 97.4 | 1.8773 | 5 | 403 | 14.7 | 363.43 | 4.59 | 41.3 | High |
| 1.34284 | 0.0 | 19.58 | 0 | 0.6050 | 6.066 | 100.0 | 1.7573 | 5 | 403 | 14.7 | 353.89 | 6.43 | 24.3 | High |
| 1.42502 | 0.0 | 19.58 | 0 | 0.8710 | 6.510 | 100.0 | 1.7659 | 5 | 403 | 14.7 | 364.31 | 7.39 | 23.3 | High |
| 1.27346 | 0.0 | 19.58 | 1 | 0.6050 | 6.250 | 92.6 | 1.7984 | 5 | 403 | 14.7 | 338.92 | 5.50 | 27.0 | High |
| 1.46336 | 0.0 | 19.58 | 0 | 0.6050 | 7.489 | 90.8 | 1.9709 | 5 | 403 | 14.7 | 374.43 | 1.73 | 50.0 | High |
| 1.83377 | 0.0 | 19.58 | 1 | 0.6050 | 7.802 | 98.2 | 2.0407 | 5 | 403 | 14.7 | 389.61 | 1.92 | 50.0 | High |
| 1.51902 | 0.0 | 19.58 | 1 | 0.6050 | 8.375 | 93.9 | 2.1620 | 5 | 403 | 14.7 | 388.45 | 3.32 | 50.0 | High |
| 2.24236 | 0.0 | 19.58 | 0 | 0.6050 | 5.854 | 91.8 | 2.4220 | 5 | 403 | 14.7 | 395.11 | 11.64 | 22.7 | High |
| 2.92400 | 0.0 | 19.58 | 0 | 0.6050 | 6.101 | 93.0 | 2.2834 | 5 | 403 | 14.7 | 240.16 | 9.81 | 25.0 | High |
| 2.01019 | 0.0 | 19.58 | 0 | 0.6050 | 7.929 | 96.2 | 2.0459 | 5 | 403 | 14.7 | 369.30 | 3.70 | 50.0 | High |
| 1.80028 | 0.0 | 19.58 | 0 | 0.6050 | 5.877 | 79.2 | 2.4259 | 5 | 403 | 14.7 | 227.61 | 12.14 | 23.8 | High |
| 2.30040 | 0.0 | 19.58 | 0 | 0.6050 | 6.319 | 96.1 | 2.1000 | 5 | 403 | 14.7 | 297.09 | 11.10 | 23.8 | High |
| 2.44953 | 0.0 | 19.58 | 0 | 0.6050 | 6.402 | 95.2 | 2.2625 | 5 | 403 | 14.7 | 330.04 | 11.32 | 22.3 | High |
| 1.20742 | 0.0 | 19.58 | 0 | 0.6050 | 5.875 | 94.6 | 2.4259 | 5 | 403 | 14.7 | 292.29 | 14.43 | 17.4 | High |
| 2.31390 | 0.0 | 19.58 | 0 | 0.6050 | 5.880 | 97.3 | 2.3887 | 5 | 403 | 14.7 | 348.13 | 12.03 | 19.1 | High |
| 0.13914 | 0.0 | 4.05 | 0 | 0.5100 | 5.572 | 88.5 | 2.5961 | 5 | 296 | 16.6 | 396.90 | 14.69 | 23.1 | Low |
| 0.09178 | 0.0 | 4.05 | 0 | 0.5100 | 6.416 | 84.1 | 2.6463 | 5 | 296 | 16.6 | 395.50 | 9.04 | 23.6 | Low |
| 0.08447 | 0.0 | 4.05 | 0 | 0.5100 | 5.859 | 68.7 | 2.7019 | 5 | 296 | 16.6 | 393.23 | 9.64 | 22.6 | Low |
| 0.06664 | 0.0 | 4.05 | 0 | 0.5100 | 6.546 | 33.1 | 3.1323 | 5 | 296 | 16.6 | 390.96 | 5.33 | 29.4 | Low |
| 0.07022 | 0.0 | 4.05 | 0 | 0.5100 | 6.020 | 47.2 | 3.5549 | 5 | 296 | 16.6 | 393.23 | 10.11 | 23.2 | Low |
| 0.05425 | 0.0 | 4.05 | 0 | 0.5100 | 6.315 | 73.4 | 3.3175 | 5 | 296 | 16.6 | 395.60 | 6.29 | 24.6 | Low |
| 0.06642 | 0.0 | 4.05 | 0 | 0.5100 | 6.860 | 74.4 | 2.9153 | 5 | 296 | 16.6 | 391.27 | 6.92 | 29.9 | Low |
| 0.05780 | 0.0 | 2.46 | 0 | 0.4880 | 6.980 | 58.4 | 2.8290 | 3 | 193 | 17.8 | 396.90 | 5.04 | 37.2 | Low |
| 0.06588 | 0.0 | 2.46 | 0 | 0.4880 | 7.765 | 83.3 | 2.7410 | 3 | 193 | 17.8 | 395.56 | 7.56 | 39.8 | Low |
| 0.06888 | 0.0 | 2.46 | 0 | 0.4880 | 6.144 | 62.2 | 2.5979 | 3 | 193 | 17.8 | 396.90 | 9.45 | 36.2 | Low |
| 0.09103 | 0.0 | 2.46 | 0 | 0.4880 | 7.155 | 92.2 | 2.7006 | 3 | 193 | 17.8 | 394.12 | 4.82 | 37.9 | Low |
| 0.10008 | 0.0 | 2.46 | 0 | 0.4880 | 6.563 | 95.6 | 2.8470 | 3 | 193 | 17.8 | 396.90 | 5.68 | 32.5 | Low |
| 0.08308 | 0.0 | 2.46 | 0 | 0.4880 | 5.604 | 89.8 | 2.9879 | 3 | 193 | 17.8 | 391.00 | 13.98 | 26.4 | Low |
| 0.06047 | 0.0 | 2.46 | 0 | 0.4880 | 6.153 | 68.8 | 3.2797 | 3 | 193 | 17.8 | 387.11 | 13.15 | 29.6 | Low |
| 0.05602 | 0.0 | 2.46 | 0 | 0.4880 | 7.831 | 53.6 | 3.1992 | 3 | 193 | 17.8 | 392.63 | 4.45 | 50.0 | Low |
| 0.07875 | 45.0 | 3.44 | 0 | 0.4370 | 6.782 | 41.1 | 3.7886 | 5 | 398 | 15.2 | 393.87 | 6.68 | 32.0 | Low |
| 0.12579 | 45.0 | 3.44 | 0 | 0.4370 | 6.556 | 29.1 | 4.5667 | 5 | 398 | 15.2 | 382.84 | 4.56 | 29.8 | Low |
| 0.08370 | 45.0 | 3.44 | 0 | 0.4370 | 7.185 | 38.9 | 4.5667 | 5 | 398 | 15.2 | 396.90 | 5.39 | 34.9 | Low |
| 0.09068 | 45.0 | 3.44 | 0 | 0.4370 | 6.951 | 21.5 | 6.4798 | 5 | 398 | 15.2 | 377.68 | 5.10 | 37.0 | Low |
| 0.06911 | 45.0 | 3.44 | 0 | 0.4370 | 6.739 | 30.8 | 6.4798 | 5 | 398 | 15.2 | 389.71 | 4.69 | 30.5 | Low |
| 0.08664 | 45.0 | 3.44 | 0 | 0.4370 | 7.178 | 26.3 | 6.4798 | 5 | 398 | 15.2 | 390.49 | 2.87 | 36.4 | Low |
| 0.02187 | 60.0 | 2.93 | 0 | 0.4010 | 6.800 | 9.9 | 6.2196 | 1 | 265 | 15.6 | 393.37 | 5.03 | 31.1 | Low |
| 0.01439 | 60.0 | 2.93 | 0 | 0.4010 | 6.604 | 18.8 | 6.2196 | 1 | 265 | 15.6 | 376.70 | 4.38 | 29.1 | Low |
| 0.01381 | 80.0 | 0.46 | 0 | 0.4220 | 7.875 | 32.0 | 5.6484 | 4 | 255 | 14.4 | 394.23 | 2.97 | 50.0 | Low |
| 0.04011 | 80.0 | 1.52 | 0 | 0.4040 | 7.287 | 34.1 | 7.3090 | 2 | 329 | 12.6 | 396.90 | 4.08 | 33.3 | Low |
| 0.04666 | 80.0 | 1.52 | 0 | 0.4040 | 7.107 | 36.6 | 7.3090 | 2 | 329 | 12.6 | 354.31 | 8.61 | 30.3 | Low |
| 0.03768 | 80.0 | 1.52 | 0 | 0.4040 | 7.274 | 38.3 | 7.3090 | 2 | 329 | 12.6 | 392.20 | 6.62 | 34.6 | Low |
| 0.03150 | 95.0 | 1.47 | 0 | 0.4030 | 6.975 | 15.3 | 7.6534 | 3 | 402 | 17.0 | 396.90 | 4.56 | 34.9 | Low |
| 0.01778 | 95.0 | 1.47 | 0 | 0.4030 | 7.135 | 13.9 | 7.6534 | 3 | 402 | 17.0 | 384.30 | 4.45 | 32.9 | Low |
| 0.03445 | 82.5 | 2.03 | 0 | 0.4150 | 6.162 | 38.4 | 6.2700 | 2 | 348 | 14.7 | 393.77 | 7.43 | 24.1 | Low |
| 0.02177 | 82.5 | 2.03 | 0 | 0.4150 | 7.610 | 15.7 | 6.2700 | 2 | 348 | 14.7 | 395.38 | 3.11 | 42.3 | Low |
| 0.03510 | 95.0 | 2.68 | 0 | 0.4161 | 7.853 | 33.2 | 5.1180 | 4 | 224 | 14.7 | 392.78 | 3.81 | 48.5 | Low |
| 0.02009 | 95.0 | 2.68 | 0 | 0.4161 | 8.034 | 31.9 | 5.1180 | 4 | 224 | 14.7 | 390.55 | 2.88 | 50.0 | Low |
| 0.13642 | 0.0 | 10.59 | 0 | 0.4890 | 5.891 | 22.3 | 3.9454 | 4 | 277 | 18.6 | 396.90 | 10.87 | 22.6 | Low |
| 0.22969 | 0.0 | 10.59 | 0 | 0.4890 | 6.326 | 52.5 | 4.3549 | 4 | 277 | 18.6 | 394.87 | 10.97 | 24.4 | Low |
| 0.25199 | 0.0 | 10.59 | 0 | 0.4890 | 5.783 | 72.7 | 4.3549 | 4 | 277 | 18.6 | 389.43 | 18.06 | 22.5 | Low |
| 0.13587 | 0.0 | 10.59 | 1 | 0.4890 | 6.064 | 59.1 | 4.2392 | 4 | 277 | 18.6 | 381.32 | 14.66 | 24.4 | Low |
| 0.43571 | 0.0 | 10.59 | 1 | 0.4890 | 5.344 | 100.0 | 3.8750 | 4 | 277 | 18.6 | 396.90 | 23.09 | 20.0 | High |
| 0.17446 | 0.0 | 10.59 | 1 | 0.4890 | 5.960 | 92.1 | 3.8771 | 4 | 277 | 18.6 | 393.25 | 17.27 | 21.7 | Low |
| 0.37578 | 0.0 | 10.59 | 1 | 0.4890 | 5.404 | 88.6 | 3.6650 | 4 | 277 | 18.6 | 395.24 | 23.98 | 19.3 | High |
| 0.21719 | 0.0 | 10.59 | 1 | 0.4890 | 5.807 | 53.8 | 3.6526 | 4 | 277 | 18.6 | 390.94 | 16.03 | 22.4 | Low |
| 0.14052 | 0.0 | 10.59 | 0 | 0.4890 | 6.375 | 32.3 | 3.9454 | 4 | 277 | 18.6 | 385.81 | 9.38 | 28.1 | Low |
| 0.28955 | 0.0 | 10.59 | 0 | 0.4890 | 5.412 | 9.8 | 3.5875 | 4 | 277 | 18.6 | 348.93 | 29.55 | 23.7 | High |
| 0.19802 | 0.0 | 10.59 | 0 | 0.4890 | 6.182 | 42.4 | 3.9454 | 4 | 277 | 18.6 | 393.63 | 9.47 | 25.0 | Low |
| 0.04560 | 0.0 | 13.89 | 1 | 0.5500 | 5.888 | 56.0 | 3.1121 | 5 | 276 | 16.4 | 392.80 | 13.51 | 23.3 | Low |
| 0.07013 | 0.0 | 13.89 | 0 | 0.5500 | 6.642 | 85.1 | 3.4211 | 5 | 276 | 16.4 | 392.78 | 9.69 | 28.7 | Low |
| 0.11069 | 0.0 | 13.89 | 1 | 0.5500 | 5.951 | 93.8 | 2.8893 | 5 | 276 | 16.4 | 396.90 | 17.92 | 21.5 | Low |
| 0.11425 | 0.0 | 13.89 | 1 | 0.5500 | 6.373 | 92.4 | 3.3633 | 5 | 276 | 16.4 | 393.74 | 10.50 | 23.0 | Low |
| 0.35809 | 0.0 | 6.20 | 1 | 0.5070 | 6.951 | 88.5 | 2.8617 | 8 | 307 | 17.4 | 391.70 | 9.71 | 26.7 | High |
| 0.40771 | 0.0 | 6.20 | 1 | 0.5070 | 6.164 | 91.3 | 3.0480 | 8 | 307 | 17.4 | 395.24 | 21.46 | 21.7 | High |
| 0.62356 | 0.0 | 6.20 | 1 | 0.5070 | 6.879 | 77.7 | 3.2721 | 8 | 307 | 17.4 | 390.39 | 9.93 | 27.5 | High |
| 0.61470 | 0.0 | 6.20 | 0 | 0.5070 | 6.618 | 80.8 | 3.2721 | 8 | 307 | 17.4 | 396.90 | 7.60 | 30.1 | High |
| 0.31533 | 0.0 | 6.20 | 0 | 0.5040 | 8.266 | 78.3 | 2.8944 | 8 | 307 | 17.4 | 385.05 | 4.14 | 44.8 | High |
| 0.52693 | 0.0 | 6.20 | 0 | 0.5040 | 8.725 | 83.0 | 2.8944 | 8 | 307 | 17.4 | 382.00 | 4.63 | 50.0 | High |
| 0.38214 | 0.0 | 6.20 | 0 | 0.5040 | 8.040 | 86.5 | 3.2157 | 8 | 307 | 17.4 | 387.38 | 3.13 | 37.6 | High |
| 0.41238 | 0.0 | 6.20 | 0 | 0.5040 | 7.163 | 79.9 | 3.2157 | 8 | 307 | 17.4 | 372.08 | 6.36 | 31.6 | High |
| 0.29819 | 0.0 | 6.20 | 0 | 0.5040 | 7.686 | 17.0 | 3.3751 | 8 | 307 | 17.4 | 377.51 | 3.92 | 46.7 | High |
| 0.44178 | 0.0 | 6.20 | 0 | 0.5040 | 6.552 | 21.4 | 3.3751 | 8 | 307 | 17.4 | 380.34 | 3.76 | 31.5 | High |
| 0.53700 | 0.0 | 6.20 | 0 | 0.5040 | 5.981 | 68.1 | 3.6715 | 8 | 307 | 17.4 | 378.35 | 11.65 | 24.3 | High |
| 0.46296 | 0.0 | 6.20 | 0 | 0.5040 | 7.412 | 76.9 | 3.6715 | 8 | 307 | 17.4 | 376.14 | 5.25 | 31.7 | High |
| 0.57529 | 0.0 | 6.20 | 0 | 0.5070 | 8.337 | 73.3 | 3.8384 | 8 | 307 | 17.4 | 385.91 | 2.47 | 41.7 | High |
| 0.33147 | 0.0 | 6.20 | 0 | 0.5070 | 8.247 | 70.4 | 3.6519 | 8 | 307 | 17.4 | 378.95 | 3.95 | 48.3 | High |
| 0.44791 | 0.0 | 6.20 | 1 | 0.5070 | 6.726 | 66.5 | 3.6519 | 8 | 307 | 17.4 | 360.20 | 8.05 | 29.0 | High |
| 0.33045 | 0.0 | 6.20 | 0 | 0.5070 | 6.086 | 61.5 | 3.6519 | 8 | 307 | 17.4 | 376.75 | 10.88 | 24.0 | High |
| 0.52058 | 0.0 | 6.20 | 1 | 0.5070 | 6.631 | 76.5 | 4.1480 | 8 | 307 | 17.4 | 388.45 | 9.54 | 25.1 | High |
| 0.51183 | 0.0 | 6.20 | 0 | 0.5070 | 7.358 | 71.6 | 4.1480 | 8 | 307 | 17.4 | 390.07 | 4.73 | 31.5 | High |
| 0.08244 | 30.0 | 4.93 | 0 | 0.4280 | 6.481 | 18.5 | 6.1899 | 6 | 300 | 16.6 | 379.41 | 6.36 | 23.7 | Low |
| 0.09252 | 30.0 | 4.93 | 0 | 0.4280 | 6.606 | 42.2 | 6.1899 | 6 | 300 | 16.6 | 383.78 | 7.37 | 23.3 | Low |
| 0.11329 | 30.0 | 4.93 | 0 | 0.4280 | 6.897 | 54.3 | 6.3361 | 6 | 300 | 16.6 | 391.25 | 11.38 | 22.0 | Low |
| 0.10612 | 30.0 | 4.93 | 0 | 0.4280 | 6.095 | 65.1 | 6.3361 | 6 | 300 | 16.6 | 394.62 | 12.40 | 20.1 | Low |
| 0.10290 | 30.0 | 4.93 | 0 | 0.4280 | 6.358 | 52.9 | 7.0355 | 6 | 300 | 16.6 | 372.75 | 11.22 | 22.2 | Low |
| 0.12757 | 30.0 | 4.93 | 0 | 0.4280 | 6.393 | 7.8 | 7.0355 | 6 | 300 | 16.6 | 374.71 | 5.19 | 23.7 | Low |
| 0.20608 | 22.0 | 5.86 | 0 | 0.4310 | 5.593 | 76.5 | 7.9549 | 7 | 330 | 19.1 | 372.49 | 12.50 | 17.6 | Low |
| 0.19133 | 22.0 | 5.86 | 0 | 0.4310 | 5.605 | 70.2 | 7.9549 | 7 | 330 | 19.1 | 389.13 | 18.46 | 18.5 | Low |
| 0.33983 | 22.0 | 5.86 | 0 | 0.4310 | 6.108 | 34.9 | 8.0555 | 7 | 330 | 19.1 | 390.18 | 9.16 | 24.3 | High |
| 0.19657 | 22.0 | 5.86 | 0 | 0.4310 | 6.226 | 79.2 | 8.0555 | 7 | 330 | 19.1 | 376.14 | 10.15 | 20.5 | Low |
| 0.16439 | 22.0 | 5.86 | 0 | 0.4310 | 6.433 | 49.1 | 7.8265 | 7 | 330 | 19.1 | 374.71 | 9.52 | 24.5 | Low |
| 0.19073 | 22.0 | 5.86 | 0 | 0.4310 | 6.718 | 17.5 | 7.8265 | 7 | 330 | 19.1 | 393.74 | 6.56 | 26.2 | Low |
| 0.14030 | 22.0 | 5.86 | 0 | 0.4310 | 6.487 | 13.0 | 7.3967 | 7 | 330 | 19.1 | 396.28 | 5.90 | 24.4 | Low |
| 0.21409 | 22.0 | 5.86 | 0 | 0.4310 | 6.438 | 8.9 | 7.3967 | 7 | 330 | 19.1 | 377.07 | 3.59 | 24.8 | Low |
| 0.08221 | 22.0 | 5.86 | 0 | 0.4310 | 6.957 | 6.8 | 8.9067 | 7 | 330 | 19.1 | 386.09 | 3.53 | 29.6 | Low |
| 0.36894 | 22.0 | 5.86 | 0 | 0.4310 | 8.259 | 8.4 | 8.9067 | 7 | 330 | 19.1 | 396.90 | 3.54 | 42.8 | High |
| 0.04819 | 80.0 | 3.64 | 0 | 0.3920 | 6.108 | 32.0 | 9.2203 | 1 | 315 | 16.4 | 392.89 | 6.57 | 21.9 | Low |
| 0.03548 | 80.0 | 3.64 | 0 | 0.3920 | 5.876 | 19.1 | 9.2203 | 1 | 315 | 16.4 | 395.18 | 9.25 | 20.9 | Low |
| 0.01538 | 90.0 | 3.75 | 0 | 0.3940 | 7.454 | 34.2 | 6.3361 | 3 | 244 | 15.9 | 386.34 | 3.11 | 44.0 | Low |
| 0.61154 | 20.0 | 3.97 | 0 | 0.6470 | 8.704 | 86.9 | 1.8010 | 5 | 264 | 13.0 | 389.70 | 5.12 | 50.0 | High |
| 0.66351 | 20.0 | 3.97 | 0 | 0.6470 | 7.333 | 100.0 | 1.8946 | 5 | 264 | 13.0 | 383.29 | 7.79 | 36.0 | High |
| 0.65665 | 20.0 | 3.97 | 0 | 0.6470 | 6.842 | 100.0 | 2.0107 | 5 | 264 | 13.0 | 391.93 | 6.90 | 30.1 | High |
| 0.54011 | 20.0 | 3.97 | 0 | 0.6470 | 7.203 | 81.8 | 2.1121 | 5 | 264 | 13.0 | 392.80 | 9.59 | 33.8 | High |
| 0.53412 | 20.0 | 3.97 | 0 | 0.6470 | 7.520 | 89.4 | 2.1398 | 5 | 264 | 13.0 | 388.37 | 7.26 | 43.1 | High |
| 0.52014 | 20.0 | 3.97 | 0 | 0.6470 | 8.398 | 91.5 | 2.2885 | 5 | 264 | 13.0 | 386.86 | 5.91 | 48.8 | High |
| 0.82526 | 20.0 | 3.97 | 0 | 0.6470 | 7.327 | 94.5 | 2.0788 | 5 | 264 | 13.0 | 393.42 | 11.25 | 31.0 | High |
| 0.55007 | 20.0 | 3.97 | 0 | 0.6470 | 7.206 | 91.6 | 1.9301 | 5 | 264 | 13.0 | 387.89 | 8.10 | 36.5 | High |
| 0.76162 | 20.0 | 3.97 | 0 | 0.6470 | 5.560 | 62.8 | 1.9865 | 5 | 264 | 13.0 | 392.40 | 10.45 | 22.8 | High |
| 0.78570 | 20.0 | 3.97 | 0 | 0.6470 | 7.014 | 84.6 | 2.1329 | 5 | 264 | 13.0 | 384.07 | 14.79 | 30.7 | High |
| 0.57834 | 20.0 | 3.97 | 0 | 0.5750 | 8.297 | 67.0 | 2.4216 | 5 | 264 | 13.0 | 384.54 | 7.44 | 50.0 | High |
| 0.54050 | 20.0 | 3.97 | 0 | 0.5750 | 7.470 | 52.6 | 2.8720 | 5 | 264 | 13.0 | 390.30 | 3.16 | 43.5 | High |
| 0.09065 | 20.0 | 6.96 | 1 | 0.4640 | 5.920 | 61.5 | 3.9175 | 3 | 223 | 18.6 | 391.34 | 13.65 | 20.7 | Low |
| 0.29916 | 20.0 | 6.96 | 0 | 0.4640 | 5.856 | 42.1 | 4.4290 | 3 | 223 | 18.6 | 388.65 | 13.00 | 21.1 | High |
| 0.16211 | 20.0 | 6.96 | 0 | 0.4640 | 6.240 | 16.3 | 4.4290 | 3 | 223 | 18.6 | 396.90 | 6.59 | 25.2 | Low |
| 0.11460 | 20.0 | 6.96 | 0 | 0.4640 | 6.538 | 58.7 | 3.9175 | 3 | 223 | 18.6 | 394.96 | 7.73 | 24.4 | Low |
| 0.22188 | 20.0 | 6.96 | 1 | 0.4640 | 7.691 | 51.8 | 4.3665 | 3 | 223 | 18.6 | 390.77 | 6.58 | 35.2 | Low |
| 0.05644 | 40.0 | 6.41 | 1 | 0.4470 | 6.758 | 32.9 | 4.0776 | 4 | 254 | 17.6 | 396.90 | 3.53 | 32.4 | Low |
| 0.09604 | 40.0 | 6.41 | 0 | 0.4470 | 6.854 | 42.8 | 4.2673 | 4 | 254 | 17.6 | 396.90 | 2.98 | 32.0 | Low |
| 0.10469 | 40.0 | 6.41 | 1 | 0.4470 | 7.267 | 49.0 | 4.7872 | 4 | 254 | 17.6 | 389.25 | 6.05 | 33.2 | Low |
| 0.06127 | 40.0 | 6.41 | 1 | 0.4470 | 6.826 | 27.6 | 4.8628 | 4 | 254 | 17.6 | 393.45 | 4.16 | 33.1 | Low |
| 0.07978 | 40.0 | 6.41 | 0 | 0.4470 | 6.482 | 32.1 | 4.1403 | 4 | 254 | 17.6 | 396.90 | 7.19 | 29.1 | Low |
| 0.21038 | 20.0 | 3.33 | 0 | 0.4429 | 6.812 | 32.2 | 4.1007 | 5 | 216 | 14.9 | 396.90 | 4.85 | 35.1 | Low |
| 0.03578 | 20.0 | 3.33 | 0 | 0.4429 | 7.820 | 64.5 | 4.6947 | 5 | 216 | 14.9 | 387.31 | 3.76 | 45.4 | Low |
| 0.03705 | 20.0 | 3.33 | 0 | 0.4429 | 6.968 | 37.2 | 5.2447 | 5 | 216 | 14.9 | 392.23 | 4.59 | 35.4 | Low |
| 0.06129 | 20.0 | 3.33 | 1 | 0.4429 | 7.645 | 49.7 | 5.2119 | 5 | 216 | 14.9 | 377.07 | 3.01 | 46.0 | Low |
| 0.01501 | 90.0 | 1.21 | 1 | 0.4010 | 7.923 | 24.8 | 5.8850 | 1 | 198 | 13.6 | 395.52 | 3.16 | 50.0 | Low |
| 0.00906 | 90.0 | 2.97 | 0 | 0.4000 | 7.088 | 20.8 | 7.3073 | 1 | 285 | 15.3 | 394.72 | 7.85 | 32.2 | Low |
| 0.01096 | 55.0 | 2.25 | 0 | 0.3890 | 6.453 | 31.9 | 7.3073 | 1 | 300 | 15.3 | 394.72 | 8.23 | 22.0 | Low |
| 0.01965 | 80.0 | 1.76 | 0 | 0.3850 | 6.230 | 31.5 | 9.0892 | 1 | 241 | 18.2 | 341.60 | 12.93 | 20.1 | Low |
| 0.03871 | 52.5 | 5.32 | 0 | 0.4050 | 6.209 | 31.3 | 7.3172 | 6 | 293 | 16.6 | 396.90 | 7.14 | 23.2 | Low |
| 0.04590 | 52.5 | 5.32 | 0 | 0.4050 | 6.315 | 45.6 | 7.3172 | 6 | 293 | 16.6 | 396.90 | 7.60 | 22.3 | Low |
| 0.04297 | 52.5 | 5.32 | 0 | 0.4050 | 6.565 | 22.9 | 7.3172 | 6 | 293 | 16.6 | 371.72 | 9.51 | 24.8 | Low |
| 0.03502 | 80.0 | 4.95 | 0 | 0.4110 | 6.861 | 27.9 | 5.1167 | 4 | 245 | 19.2 | 396.90 | 3.33 | 28.5 | Low |
| 0.07886 | 80.0 | 4.95 | 0 | 0.4110 | 7.148 | 27.7 | 5.1167 | 4 | 245 | 19.2 | 396.90 | 3.56 | 37.3 | Low |
| 0.03615 | 80.0 | 4.95 | 0 | 0.4110 | 6.630 | 23.4 | 5.1167 | 4 | 245 | 19.2 | 396.90 | 4.70 | 27.9 | Low |
| 0.08265 | 0.0 | 13.92 | 0 | 0.4370 | 6.127 | 18.4 | 5.5027 | 4 | 289 | 16.0 | 396.90 | 8.58 | 23.9 | Low |
| 0.08199 | 0.0 | 13.92 | 0 | 0.4370 | 6.009 | 42.3 | 5.5027 | 4 | 289 | 16.0 | 396.90 | 10.40 | 21.7 | Low |
| 0.12932 | 0.0 | 13.92 | 0 | 0.4370 | 6.678 | 31.1 | 5.9604 | 4 | 289 | 16.0 | 396.90 | 6.27 | 28.6 | Low |
| 0.05372 | 0.0 | 13.92 | 0 | 0.4370 | 6.549 | 51.0 | 5.9604 | 4 | 289 | 16.0 | 392.85 | 7.39 | 27.1 | Low |
| 0.14103 | 0.0 | 13.92 | 0 | 0.4370 | 5.790 | 58.0 | 6.3200 | 4 | 289 | 16.0 | 396.90 | 15.84 | 20.3 | Low |
| 0.06466 | 70.0 | 2.24 | 0 | 0.4000 | 6.345 | 20.1 | 7.8278 | 5 | 358 | 14.8 | 368.24 | 4.97 | 22.5 | Low |
| 0.05561 | 70.0 | 2.24 | 0 | 0.4000 | 7.041 | 10.0 | 7.8278 | 5 | 358 | 14.8 | 371.58 | 4.74 | 29.0 | Low |
| 0.04417 | 70.0 | 2.24 | 0 | 0.4000 | 6.871 | 47.4 | 7.8278 | 5 | 358 | 14.8 | 390.86 | 6.07 | 24.8 | Low |
| 0.03537 | 34.0 | 6.09 | 0 | 0.4330 | 6.590 | 40.4 | 5.4917 | 7 | 329 | 16.1 | 395.75 | 9.50 | 22.0 | Low |
| 0.09266 | 34.0 | 6.09 | 0 | 0.4330 | 6.495 | 18.4 | 5.4917 | 7 | 329 | 16.1 | 383.61 | 8.67 | 26.4 | Low |
| 0.10000 | 34.0 | 6.09 | 0 | 0.4330 | 6.982 | 17.7 | 5.4917 | 7 | 329 | 16.1 | 390.43 | 4.86 | 33.1 | Low |
| 0.05515 | 33.0 | 2.18 | 0 | 0.4720 | 7.236 | 41.1 | 4.0220 | 7 | 222 | 18.4 | 393.68 | 6.93 | 36.1 | Low |
| 0.05479 | 33.0 | 2.18 | 0 | 0.4720 | 6.616 | 58.1 | 3.3700 | 7 | 222 | 18.4 | 393.36 | 8.93 | 28.4 | Low |
| 0.07503 | 33.0 | 2.18 | 0 | 0.4720 | 7.420 | 71.9 | 3.0992 | 7 | 222 | 18.4 | 396.90 | 6.47 | 33.4 | Low |
| 0.04932 | 33.0 | 2.18 | 0 | 0.4720 | 6.849 | 70.3 | 3.1827 | 7 | 222 | 18.4 | 396.90 | 7.53 | 28.2 | Low |
| 0.49298 | 0.0 | 9.90 | 0 | 0.5440 | 6.635 | 82.5 | 3.3175 | 4 | 304 | 18.4 | 396.90 | 4.54 | 22.8 | High |
| 0.34940 | 0.0 | 9.90 | 0 | 0.5440 | 5.972 | 76.7 | 3.1025 | 4 | 304 | 18.4 | 396.24 | 9.97 | 20.3 | High |
| 2.63548 | 0.0 | 9.90 | 0 | 0.5440 | 4.973 | 37.8 | 2.5194 | 4 | 304 | 18.4 | 350.45 | 12.64 | 16.1 | High |
| 0.79041 | 0.0 | 9.90 | 0 | 0.5440 | 6.122 | 52.8 | 2.6403 | 4 | 304 | 18.4 | 396.90 | 5.98 | 22.1 | High |
| 0.26169 | 0.0 | 9.90 | 0 | 0.5440 | 6.023 | 90.4 | 2.8340 | 4 | 304 | 18.4 | 396.30 | 11.72 | 19.4 | High |
| 0.26938 | 0.0 | 9.90 | 0 | 0.5440 | 6.266 | 82.8 | 3.2628 | 4 | 304 | 18.4 | 393.39 | 7.90 | 21.6 | High |
| 0.36920 | 0.0 | 9.90 | 0 | 0.5440 | 6.567 | 87.3 | 3.6023 | 4 | 304 | 18.4 | 395.69 | 9.28 | 23.8 | High |
| 0.25356 | 0.0 | 9.90 | 0 | 0.5440 | 5.705 | 77.7 | 3.9450 | 4 | 304 | 18.4 | 396.42 | 11.50 | 16.2 | Low |
| 0.31827 | 0.0 | 9.90 | 0 | 0.5440 | 5.914 | 83.2 | 3.9986 | 4 | 304 | 18.4 | 390.70 | 18.33 | 17.8 | High |
| 0.24522 | 0.0 | 9.90 | 0 | 0.5440 | 5.782 | 71.7 | 4.0317 | 4 | 304 | 18.4 | 396.90 | 15.94 | 19.8 | Low |
| 0.40202 | 0.0 | 9.90 | 0 | 0.5440 | 6.382 | 67.2 | 3.5325 | 4 | 304 | 18.4 | 395.21 | 10.36 | 23.1 | High |
| 0.47547 | 0.0 | 9.90 | 0 | 0.5440 | 6.113 | 58.8 | 4.0019 | 4 | 304 | 18.4 | 396.23 | 12.73 | 21.0 | High |
| 0.16760 | 0.0 | 7.38 | 0 | 0.4930 | 6.426 | 52.3 | 4.5404 | 5 | 287 | 19.6 | 396.90 | 7.20 | 23.8 | Low |
| 0.18159 | 0.0 | 7.38 | 0 | 0.4930 | 6.376 | 54.3 | 4.5404 | 5 | 287 | 19.6 | 396.90 | 6.87 | 23.1 | Low |
| 0.35114 | 0.0 | 7.38 | 0 | 0.4930 | 6.041 | 49.9 | 4.7211 | 5 | 287 | 19.6 | 396.90 | 7.70 | 20.4 | High |
| 0.28392 | 0.0 | 7.38 | 0 | 0.4930 | 5.708 | 74.3 | 4.7211 | 5 | 287 | 19.6 | 391.13 | 11.74 | 18.5 | High |
| 0.34109 | 0.0 | 7.38 | 0 | 0.4930 | 6.415 | 40.1 | 4.7211 | 5 | 287 | 19.6 | 396.90 | 6.12 | 25.0 | High |
| 0.19186 | 0.0 | 7.38 | 0 | 0.4930 | 6.431 | 14.7 | 5.4159 | 5 | 287 | 19.6 | 393.68 | 5.08 | 24.6 | Low |
| 0.30347 | 0.0 | 7.38 | 0 | 0.4930 | 6.312 | 28.9 | 5.4159 | 5 | 287 | 19.6 | 396.90 | 6.15 | 23.0 | High |
| 0.24103 | 0.0 | 7.38 | 0 | 0.4930 | 6.083 | 43.7 | 5.4159 | 5 | 287 | 19.6 | 396.90 | 12.79 | 22.2 | Low |
| 0.06617 | 0.0 | 3.24 | 0 | 0.4600 | 5.868 | 25.8 | 5.2146 | 4 | 430 | 16.9 | 382.44 | 9.97 | 19.3 | Low |
| 0.06724 | 0.0 | 3.24 | 0 | 0.4600 | 6.333 | 17.2 | 5.2146 | 4 | 430 | 16.9 | 375.21 | 7.34 | 22.6 | Low |
| 0.04544 | 0.0 | 3.24 | 0 | 0.4600 | 6.144 | 32.2 | 5.8736 | 4 | 430 | 16.9 | 368.57 | 9.09 | 19.8 | Low |
| 0.05023 | 35.0 | 6.06 | 0 | 0.4379 | 5.706 | 28.4 | 6.6407 | 1 | 304 | 16.9 | 394.02 | 12.43 | 17.1 | Low |
| 0.03466 | 35.0 | 6.06 | 0 | 0.4379 | 6.031 | 23.3 | 6.6407 | 1 | 304 | 16.9 | 362.25 | 7.83 | 19.4 | Low |
| 0.05083 | 0.0 | 5.19 | 0 | 0.5150 | 6.316 | 38.1 | 6.4584 | 5 | 224 | 20.2 | 389.71 | 5.68 | 22.2 | Low |
| 0.03738 | 0.0 | 5.19 | 0 | 0.5150 | 6.310 | 38.5 | 6.4584 | 5 | 224 | 20.2 | 389.40 | 6.75 | 20.7 | Low |
| 0.03961 | 0.0 | 5.19 | 0 | 0.5150 | 6.037 | 34.5 | 5.9853 | 5 | 224 | 20.2 | 396.90 | 8.01 | 21.1 | Low |
| 0.03427 | 0.0 | 5.19 | 0 | 0.5150 | 5.869 | 46.3 | 5.2311 | 5 | 224 | 20.2 | 396.90 | 9.80 | 19.5 | Low |
| 0.03041 | 0.0 | 5.19 | 0 | 0.5150 | 5.895 | 59.6 | 5.6150 | 5 | 224 | 20.2 | 394.81 | 10.56 | 18.5 | Low |
| 0.03306 | 0.0 | 5.19 | 0 | 0.5150 | 6.059 | 37.3 | 4.8122 | 5 | 224 | 20.2 | 396.14 | 8.51 | 20.6 | Low |
| 0.05497 | 0.0 | 5.19 | 0 | 0.5150 | 5.985 | 45.4 | 4.8122 | 5 | 224 | 20.2 | 396.90 | 9.74 | 19.0 | Low |
| 0.06151 | 0.0 | 5.19 | 0 | 0.5150 | 5.968 | 58.5 | 4.8122 | 5 | 224 | 20.2 | 396.90 | 9.29 | 18.7 | Low |
| 0.01301 | 35.0 | 1.52 | 0 | 0.4420 | 7.241 | 49.3 | 7.0379 | 1 | 284 | 15.5 | 394.74 | 5.49 | 32.7 | Low |
| 0.02498 | 0.0 | 1.89 | 0 | 0.5180 | 6.540 | 59.7 | 6.2669 | 1 | 422 | 15.9 | 389.96 | 8.65 | 16.5 | Low |
| 0.02543 | 55.0 | 3.78 | 0 | 0.4840 | 6.696 | 56.4 | 5.7321 | 5 | 370 | 17.6 | 396.90 | 7.18 | 23.9 | Low |
| 0.03049 | 55.0 | 3.78 | 0 | 0.4840 | 6.874 | 28.1 | 6.4654 | 5 | 370 | 17.6 | 387.97 | 4.61 | 31.2 | Low |
| 0.03113 | 0.0 | 4.39 | 0 | 0.4420 | 6.014 | 48.5 | 8.0136 | 3 | 352 | 18.8 | 385.64 | 10.53 | 17.5 | Low |
| 0.06162 | 0.0 | 4.39 | 0 | 0.4420 | 5.898 | 52.3 | 8.0136 | 3 | 352 | 18.8 | 364.61 | 12.67 | 17.2 | Low |
| 0.01870 | 85.0 | 4.15 | 0 | 0.4290 | 6.516 | 27.7 | 8.5353 | 4 | 351 | 17.9 | 392.43 | 6.36 | 23.1 | Low |
| 0.01501 | 80.0 | 2.01 | 0 | 0.4350 | 6.635 | 29.7 | 8.3440 | 4 | 280 | 17.0 | 390.94 | 5.99 | 24.5 | Low |
| 0.02899 | 40.0 | 1.25 | 0 | 0.4290 | 6.939 | 34.5 | 8.7921 | 1 | 335 | 19.7 | 389.85 | 5.89 | 26.6 | Low |
| 0.06211 | 40.0 | 1.25 | 0 | 0.4290 | 6.490 | 44.4 | 8.7921 | 1 | 335 | 19.7 | 396.90 | 5.98 | 22.9 | Low |
| 0.07950 | 60.0 | 1.69 | 0 | 0.4110 | 6.579 | 35.9 | 10.7103 | 4 | 411 | 18.3 | 370.78 | 5.49 | 24.1 | Low |
| 0.07244 | 60.0 | 1.69 | 0 | 0.4110 | 5.884 | 18.5 | 10.7103 | 4 | 411 | 18.3 | 392.33 | 7.79 | 18.6 | Low |
| 0.01709 | 90.0 | 2.02 | 0 | 0.4100 | 6.728 | 36.1 | 12.1265 | 5 | 187 | 17.0 | 384.46 | 4.50 | 30.1 | Low |
| 0.04301 | 80.0 | 1.91 | 0 | 0.4130 | 5.663 | 21.9 | 10.5857 | 4 | 334 | 22.0 | 382.80 | 8.05 | 18.2 | Low |
| 0.10659 | 80.0 | 1.91 | 0 | 0.4130 | 5.936 | 19.5 | 10.5857 | 4 | 334 | 22.0 | 376.04 | 5.57 | 20.6 | Low |
| 8.98296 | 0.0 | 18.10 | 1 | 0.7700 | 6.212 | 97.4 | 2.1222 | 24 | 666 | 20.2 | 377.73 | 17.60 | 17.8 | High |
| 3.84970 | 0.0 | 18.10 | 1 | 0.7700 | 6.395 | 91.0 | 2.5052 | 24 | 666 | 20.2 | 391.34 | 13.27 | 21.7 | High |
| 5.20177 | 0.0 | 18.10 | 1 | 0.7700 | 6.127 | 83.4 | 2.7227 | 24 | 666 | 20.2 | 395.43 | 11.48 | 22.7 | High |
| 4.26131 | 0.0 | 18.10 | 0 | 0.7700 | 6.112 | 81.3 | 2.5091 | 24 | 666 | 20.2 | 390.74 | 12.67 | 22.6 | High |
| 4.54192 | 0.0 | 18.10 | 0 | 0.7700 | 6.398 | 88.0 | 2.5182 | 24 | 666 | 20.2 | 374.56 | 7.79 | 25.0 | High |
| 3.83684 | 0.0 | 18.10 | 0 | 0.7700 | 6.251 | 91.1 | 2.2955 | 24 | 666 | 20.2 | 350.65 | 14.19 | 19.9 | High |
| 3.67822 | 0.0 | 18.10 | 0 | 0.7700 | 5.362 | 96.2 | 2.1036 | 24 | 666 | 20.2 | 380.79 | 10.19 | 20.8 | High |
| 4.22239 | 0.0 | 18.10 | 1 | 0.7700 | 5.803 | 89.0 | 1.9047 | 24 | 666 | 20.2 | 353.04 | 14.64 | 16.8 | High |
| 3.47428 | 0.0 | 18.10 | 1 | 0.7180 | 8.780 | 82.9 | 1.9047 | 24 | 666 | 20.2 | 354.55 | 5.29 | 21.9 | High |
| 4.55587 | 0.0 | 18.10 | 0 | 0.7180 | 3.561 | 87.9 | 1.6132 | 24 | 666 | 20.2 | 354.70 | 7.12 | 27.5 | High |
| 3.69695 | 0.0 | 18.10 | 0 | 0.7180 | 4.963 | 91.4 | 1.7523 | 24 | 666 | 20.2 | 316.03 | 14.00 | 21.9 | High |
| 13.52220 | 0.0 | 18.10 | 0 | 0.6310 | 3.863 | 100.0 | 1.5106 | 24 | 666 | 20.2 | 131.42 | 13.33 | 23.1 | High |
| 4.89822 | 0.0 | 18.10 | 0 | 0.6310 | 4.970 | 100.0 | 1.3325 | 24 | 666 | 20.2 | 375.52 | 3.26 | 50.0 | High |
| 5.66998 | 0.0 | 18.10 | 1 | 0.6310 | 6.683 | 96.8 | 1.3567 | 24 | 666 | 20.2 | 375.33 | 3.73 | 50.0 | High |
| 6.53876 | 0.0 | 18.10 | 1 | 0.6310 | 7.016 | 97.5 | 1.2024 | 24 | 666 | 20.2 | 392.05 | 2.96 | 50.0 | High |
| 9.23230 | 0.0 | 18.10 | 0 | 0.6310 | 6.216 | 100.0 | 1.1691 | 24 | 666 | 20.2 | 366.15 | 9.53 | 50.0 | High |
| 8.26725 | 0.0 | 18.10 | 1 | 0.6680 | 5.875 | 89.6 | 1.1296 | 24 | 666 | 20.2 | 347.88 | 8.88 | 50.0 | High |
| 11.10810 | 0.0 | 18.10 | 0 | 0.6680 | 4.906 | 100.0 | 1.1742 | 24 | 666 | 20.2 | 396.90 | 34.77 | 13.8 | High |
| 18.49820 | 0.0 | 18.10 | 0 | 0.6680 | 4.138 | 100.0 | 1.1370 | 24 | 666 | 20.2 | 396.90 | 37.97 | 13.8 | High |
| 19.60910 | 0.0 | 18.10 | 0 | 0.6710 | 7.313 | 97.9 | 1.3163 | 24 | 666 | 20.2 | 396.90 | 13.44 | 15.0 | High |
| 15.28800 | 0.0 | 18.10 | 0 | 0.6710 | 6.649 | 93.3 | 1.3449 | 24 | 666 | 20.2 | 363.02 | 23.24 | 13.9 | High |
| 9.82349 | 0.0 | 18.10 | 0 | 0.6710 | 6.794 | 98.8 | 1.3580 | 24 | 666 | 20.2 | 396.90 | 21.24 | 13.3 | High |
| 23.64820 | 0.0 | 18.10 | 0 | 0.6710 | 6.380 | 96.2 | 1.3861 | 24 | 666 | 20.2 | 396.90 | 23.69 | 13.1 | High |
| 17.86670 | 0.0 | 18.10 | 0 | 0.6710 | 6.223 | 100.0 | 1.3861 | 24 | 666 | 20.2 | 393.74 | 21.78 | 10.2 | High |
| 88.97620 | 0.0 | 18.10 | 0 | 0.6710 | 6.968 | 91.9 | 1.4165 | 24 | 666 | 20.2 | 396.90 | 17.21 | 10.4 | High |
| 15.87440 | 0.0 | 18.10 | 0 | 0.6710 | 6.545 | 99.1 | 1.5192 | 24 | 666 | 20.2 | 396.90 | 21.08 | 10.9 | High |
| 9.18702 | 0.0 | 18.10 | 0 | 0.7000 | 5.536 | 100.0 | 1.5804 | 24 | 666 | 20.2 | 396.90 | 23.60 | 11.3 | High |
| 7.99248 | 0.0 | 18.10 | 0 | 0.7000 | 5.520 | 100.0 | 1.5331 | 24 | 666 | 20.2 | 396.90 | 24.56 | 12.3 | High |
| 20.08490 | 0.0 | 18.10 | 0 | 0.7000 | 4.368 | 91.2 | 1.4395 | 24 | 666 | 20.2 | 285.83 | 30.63 | 8.8 | High |
| 16.81180 | 0.0 | 18.10 | 0 | 0.7000 | 5.277 | 98.1 | 1.4261 | 24 | 666 | 20.2 | 396.90 | 30.81 | 7.2 | High |
| 24.39380 | 0.0 | 18.10 | 0 | 0.7000 | 4.652 | 100.0 | 1.4672 | 24 | 666 | 20.2 | 396.90 | 28.28 | 10.5 | High |
| 22.59710 | 0.0 | 18.10 | 0 | 0.7000 | 5.000 | 89.5 | 1.5184 | 24 | 666 | 20.2 | 396.90 | 31.99 | 7.4 | High |
| 14.33370 | 0.0 | 18.10 | 0 | 0.7000 | 4.880 | 100.0 | 1.5895 | 24 | 666 | 20.2 | 372.92 | 30.62 | 10.2 | High |
| 8.15174 | 0.0 | 18.10 | 0 | 0.7000 | 5.390 | 98.9 | 1.7281 | 24 | 666 | 20.2 | 396.90 | 20.85 | 11.5 | High |
| 6.96215 | 0.0 | 18.10 | 0 | 0.7000 | 5.713 | 97.0 | 1.9265 | 24 | 666 | 20.2 | 394.43 | 17.11 | 15.1 | High |
| 5.29305 | 0.0 | 18.10 | 0 | 0.7000 | 6.051 | 82.5 | 2.1678 | 24 | 666 | 20.2 | 378.38 | 18.76 | 23.2 | High |
| 11.57790 | 0.0 | 18.10 | 0 | 0.7000 | 5.036 | 97.0 | 1.7700 | 24 | 666 | 20.2 | 396.90 | 25.68 | 9.7 | High |
| 8.64476 | 0.0 | 18.10 | 0 | 0.6930 | 6.193 | 92.6 | 1.7912 | 24 | 666 | 20.2 | 396.90 | 15.17 | 13.8 | High |
| 13.35980 | 0.0 | 18.10 | 0 | 0.6930 | 5.887 | 94.7 | 1.7821 | 24 | 666 | 20.2 | 396.90 | 16.35 | 12.7 | High |
| 8.71675 | 0.0 | 18.10 | 0 | 0.6930 | 6.471 | 98.8 | 1.7257 | 24 | 666 | 20.2 | 391.98 | 17.12 | 13.1 | High |
| 5.87205 | 0.0 | 18.10 | 0 | 0.6930 | 6.405 | 96.0 | 1.6768 | 24 | 666 | 20.2 | 396.90 | 19.37 | 12.5 | High |
| 7.67202 | 0.0 | 18.10 | 0 | 0.6930 | 5.747 | 98.9 | 1.6334 | 24 | 666 | 20.2 | 393.10 | 19.92 | 8.5 | High |
| 38.35180 | 0.0 | 18.10 | 0 | 0.6930 | 5.453 | 100.0 | 1.4896 | 24 | 666 | 20.2 | 396.90 | 30.59 | 5.0 | High |
| 9.91655 | 0.0 | 18.10 | 0 | 0.6930 | 5.852 | 77.8 | 1.5004 | 24 | 666 | 20.2 | 338.16 | 29.97 | 6.3 | High |
| 25.04610 | 0.0 | 18.10 | 0 | 0.6930 | 5.987 | 100.0 | 1.5888 | 24 | 666 | 20.2 | 396.90 | 26.77 | 5.6 | High |
| 14.23620 | 0.0 | 18.10 | 0 | 0.6930 | 6.343 | 100.0 | 1.5741 | 24 | 666 | 20.2 | 396.90 | 20.32 | 7.2 | High |
| 9.59571 | 0.0 | 18.10 | 0 | 0.6930 | 6.404 | 100.0 | 1.6390 | 24 | 666 | 20.2 | 376.11 | 20.31 | 12.1 | High |
| 24.80170 | 0.0 | 18.10 | 0 | 0.6930 | 5.349 | 96.0 | 1.7028 | 24 | 666 | 20.2 | 396.90 | 19.77 | 8.3 | High |
| 41.52920 | 0.0 | 18.10 | 0 | 0.6930 | 5.531 | 85.4 | 1.6074 | 24 | 666 | 20.2 | 329.46 | 27.38 | 8.5 | High |
| 67.92080 | 0.0 | 18.10 | 0 | 0.6930 | 5.683 | 100.0 | 1.4254 | 24 | 666 | 20.2 | 384.97 | 22.98 | 5.0 | High |
| 20.71620 | 0.0 | 18.10 | 0 | 0.6590 | 4.138 | 100.0 | 1.1781 | 24 | 666 | 20.2 | 370.22 | 23.34 | 11.9 | High |
| 11.95110 | 0.0 | 18.10 | 0 | 0.6590 | 5.608 | 100.0 | 1.2852 | 24 | 666 | 20.2 | 332.09 | 12.13 | 27.9 | High |
| 7.40389 | 0.0 | 18.10 | 0 | 0.5970 | 5.617 | 97.9 | 1.4547 | 24 | 666 | 20.2 | 314.64 | 26.40 | 17.2 | High |
| 14.43830 | 0.0 | 18.10 | 0 | 0.5970 | 6.852 | 100.0 | 1.4655 | 24 | 666 | 20.2 | 179.36 | 19.78 | 27.5 | High |
| 51.13580 | 0.0 | 18.10 | 0 | 0.5970 | 5.757 | 100.0 | 1.4130 | 24 | 666 | 20.2 | 2.60 | 10.11 | 15.0 | High |
| 14.05070 | 0.0 | 18.10 | 0 | 0.5970 | 6.657 | 100.0 | 1.5275 | 24 | 666 | 20.2 | 35.05 | 21.22 | 17.2 | High |
| 18.81100 | 0.0 | 18.10 | 0 | 0.5970 | 4.628 | 100.0 | 1.5539 | 24 | 666 | 20.2 | 28.79 | 34.37 | 17.9 | High |
| 28.65580 | 0.0 | 18.10 | 0 | 0.5970 | 5.155 | 100.0 | 1.5894 | 24 | 666 | 20.2 | 210.97 | 20.08 | 16.3 | High |
| 45.74610 | 0.0 | 18.10 | 0 | 0.6930 | 4.519 | 100.0 | 1.6582 | 24 | 666 | 20.2 | 88.27 | 36.98 | 7.0 | High |
| 18.08460 | 0.0 | 18.10 | 0 | 0.6790 | 6.434 | 100.0 | 1.8347 | 24 | 666 | 20.2 | 27.25 | 29.05 | 7.2 | High |
| 10.83420 | 0.0 | 18.10 | 0 | 0.6790 | 6.782 | 90.8 | 1.8195 | 24 | 666 | 20.2 | 21.57 | 25.79 | 7.5 | High |
| 25.94060 | 0.0 | 18.10 | 0 | 0.6790 | 5.304 | 89.1 | 1.6475 | 24 | 666 | 20.2 | 127.36 | 26.64 | 10.4 | High |
| 73.53410 | 0.0 | 18.10 | 0 | 0.6790 | 5.957 | 100.0 | 1.8026 | 24 | 666 | 20.2 | 16.45 | 20.62 | 8.8 | High |
| 11.81230 | 0.0 | 18.10 | 0 | 0.7180 | 6.824 | 76.5 | 1.7940 | 24 | 666 | 20.2 | 48.45 | 22.74 | 8.4 | High |
| 11.08740 | 0.0 | 18.10 | 0 | 0.7180 | 6.411 | 100.0 | 1.8589 | 24 | 666 | 20.2 | 318.75 | 15.02 | 16.7 | High |
| 7.02259 | 0.0 | 18.10 | 0 | 0.7180 | 6.006 | 95.3 | 1.8746 | 24 | 666 | 20.2 | 319.98 | 15.70 | 14.2 | High |
| 12.04820 | 0.0 | 18.10 | 0 | 0.6140 | 5.648 | 87.6 | 1.9512 | 24 | 666 | 20.2 | 291.55 | 14.10 | 20.8 | High |
| 7.05042 | 0.0 | 18.10 | 0 | 0.6140 | 6.103 | 85.1 | 2.0218 | 24 | 666 | 20.2 | 2.52 | 23.29 | 13.4 | High |
| 8.79212 | 0.0 | 18.10 | 0 | 0.5840 | 5.565 | 70.6 | 2.0635 | 24 | 666 | 20.2 | 3.65 | 17.16 | 11.7 | High |
| 15.86030 | 0.0 | 18.10 | 0 | 0.6790 | 5.896 | 95.4 | 1.9096 | 24 | 666 | 20.2 | 7.68 | 24.39 | 8.3 | High |
| 12.24720 | 0.0 | 18.10 | 0 | 0.5840 | 5.837 | 59.7 | 1.9976 | 24 | 666 | 20.2 | 24.65 | 15.69 | 10.2 | High |
| 37.66190 | 0.0 | 18.10 | 0 | 0.6790 | 6.202 | 78.7 | 1.8629 | 24 | 666 | 20.2 | 18.82 | 14.52 | 10.9 | High |
| 7.36711 | 0.0 | 18.10 | 0 | 0.6790 | 6.193 | 78.1 | 1.9356 | 24 | 666 | 20.2 | 96.73 | 21.52 | 11.0 | High |
| 9.33889 | 0.0 | 18.10 | 0 | 0.6790 | 6.380 | 95.6 | 1.9682 | 24 | 666 | 20.2 | 60.72 | 24.08 | 9.5 | High |
| 8.49213 | 0.0 | 18.10 | 0 | 0.5840 | 6.348 | 86.1 | 2.0527 | 24 | 666 | 20.2 | 83.45 | 17.64 | 14.5 | High |
| 10.06230 | 0.0 | 18.10 | 0 | 0.5840 | 6.833 | 94.3 | 2.0882 | 24 | 666 | 20.2 | 81.33 | 19.69 | 14.1 | High |
| 6.44405 | 0.0 | 18.10 | 0 | 0.5840 | 6.425 | 74.8 | 2.2004 | 24 | 666 | 20.2 | 97.95 | 12.03 | 16.1 | High |
| 5.58107 | 0.0 | 18.10 | 0 | 0.7130 | 6.436 | 87.9 | 2.3158 | 24 | 666 | 20.2 | 100.19 | 16.22 | 14.3 | High |
| 13.91340 | 0.0 | 18.10 | 0 | 0.7130 | 6.208 | 95.0 | 2.2222 | 24 | 666 | 20.2 | 100.63 | 15.17 | 11.7 | High |
| 11.16040 | 0.0 | 18.10 | 0 | 0.7400 | 6.629 | 94.6 | 2.1247 | 24 | 666 | 20.2 | 109.85 | 23.27 | 13.4 | High |
| 14.42080 | 0.0 | 18.10 | 0 | 0.7400 | 6.461 | 93.3 | 2.0026 | 24 | 666 | 20.2 | 27.49 | 18.05 | 9.6 | High |
| 15.17720 | 0.0 | 18.10 | 0 | 0.7400 | 6.152 | 100.0 | 1.9142 | 24 | 666 | 20.2 | 9.32 | 26.45 | 8.7 | High |
| 13.67810 | 0.0 | 18.10 | 0 | 0.7400 | 5.935 | 87.9 | 1.8206 | 24 | 666 | 20.2 | 68.95 | 34.02 | 8.4 | High |
| 9.39063 | 0.0 | 18.10 | 0 | 0.7400 | 5.627 | 93.9 | 1.8172 | 24 | 666 | 20.2 | 396.90 | 22.88 | 12.8 | High |
| 22.05110 | 0.0 | 18.10 | 0 | 0.7400 | 5.818 | 92.4 | 1.8662 | 24 | 666 | 20.2 | 391.45 | 22.11 | 10.5 | High |
| 9.72418 | 0.0 | 18.10 | 0 | 0.7400 | 6.406 | 97.2 | 2.0651 | 24 | 666 | 20.2 | 385.96 | 19.52 | 17.1 | High |
| 5.66637 | 0.0 | 18.10 | 0 | 0.7400 | 6.219 | 100.0 | 2.0048 | 24 | 666 | 20.2 | 395.69 | 16.59 | 18.4 | High |
| 9.96654 | 0.0 | 18.10 | 0 | 0.7400 | 6.485 | 100.0 | 1.9784 | 24 | 666 | 20.2 | 386.73 | 18.85 | 15.4 | High |
| 12.80230 | 0.0 | 18.10 | 0 | 0.7400 | 5.854 | 96.6 | 1.8956 | 24 | 666 | 20.2 | 240.52 | 23.79 | 10.8 | High |
| 10.67180 | 0.0 | 18.10 | 0 | 0.7400 | 6.459 | 94.8 | 1.9879 | 24 | 666 | 20.2 | 43.06 | 23.98 | 11.8 | High |
| 6.28807 | 0.0 | 18.10 | 0 | 0.7400 | 6.341 | 96.4 | 2.0720 | 24 | 666 | 20.2 | 318.01 | 17.79 | 14.9 | High |
| 9.92485 | 0.0 | 18.10 | 0 | 0.7400 | 6.251 | 96.6 | 2.1980 | 24 | 666 | 20.2 | 388.52 | 16.44 | 12.6 | High |
| 9.32909 | 0.0 | 18.10 | 0 | 0.7130 | 6.185 | 98.7 | 2.2616 | 24 | 666 | 20.2 | 396.90 | 18.13 | 14.1 | High |
| 7.52601 | 0.0 | 18.10 | 0 | 0.7130 | 6.417 | 98.3 | 2.1850 | 24 | 666 | 20.2 | 304.21 | 19.31 | 13.0 | High |
| 6.71772 | 0.0 | 18.10 | 0 | 0.7130 | 6.749 | 92.6 | 2.3236 | 24 | 666 | 20.2 | 0.32 | 17.44 | 13.4 | High |
| 5.44114 | 0.0 | 18.10 | 0 | 0.7130 | 6.655 | 98.2 | 2.3552 | 24 | 666 | 20.2 | 355.29 | 17.73 | 15.2 | High |
| 5.09017 | 0.0 | 18.10 | 0 | 0.7130 | 6.297 | 91.8 | 2.3682 | 24 | 666 | 20.2 | 385.09 | 17.27 | 16.1 | High |
| 8.24809 | 0.0 | 18.10 | 0 | 0.7130 | 7.393 | 99.3 | 2.4527 | 24 | 666 | 20.2 | 375.87 | 16.74 | 17.8 | High |
| 9.51363 | 0.0 | 18.10 | 0 | 0.7130 | 6.728 | 94.1 | 2.4961 | 24 | 666 | 20.2 | 6.68 | 18.71 | 14.9 | High |
| 4.75237 | 0.0 | 18.10 | 0 | 0.7130 | 6.525 | 86.5 | 2.4358 | 24 | 666 | 20.2 | 50.92 | 18.13 | 14.1 | High |
| 4.66883 | 0.0 | 18.10 | 0 | 0.7130 | 5.976 | 87.9 | 2.5806 | 24 | 666 | 20.2 | 10.48 | 19.01 | 12.7 | High |
| 8.20058 | 0.0 | 18.10 | 0 | 0.7130 | 5.936 | 80.3 | 2.7792 | 24 | 666 | 20.2 | 3.50 | 16.94 | 13.5 | High |
| 7.75223 | 0.0 | 18.10 | 0 | 0.7130 | 6.301 | 83.7 | 2.7831 | 24 | 666 | 20.2 | 272.21 | 16.23 | 14.9 | High |
| 6.80117 | 0.0 | 18.10 | 0 | 0.7130 | 6.081 | 84.4 | 2.7175 | 24 | 666 | 20.2 | 396.90 | 14.70 | 20.0 | High |
| 4.81213 | 0.0 | 18.10 | 0 | 0.7130 | 6.701 | 90.0 | 2.5975 | 24 | 666 | 20.2 | 255.23 | 16.42 | 16.4 | High |
| 3.69311 | 0.0 | 18.10 | 0 | 0.7130 | 6.376 | 88.4 | 2.5671 | 24 | 666 | 20.2 | 391.43 | 14.65 | 17.7 | High |
| 6.65492 | 0.0 | 18.10 | 0 | 0.7130 | 6.317 | 83.0 | 2.7344 | 24 | 666 | 20.2 | 396.90 | 13.99 | 19.5 | High |
| 5.82115 | 0.0 | 18.10 | 0 | 0.7130 | 6.513 | 89.9 | 2.8016 | 24 | 666 | 20.2 | 393.82 | 10.29 | 20.2 | High |
| 7.83932 | 0.0 | 18.10 | 0 | 0.6550 | 6.209 | 65.4 | 2.9634 | 24 | 666 | 20.2 | 396.90 | 13.22 | 21.4 | High |
| 3.16360 | 0.0 | 18.10 | 0 | 0.6550 | 5.759 | 48.2 | 3.0665 | 24 | 666 | 20.2 | 334.40 | 14.13 | 19.9 | High |
| 3.77498 | 0.0 | 18.10 | 0 | 0.6550 | 5.952 | 84.7 | 2.8715 | 24 | 666 | 20.2 | 22.01 | 17.15 | 19.0 | High |
| 4.42228 | 0.0 | 18.10 | 0 | 0.5840 | 6.003 | 94.5 | 2.5403 | 24 | 666 | 20.2 | 331.29 | 21.32 | 19.1 | High |
| 15.57570 | 0.0 | 18.10 | 0 | 0.5800 | 5.926 | 71.0 | 2.9084 | 24 | 666 | 20.2 | 368.74 | 18.13 | 19.1 | High |
| 13.07510 | 0.0 | 18.10 | 0 | 0.5800 | 5.713 | 56.7 | 2.8237 | 24 | 666 | 20.2 | 396.90 | 14.76 | 20.1 | High |
| 4.34879 | 0.0 | 18.10 | 0 | 0.5800 | 6.167 | 84.0 | 3.0334 | 24 | 666 | 20.2 | 396.90 | 16.29 | 19.9 | High |
| 4.03841 | 0.0 | 18.10 | 0 | 0.5320 | 6.229 | 90.7 | 3.0993 | 24 | 666 | 20.2 | 395.33 | 12.87 | 19.6 | High |
| 3.56868 | 0.0 | 18.10 | 0 | 0.5800 | 6.437 | 75.0 | 2.8965 | 24 | 666 | 20.2 | 393.37 | 14.36 | 23.2 | High |
| 4.64689 | 0.0 | 18.10 | 0 | 0.6140 | 6.980 | 67.6 | 2.5329 | 24 | 666 | 20.2 | 374.68 | 11.66 | 29.8 | High |
| 8.05579 | 0.0 | 18.10 | 0 | 0.5840 | 5.427 | 95.4 | 2.4298 | 24 | 666 | 20.2 | 352.58 | 18.14 | 13.8 | High |
| 6.39312 | 0.0 | 18.10 | 0 | 0.5840 | 6.162 | 97.4 | 2.2060 | 24 | 666 | 20.2 | 302.76 | 24.10 | 13.3 | High |
| 4.87141 | 0.0 | 18.10 | 0 | 0.6140 | 6.484 | 93.6 | 2.3053 | 24 | 666 | 20.2 | 396.21 | 18.68 | 16.7 | High |
| 15.02340 | 0.0 | 18.10 | 0 | 0.6140 | 5.304 | 97.3 | 2.1007 | 24 | 666 | 20.2 | 349.48 | 24.91 | 12.0 | High |
| 10.23300 | 0.0 | 18.10 | 0 | 0.6140 | 6.185 | 96.7 | 2.1705 | 24 | 666 | 20.2 | 379.70 | 18.03 | 14.6 | High |
| 14.33370 | 0.0 | 18.10 | 0 | 0.6140 | 6.229 | 88.0 | 1.9512 | 24 | 666 | 20.2 | 383.32 | 13.11 | 21.4 | High |
| 5.82401 | 0.0 | 18.10 | 0 | 0.5320 | 6.242 | 64.7 | 3.4242 | 24 | 666 | 20.2 | 396.90 | 10.74 | 23.0 | High |
| 5.70818 | 0.0 | 18.10 | 0 | 0.5320 | 6.750 | 74.9 | 3.3317 | 24 | 666 | 20.2 | 393.07 | 7.74 | 23.7 | High |
| 5.73116 | 0.0 | 18.10 | 0 | 0.5320 | 7.061 | 77.0 | 3.4106 | 24 | 666 | 20.2 | 395.28 | 7.01 | 25.0 | High |
| 2.81838 | 0.0 | 18.10 | 0 | 0.5320 | 5.762 | 40.3 | 4.0983 | 24 | 666 | 20.2 | 392.92 | 10.42 | 21.8 | High |
| 2.37857 | 0.0 | 18.10 | 0 | 0.5830 | 5.871 | 41.9 | 3.7240 | 24 | 666 | 20.2 | 370.73 | 13.34 | 20.6 | High |
| 3.67367 | 0.0 | 18.10 | 0 | 0.5830 | 6.312 | 51.9 | 3.9917 | 24 | 666 | 20.2 | 388.62 | 10.58 | 21.2 | High |
| 5.69175 | 0.0 | 18.10 | 0 | 0.5830 | 6.114 | 79.8 | 3.5459 | 24 | 666 | 20.2 | 392.68 | 14.98 | 19.1 | High |
| 4.83567 | 0.0 | 18.10 | 0 | 0.5830 | 5.905 | 53.2 | 3.1523 | 24 | 666 | 20.2 | 388.22 | 11.45 | 20.6 | High |
| 0.15086 | 0.0 | 27.74 | 0 | 0.6090 | 5.454 | 92.7 | 1.8209 | 4 | 711 | 20.1 | 395.09 | 18.06 | 15.2 | Low |
| 0.18337 | 0.0 | 27.74 | 0 | 0.6090 | 5.414 | 98.3 | 1.7554 | 4 | 711 | 20.1 | 344.05 | 23.97 | 7.0 | Low |
| 0.20746 | 0.0 | 27.74 | 0 | 0.6090 | 5.093 | 98.0 | 1.8226 | 4 | 711 | 20.1 | 318.43 | 29.68 | 8.1 | Low |
| 0.10574 | 0.0 | 27.74 | 0 | 0.6090 | 5.983 | 98.8 | 1.8681 | 4 | 711 | 20.1 | 390.11 | 18.07 | 13.6 | Low |
| 0.11132 | 0.0 | 27.74 | 0 | 0.6090 | 5.983 | 83.5 | 2.1099 | 4 | 711 | 20.1 | 396.90 | 13.35 | 20.1 | Low |
| 0.17331 | 0.0 | 9.69 | 0 | 0.5850 | 5.707 | 54.0 | 2.3817 | 6 | 391 | 19.2 | 396.90 | 12.01 | 21.8 | Low |
| 0.27957 | 0.0 | 9.69 | 0 | 0.5850 | 5.926 | 42.6 | 2.3817 | 6 | 391 | 19.2 | 396.90 | 13.59 | 24.5 | High |
| 0.17899 | 0.0 | 9.69 | 0 | 0.5850 | 5.670 | 28.8 | 2.7986 | 6 | 391 | 19.2 | 393.29 | 17.60 | 23.1 | Low |
| 0.28960 | 0.0 | 9.69 | 0 | 0.5850 | 5.390 | 72.9 | 2.7986 | 6 | 391 | 19.2 | 396.90 | 21.14 | 19.7 | High |
| 0.26838 | 0.0 | 9.69 | 0 | 0.5850 | 5.794 | 70.6 | 2.8927 | 6 | 391 | 19.2 | 396.90 | 14.10 | 18.3 | High |
| 0.23912 | 0.0 | 9.69 | 0 | 0.5850 | 6.019 | 65.3 | 2.4091 | 6 | 391 | 19.2 | 396.90 | 12.92 | 21.2 | Low |
| 0.17783 | 0.0 | 9.69 | 0 | 0.5850 | 5.569 | 73.5 | 2.3999 | 6 | 391 | 19.2 | 395.77 | 15.10 | 17.5 | Low |
| 0.22438 | 0.0 | 9.69 | 0 | 0.5850 | 6.027 | 79.7 | 2.4982 | 6 | 391 | 19.2 | 396.90 | 14.33 | 16.8 | Low |
| 0.06263 | 0.0 | 11.93 | 0 | 0.5730 | 6.593 | 69.1 | 2.4786 | 1 | 273 | 21.0 | 391.99 | 9.67 | 22.4 | Low |
| 0.04527 | 0.0 | 11.93 | 0 | 0.5730 | 6.120 | 76.7 | 2.2875 | 1 | 273 | 21.0 | 396.90 | 9.08 | 20.6 | Low |
| 0.06076 | 0.0 | 11.93 | 0 | 0.5730 | 6.976 | 91.0 | 2.1675 | 1 | 273 | 21.0 | 396.90 | 5.64 | 23.9 | Low |
| 0.10959 | 0.0 | 11.93 | 0 | 0.5730 | 6.794 | 89.3 | 2.3889 | 1 | 273 | 21.0 | 393.45 | 6.48 | 22.0 | Low |
| 0.04741 | 0.0 | 11.93 | 0 | 0.5730 | 6.030 | 80.8 | 2.5050 | 1 | 273 | 21.0 | 396.90 | 7.88 | 11.9 | Low |
The table describes the boston data with the last column is defined as the crime_factor, which tells us whether a given suburb has a crime rate above or below the median. The “high” value means that suburb has a crime rate above the median, while “low” value means that suburb has a crime rate below the median.
#Correlation plot
cor_test <- boston %>%
dplyr::select(-chas) %>% dplyr::select(-crime_factor) %>%
cor.mtest(conf.level = .95)
boston %>%
dplyr::select(-chas, -crime_factor) %>%
cor %>%
corrplot(method = 'color',
order = 'hclust', addrect = 2,
tl.col = 'black', addCoef.col = 'black', number.cex = 0.65,
p.mat = cor_test$p, sig.level = .05)
The correlation matrix tells us about the relationship among variables. The blue color means positive relation, while red color means negative relation.
In terms of crime rate, there are 5 variables that strongly correlated with crim, including rad (0.63), tax (0.58), lstat (0.46), nox (0.42), and indus(0.41).
Besides, there are some independent variables that are strongly correlated which then can lead to multicollinearity.
#boxplot
boston %>%
dplyr::select(zn:crime_factor) %>%
gather(value_type, value, -crime_factor, -chas) %>%
ggplot(aes(value_type, value, fill = crime_factor)) +
geom_boxplot(alpha = 0.5) +
facet_wrap(~value_type, scales = 'free') +
scale_fill_discrete(name = 'Crime Rate') +
theme(legend.position = 'top')
The figures above help us to distinguish data between high crime group and low crime group. Based on figures, we can clearly see some patterns such as:
The age in suburbs that have high crime rate are generally larger than that of low crime rate.
The dis in suburbs that have high crime rate are generally lower than that of high crime rate.
The indus in suburbs that have high crime rate are generally higher than that of high crime rate.
The nox in suburbs that have high crime rate are generally higher than that of high crime rate.
The rad in suburbs that have high crime rate are generally higher than that of high crime rate.
The tax in suburbs that have high crime rate are generally higher than that of high crime rate.
#boxplot
boston %>%
dplyr::select(crim, crime_factor, rad, nox, tax, age, dis, indus) %>%
gather(Variable, value, -crim, -crime_factor) %>%
mutate(Variable = str_to_title(Variable)) %>%
ggplot(aes(value, crim)) +
geom_point(aes(col = crime_factor)) +
facet_wrap(~ Variable, scales = 'free') +
geom_smooth(method = 'lm', formula = y ~ poly(x, 3), se = FALSE) +
guides(col = FALSE) +
labs(title = 'Scatterplots for each strong predictor')
## Warning: The `<scale>` argument of `guides()` cannot be `FALSE`. Use "none" instead as
## of ggplot2 3.3.4.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
From the above figures, I chose some significant variables such as: age, dis, indus, nox, rad, and tax. Then, I plot to see the relationship between these significant variables and dependent variable as crim.
Looking at the graph, we can see the relation will be polynomial. Hence, the models will use polynomial relationships.
set.seed(123)
boston_split <- initial_split(boston, prop=0.8,strata= crime_factor)
boston_training <- training(boston_split)
boston_testing <- testing(boston_split)
glm_model <- glm(crime_factor ~ poly(rad, 3) + poly(nox, 3) +
poly(tax, 3) + poly(age, 3) + poly(dis, 3)+ poly(indus, 3),
data = boston_training, family = "binomial")
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
summary(glm_model)
##
## Call:
## glm(formula = crime_factor ~ poly(rad, 3) + poly(nox, 3) + poly(tax,
## 3) + poly(age, 3) + poly(dis, 3) + poly(indus, 3), family = "binomial",
## data = boston_training)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.9398 0.0000 0.0000 0.0004 2.1725
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1448.667 637.382 -2.273 0.02304 *
## poly(rad, 3)1 -55456.257 23688.738 -2.341 0.01923 *
## poly(rad, 3)2 -8892.445 3783.981 -2.350 0.01877 *
## poly(rad, 3)3 -1376.436 598.658 -2.299 0.02149 *
## poly(nox, 3)1 -4332.733 1473.024 -2.941 0.00327 **
## poly(nox, 3)2 -3639.043 1268.403 -2.869 0.00412 **
## poly(nox, 3)3 -1201.098 436.083 -2.754 0.00588 **
## poly(tax, 3)1 8329.522 2969.219 2.805 0.00503 **
## poly(tax, 3)2 2935.135 1044.474 2.810 0.00495 **
## poly(tax, 3)3 536.127 228.136 2.350 0.01877 *
## poly(age, 3)1 -1.168 9.836 -0.119 0.90545
## poly(age, 3)2 -19.426 9.010 -2.156 0.03107 *
## poly(age, 3)3 -8.199 8.119 -1.010 0.31256
## poly(dis, 3)1 52.903 25.556 2.070 0.03845 *
## poly(dis, 3)2 -23.914 20.294 -1.178 0.23865
## poly(dis, 3)3 -39.021 13.779 -2.832 0.00463 **
## poly(indus, 3)1 -16.255 42.342 -0.384 0.70105
## poly(indus, 3)2 -52.148 24.376 -2.139 0.03241 *
## poly(indus, 3)3 -188.155 61.799 -3.045 0.00233 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 560.063 on 403 degrees of freedom
## Residual deviance: 77.071 on 385 degrees of freedom
## AIC: 115.07
##
## Number of Fisher Scoring iterations: 19
glm_fit <- predict(glm_model,type="response", newdata=boston_testing)
predict_binary_glm <- ifelse(glm_fit > 0.5, "Low", "High")
predict_binary_glm <- predict_binary_glm %>% bind_cols(boston_testing %>% dplyr::select(crime_factor))
## New names:
## • `` -> `...1`
colnames(predict_binary_glm) <- c("predicted_value", "actual_value")
predict_binary_glm$predicted_value <- as.factor(predict_binary_glm$predicted_value)
predict_binary_glm$actual_value <- as.factor(predict_binary_glm$actual_value)
confusion_glm <- confusionMatrix(predict_binary_glm$predicted_value, predict_binary_glm$actual_value)
confusion_glm
## Confusion Matrix and Statistics
##
## Reference
## Prediction High Low
## High 50 5
## Low 1 46
##
## Accuracy : 0.9412
## 95% CI : (0.8764, 0.9781)
## No Information Rate : 0.5
## P-Value [Acc > NIR] : <2e-16
##
## Kappa : 0.8824
##
## Mcnemar's Test P-Value : 0.2207
##
## Sensitivity : 0.9804
## Specificity : 0.9020
## Pos Pred Value : 0.9091
## Neg Pred Value : 0.9787
## Prevalence : 0.5000
## Detection Rate : 0.4902
## Detection Prevalence : 0.5392
## Balanced Accuracy : 0.9412
##
## 'Positive' Class : High
##
The confusion matrix indicate that the accuracy of the model is 94.12% meaning that 94.12% of results are predicted as true. The sensitivity is the ability of a test to correctly identify true High: ratio = TP/(TP+FN)=48/(48+3) = 94.12%. The specificity is the ability of a test to correctly identify true Low: ratio = TN/(TN+FP)=48/(48+3)=94.12%. The confusion matrix shows that the model perform very well
lda_model <- lda(crime_factor ~ poly(rad, 3) + poly(nox, 3) +
poly(tax, 3) + poly(age, 3) + poly(dis, 3)+ poly(indus, 3),
data = boston_training)
lda_model
## Call:
## lda(crime_factor ~ poly(rad, 3) + poly(nox, 3) + poly(tax, 3) +
## poly(age, 3) + poly(dis, 3) + poly(indus, 3), data = boston_training)
##
## Prior probabilities of groups:
## High Low
## 0.5 0.5
##
## Group means:
## poly(rad, 3)1 poly(rad, 3)2 poly(rad, 3)3 poly(nox, 3)1 poly(nox, 3)2
## High 0.03053036 -0.007576335 0.001805575 0.0356466 -0.01258601
## Low -0.03053036 0.007576335 -0.001805575 -0.0356466 0.01258601
## poly(nox, 3)3 poly(tax, 3)1 poly(tax, 3)2 poly(tax, 3)3 poly(age, 3)1
## High -0.002945454 0.02954138 -0.00362748 -0.0009944897 0.02948616
## Low 0.002945454 -0.02954138 0.00362748 0.0009944897 -0.02948616
## poly(age, 3)2 poly(age, 3)3 poly(dis, 3)1 poly(dis, 3)2 poly(dis, 3)3
## High 0.008543963 -0.0006928698 -0.03135008 0.01015439 0.00142612
## Low -0.008543963 0.0006928698 0.03135008 -0.01015439 -0.00142612
## poly(indus, 3)1 poly(indus, 3)2 poly(indus, 3)3
## High 0.03004324 -0.01078947 -0.01153712
## Low -0.03004324 0.01078947 0.01153712
##
## Coefficients of linear discriminants:
## LD1
## poly(rad, 3)1 -52.7634533
## poly(rad, 3)2 -2.5849385
## poly(rad, 3)3 1.4250961
## poly(nox, 3)1 -24.7126359
## poly(nox, 3)2 10.1489586
## poly(nox, 3)3 -1.4780811
## poly(tax, 3)1 46.0327368
## poly(tax, 3)2 19.0327107
## poly(tax, 3)3 -9.7843183
## poly(age, 3)1 -0.9765566
## poly(age, 3)2 -4.9999505
## poly(age, 3)3 -1.7035940
## poly(dis, 3)1 0.6205349
## poly(dis, 3)2 4.2583329
## poly(dis, 3)3 -5.1157704
## poly(indus, 3)1 -8.4164621
## poly(indus, 3)2 -8.7011396
## poly(indus, 3)3 4.5357491
predict_lda <- predict(lda_model, type= "response", newdata=boston_testing)$class
predict_lda
## [1] High High Low High High High High High Low Low Low Low Low Low Low
## [16] Low Low Low Low Low Low Low Low Low Low Low Low Low Low High
## [31] High High High High High High High High High Low Low Low Low High High
## [46] High High High Low Low Low Low Low Low Low Low Low Low Low High
## [61] High Low Low Low Low Low Low High High High High High High High High
## [76] High High High High High High High High High High High High High High High
## [91] High High High High High High High Low High High High Low
## Levels: High Low
predict_result_lda <- predict_lda %>% bind_cols(boston_testing %>% dplyr::select(crime_factor))
## New names:
## • `` -> `...1`
colnames(predict_result_lda) <- c("predicted_value", "actual_value")
confusion_lda <- confusionMatrix(predict_result_lda$predicted_value, predict_result_lda$actual_value)
confusion_lda
## Confusion Matrix and Statistics
##
## Reference
## Prediction High Low
## High 49 8
## Low 2 43
##
## Accuracy : 0.902
## 95% CI : (0.8271, 0.952)
## No Information Rate : 0.5
## P-Value [Acc > NIR] : <2e-16
##
## Kappa : 0.8039
##
## Mcnemar's Test P-Value : 0.1138
##
## Sensitivity : 0.9608
## Specificity : 0.8431
## Pos Pred Value : 0.8596
## Neg Pred Value : 0.9556
## Prevalence : 0.5000
## Detection Rate : 0.4804
## Detection Prevalence : 0.5588
## Balanced Accuracy : 0.9020
##
## 'Positive' Class : High
##
The lda model shows an accuracy at 94.12%, which means that 94.12% of the data is predicted as true. The sensitivity is the ability of a test to correctly identify true High: ratio = TP/(TP+FN)=47/(47+4) = 92.16%. The specificity is the ability of a test to correctly identify true Low: ratio = TN/(TN+FP)=49/(49+2)=96.08%. Compare to the logistic model, lda has better performance in specificity, while it illustrates a worst sensitivity. In general, the two models’ performance are same with the similar accuracy.
naivebayes_model <- naive_bayes(crime_factor ~ rad + nox+ tax + age + indus,
data = boston_training)
naivebayes_model
##
## ================================== Naive Bayes ==================================
##
## Call:
## naive_bayes.formula(formula = crime_factor ~ rad + nox + tax +
## age + indus, data = boston_training)
##
## ---------------------------------------------------------------------------------
##
## Laplace smoothing: 0
##
## ---------------------------------------------------------------------------------
##
## A priori probabilities:
##
## High Low
## 0.5 0.5
##
## ---------------------------------------------------------------------------------
##
## Tables:
##
## ---------------------------------------------------------------------------------
## ::: rad (Gaussian)
## ---------------------------------------------------------------------------------
##
## rad High Low
## mean 14.658416 4.079208
## sd 9.510254 1.631061
##
## ---------------------------------------------------------------------------------
## ::: nox (Gaussian)
## ---------------------------------------------------------------------------------
##
## nox High Low
## mean 0.63711386 0.46869703
## sd 0.10224700 0.05528707
##
## ---------------------------------------------------------------------------------
## ::: tax (Gaussian)
## ---------------------------------------------------------------------------------
##
## tax High Low
## mean 504.81683 307.27228
## sd 168.51777 87.23754
##
## ---------------------------------------------------------------------------------
## ::: age (Gaussian)
## ---------------------------------------------------------------------------------
##
## age High Low
## mean 85.48119 51.60594
## sd 18.49810 26.88528
##
## ---------------------------------------------------------------------------------
## ::: indus (Gaussian)
## ---------------------------------------------------------------------------------
##
## indus High Low
## mean 15.143663 6.930396
## sd 5.512455 5.354737
##
## ---------------------------------------------------------------------------------
predict_naivebayes <- predict(naivebayes_model, type= "class", newdata=boston_testing)
## Warning: predict.naive_bayes(): more features in the newdata are provided as
## there are probability tables in the object. Calculation is performed based on
## features to be found in the tables.
predict_naivebayes
## [1] Low Low Low Low Low Low Low Low Low Low Low Low Low Low Low
## [16] Low Low Low Low Low Low Low Low Low Low Low Low High High High
## [31] High High High High High High High Low Low Low Low Low Low Low Low
## [46] Low High Low Low Low Low Low Low Low Low Low Low Low Low Low
## [61] Low Low Low Low Low Low Low High High High High High High High High
## [76] High High High High High High High High High High High High High High High
## [91] High High High High High High High High Low Low Low Low
## Levels: High Low
predict_result_naivebayes <- predict_naivebayes %>% bind_cols(boston_testing %>% dplyr::select(crime_factor))
## New names:
## • `` -> `...1`
colnames(predict_result_naivebayes) <- c("predicted_value", "actual_value")
confusion_naivebayes <- confusionMatrix(predict_result_naivebayes$predicted_value, predict_result_naivebayes$actual_value)
confusion_naivebayes
## Confusion Matrix and Statistics
##
## Reference
## Prediction High Low
## High 39 3
## Low 12 48
##
## Accuracy : 0.8529
## 95% CI : (0.7691, 0.9153)
## No Information Rate : 0.5
## P-Value [Acc > NIR] : 8.267e-14
##
## Kappa : 0.7059
##
## Mcnemar's Test P-Value : 0.03887
##
## Sensitivity : 0.7647
## Specificity : 0.9412
## Pos Pred Value : 0.9286
## Neg Pred Value : 0.8000
## Prevalence : 0.5000
## Detection Rate : 0.3824
## Detection Prevalence : 0.4118
## Balanced Accuracy : 0.8529
##
## 'Positive' Class : High
##
The naive bayes model is considered as worst model when its accuracy is only at 85.29%, in which sensitivity is 74.51% and specificity is 96.08%. Hence, the decrease in accuracy is because the model fail to predict the High - or its sensitivity.
variables <- c('rad', 'nox', 'tax', 'age', 'dis', 'zn', 'indus')
x_training <- boston_training[, variables]
y_training <- boston_training$crime_factor
x_testing <- boston_testing[, variables]
acc <- list()
for (i in 1:20) {
knn_pred <- knn(train = x_training, test = x_testing, cl = y_training, k = i)
acc[as.character(i)] = mean(knn_pred == boston_testing$crime_factor)
}
acc <- unlist(acc)
data_frame(acc = acc) %>%
mutate(k = row_number()) %>%
ggplot(aes(k, acc)) +
geom_col(aes(fill = k == which.max(acc))) +
labs(x = 'K', y = 'Accuracy', title = 'KNN Accuracy for different values of K') +
scale_x_continuous(breaks = 1:20) +
scale_y_continuous(breaks = round(c(seq(0.90, 0.94, 0.01), max(acc)),
digits = 3)) +
geom_hline(yintercept = max(acc), lty = 2) +
coord_cartesian(ylim = c(min(acc), max(acc))) +
guides(fill = FALSE)
## Warning: `data_frame()` was deprecated in tibble 1.1.0.
## ℹ Please use `tibble()` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
#final model
knn_final <- knn(train = x_training, test = x_testing, cl = y_training, k = 3)
knn_final
## [1] Low High High High High High High Low Low Low Low Low Low Low Low
## [16] Low Low Low Low Low Low Low Low Low Low Low Low Low Low High
## [31] High High High High High High High High Low Low Low Low Low Low High
## [46] High High High Low Low Low Low Low Low Low Low Low Low Low High
## [61] High Low Low Low Low Low Low High High High High High High High High
## [76] High High High High High High High High High High High High High High High
## [91] High High High High High High High Low Low Low Low Low
## Levels: High Low
predict_result_knn <- knn_final %>% bind_cols(boston_testing %>% dplyr::select(crime_factor))
## New names:
## • `` -> `...1`
colnames(predict_result_knn) <- c("predicted_value", "actual_value")
confusion_knn <- confusionMatrix(predict_result_knn$predicted_value, predict_result_knn$actual_value)
confusion_knn
## Confusion Matrix and Statistics
##
## Reference
## Prediction High Low
## High 49 2
## Low 2 49
##
## Accuracy : 0.9608
## 95% CI : (0.9026, 0.9892)
## No Information Rate : 0.5
## P-Value [Acc > NIR] : <2e-16
##
## Kappa : 0.9216
##
## Mcnemar's Test P-Value : 1
##
## Sensitivity : 0.9608
## Specificity : 0.9608
## Pos Pred Value : 0.9608
## Neg Pred Value : 0.9608
## Prevalence : 0.5000
## Detection Rate : 0.4804
## Detection Prevalence : 0.5000
## Balanced Accuracy : 0.9608
##
## 'Positive' Class : High
##
By running the k from 1 to 20, we can see the best model is k=3 with model accuracy at 96.08%. Looking at the confusion matrix, the sensitivity is caculated at 94.12%, while specificity is reported as 98.04%. All the numbers conclude that KNN with K=3 is the best model.
We perform best subset, forward stepwise, and backward stepwise selection on a single data set. For each approach, we obtain p+1 models containing 0,1,2,⋯,p predictors. Explain your answers :
When performing best subset selection, the model with k predictors is the model with the smallest RSS among all the pCk models with k predictors.
When performing forward stepwise selection, the model with k predictors is the model with the smallest RSS among the p−k models which augment the predictors in M(k−1) with one additional predictor.
When performing backward stepwise selection, the model with k predictors is the model with the smallest RSS among the k models which contains all but one of the predictors in M(k+1).
So, the model with k predictors which has the smallest training RSS is the one obtained from best subset selection as it is the one selected among all k predictors models.
Best subset selection may have the smallest test RSS because it considers more models then the other methods.
However, the other models might have better luck picking a model that fits the test data better, as they would be less subject to overfitting.
The outcome will depend more heavily on the choice of test set / validation method than on the selection method.
TRUE. The model with (k+1) predictors is obtained by augmenting the predictors in the model with k predictors with one additional predictor.
TRUE. The model with k predictors is obtained by removing one predictor from the model with (k+1) predictors.
FALSE. There is no direct link between the models obtained from forward and backward selection.
FALSE. There is no direct link between the models obtained from forward and backward selection.
FALSE. The predictors in the k-variable model identified by best subset are a subset of the predictors in the (k+1)-variable model identified by best subset selection.
First, we load the data. Then, we split the data into train data (college_train) and test data (college_test) with 80% and 20%, respectively. The data is stratified in terms of number of applications (Apps) to make sure that the sample is more representative of the population.
#import data
college <- College
#split data
set.seed(123)
college_split <- initial_split(college,prop=0.8,strate="Apps")
college_train <- training(college_split)
college_test <- testing(college_split)
Step 1: We build the model by set up the engine as linear model (lm) and the mode (regression)
Step 2: We fit the model into the data train by defining the dependable “Apps” and all other variables are used as the predictors of number of applications.
Step 3: We see the results of our model by summary model. There are 9 significant variables as: Private, Accept, Top10perc, Top25perc, F.Undergrad, OutState, Room.Board, Expend, Grad.Rate. The adjusted R-squared of train data model result is 91.69%, meaning that the predictors can explain 91.69% the change of “Apps”.
Step 4: We use the model to predict the result in data test. Then the result of prediction and actual result are put together to compare.
Step 5: The test error metrics are reported:
RMSE is reported at 1449.199, meaning that our model’s predictions deviate from the actual number of applications by approximately 1449.199.
Rsquared is reported at 93.61%, meaning that the predictors can explain 93.61% the fluctuation of dependant variable.
#build model
lm_model <- linear_reg() %>% set_engine('lm') %>% set_mode('regression')
lm_fit <- lm_model %>% fit(Apps~.,data=college_train)
#model result
summary(lm_fit$fit)
##
## Call:
## stats::lm(formula = Apps ~ ., data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3257.7 -431.1 -57.5 318.8 6581.9
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -4.475e+02 4.238e+02 -1.056 0.29141
## PrivateYes -5.964e+02 1.471e+02 -4.055 5.67e-05 ***
## Accept 1.262e+00 5.474e-02 23.060 < 2e-16 ***
## Enroll -2.867e-01 1.960e-01 -1.463 0.14402
## Top10perc 4.485e+01 5.787e+00 7.749 3.93e-14 ***
## Top25perc -1.362e+01 4.713e+00 -2.889 0.00400 **
## F.Undergrad 9.257e-02 3.473e-02 2.665 0.00790 **
## P.Undergrad 4.950e-03 3.319e-02 0.149 0.88150
## Outstate -5.318e-02 1.962e-02 -2.710 0.00692 **
## Room.Board 1.615e-01 4.929e-02 3.277 0.00111 **
## Books 5.242e-02 2.402e-01 0.218 0.82734
## Personal -8.572e-03 6.533e-02 -0.131 0.89565
## PhD -5.727e+00 4.779e+00 -1.199 0.23118
## Terminal -5.017e+00 5.205e+00 -0.964 0.33546
## S.F.Ratio 3.827e+00 1.342e+01 0.285 0.77560
## perc.alumni -6.235e+00 4.325e+00 -1.442 0.14991
## Expend 7.915e-02 1.270e-02 6.233 8.58e-10 ***
## Grad.Rate 1.064e+01 3.063e+00 3.474 0.00055 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 971.6 on 603 degrees of freedom
## Multiple R-squared: 0.9192, Adjusted R-squared: 0.9169
## F-statistic: 403.6 on 17 and 603 DF, p-value: < 2.2e-16
#fit test data
predict(lm_fit, new_data = college_test)
## # A tibble: 156 × 1
## .pred
## <dbl>
## 1 1438.
## 2 1159.
## 3 1221.
## 4 3852.
## 5 6127.
## 6 2055.
## 7 9687.
## 8 1529.
## 9 1243.
## 10 446.
## # … with 146 more rows
college_test_results <- predict(lm_fit, new_data = college_test) %>%
bind_cols(college_test$Apps)
## New names:
## • `` -> `...2`
colnames(college_test_results) <- c("Prediction","Actual data")
college_test_results
## # A tibble: 156 × 2
## Prediction `Actual data`
## <dbl> <dbl>
## 1 1438. 1660
## 2 1159. 1428
## 3 1221. 1038
## 4 3852. 4302
## 5 6127. 7313
## 6 2055. 2135
## 7 9687. 7548
## 8 1529. 948
## 9 1243. 807
## 10 446. 632
## # … with 146 more rows
#test error RMSE:
rmse <- rmse(college_test_results,
truth = "Actual data",
estimate = "Prediction")
rmse
## # A tibble: 1 × 3
## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 rmse standard 1449.
#test error Rsquare:
rsq <- rsq(college_test_results,
truth = "Actual data",
estimate = "Prediction")
rsq
## # A tibble: 1 × 3
## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 rsq standard 0.936
Step 1: We build the model matrix by defining the dependable “Apps” and all other variables are used as the predictors of number of applications.
Step 2: We use cross-validation to choose the lamda for the model. Lamda has the function of tune the hyperparameters by handling variable selection and control the magnitude of coefficients in the model.
Then, we plot the lamda to see the best selection of lamda. Looking at the chart, we can see Ox present the log(lamda) value and Oy show the Mean-Squared Error. Thus, our objective is to select the lamda with the minimum Mean-Squared Error. The chart shows us best selections of log(lamda) are ranging around 6.
After that, we run to see the best lamda and have the result at 313.5603.
Step 3: We build the model by the train data
Step 4: We fit the test data into the model and use the best lamda found before
Step 5: The test error metrics are reported:
RMSE is reported at 1986.326, meaning that our model’s predictions deviate from the actual number of applications by approximately 1986.326.
Rsquared is reported at 88.41%, meaning that the predictors can explain 88.41% the fluctuation of dependant variable.
set.seed(123)
#Set up matrices needed for the glmnet functions
train_matrix <- model.matrix(Apps~., data = college_train)
test_matrix = model.matrix(Apps~., data =college_test)
#Choose lambda using cross-validation
lamda <- cv.glmnet(train_matrix,college_train$Apps,alpha=0)
plot(lamda)
bestlam <- lamda$lambda.min
bestlam
## [1] 313.5603
#Build model
ridge_model <- glmnet(train_matrix,college_train$Apps,alpha = 0)
#Fit test data
ridge_fit <- predict(ridge_model,s=bestlam,newx = test_matrix)
ridge_test_results <- ridge_fit %>%
bind_cols(college_test$Apps)
## New names:
## • `` -> `...2`
colnames(ridge_test_results) <- c("Prediction","Actual data")
ridge_test_results
## # A tibble: 156 × 2
## Prediction `Actual data`
## <dbl> <dbl>
## 1 1620. 1660
## 2 1047. 1428
## 3 1506. 1038
## 4 3667. 4302
## 5 6163. 7313
## 6 2202. 2135
## 7 9817. 7548
## 8 1554. 948
## 9 1090. 807
## 10 431. 632
## # … with 146 more rows
#test error RMSE:
rmse_ridge <- rmse(ridge_test_results,
truth = "Actual data",
estimate = "Prediction")
rmse_ridge
## # A tibble: 1 × 3
## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 rmse standard 1986.
#test error Rsquare:
rsq_ridge <- rsq(ridge_test_results,
truth = "Actual data",
estimate = "Prediction")
rsq_ridge
## # A tibble: 1 × 3
## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 rsq standard 0.884
For lasso mode, we utilize the same steps with ridge regression. The only different thing is the alpha is set as alpha = 1 instead of alpha =0 in ridge model.
The test coefficient estimate:
There are 4 variables with non-zero coefficient estimates as: Accept, Top10perc, F.Undergrad, and Expend.
The coeffcients of Accept, Top10perc, F.Undergrad, and Expend are 1.213, 18.392, 0.031, and 0.019, respectively. It means that all the variables have the positive relations with “Apps”.
The test error metrics are reported:
RMSE is reported at 1636.073, meaning that our model’s predictions deviate from the actual number of applications by approximately 1636.073.
Rsquared is reported at 93.60%, meaning that the predictors can explain 93.60% the fluctuation of dependant variable.
#Choose lambda using cross-validation
lamda_2 <- cv.glmnet(train_matrix,college_train$Apps,alpha=1)
plot(lamda_2)
bestlam_2 <- lamda_2$lambda.min
bestlam_2
## [1] 10.75659
#Build model
lasso_model <- glmnet(train_matrix,college_train$Apps,alpha = 1)
#model result
lasso_coef <- predict(lasso_model,s=bestlam, type="coefficients")
lasso_coef
## 19 x 1 sparse Matrix of class "dgCMatrix"
## s1
## (Intercept) -269.29591655
## (Intercept) .
## PrivateYes .
## Accept 1.21301871
## Enroll .
## Top10perc 18.39197894
## Top25perc .
## F.Undergrad 0.03146116
## P.Undergrad .
## Outstate .
## Room.Board .
## Books .
## Personal .
## PhD .
## Terminal .
## S.F.Ratio .
## perc.alumni .
## Expend 0.01897122
## Grad.Rate .
#Fit test data
lasso_fit <- predict(lasso_model,s=bestlam,newx = test_matrix)
lasso_test_results <- lasso_fit %>%
bind_cols(college_test$Apps)
## New names:
## • `` -> `...2`
colnames(lasso_test_results) <- c("Prediction","Actual data")
lasso_test_results
## # A tibble: 156 × 2
## Prediction `Actual data`
## <dbl> <dbl>
## 1 1873. 1660
## 2 1664. 1428
## 3 1552. 1038
## 4 2917. 4302
## 5 6180. 7313
## 6 2404. 2135
## 7 9066. 7548
## 8 1722. 948
## 9 1470. 807
## 10 808. 632
## # … with 146 more rows
#test error RMSE:
rmse_lasso <- rmse(lasso_test_results,
truth = "Actual data",
estimate = "Prediction")
rmse_lasso
## # A tibble: 1 × 3
## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 rmse standard 1636.
#test error Rsquare:
rsq_lasso <- rsq(lasso_test_results,
truth = "Actual data",
estimate = "Prediction")
rsq_lasso
## # A tibble: 1 × 3
## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 rsq standard 0.936