hàm ggplot2: gồm rất nhiều hàm
library(data.table)
## Warning: package 'data.table' was built under R version 4.2.3
library(AER)
## Warning: package 'AER' was built under R version 4.2.3
## Loading required package: car
## Warning: package 'car' was built under R version 4.2.3
## Loading required package: carData
## Warning: package 'carData' was built under R version 4.2.3
## Loading required package: lmtest
## Warning: package 'lmtest' was built under R version 4.2.3
## Loading required package: zoo
## Warning: package 'zoo' was built under R version 4.2.3
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
## Loading required package: sandwich
## Warning: package 'sandwich' was built under R version 4.2.3
## Loading required package: survival
data("CPS1985")
str(CPS1985)
## 'data.frame': 534 obs. of 11 variables:
## $ wage : num 5.1 4.95 6.67 4 7.5 ...
## $ education : num 8 9 12 12 12 13 10 12 16 12 ...
## $ experience: num 21 42 1 4 17 9 27 9 11 9 ...
## $ age : num 35 57 19 22 35 28 43 27 33 27 ...
## $ ethnicity : Factor w/ 3 levels "cauc","hispanic",..: 2 1 1 1 1 1 1 1 1 1 ...
## $ region : Factor w/ 2 levels "south","other": 2 2 2 2 2 2 1 2 2 2 ...
## $ gender : Factor w/ 2 levels "male","female": 2 2 1 1 1 1 1 1 1 1 ...
## $ occupation: Factor w/ 6 levels "worker","technical",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ sector : Factor w/ 3 levels "manufacturing",..: 1 1 1 3 3 3 3 3 1 3 ...
## $ union : Factor w/ 2 levels "no","yes": 1 1 1 1 1 2 1 1 1 1 ...
## $ married : Factor w/ 2 levels "no","yes": 2 2 1 1 2 1 1 1 2 1 ...
data.table::data.table(CPS1985)
## wage education experience age ethnicity region gender occupation
## 1: 5.10 8 21 35 hispanic other female worker
## 2: 4.95 9 42 57 cauc other female worker
## 3: 6.67 12 1 19 cauc other male worker
## 4: 4.00 12 4 22 cauc other male worker
## 5: 7.50 12 17 35 cauc other male worker
## ---
## 530: 11.36 18 5 29 cauc other male technical
## 531: 6.10 12 33 51 other other female technical
## 532: 23.25 17 25 48 other other female technical
## 533: 19.88 12 13 31 cauc south male technical
## 534: 15.38 16 33 55 cauc other male technical
## sector union married
## 1: manufacturing no yes
## 2: manufacturing no yes
## 3: manufacturing no no
## 4: other no no
## 5: other no yes
## ---
## 530: other no no
## 531: other no yes
## 532: other yes yes
## 533: other yes yes
## 534: manufacturing no yes
## Gọi các package trong thư viện ra
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.2.3
## Warning: package 'ggplot2' was built under R version 4.2.3
## Warning: package 'tibble' was built under R version 4.2.3
## Warning: package 'tidyr' was built under R version 4.2.3
## Warning: package 'readr' was built under R version 4.2.3
## Warning: package 'purrr' was built under R version 4.2.3
## Warning: package 'dplyr' was built under R version 4.2.3
## Warning: package 'stringr' was built under R version 4.2.3
## Warning: package 'forcats' was built under R version 4.2.3
## Warning: package 'lubridate' was built under R version 4.2.3
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.2 ✔ readr 2.1.4
## ✔ forcats 1.0.0 ✔ stringr 1.5.0
## ✔ ggplot2 3.4.2 ✔ tibble 3.2.1
## ✔ lubridate 1.9.2 ✔ tidyr 1.3.0
## ✔ purrr 1.0.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::between() masks data.table::between()
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::first() masks data.table::first()
## ✖ lubridate::hour() masks data.table::hour()
## ✖ lubridate::isoweek() masks data.table::isoweek()
## ✖ dplyr::lag() masks stats::lag()
## ✖ dplyr::last() masks data.table::last()
## ✖ lubridate::mday() masks data.table::mday()
## ✖ lubridate::minute() masks data.table::minute()
## ✖ lubridate::month() masks data.table::month()
## ✖ lubridate::quarter() masks data.table::quarter()
## ✖ dplyr::recode() masks car::recode()
## ✖ lubridate::second() masks data.table::second()
## ✖ purrr::some() masks car::some()
## ✖ purrr::transpose() masks data.table::transpose()
## ✖ lubridate::wday() masks data.table::wday()
## ✖ lubridate::week() masks data.table::week()
## ✖ lubridate::yday() masks data.table::yday()
## ✖ lubridate::year() masks data.table::year()
## ℹ Use the ]8;;http://conflicted.r-lib.org/conflicted package]8;; to force all conflicts to become errors
library(dplyr)
data("iris") #gọi database iris ra
## pivot_longer giúp chúng ta có thể xoay dữ liệu biến Sepal. Length từ rộng sang dài
iris %>% pivot_longer(Sepal.Length)
## # A tibble: 150 × 6
## Sepal.Width Petal.Length Petal.Width Species name value
## <dbl> <dbl> <dbl> <fct> <chr> <dbl>
## 1 3.5 1.4 0.2 setosa Sepal.Length 5.1
## 2 3 1.4 0.2 setosa Sepal.Length 4.9
## 3 3.2 1.3 0.2 setosa Sepal.Length 4.7
## 4 3.1 1.5 0.2 setosa Sepal.Length 4.6
## 5 3.6 1.4 0.2 setosa Sepal.Length 5
## 6 3.9 1.7 0.4 setosa Sepal.Length 5.4
## 7 3.4 1.4 0.3 setosa Sepal.Length 4.6
## 8 3.4 1.5 0.2 setosa Sepal.Length 5
## 9 2.9 1.4 0.2 setosa Sepal.Length 4.4
## 10 3.1 1.5 0.1 setosa Sepal.Length 4.9
## # ℹ 140 more rows
## Kết quả cho thấy biến Sepal.Width,Petal.Length,Petal.Width ngoài ra còn các cột mới tên name có tên Sepal.Length và value của cột Sepal.Length,
## Hàm pivot_longer không thể nhận biết được dấu chấm, nên chúng ta dùng 'c()' để chọn biến
iris %>% pivot_longer(c(Sepal.Length, Petal.Length))
## # A tibble: 300 × 5
## Sepal.Width Petal.Width Species name value
## <dbl> <dbl> <fct> <chr> <dbl>
## 1 3.5 0.2 setosa Sepal.Length 5.1
## 2 3.5 0.2 setosa Petal.Length 1.4
## 3 3 0.2 setosa Sepal.Length 4.9
## 4 3 0.2 setosa Petal.Length 1.4
## 5 3.2 0.2 setosa Sepal.Length 4.7
## 6 3.2 0.2 setosa Petal.Length 1.3
## 7 3.1 0.2 setosa Sepal.Length 4.6
## 8 3.1 0.2 setosa Petal.Length 1.5
## 9 3.6 0.2 setosa Sepal.Length 5
## 10 3.6 0.2 setosa Petal.Length 1.4
## # ℹ 290 more rows
# Toán tử phủ nhận một lựa chọn
iris %>% select(!c(Sepal.Length, Petal.Length))
## Sepal.Width Petal.Width Species
## 1 3.5 0.2 setosa
## 2 3.0 0.2 setosa
## 3 3.2 0.2 setosa
## 4 3.1 0.2 setosa
## 5 3.6 0.2 setosa
## 6 3.9 0.4 setosa
## 7 3.4 0.3 setosa
## 8 3.4 0.2 setosa
## 9 2.9 0.2 setosa
## 10 3.1 0.1 setosa
## 11 3.7 0.2 setosa
## 12 3.4 0.2 setosa
## 13 3.0 0.1 setosa
## 14 3.0 0.1 setosa
## 15 4.0 0.2 setosa
## 16 4.4 0.4 setosa
## 17 3.9 0.4 setosa
## 18 3.5 0.3 setosa
## 19 3.8 0.3 setosa
## 20 3.8 0.3 setosa
## 21 3.4 0.2 setosa
## 22 3.7 0.4 setosa
## 23 3.6 0.2 setosa
## 24 3.3 0.5 setosa
## 25 3.4 0.2 setosa
## 26 3.0 0.2 setosa
## 27 3.4 0.4 setosa
## 28 3.5 0.2 setosa
## 29 3.4 0.2 setosa
## 30 3.2 0.2 setosa
## 31 3.1 0.2 setosa
## 32 3.4 0.4 setosa
## 33 4.1 0.1 setosa
## 34 4.2 0.2 setosa
## 35 3.1 0.2 setosa
## 36 3.2 0.2 setosa
## 37 3.5 0.2 setosa
## 38 3.6 0.1 setosa
## 39 3.0 0.2 setosa
## 40 3.4 0.2 setosa
## 41 3.5 0.3 setosa
## 42 2.3 0.3 setosa
## 43 3.2 0.2 setosa
## 44 3.5 0.6 setosa
## 45 3.8 0.4 setosa
## 46 3.0 0.3 setosa
## 47 3.8 0.2 setosa
## 48 3.2 0.2 setosa
## 49 3.7 0.2 setosa
## 50 3.3 0.2 setosa
## 51 3.2 1.4 versicolor
## 52 3.2 1.5 versicolor
## 53 3.1 1.5 versicolor
## 54 2.3 1.3 versicolor
## 55 2.8 1.5 versicolor
## 56 2.8 1.3 versicolor
## 57 3.3 1.6 versicolor
## 58 2.4 1.0 versicolor
## 59 2.9 1.3 versicolor
## 60 2.7 1.4 versicolor
## 61 2.0 1.0 versicolor
## 62 3.0 1.5 versicolor
## 63 2.2 1.0 versicolor
## 64 2.9 1.4 versicolor
## 65 2.9 1.3 versicolor
## 66 3.1 1.4 versicolor
## 67 3.0 1.5 versicolor
## 68 2.7 1.0 versicolor
## 69 2.2 1.5 versicolor
## 70 2.5 1.1 versicolor
## 71 3.2 1.8 versicolor
## 72 2.8 1.3 versicolor
## 73 2.5 1.5 versicolor
## 74 2.8 1.2 versicolor
## 75 2.9 1.3 versicolor
## 76 3.0 1.4 versicolor
## 77 2.8 1.4 versicolor
## 78 3.0 1.7 versicolor
## 79 2.9 1.5 versicolor
## 80 2.6 1.0 versicolor
## 81 2.4 1.1 versicolor
## 82 2.4 1.0 versicolor
## 83 2.7 1.2 versicolor
## 84 2.7 1.6 versicolor
## 85 3.0 1.5 versicolor
## 86 3.4 1.6 versicolor
## 87 3.1 1.5 versicolor
## 88 2.3 1.3 versicolor
## 89 3.0 1.3 versicolor
## 90 2.5 1.3 versicolor
## 91 2.6 1.2 versicolor
## 92 3.0 1.4 versicolor
## 93 2.6 1.2 versicolor
## 94 2.3 1.0 versicolor
## 95 2.7 1.3 versicolor
## 96 3.0 1.2 versicolor
## 97 2.9 1.3 versicolor
## 98 2.9 1.3 versicolor
## 99 2.5 1.1 versicolor
## 100 2.8 1.3 versicolor
## 101 3.3 2.5 virginica
## 102 2.7 1.9 virginica
## 103 3.0 2.1 virginica
## 104 2.9 1.8 virginica
## 105 3.0 2.2 virginica
## 106 3.0 2.1 virginica
## 107 2.5 1.7 virginica
## 108 2.9 1.8 virginica
## 109 2.5 1.8 virginica
## 110 3.6 2.5 virginica
## 111 3.2 2.0 virginica
## 112 2.7 1.9 virginica
## 113 3.0 2.1 virginica
## 114 2.5 2.0 virginica
## 115 2.8 2.4 virginica
## 116 3.2 2.3 virginica
## 117 3.0 1.8 virginica
## 118 3.8 2.2 virginica
## 119 2.6 2.3 virginica
## 120 2.2 1.5 virginica
## 121 3.2 2.3 virginica
## 122 2.8 2.0 virginica
## 123 2.8 2.0 virginica
## 124 2.7 1.8 virginica
## 125 3.3 2.1 virginica
## 126 3.2 1.8 virginica
## 127 2.8 1.8 virginica
## 128 3.0 1.8 virginica
## 129 2.8 2.1 virginica
## 130 3.0 1.6 virginica
## 131 2.8 1.9 virginica
## 132 3.8 2.0 virginica
## 133 2.8 2.2 virginica
## 134 2.8 1.5 virginica
## 135 2.6 1.4 virginica
## 136 3.0 2.3 virginica
## 137 3.4 2.4 virginica
## 138 3.1 1.8 virginica
## 139 3.0 1.8 virginica
## 140 3.1 2.1 virginica
## 141 3.1 2.4 virginica
## 142 3.1 2.3 virginica
## 143 2.7 1.9 virginica
## 144 3.2 2.3 virginica
## 145 3.3 2.5 virginica
## 146 3.0 2.3 virginica
## 147 2.5 1.9 virginica
## 148 3.0 2.0 virginica
## 149 3.4 2.3 virginica
## 150 3.0 1.8 virginica
##Kết quả cho thấy lệnh này lựa chọn ra các gía trị không phải 2 biến Sepal.Length, Petal.Length.
## Phép toán dùng để phủ nhận một lựa chọn trong trường hợp này là phủ nhận biến có kí tự cuối cùng có tên là "width".
iris %>% select(!ends_with("Width"))
## Sepal.Length Petal.Length Species
## 1 5.1 1.4 setosa
## 2 4.9 1.4 setosa
## 3 4.7 1.3 setosa
## 4 4.6 1.5 setosa
## 5 5.0 1.4 setosa
## 6 5.4 1.7 setosa
## 7 4.6 1.4 setosa
## 8 5.0 1.5 setosa
## 9 4.4 1.4 setosa
## 10 4.9 1.5 setosa
## 11 5.4 1.5 setosa
## 12 4.8 1.6 setosa
## 13 4.8 1.4 setosa
## 14 4.3 1.1 setosa
## 15 5.8 1.2 setosa
## 16 5.7 1.5 setosa
## 17 5.4 1.3 setosa
## 18 5.1 1.4 setosa
## 19 5.7 1.7 setosa
## 20 5.1 1.5 setosa
## 21 5.4 1.7 setosa
## 22 5.1 1.5 setosa
## 23 4.6 1.0 setosa
## 24 5.1 1.7 setosa
## 25 4.8 1.9 setosa
## 26 5.0 1.6 setosa
## 27 5.0 1.6 setosa
## 28 5.2 1.5 setosa
## 29 5.2 1.4 setosa
## 30 4.7 1.6 setosa
## 31 4.8 1.6 setosa
## 32 5.4 1.5 setosa
## 33 5.2 1.5 setosa
## 34 5.5 1.4 setosa
## 35 4.9 1.5 setosa
## 36 5.0 1.2 setosa
## 37 5.5 1.3 setosa
## 38 4.9 1.4 setosa
## 39 4.4 1.3 setosa
## 40 5.1 1.5 setosa
## 41 5.0 1.3 setosa
## 42 4.5 1.3 setosa
## 43 4.4 1.3 setosa
## 44 5.0 1.6 setosa
## 45 5.1 1.9 setosa
## 46 4.8 1.4 setosa
## 47 5.1 1.6 setosa
## 48 4.6 1.4 setosa
## 49 5.3 1.5 setosa
## 50 5.0 1.4 setosa
## 51 7.0 4.7 versicolor
## 52 6.4 4.5 versicolor
## 53 6.9 4.9 versicolor
## 54 5.5 4.0 versicolor
## 55 6.5 4.6 versicolor
## 56 5.7 4.5 versicolor
## 57 6.3 4.7 versicolor
## 58 4.9 3.3 versicolor
## 59 6.6 4.6 versicolor
## 60 5.2 3.9 versicolor
## 61 5.0 3.5 versicolor
## 62 5.9 4.2 versicolor
## 63 6.0 4.0 versicolor
## 64 6.1 4.7 versicolor
## 65 5.6 3.6 versicolor
## 66 6.7 4.4 versicolor
## 67 5.6 4.5 versicolor
## 68 5.8 4.1 versicolor
## 69 6.2 4.5 versicolor
## 70 5.6 3.9 versicolor
## 71 5.9 4.8 versicolor
## 72 6.1 4.0 versicolor
## 73 6.3 4.9 versicolor
## 74 6.1 4.7 versicolor
## 75 6.4 4.3 versicolor
## 76 6.6 4.4 versicolor
## 77 6.8 4.8 versicolor
## 78 6.7 5.0 versicolor
## 79 6.0 4.5 versicolor
## 80 5.7 3.5 versicolor
## 81 5.5 3.8 versicolor
## 82 5.5 3.7 versicolor
## 83 5.8 3.9 versicolor
## 84 6.0 5.1 versicolor
## 85 5.4 4.5 versicolor
## 86 6.0 4.5 versicolor
## 87 6.7 4.7 versicolor
## 88 6.3 4.4 versicolor
## 89 5.6 4.1 versicolor
## 90 5.5 4.0 versicolor
## 91 5.5 4.4 versicolor
## 92 6.1 4.6 versicolor
## 93 5.8 4.0 versicolor
## 94 5.0 3.3 versicolor
## 95 5.6 4.2 versicolor
## 96 5.7 4.2 versicolor
## 97 5.7 4.2 versicolor
## 98 6.2 4.3 versicolor
## 99 5.1 3.0 versicolor
## 100 5.7 4.1 versicolor
## 101 6.3 6.0 virginica
## 102 5.8 5.1 virginica
## 103 7.1 5.9 virginica
## 104 6.3 5.6 virginica
## 105 6.5 5.8 virginica
## 106 7.6 6.6 virginica
## 107 4.9 4.5 virginica
## 108 7.3 6.3 virginica
## 109 6.7 5.8 virginica
## 110 7.2 6.1 virginica
## 111 6.5 5.1 virginica
## 112 6.4 5.3 virginica
## 113 6.8 5.5 virginica
## 114 5.7 5.0 virginica
## 115 5.8 5.1 virginica
## 116 6.4 5.3 virginica
## 117 6.5 5.5 virginica
## 118 7.7 6.7 virginica
## 119 7.7 6.9 virginica
## 120 6.0 5.0 virginica
## 121 6.9 5.7 virginica
## 122 5.6 4.9 virginica
## 123 7.7 6.7 virginica
## 124 6.3 4.9 virginica
## 125 6.7 5.7 virginica
## 126 7.2 6.0 virginica
## 127 6.2 4.8 virginica
## 128 6.1 4.9 virginica
## 129 6.4 5.6 virginica
## 130 7.2 5.8 virginica
## 131 7.4 6.1 virginica
## 132 7.9 6.4 virginica
## 133 6.4 5.6 virginica
## 134 6.3 5.1 virginica
## 135 6.1 5.6 virginica
## 136 7.7 6.1 virginica
## 137 6.3 5.6 virginica
## 138 6.4 5.5 virginica
## 139 6.0 4.8 virginica
## 140 6.9 5.4 virginica
## 141 6.7 5.6 virginica
## 142 6.9 5.1 virginica
## 143 5.8 5.1 virginica
## 144 6.8 5.9 virginica
## 145 6.7 5.7 virginica
## 146 6.7 5.2 virginica
## 147 6.3 5.0 virginica
## 148 6.5 5.2 virginica
## 149 6.2 5.4 virginica
## 150 5.9 5.1 virginica
## Sử dụng "&" và "|" để tìm điểm hợp và giao của 2 lựa chọn
iris %>% select(starts_with("Petal") & ends_with("Width"))
## Petal.Width
## 1 0.2
## 2 0.2
## 3 0.2
## 4 0.2
## 5 0.2
## 6 0.4
## 7 0.3
## 8 0.2
## 9 0.2
## 10 0.1
## 11 0.2
## 12 0.2
## 13 0.1
## 14 0.1
## 15 0.2
## 16 0.4
## 17 0.4
## 18 0.3
## 19 0.3
## 20 0.3
## 21 0.2
## 22 0.4
## 23 0.2
## 24 0.5
## 25 0.2
## 26 0.2
## 27 0.4
## 28 0.2
## 29 0.2
## 30 0.2
## 31 0.2
## 32 0.4
## 33 0.1
## 34 0.2
## 35 0.2
## 36 0.2
## 37 0.2
## 38 0.1
## 39 0.2
## 40 0.2
## 41 0.3
## 42 0.3
## 43 0.2
## 44 0.6
## 45 0.4
## 46 0.3
## 47 0.2
## 48 0.2
## 49 0.2
## 50 0.2
## 51 1.4
## 52 1.5
## 53 1.5
## 54 1.3
## 55 1.5
## 56 1.3
## 57 1.6
## 58 1.0
## 59 1.3
## 60 1.4
## 61 1.0
## 62 1.5
## 63 1.0
## 64 1.4
## 65 1.3
## 66 1.4
## 67 1.5
## 68 1.0
## 69 1.5
## 70 1.1
## 71 1.8
## 72 1.3
## 73 1.5
## 74 1.2
## 75 1.3
## 76 1.4
## 77 1.4
## 78 1.7
## 79 1.5
## 80 1.0
## 81 1.1
## 82 1.0
## 83 1.2
## 84 1.6
## 85 1.5
## 86 1.6
## 87 1.5
## 88 1.3
## 89 1.3
## 90 1.3
## 91 1.2
## 92 1.4
## 93 1.2
## 94 1.0
## 95 1.3
## 96 1.2
## 97 1.3
## 98 1.3
## 99 1.1
## 100 1.3
## 101 2.5
## 102 1.9
## 103 2.1
## 104 1.8
## 105 2.2
## 106 2.1
## 107 1.7
## 108 1.8
## 109 1.8
## 110 2.5
## 111 2.0
## 112 1.9
## 113 2.1
## 114 2.0
## 115 2.4
## 116 2.3
## 117 1.8
## 118 2.2
## 119 2.3
## 120 1.5
## 121 2.3
## 122 2.0
## 123 2.0
## 124 1.8
## 125 2.1
## 126 1.8
## 127 1.8
## 128 1.8
## 129 2.1
## 130 1.6
## 131 1.9
## 132 2.0
## 133 2.2
## 134 1.5
## 135 1.4
## 136 2.3
## 137 2.4
## 138 1.8
## 139 1.8
## 140 2.1
## 141 2.4
## 142 2.3
## 143 1.9
## 144 2.3
## 145 2.5
## 146 2.3
## 147 1.9
## 148 2.0
## 149 2.3
## 150 1.8
iris %>% select(starts_with("Petal") | ends_with("Width"))
## Petal.Length Petal.Width Sepal.Width
## 1 1.4 0.2 3.5
## 2 1.4 0.2 3.0
## 3 1.3 0.2 3.2
## 4 1.5 0.2 3.1
## 5 1.4 0.2 3.6
## 6 1.7 0.4 3.9
## 7 1.4 0.3 3.4
## 8 1.5 0.2 3.4
## 9 1.4 0.2 2.9
## 10 1.5 0.1 3.1
## 11 1.5 0.2 3.7
## 12 1.6 0.2 3.4
## 13 1.4 0.1 3.0
## 14 1.1 0.1 3.0
## 15 1.2 0.2 4.0
## 16 1.5 0.4 4.4
## 17 1.3 0.4 3.9
## 18 1.4 0.3 3.5
## 19 1.7 0.3 3.8
## 20 1.5 0.3 3.8
## 21 1.7 0.2 3.4
## 22 1.5 0.4 3.7
## 23 1.0 0.2 3.6
## 24 1.7 0.5 3.3
## 25 1.9 0.2 3.4
## 26 1.6 0.2 3.0
## 27 1.6 0.4 3.4
## 28 1.5 0.2 3.5
## 29 1.4 0.2 3.4
## 30 1.6 0.2 3.2
## 31 1.6 0.2 3.1
## 32 1.5 0.4 3.4
## 33 1.5 0.1 4.1
## 34 1.4 0.2 4.2
## 35 1.5 0.2 3.1
## 36 1.2 0.2 3.2
## 37 1.3 0.2 3.5
## 38 1.4 0.1 3.6
## 39 1.3 0.2 3.0
## 40 1.5 0.2 3.4
## 41 1.3 0.3 3.5
## 42 1.3 0.3 2.3
## 43 1.3 0.2 3.2
## 44 1.6 0.6 3.5
## 45 1.9 0.4 3.8
## 46 1.4 0.3 3.0
## 47 1.6 0.2 3.8
## 48 1.4 0.2 3.2
## 49 1.5 0.2 3.7
## 50 1.4 0.2 3.3
## 51 4.7 1.4 3.2
## 52 4.5 1.5 3.2
## 53 4.9 1.5 3.1
## 54 4.0 1.3 2.3
## 55 4.6 1.5 2.8
## 56 4.5 1.3 2.8
## 57 4.7 1.6 3.3
## 58 3.3 1.0 2.4
## 59 4.6 1.3 2.9
## 60 3.9 1.4 2.7
## 61 3.5 1.0 2.0
## 62 4.2 1.5 3.0
## 63 4.0 1.0 2.2
## 64 4.7 1.4 2.9
## 65 3.6 1.3 2.9
## 66 4.4 1.4 3.1
## 67 4.5 1.5 3.0
## 68 4.1 1.0 2.7
## 69 4.5 1.5 2.2
## 70 3.9 1.1 2.5
## 71 4.8 1.8 3.2
## 72 4.0 1.3 2.8
## 73 4.9 1.5 2.5
## 74 4.7 1.2 2.8
## 75 4.3 1.3 2.9
## 76 4.4 1.4 3.0
## 77 4.8 1.4 2.8
## 78 5.0 1.7 3.0
## 79 4.5 1.5 2.9
## 80 3.5 1.0 2.6
## 81 3.8 1.1 2.4
## 82 3.7 1.0 2.4
## 83 3.9 1.2 2.7
## 84 5.1 1.6 2.7
## 85 4.5 1.5 3.0
## 86 4.5 1.6 3.4
## 87 4.7 1.5 3.1
## 88 4.4 1.3 2.3
## 89 4.1 1.3 3.0
## 90 4.0 1.3 2.5
## 91 4.4 1.2 2.6
## 92 4.6 1.4 3.0
## 93 4.0 1.2 2.6
## 94 3.3 1.0 2.3
## 95 4.2 1.3 2.7
## 96 4.2 1.2 3.0
## 97 4.2 1.3 2.9
## 98 4.3 1.3 2.9
## 99 3.0 1.1 2.5
## 100 4.1 1.3 2.8
## 101 6.0 2.5 3.3
## 102 5.1 1.9 2.7
## 103 5.9 2.1 3.0
## 104 5.6 1.8 2.9
## 105 5.8 2.2 3.0
## 106 6.6 2.1 3.0
## 107 4.5 1.7 2.5
## 108 6.3 1.8 2.9
## 109 5.8 1.8 2.5
## 110 6.1 2.5 3.6
## 111 5.1 2.0 3.2
## 112 5.3 1.9 2.7
## 113 5.5 2.1 3.0
## 114 5.0 2.0 2.5
## 115 5.1 2.4 2.8
## 116 5.3 2.3 3.2
## 117 5.5 1.8 3.0
## 118 6.7 2.2 3.8
## 119 6.9 2.3 2.6
## 120 5.0 1.5 2.2
## 121 5.7 2.3 3.2
## 122 4.9 2.0 2.8
## 123 6.7 2.0 2.8
## 124 4.9 1.8 2.7
## 125 5.7 2.1 3.3
## 126 6.0 1.8 3.2
## 127 4.8 1.8 2.8
## 128 4.9 1.8 3.0
## 129 5.6 2.1 2.8
## 130 5.8 1.6 3.0
## 131 6.1 1.9 2.8
## 132 6.4 2.0 3.8
## 133 5.6 2.2 2.8
## 134 5.1 1.5 2.8
## 135 5.6 1.4 2.6
## 136 6.1 2.3 3.0
## 137 5.6 2.4 3.4
## 138 5.5 1.8 3.1
## 139 4.8 1.8 3.0
## 140 5.4 2.1 3.1
## 141 5.6 2.4 3.1
## 142 5.1 2.3 3.1
## 143 5.1 1.9 2.7
## 144 5.9 2.3 3.2
## 145 5.7 2.5 3.3
## 146 5.2 2.3 3.0
## 147 5.0 1.9 2.5
## 148 5.2 2.0 3.0
## 149 5.4 2.3 3.4
## 150 5.1 1.8 3.0
iris %>% select(starts_with("Petal") & !ends_with("Width"))
## Petal.Length
## 1 1.4
## 2 1.4
## 3 1.3
## 4 1.5
## 5 1.4
## 6 1.7
## 7 1.4
## 8 1.5
## 9 1.4
## 10 1.5
## 11 1.5
## 12 1.6
## 13 1.4
## 14 1.1
## 15 1.2
## 16 1.5
## 17 1.3
## 18 1.4
## 19 1.7
## 20 1.5
## 21 1.7
## 22 1.5
## 23 1.0
## 24 1.7
## 25 1.9
## 26 1.6
## 27 1.6
## 28 1.5
## 29 1.4
## 30 1.6
## 31 1.6
## 32 1.5
## 33 1.5
## 34 1.4
## 35 1.5
## 36 1.2
## 37 1.3
## 38 1.4
## 39 1.3
## 40 1.5
## 41 1.3
## 42 1.3
## 43 1.3
## 44 1.6
## 45 1.9
## 46 1.4
## 47 1.6
## 48 1.4
## 49 1.5
## 50 1.4
## 51 4.7
## 52 4.5
## 53 4.9
## 54 4.0
## 55 4.6
## 56 4.5
## 57 4.7
## 58 3.3
## 59 4.6
## 60 3.9
## 61 3.5
## 62 4.2
## 63 4.0
## 64 4.7
## 65 3.6
## 66 4.4
## 67 4.5
## 68 4.1
## 69 4.5
## 70 3.9
## 71 4.8
## 72 4.0
## 73 4.9
## 74 4.7
## 75 4.3
## 76 4.4
## 77 4.8
## 78 5.0
## 79 4.5
## 80 3.5
## 81 3.8
## 82 3.7
## 83 3.9
## 84 5.1
## 85 4.5
## 86 4.5
## 87 4.7
## 88 4.4
## 89 4.1
## 90 4.0
## 91 4.4
## 92 4.6
## 93 4.0
## 94 3.3
## 95 4.2
## 96 4.2
## 97 4.2
## 98 4.3
## 99 3.0
## 100 4.1
## 101 6.0
## 102 5.1
## 103 5.9
## 104 5.6
## 105 5.8
## 106 6.6
## 107 4.5
## 108 6.3
## 109 5.8
## 110 6.1
## 111 5.1
## 112 5.3
## 113 5.5
## 114 5.0
## 115 5.1
## 116 5.3
## 117 5.5
## 118 6.7
## 119 6.9
## 120 5.0
## 121 5.7
## 122 4.9
## 123 6.7
## 124 4.9
## 125 5.7
## 126 6.0
## 127 4.8
## 128 4.9
## 129 5.6
## 130 5.8
## 131 6.1
## 132 6.4
## 133 5.6
## 134 5.1
## 135 5.6
## 136 6.1
## 137 5.6
## 138 5.5
## 139 4.8
## 140 5.4
## 141 5.6
## 142 5.1
## 143 5.1
## 144 5.9
## 145 5.7
## 146 5.2
## 147 5.0
## 148 5.2
## 149 5.4
## 150 5.1
#kết quả: cho thấy lấy cái kết quả lớn nhất
## 1.2 Vẽ biểu đồ:
s <- subset(iris, Species=="setosa")
head(s)
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3.0 1.4 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa
## 4 4.6 3.1 1.5 0.2 setosa
## 5 5.0 3.6 1.4 0.2 setosa
## 6 5.4 3.9 1.7 0.4 setosa
#Nhận xét: Có tất cả 6 giá trị phù hợp với đề bài yêu cầu
# Nối dữ liệu:
df1 <- data.frame(Sepal.Length = c(1:6), Product = c(rep("setosa", 3), rep("versicolor", 3)))
head(df1)
## Sepal.Length Product
## 1 1 setosa
## 2 2 setosa
## 3 3 setosa
## 4 4 versicolor
## 5 5 versicolor
## 6 6 versicolor
df2 <- data.frame(Sepal.Length = c(1,3,5), Product = c(rep("setosa", 2), rep("versicolor", 1)))
df2
## Sepal.Length Product
## 1 1 setosa
## 2 3 setosa
## 3 5 versicolor
## Gộp các biến thành dữ liệu mới:
d2 <- iris$Petal.Length + iris$Petal.Width #gán biến d2 bằng giá trị của cánh hoa cộng với chiều rộng cánh hoa
d3 <- iris$Petal.Width + 0.5 #gán biến d3 bằng giá trị chiều rộng của cánh hoa cộng thêm một giá trị nào đó bất kì trong trường hợp này tôi đặt đại 0.5
d4 <- data.frame(iris$Petal.Length,iris$Petal.Width ,d2) #nối tất cả các dữ liệu
d5 <- data.frame(d4, d3)
head(d5,4) #in cấu trúc dữ liệu ra
## iris.Petal.Length iris.Petal.Width d2 d3
## 1 1.4 0.2 1.6 0.7
## 2 1.4 0.2 1.6 0.7
## 3 1.3 0.2 1.5 0.7
## 4 1.5 0.2 1.7 0.7
## chia chiều dài cánh hoa thành 3 khoảng từ đó suy ra "dài", " ngắn" và "vừa"
iris$daicut[iris$Petal.Length>=8] <- "dài"
iris$daicut[iris$Petal.Length <8 & iris$Petal.Length >=7 ] <- "vừa"
iris$daicut[iris$Petal.Length <7] <- "ngắn"
head(iris,4)
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species daicut
## 1 5.1 3.5 1.4 0.2 setosa ngắn
## 2 4.9 3.0 1.4 0.2 setosa ngắn
## 3 4.7 3.2 1.3 0.2 setosa ngắn
## 4 4.6 3.1 1.5 0.2 setosa ngắn
# Tuần 2
Giống như tuần 1 thì chúng ta sử dụng lại dataset(CPS1985)
Lấy dữ liệu trong thư viện
```r
library(AER)
# Lấy dữ liệu dataset CPS1985 từ package AER để tiến hành phân tích
data("CPS1985")
# Gán dữ liệu CPS1985 cho h
h <- CPS1985
# Xem cấu trúc dữ liệu gốc
str(h)
## 'data.frame': 534 obs. of 11 variables:
## $ wage : num 5.1 4.95 6.67 4 7.5 ...
## $ education : num 8 9 12 12 12 13 10 12 16 12 ...
## $ experience: num 21 42 1 4 17 9 27 9 11 9 ...
## $ age : num 35 57 19 22 35 28 43 27 33 27 ...
## $ ethnicity : Factor w/ 3 levels "cauc","hispanic",..: 2 1 1 1 1 1 1 1 1 1 ...
## $ region : Factor w/ 2 levels "south","other": 2 2 2 2 2 2 1 2 2 2 ...
## $ gender : Factor w/ 2 levels "male","female": 2 2 1 1 1 1 1 1 1 1 ...
## $ occupation: Factor w/ 6 levels "worker","technical",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ sector : Factor w/ 3 levels "manufacturing",..: 1 1 1 3 3 3 3 3 1 3 ...
## $ union : Factor w/ 2 levels "no","yes": 1 1 1 1 1 2 1 1 1 1 ...
## $ married : Factor w/ 2 levels "no","yes": 2 2 1 1 2 1 1 1 2 1 ...
# Xuất hiện 6 dòng đầu của cấu trúc
head(h)
## wage education experience age ethnicity region gender occupation
## 1 5.10 8 21 35 hispanic other female worker
## 1100 4.95 9 42 57 cauc other female worker
## 2 6.67 12 1 19 cauc other male worker
## 3 4.00 12 4 22 cauc other male worker
## 4 7.50 12 17 35 cauc other male worker
## 5 13.07 13 9 28 cauc other male worker
## sector union married
## 1 manufacturing no yes
## 1100 manufacturing no yes
## 2 manufacturing no no
## 3 other no no
## 4 other no yes
## 5 other yes no
# Xuất hiện 6 dòng cuối của cấu trúc
tail(h)
## wage education experience age ethnicity region gender occupation
## 528 11.79 16 6 28 cauc other female technical
## 529 11.36 18 5 29 cauc other male technical
## 530 6.10 12 33 51 other other female technical
## 531 23.25 17 25 48 other other female technical
## 532 19.88 12 13 31 cauc south male technical
## 533 15.38 16 33 55 cauc other male technical
## sector union married
## 528 other yes no
## 529 other no no
## 530 other no yes
## 531 other yes yes
## 532 other yes yes
## 533 manufacturing no yes
# Các đại lượng đo lường trong thống kê:
# Biến lương
luong <- h$wage
luong
## [1] 5.10 4.95 6.67 4.00 7.50 13.07 4.45 19.47 13.28 8.75 11.35 11.50
## [13] 6.50 6.25 19.98 7.30 8.00 22.20 3.65 20.55 5.71 7.00 3.75 4.50
## [25] 9.56 5.75 9.36 6.50 3.35 4.75 8.90 4.00 4.70 5.00 9.25 10.67
## [37] 7.61 10.00 7.50 12.20 3.35 11.00 12.00 4.85 4.30 6.00 15.00 4.85
## [49] 9.00 6.36 9.15 11.00 4.50 4.80 4.00 5.50 8.40 6.75 10.00 5.00
## [61] 6.50 10.75 7.00 11.43 4.00 9.00 13.00 12.22 6.28 6.75 3.35 16.00
## [73] 5.25 3.50 4.22 3.00 4.00 10.00 5.00 16.00 13.98 13.26 6.10 3.75
## [85] 9.00 9.45 5.50 8.93 6.25 9.75 6.73 7.78 2.85 3.35 19.98 8.50
## [97] 9.75 15.00 8.00 11.25 14.00 10.00 6.50 9.83 18.50 12.50 26.00 14.00
## [109] 10.50 11.00 12.47 12.50 15.00 6.00 9.50 5.00 3.75 12.57 6.88 5.50
## [121] 7.00 4.50 6.50 12.00 5.00 6.50 6.80 8.75 3.75 4.50 6.00 5.50
## [133] 13.00 5.65 4.80 7.00 5.25 3.35 8.50 6.00 6.75 8.89 14.21 10.78
## [145] 8.90 7.50 4.50 11.25 13.45 6.00 4.62 10.58 5.00 8.20 6.25 8.50
## [157] 24.98 16.65 6.25 4.55 11.25 21.25 12.65 7.50 10.25 3.35 13.45 4.84
## [169] 26.29 6.58 44.50 15.00 11.25 7.00 10.00 14.53 20.00 22.50 3.64 10.62
## [181] 24.98 6.00 19.00 13.20 22.50 15.00 6.88 11.84 16.14 13.95 13.16 5.30
## [193] 4.50 10.00 10.00 10.00 9.37 5.80 17.86 1.00 8.80 9.00 18.16 7.81
## [205] 10.62 4.50 17.25 10.50 9.22 15.00 22.50 4.55 9.00 13.33 15.00 7.50
## [217] 4.25 12.50 5.13 3.35 11.11 3.84 6.40 5.56 10.00 5.65 11.50 3.50
## [229] 3.35 4.75 19.98 3.50 4.00 7.00 6.25 4.50 14.29 5.00 13.75 13.71
## [241] 7.50 3.80 5.00 9.42 5.50 3.75 3.50 5.80 12.00 5.00 8.75 10.00
## [253] 8.50 8.63 9.00 5.50 11.11 10.00 5.20 8.00 3.56 5.20 11.67 11.32
## [265] 7.50 5.50 5.00 7.75 5.25 9.00 9.65 5.21 7.00 12.16 5.25 10.32
## [277] 3.35 7.70 9.17 8.43 4.00 4.13 3.00 4.25 7.53 10.53 5.00 15.03
## [289] 11.25 6.25 3.50 6.85 12.50 12.00 6.00 9.50 4.10 10.43 5.00 7.69
## [301] 5.50 6.40 12.50 6.25 8.00 9.60 9.10 7.50 5.00 7.00 3.55 8.50
## [313] 4.50 7.88 5.25 5.00 9.33 10.50 7.50 9.50 9.60 5.87 11.02 5.00
## [325] 5.62 12.50 10.81 5.40 7.00 4.59 6.00 11.71 5.62 5.50 4.85 6.75
## [337] 4.25 5.75 3.50 3.35 10.62 8.00 4.75 8.50 8.85 8.00 6.00 7.14
## [349] 3.40 6.00 3.75 8.89 4.35 13.10 4.35 3.50 3.80 5.26 3.35 16.26
## [361] 4.25 4.50 8.00 4.00 7.96 4.00 4.15 5.95 3.60 8.75 3.40 4.28
## [373] 5.35 5.00 7.65 6.94 7.50 3.60 1.75 3.45 9.63 8.49 8.99 3.65
## [385] 3.50 3.43 5.50 6.93 3.51 3.75 4.17 9.57 14.67 12.50 5.50 5.15
## [397] 8.00 5.83 3.35 7.00 10.00 8.00 6.88 5.55 7.50 8.93 9.00 3.50
## [409] 5.77 25.00 6.85 6.50 3.75 3.50 4.50 2.01 4.17 13.00 3.98 7.50
## [421] 13.12 4.00 3.95 13.00 9.00 4.55 9.50 4.50 8.75 10.00 18.00 24.98
## [433] 12.05 22.00 8.75 22.20 17.25 6.00 8.06 9.24 12.00 10.61 5.71 10.00
## [445] 17.50 15.00 7.78 7.80 10.00 24.98 10.28 15.00 12.00 10.58 5.85 11.22
## [457] 8.56 13.89 5.71 15.79 7.50 11.25 6.15 13.45 6.25 6.50 12.00 8.50
## [469] 8.00 5.75 15.73 9.86 13.51 5.40 6.25 5.50 5.00 6.25 5.75 20.50
## [481] 5.00 7.00 18.00 12.00 20.40 22.20 16.42 8.63 19.38 14.00 10.00 15.95
## [493] 20.00 10.00 24.98 11.25 22.83 10.20 10.00 14.00 12.50 5.79 24.98 4.35
## [505] 11.25 6.67 8.00 18.16 12.00 8.89 9.50 13.65 12.00 15.00 12.67 7.38
## [517] 15.56 7.45 6.25 6.25 9.37 22.50 7.50 7.00 5.75 7.67 12.50 16.00
## [529] 11.79 11.36 6.10 23.25 19.88 15.38
mean(luong)
## [1] 9.024064
# Nhận xét lương trung bình của một người là 9.024064 (đv)
# Tính lương trung bình theo giới tính:
aggregate(h$wage, list(h$gender), FUN = "mean")
## Group.1 x
## 1 male 9.994913
## 2 female 7.878857
# Nhận xét: ta có sự chênh lệch số lương nam nhiều hơn nữ là 2.120273 đơn vị, số lương trung bình của nam là 9.994913 đơn vị và lương trung bình của nữ là 7.878857 đơn vị
#Độ lệch chuẩn
sd(h$wage)
## [1] 5.139097
# Phương sai
var(h$wage)
## [1] 26.41032
# Cắt dữ liệu trong bộ dữ liệu
quantile(h$wage,0.5)
## 50%
## 7.78
# Nhận xét: ta có phần tử trung vị bằng 7.78 đv
hist(h$wage)
# Biến tuổi:
tuoi <- h$age
tuoi
## [1] 35 57 19 22 35 28 43 27 33 27 35 37 41 45 44 55 57 44 33 51 34 55 27 31 41
## [26] 57 26 46 26 26 33 64 33 24 37 54 38 53 21 30 18 34 32 31 27 28 34 29 47 27
## [51] 25 35 25 34 19 29 36 29 40 46 34 42 64 21 24 43 37 37 56 57 20 40 31 22 53
## [76] 55 42 29 30 53 34 34 60 35 27 31 35 36 24 54 20 41 19 28 41 26 30 51 37 33
## [101] 30 28 26 41 33 27 41 55 22 56 29 29 58 26 46 25 28 30 36 30 25 33 46 38 24
## [126] 23 45 37 24 34 19 21 26 22 31 25 20 56 53 27 30 36 32 45 43 56 21 59 34 26
## [151] 45 45 23 37 19 31 40 41 22 22 48 51 36 35 46 31 30 22 55 42 21 60 25 50 42
## [176] 40 43 33 60 52 53 30 37 32 44 32 38 44 36 38 56 32 25 37 36 29 48 36 55 42
## [201] 61 29 37 19 28 21 52 33 33 48 38 52 34 34 42 22 47 61 23 36 46 42 63 25 38
## [226] 28 38 50 21 28 64 26 33 23 23 34 52 32 41 61 45 22 20 50 38 25 52 24 36 37
## [251] 29 29 43 36 49 24 32 44 37 35 30 42 61 31 34 41 26 42 63 38 56 34 33 50 24
## [276] 47 25 27 62 30 26 22 46 19 21 32 57 42 55 26 43 26 35 23 50 43 33 35 18 37
## [301] 39 24 32 49 26 48 35 38 25 28 20 20 19 39 26 22 33 47 41 57 32 29 32 44 52
## [326] 27 58 36 29 54 37 64 21 51 32 40 38 33 53 25 63 27 20 26 39 32 64 37 43 47
## [351] 24 43 37 54 51 63 34 52 20 32 20 43 34 42 32 25 21 28 61 35 63 56 31 32 38
## [376] 25 27 24 23 20 42 42 33 25 34 20 38 44 53 59 45 23 36 39 28 20 61 22 18 44
## [401] 41 33 30 62 20 61 28 49 25 24 54 56 35 62 19 19 44 43 26 28 51 30 27 35 28
## [426] 59 61 27 53 53 39 54 28 35 48 32 29 26 36 27 30 54 27 18 35 36 28 30 36 28
## [451] 31 35 47 31 36 43 34 39 31 31 44 46 38 38 29 29 29 34 57 39 26 34 38 32 38
## [476] 51 22 51 21 36 20 57 60 42 26 64 39 24 33 38 42 36 50 32 27 26 61 49 26 55
## [501] 36 60 41 21 33 32 39 31 36 44 37 33 47 57 37 35 32 43 32 29 30 39 32 25 49
## [526] 32 31 30 28 29 51 48 31 55
mean(tuoi)
## [1] 36.83333
# Nhận xét: Sau khi tính trung bình của 534 phần tử thì chúng ta thấy số tuổi trung bình của mọi người là 36.83333
median(tuoi)
## [1] 35
# Nhận xét: phần tử trung vị là 35 tuổi nghĩa là đây là giá trị nằm giữa của phần nhỏ hơn và lớn hơn
# Lập bảng tần số và vẽ đồ thị lương và tuổi
tuoi1 <- cut(tuoi, breaks = c(0, 20, 40,60), labels = c("0-20", "20-40", "40-60"), right = TRUE)
table(tuoi1)
## tuoi1
## 0-20 20-40 40-60
## 28 325 158
# Nhận xét: Tuổi trong khoảng từ 20-40 chiếm tỷ lệ rất lớn 63,6%, trong độ tuổi 40-60 chiếm tỷ lệ vừa phải 30,92% và độ tuổi từ 0-20 chiếm tỷ lệ thấp 5,48%
luong1 <- cut(luong, breaks =c(3, 5, 7,10), labels = c("thấp", "trung bình", "cao"), right = TRUE)
luong1
## [1] trung bình thấp trung bình thấp cao <NA>
## [7] thấp <NA> <NA> cao <NA> <NA>
## [13] trung bình trung bình <NA> cao cao <NA>
## [19] thấp <NA> trung bình trung bình thấp thấp
## [25] cao trung bình cao trung bình thấp thấp
## [31] cao thấp thấp thấp cao <NA>
## [37] cao cao cao <NA> thấp <NA>
## [43] <NA> thấp thấp trung bình <NA> thấp
## [49] cao trung bình cao <NA> thấp thấp
## [55] thấp trung bình cao trung bình cao thấp
## [61] trung bình <NA> trung bình <NA> thấp cao
## [67] <NA> <NA> trung bình trung bình thấp <NA>
## [73] trung bình thấp thấp <NA> thấp cao
## [79] thấp <NA> <NA> <NA> trung bình thấp
## [85] cao cao trung bình cao trung bình cao
## [91] trung bình cao <NA> thấp <NA> cao
## [97] cao <NA> cao <NA> <NA> cao
## [103] trung bình cao <NA> <NA> <NA> <NA>
## [109] <NA> <NA> <NA> <NA> <NA> trung bình
## [115] cao thấp thấp <NA> trung bình trung bình
## [121] trung bình thấp trung bình <NA> thấp trung bình
## [127] trung bình cao thấp thấp trung bình trung bình
## [133] <NA> trung bình thấp trung bình trung bình thấp
## [139] cao trung bình trung bình cao <NA> <NA>
## [145] cao cao thấp <NA> <NA> trung bình
## [151] thấp <NA> thấp cao trung bình cao
## [157] <NA> <NA> trung bình thấp <NA> <NA>
## [163] <NA> cao <NA> thấp <NA> thấp
## [169] <NA> trung bình <NA> <NA> <NA> trung bình
## [175] cao <NA> <NA> <NA> thấp <NA>
## [181] <NA> trung bình <NA> <NA> <NA> <NA>
## [187] trung bình <NA> <NA> <NA> <NA> trung bình
## [193] thấp cao cao cao cao trung bình
## [199] <NA> <NA> cao cao <NA> cao
## [205] <NA> thấp <NA> <NA> cao <NA>
## [211] <NA> thấp cao <NA> <NA> cao
## [217] thấp <NA> trung bình thấp <NA> thấp
## [223] trung bình trung bình cao trung bình <NA> thấp
## [229] thấp thấp <NA> thấp thấp trung bình
## [235] trung bình thấp <NA> thấp <NA> <NA>
## [241] cao thấp thấp cao trung bình thấp
## [247] thấp trung bình <NA> thấp cao cao
## [253] cao cao cao trung bình <NA> cao
## [259] trung bình cao thấp trung bình <NA> <NA>
## [265] cao trung bình thấp cao trung bình cao
## [271] cao trung bình trung bình <NA> trung bình <NA>
## [277] thấp cao cao cao thấp thấp
## [283] <NA> thấp cao <NA> thấp <NA>
## [289] <NA> trung bình thấp trung bình <NA> <NA>
## [295] trung bình cao thấp <NA> thấp cao
## [301] trung bình trung bình <NA> trung bình cao cao
## [307] cao cao thấp trung bình thấp cao
## [313] thấp cao trung bình thấp cao <NA>
## [319] cao cao cao trung bình <NA> thấp
## [325] trung bình <NA> <NA> trung bình trung bình thấp
## [331] trung bình <NA> trung bình trung bình thấp trung bình
## [337] thấp trung bình thấp thấp <NA> cao
## [343] thấp cao cao cao trung bình cao
## [349] thấp trung bình thấp cao thấp <NA>
## [355] thấp thấp thấp trung bình thấp <NA>
## [361] thấp thấp cao thấp cao thấp
## [367] thấp trung bình thấp cao thấp thấp
## [373] trung bình thấp cao trung bình cao thấp
## [379] <NA> thấp cao cao cao thấp
## [385] thấp thấp trung bình trung bình thấp thấp
## [391] thấp cao <NA> <NA> trung bình trung bình
## [397] cao trung bình thấp trung bình cao cao
## [403] trung bình trung bình cao cao cao thấp
## [409] trung bình <NA> trung bình trung bình thấp thấp
## [415] thấp <NA> thấp <NA> thấp cao
## [421] <NA> thấp thấp <NA> cao thấp
## [427] cao thấp cao cao <NA> <NA>
## [433] <NA> <NA> cao <NA> <NA> trung bình
## [439] cao cao <NA> <NA> trung bình cao
## [445] <NA> <NA> cao cao cao <NA>
## [451] <NA> <NA> <NA> <NA> trung bình <NA>
## [457] cao <NA> trung bình <NA> cao <NA>
## [463] trung bình <NA> trung bình trung bình <NA> cao
## [469] cao trung bình <NA> cao <NA> trung bình
## [475] trung bình trung bình thấp trung bình trung bình <NA>
## [481] thấp trung bình <NA> <NA> <NA> <NA>
## [487] <NA> cao <NA> <NA> cao <NA>
## [493] <NA> cao <NA> <NA> <NA> <NA>
## [499] cao <NA> <NA> trung bình <NA> thấp
## [505] <NA> trung bình cao <NA> <NA> cao
## [511] cao <NA> <NA> <NA> <NA> cao
## [517] <NA> cao trung bình trung bình cao <NA>
## [523] cao trung bình trung bình cao <NA> <NA>
## [529] <NA> <NA> trung bình <NA> <NA> <NA>
## Levels: thấp trung bình cao
barplot(tuoi, xlab = " ", ylab = "Tuổi", main = "Biểu đồ thể hiện dữ liệu của biến tuổi ", col = c("red", "green", "blue", "pink", "white"))
barplot(luong, xlab = " ", ylab = "Lương", main = "Biểu đồ thể hiện dữ liệu của biến lương ", col = c("red", "green", "blue", "pink", "white"))
# Kết họp lại giữa tuổi và lương:
f = table(tuoi,luong1)
f
## luong1
## tuoi thấp trung bình cao
## 18 3 0 1
## 19 4 3 1
## 20 9 3 2
## 21 5 3 2
## 22 8 3 1
## 23 1 4 1
## 24 6 5 1
## 25 9 6 1
## 26 6 7 5
## 27 4 3 6
## 28 3 5 5
## 29 1 7 5
## 30 3 4 4
## 31 4 3 2
## 32 3 4 6
## 33 5 2 5
## 34 5 3 6
## 35 2 2 6
## 36 1 4 7
## 37 2 2 8
## 38 1 5 5
## 39 0 2 3
## 40 0 1 1
## 41 0 2 5
## 42 3 2 5
## 43 4 0 6
## 44 2 2 3
## 45 2 2 1
## 46 1 2 1
## 47 1 1 1
## 48 0 0 3
## 49 1 2 1
## 50 1 2 1
## 51 1 4 0
## 52 2 2 0
## 53 3 0 4
## 54 1 1 1
## 55 0 1 1
## 56 2 2 2
## 57 2 3 3
## 58 0 0 0
## 59 2 0 0
## 60 1 2 0
## 61 1 0 4
## 62 1 1 1
## 63 2 2 0
## 64 1 2 0
#Kiểm định Chi Bình Phương giữa 2 biến
#chúng ta có thể sử dụng kiểm định H0 và H1 với alpha bằng 0.5 để kiểm ra giá trị p- value xem nó có thể thỏa mãn đươc đề bài không
chisq.test(luong, tuoi, correct=FALSE)
#Với alpha bằng 5%, p-value =0.729> alpha bằng 5%. Ta có thể kết luận là 2 biến này độc lập với nhau
#Lương theo giới tính f1 = table(luong,gioitinh) f1
#Sử dụng Chi bình phương để xác định sự phụ thuộc của 2 biến
chisq.test(luong, gioitinh, correct=FALSE)
data: luong and gioitinh X-squared = 270.1, df = 237, p-value = 0.06876
#Nhận xét: với p-value=0.06876> alpha =5% bác bỏ H0, Kết luận lương ảnh hưởng đến giới tính.
# Tuần 1
# Giải thích dữ liệu
Dữ liệu chéo bắt nguồn từ Khảo sát dân số hiện tại tháng 5 năm 1985 của cục Điều tra dân số Hoa Kỳ (mẫu ngẫu nhiên rút ra cho Berndt 1991).
Wage: Lương (tính bằng đô la mỗi giờ)
Education: Trình độ học vấn
Experience: Số năm kinh nghiệm làm việc
Age: tuổi tính bằng năm
ethnicity: Yếu tố dân tộc với các cấp độ "cauc", "hispanic", "other".
Region Factor (khu vực sinh sống): có sống ở Miền Nam hay không?
gender: yếu tố chỉ giới tính
Occupation factor: Yếu tố nghề nghiệp với các mức độ "công nhân" (thợ hoặc công nhân dây chuyền lắp ráp), "kỹ thuật" , (nhân viên phục vụ), văn phòng và nhân viên văn thư,(nhân viên bán hàng), (quản lý và điều hành).
Sector : Yếu tố với các cấp độ "chế tạo" (chế tạo hoặc khai khoáng), "xây dựng", "khác".
union Factor: Cá nhân có làm công việc đoàn thể không?
married Factor: Cá nhân đã kết hôn chưa?
#Phân tích dữ liệu SPS1985 từ package "AER" để có dữ liệu chúng ta vào library() để tìm dữ liệu của package AER sau đó thì tìm dataset (CPS1985)
```r
#Lấy dữ liệu trong thư viện
library(AER)
#Lấy dữ liệu dataset CPS1985 từ package AER để tiến hành phân tích
data("CPS1985")
#Gán dữ liệu CPS1985 cho h
h <- CPS1985
#xem cấu trúc dữ liệu gốc
str(h)
## 'data.frame': 534 obs. of 11 variables:
## $ wage : num 5.1 4.95 6.67 4 7.5 ...
## $ education : num 8 9 12 12 12 13 10 12 16 12 ...
## $ experience: num 21 42 1 4 17 9 27 9 11 9 ...
## $ age : num 35 57 19 22 35 28 43 27 33 27 ...
## $ ethnicity : Factor w/ 3 levels "cauc","hispanic",..: 2 1 1 1 1 1 1 1 1 1 ...
## $ region : Factor w/ 2 levels "south","other": 2 2 2 2 2 2 1 2 2 2 ...
## $ gender : Factor w/ 2 levels "male","female": 2 2 1 1 1 1 1 1 1 1 ...
## $ occupation: Factor w/ 6 levels "worker","technical",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ sector : Factor w/ 3 levels "manufacturing",..: 1 1 1 3 3 3 3 3 1 3 ...
## $ union : Factor w/ 2 levels "no","yes": 1 1 1 1 1 2 1 1 1 1 ...
## $ married : Factor w/ 2 levels "no","yes": 2 2 1 1 2 1 1 1 2 1 ...
#Xuất hiện 6 dòng đầu của cấu trúc
head(h)
## wage education experience age ethnicity region gender occupation
## 1 5.10 8 21 35 hispanic other female worker
## 1100 4.95 9 42 57 cauc other female worker
## 2 6.67 12 1 19 cauc other male worker
## 3 4.00 12 4 22 cauc other male worker
## 4 7.50 12 17 35 cauc other male worker
## 5 13.07 13 9 28 cauc other male worker
## sector union married
## 1 manufacturing no yes
## 1100 manufacturing no yes
## 2 manufacturing no no
## 3 other no no
## 4 other no yes
## 5 other yes no
#Xuất hiện 6 dòng cuối của cáy trúc
tail(h)
## wage education experience age ethnicity region gender occupation
## 528 11.79 16 6 28 cauc other female technical
## 529 11.36 18 5 29 cauc other male technical
## 530 6.10 12 33 51 other other female technical
## 531 23.25 17 25 48 other other female technical
## 532 19.88 12 13 31 cauc south male technical
## 533 15.38 16 33 55 cauc other male technical
## sector union married
## 528 other yes no
## 529 other no no
## 530 other no yes
## 531 other yes yes
## 532 other yes yes
## 533 manufacturing no yes
## Chọn 3 dữ liệu để phân tích: Tuổi(Age), Trình độ học vấn (Education) và giới tính (gender)
# Gán biến age thành Tuoi, education thành hocvan và gender là gioitinh
Tuoi <-h$age
hocvan<- h$education
gioitinh <- h$gender
#Lọc dữ liệu có điều kiện:
th <- h[gioitinh =="male" & hocvan == "12",]
th
## wage education experience age ethnicity region gender occupation
## 2 6.67 12 1 19 cauc other male worker
## 3 4.00 12 4 22 cauc other male worker
## 4 7.50 12 17 35 cauc other male worker
## 7 19.47 12 9 27 cauc other male worker
## 9 8.75 12 9 27 cauc other male worker
## 10 11.35 12 17 35 cauc other male worker
## 11 11.50 12 19 37 cauc other male worker
## 15 7.30 12 37 55 cauc other male worker
## 17 22.20 12 26 44 cauc other male worker
## 19 20.55 12 33 51 cauc other male worker
## 22 3.75 12 9 27 cauc other male worker
## 24 9.56 12 23 41 cauc other male worker
## 26 9.36 12 8 26 cauc other male worker
## 29 4.75 12 8 26 cauc other male worker
## 34 9.25 12 19 37 cauc other male worker
## 35 10.67 12 36 54 other other male worker
## 36 7.61 12 20 38 other south male worker
## 37 10.00 12 35 53 other other male worker
## 38 7.50 12 3 21 cauc other male worker
## 40 3.35 12 0 18 cauc other male worker
## 42 12.00 12 14 32 cauc other male worker
## 49 6.36 12 9 27 cauc other male worker
## 50 9.15 12 7 25 cauc other male worker
## 58 10.00 12 22 40 other other male worker
## 61 10.75 12 24 42 cauc other male worker
## 63 11.43 12 3 21 cauc south male worker
## 64 4.00 12 6 24 other other male worker
## 66 13.00 12 19 37 other south male worker
## 67 12.22 12 19 37 cauc other male worker
## 77 10.00 12 11 29 cauc other male worker
## 78 5.00 12 12 30 other other male worker
## 79 16.00 12 35 53 cauc south male worker
## 81 13.26 12 16 34 cauc other male worker
## 85 9.45 12 13 31 cauc other male worker
## 90 6.73 12 2 20 cauc south male worker
## 91 7.78 12 23 41 cauc other male worker
## 92 2.85 12 1 19 cauc other male worker
## 94 19.98 12 23 41 cauc other male worker
## 95 8.50 12 8 26 other other male worker
## 97 15.00 12 33 51 cauc other male worker
## 102 6.50 12 8 26 cauc other male worker
## 103 9.83 12 23 41 cauc other male worker
## 105 12.50 12 9 27 cauc south male worker
## 108 10.50 12 4 22 cauc other male worker
## 111 12.50 12 11 29 cauc other male worker
## 112 15.00 12 40 58 cauc other male worker
## 113 6.00 12 8 26 cauc other male worker
## 117 12.57 12 12 30 cauc other male worker
## 119 5.50 12 12 30 cauc other male worker
## 120 7.00 12 7 25 cauc other male worker
## 122 6.50 12 28 46 cauc other male worker
## 123 12.00 12 20 38 cauc south male worker
## 124 5.00 12 6 24 cauc south male worker
## 125 6.50 12 5 23 cauc south male worker
## 129 4.50 12 16 34 hispanic south male worker
## 130 6.00 12 1 19 hispanic south male worker
## 131 5.50 12 3 21 cauc other male worker
## 132 13.00 12 8 26 cauc other male worker
## 136 5.25 12 2 20 cauc other male worker
## 139 6.00 12 9 27 cauc other male worker
## 140 6.75 12 12 30 cauc south male worker
## 141 8.89 12 18 36 cauc other male worker
## 145 7.50 12 38 56 cauc south male worker
## 147 11.25 12 41 59 cauc other male worker
## 148 13.45 12 16 34 cauc south male worker
## 152 5.00 12 5 23 cauc south male worker
## 154 6.25 12 1 19 cauc south male worker
## 155 8.50 12 13 31 cauc other male worker
## 163 7.50 12 17 35 cauc other male management
## 171 15.00 12 42 60 cauc other male management
## 179 10.62 12 34 52 cauc south male management
## 187 11.84 12 26 44 cauc other male management
## 191 5.30 12 14 32 other south male management
## 199 1.00 12 24 42 cauc other male management
## 212 9.00 12 16 34 cauc other male sales
## 217 12.50 12 43 61 cauc other male sales
## 220 11.11 12 28 46 cauc south male sales
## 224 10.00 12 20 38 cauc south male sales
## 233 7.00 12 5 23 cauc other male sales
## 239 13.71 12 43 61 cauc other male sales
## 243 9.42 12 32 50 cauc south male sales
## 244 5.50 12 20 38 cauc other male sales
## 246 3.50 12 34 52 cauc other male sales
## 269 9.00 12 20 38 cauc other male office
## 279 8.43 12 12 30 cauc south male office
## 280 4.00 12 8 26 other south male office
## 291 6.85 12 8 26 other other male office
## 293 12.00 12 5 23 cauc south male office
## 299 7.69 12 19 37 cauc other male office
## 311 8.50 12 2 20 other south male office
## 315 5.00 12 4 22 cauc south male office
## 335 6.75 12 22 40 cauc other male office
## 338 3.50 12 35 53 cauc other male office
## 359 16.26 12 14 32 other other male services
## 365 4.00 12 7 25 hispanic south male services
## 374 7.65 12 20 38 cauc other male services
## 385 3.43 12 2 20 other south male services
## 386 5.50 12 20 38 cauc south male services
## 387 6.93 12 26 44 cauc other male services
## 394 5.50 12 10 28 cauc other male services
## 417 13.00 12 25 43 other other male services
## 421 4.00 12 12 30 cauc other male services
## 424 9.00 12 10 28 cauc other male services
## 434 8.75 12 30 48 cauc other male technical
## 476 5.00 12 4 22 hispanic other male technical
## 478 5.75 12 3 21 cauc other male technical
## 513 15.00 12 39 57 cauc other male technical
## 527 16.00 12 12 30 cauc south male technical
## 532 19.88 12 13 31 cauc south male technical
## sector union married
## 2 manufacturing no no
## 3 other no no
## 4 other no yes
## 7 other no no
## 9 other no no
## 10 other yes yes
## 11 manufacturing yes no
## 15 construction no yes
## 17 manufacturing yes yes
## 19 other no yes
## 22 other no no
## 24 other no yes
## 26 manufacturing no yes
## 29 other no yes
## 34 manufacturing no no
## 35 other no no
## 36 construction no yes
## 37 construction yes yes
## 38 other no no
## 40 other no no
## 42 manufacturing no yes
## 49 manufacturing no yes
## 50 other no yes
## 58 manufacturing yes no
## 61 construction yes yes
## 63 construction no no
## 64 manufacturing yes no
## 66 manufacturing yes yes
## 67 construction yes yes
## 77 other yes yes
## 78 other no yes
## 79 manufacturing yes yes
## 81 other yes yes
## 85 manufacturing no no
## 90 manufacturing no yes
## 91 manufacturing no yes
## 92 other no no
## 94 manufacturing no yes
## 95 other yes yes
## 97 construction yes yes
## 102 other no no
## 103 manufacturing no yes
## 105 other no yes
## 108 other yes yes
## 111 construction no no
## 112 construction yes yes
## 113 construction no no
## 117 other yes yes
## 119 other no yes
## 120 other yes yes
## 122 other no yes
## 123 manufacturing yes yes
## 124 construction no no
## 125 manufacturing no no
## 129 other no no
## 130 other yes no
## 131 manufacturing no no
## 132 other no yes
## 136 other no no
## 139 other no yes
## 140 other no yes
## 141 manufacturing no yes
## 145 other no yes
## 147 other yes yes
## 148 other yes yes
## 152 other no yes
## 154 other no no
## 155 manufacturing no yes
## 163 other no no
## 171 manufacturing no yes
## 179 other no yes
## 187 other no yes
## 191 other no yes
## 199 other no yes
## 212 other no yes
## 217 manufacturing no yes
## 220 other no yes
## 224 manufacturing no yes
## 233 other no yes
## 239 other yes yes
## 243 other no yes
## 244 other no yes
## 246 other no yes
## 269 other yes yes
## 279 other no yes
## 280 other no yes
## 291 other no no
## 293 other no no
## 299 other no yes
## 311 other no no
## 315 other no no
## 335 other no no
## 338 other no yes
## 359 other yes no
## 365 other no no
## 374 other no no
## 385 other no no
## 386 other no yes
## 387 other yes yes
## 394 other no yes
## 417 other yes yes
## 421 other no no
## 424 other no yes
## 434 other no yes
## 476 other no no
## 478 other no yes
## 513 other yes yes
## 527 other no yes
## 532 other yes yes
#Nhận xét: Sau khi lọc dữ liệu thì tìm thấy có 109 người có giới tính nam và thỏa điều kiện học lớp 12 chiếm 20,41%
#Lập bảng tần số của biến trình độ học vấn theo độ tuổi
#Sử dụng dữ liệu trong package "ggplot2" cho biến giới tuổi và trình độ học vấn
library(ggplot2)
barplot(hocvan, xlab = " ", ylab = "học vấn", main = "Biểu đồ thể hiện dữ liệu của biến học vấn ", col = c("red", "green", "blue", "pink", "white"))
barplot(Tuoi, xlab = "", ylab = "Tuổi", main = "Biểu đồ thể hiện dữ liệu của biến Tuổi", col = c("red", "green", "blue", "pink", "white"))
#Xử lý dữ liệu
#Lọc dữ liệu:
hocvan10_12 <- hocvan[hocvan>10 & hocvan<12]
hocvan10_12
## [1] 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
## [26] 11 11
#Sắp xếp dữ liệu theo trình độ chuyên môn tăng dần
trinhdotang = h[order(h$occupation),]
trinhdotang
## wage education experience age ethnicity region gender occupation
## 1 5.10 8 21 35 hispanic other female worker
## 1100 4.95 9 42 57 cauc other female worker
## 2 6.67 12 1 19 cauc other male worker
## 3 4.00 12 4 22 cauc other male worker
## 4 7.50 12 17 35 cauc other male worker
## 5 13.07 13 9 28 cauc other male worker
## 6 4.45 10 27 43 cauc south male worker
## 7 19.47 12 9 27 cauc other male worker
## 8 13.28 16 11 33 cauc other male worker
## 9 8.75 12 9 27 cauc other male worker
## 10 11.35 12 17 35 cauc other male worker
## 11 11.50 12 19 37 cauc other male worker
## 12 6.50 8 27 41 cauc south male worker
## 13 6.25 9 30 45 cauc south male worker
## 14 19.98 9 29 44 cauc south male worker
## 15 7.30 12 37 55 cauc other male worker
## 16 8.00 7 44 57 cauc south male worker
## 17 22.20 12 26 44 cauc other male worker
## 18 3.65 11 16 33 cauc other male worker
## 19 20.55 12 33 51 cauc other male worker
## 20 5.71 12 16 34 cauc other female worker
## 21 7.00 7 42 55 other other male worker
## 22 3.75 12 9 27 cauc other male worker
## 23 4.50 11 14 31 other south male worker
## 24 9.56 12 23 41 cauc other male worker
## 25 5.75 6 45 57 cauc south male worker
## 26 9.36 12 8 26 cauc other male worker
## 27 6.50 10 30 46 cauc other male worker
## 28 3.35 12 8 26 cauc other female worker
## 29 4.75 12 8 26 cauc other male worker
## 30 8.90 14 13 33 cauc other male worker
## 31 4.00 12 46 64 cauc south female worker
## 32 4.70 8 19 33 cauc other male worker
## 33 5.00 17 1 24 cauc south female worker
## 34 9.25 12 19 37 cauc other male worker
## 35 10.67 12 36 54 other other male worker
## 36 7.61 12 20 38 other south male worker
## 37 10.00 12 35 53 other other male worker
## 38 7.50 12 3 21 cauc other male worker
## 39 12.20 14 10 30 cauc south male worker
## 40 3.35 12 0 18 cauc other male worker
## 41 11.00 14 14 34 cauc south male worker
## 42 12.00 12 14 32 cauc other male worker
## 43 4.85 9 16 31 cauc other female worker
## 44 4.30 13 8 27 cauc south male worker
## 45 6.00 7 15 28 cauc south female worker
## 46 15.00 16 12 34 cauc other male worker
## 47 4.85 10 13 29 cauc south male worker
## 48 9.00 8 33 47 cauc other male worker
## 49 6.36 12 9 27 cauc other male worker
## 50 9.15 12 7 25 cauc other male worker
## 51 11.00 16 13 35 cauc other male worker
## 52 4.50 12 7 25 cauc other female worker
## 53 4.80 12 16 34 cauc other female worker
## 54 4.00 13 0 19 cauc other male worker
## 55 5.50 12 11 29 cauc other female worker
## 56 8.40 13 17 36 cauc other male worker
## 57 6.75 10 13 29 cauc other male worker
## 58 10.00 12 22 40 other other male worker
## 59 5.00 12 28 46 cauc other female worker
## 60 6.50 11 17 34 cauc other male worker
## 61 10.75 12 24 42 cauc other male worker
## 62 7.00 3 55 64 hispanic south male worker
## 63 11.43 12 3 21 cauc south male worker
## 64 4.00 12 6 24 other other male worker
## 65 9.00 10 27 43 cauc other male worker
## 66 13.00 12 19 37 other south male worker
## 67 12.22 12 19 37 cauc other male worker
## 68 6.28 12 38 56 cauc other female worker
## 69 6.75 10 41 57 other south male worker
## 70 3.35 11 3 20 other south male worker
## 71 16.00 14 20 40 cauc other male worker
## 72 5.25 10 15 31 cauc other male worker
## 73 3.50 8 8 22 hispanic south male worker
## 74 4.22 8 39 53 cauc south female worker
## 75 3.00 6 43 55 hispanic other female worker
## 76 4.00 11 25 42 cauc south female worker
## 77 10.00 12 11 29 cauc other male worker
## 78 5.00 12 12 30 other other male worker
## 79 16.00 12 35 53 cauc south male worker
## 80 13.98 14 14 34 cauc other male worker
## 81 13.26 12 16 34 cauc other male worker
## 82 6.10 10 44 60 cauc other female worker
## 83 3.75 16 13 35 cauc south female worker
## 84 9.00 13 8 27 other other male worker
## 85 9.45 12 13 31 cauc other male worker
## 86 5.50 11 18 35 cauc other male worker
## 87 8.93 12 18 36 cauc other female worker
## 88 6.25 12 6 24 cauc south female worker
## 89 9.75 11 37 54 cauc south male worker
## 90 6.73 12 2 20 cauc south male worker
## 91 7.78 12 23 41 cauc other male worker
## 92 2.85 12 1 19 cauc other male worker
## 93 3.35 12 10 28 other south female worker
## 94 19.98 12 23 41 cauc other male worker
## 95 8.50 12 8 26 other other male worker
## 96 9.75 15 9 30 cauc other female worker
## 97 15.00 12 33 51 cauc other male worker
## 98 8.00 12 19 37 cauc other female worker
## 99 11.25 13 14 33 cauc other male worker
## 100 14.00 11 13 30 cauc other male worker
## 101 10.00 10 12 28 cauc other male worker
## 102 6.50 12 8 26 cauc other male worker
## 103 9.83 12 23 41 cauc other male worker
## 104 18.50 14 13 33 cauc other female worker
## 105 12.50 12 9 27 cauc south male worker
## 106 26.00 14 21 41 cauc other male worker
## 107 14.00 5 44 55 cauc south male worker
## 108 10.50 12 4 22 cauc other male worker
## 109 11.00 8 42 56 cauc other male worker
## 110 12.47 13 10 29 cauc other male worker
## 111 12.50 12 11 29 cauc other male worker
## 112 15.00 12 40 58 cauc other male worker
## 113 6.00 12 8 26 cauc other male worker
## 114 9.50 11 29 46 cauc south male worker
## 115 5.00 16 3 25 cauc other male worker
## 116 3.75 11 11 28 cauc other male worker
## 117 12.57 12 12 30 cauc other male worker
## 118 6.88 8 22 36 hispanic other female worker
## 119 5.50 12 12 30 cauc other male worker
## 120 7.00 12 7 25 cauc other male worker
## 121 4.50 12 15 33 cauc other female worker
## 122 6.50 12 28 46 cauc other male worker
## 123 12.00 12 20 38 cauc south male worker
## 124 5.00 12 6 24 cauc south male worker
## 125 6.50 12 5 23 cauc south male worker
## 126 6.80 9 30 45 cauc south female worker
## 127 8.75 13 18 37 cauc other male worker
## 128 3.75 12 6 24 other south female worker
## 129 4.50 12 16 34 hispanic south male worker
## 130 6.00 12 1 19 hispanic south male worker
## 131 5.50 12 3 21 cauc other male worker
## 132 13.00 12 8 26 cauc other male worker
## 133 5.65 14 2 22 cauc other male worker
## 134 4.80 9 16 31 other other male worker
## 135 7.00 10 9 25 cauc south male worker
## 136 5.25 12 2 20 cauc other male worker
## 137 3.35 7 43 56 cauc south male worker
## 138 8.50 9 38 53 cauc other male worker
## 139 6.00 12 9 27 cauc other male worker
## 140 6.75 12 12 30 cauc south male worker
## 141 8.89 12 18 36 cauc other male worker
## 142 14.21 11 15 32 cauc other male worker
## 143 10.78 11 28 45 other south male worker
## 144 8.90 10 27 43 cauc south male worker
## 145 7.50 12 38 56 cauc south male worker
## 146 4.50 12 3 21 cauc other female worker
## 147 11.25 12 41 59 cauc other male worker
## 148 13.45 12 16 34 cauc south male worker
## 149 6.00 13 7 26 cauc south male worker
## 150 4.62 6 33 45 other south female worker
## 151 10.58 14 25 45 cauc other male worker
## 152 5.00 12 5 23 cauc south male worker
## 153 8.20 14 17 37 other south male worker
## 154 6.25 12 1 19 cauc south male worker
## 155 8.50 12 13 31 cauc other male worker
## 429 10.00 13 34 53 cauc other male technical
## 430 18.00 18 15 39 cauc other male technical
## 431 24.98 17 31 54 cauc other male technical
## 432 12.05 16 6 28 cauc other female technical
## 433 22.00 14 15 35 cauc south male technical
## 434 8.75 12 30 48 cauc other male technical
## 435 22.20 18 8 32 cauc other male technical
## 436 17.25 18 5 29 cauc other male technical
## 437 6.00 17 3 26 cauc other female technical
## 438 8.06 13 17 36 cauc south male technical
## 439 9.24 16 5 27 other other male technical
## 440 12.00 14 10 30 cauc other female technical
## 441 10.61 15 33 54 cauc other female technical
## 442 5.71 18 3 27 cauc other male technical
## 443 10.00 16 0 18 cauc other female technical
## 444 17.50 16 13 35 other south male technical
## 445 15.00 18 12 36 cauc other male technical
## 446 7.78 16 6 28 cauc other female technical
## 447 7.80 17 7 30 cauc other male technical
## 448 10.00 16 14 36 cauc south male technical
## 449 24.98 17 5 28 cauc other female technical
## 450 10.28 15 10 31 cauc south female technical
## 451 15.00 18 11 35 cauc other female technical
## 452 12.00 17 24 47 cauc other female technical
## 453 10.58 16 9 31 cauc other male technical
## 454 5.85 18 12 36 cauc south male technical
## 455 11.22 18 19 43 cauc other male technical
## 456 8.56 14 14 34 cauc other female technical
## 457 13.89 16 17 39 cauc other female technical
## 458 5.71 18 7 31 cauc south male technical
## 459 15.79 18 7 31 cauc other male technical
## 460 7.50 16 22 44 cauc other female technical
## 461 11.25 12 28 46 cauc other female technical
## 462 6.15 16 16 38 cauc other female technical
## 463 13.45 16 16 38 other south male technical
## 464 6.25 16 7 29 cauc other female technical
## 465 6.50 12 11 29 cauc other female technical
## 466 12.00 12 11 29 cauc other female technical
## 467 8.50 12 16 34 cauc other female technical
## 468 8.00 18 33 57 cauc other male technical
## 469 5.75 12 21 39 cauc south female technical
## 470 15.73 16 4 26 cauc other male technical
## 471 9.86 15 13 34 cauc other male technical
## 472 13.51 18 14 38 cauc other male technical
## 473 5.40 16 10 32 cauc other female technical
## 474 6.25 18 14 38 cauc south male technical
## 475 5.50 16 29 51 cauc south male technical
## 476 5.00 12 4 22 hispanic other male technical
## 477 6.25 18 27 51 other other male technical
## 478 5.75 12 3 21 cauc other male technical
## 479 20.50 16 14 36 cauc south male technical
## 480 5.00 14 0 20 cauc other male technical
## 481 7.00 18 33 57 cauc other male technical
## 482 18.00 16 38 60 cauc south male technical
## 483 12.00 18 18 42 cauc other female technical
## 484 20.40 17 3 26 cauc other male technical
## 485 22.20 18 40 64 cauc other female technical
## 486 16.42 14 19 39 cauc other male technical
## 487 8.63 14 4 24 cauc other female technical
## 488 19.38 16 11 33 cauc other female technical
## 489 14.00 16 16 38 cauc other female technical
## 490 10.00 14 22 42 cauc other male technical
## 491 15.95 17 13 36 cauc other female technical
## 492 20.00 16 28 50 cauc south female technical
## 493 10.00 16 10 32 cauc other female technical
## 494 24.98 16 5 27 cauc south female technical
## 495 11.25 15 5 26 cauc other male technical
## 496 22.83 18 37 61 cauc other female technical
## 497 10.20 17 26 49 cauc other female technical
## 498 10.00 16 4 26 cauc south female technical
## 499 14.00 18 31 55 cauc other female technical
## 500 12.50 17 13 36 cauc other female technical
## 501 5.79 12 42 60 cauc other female technical
## 502 24.98 17 18 41 hispanic other male technical
## 503 4.35 12 3 21 cauc other female technical
## 504 11.25 17 10 33 cauc other female technical
## 505 6.67 16 10 32 cauc other female technical
## 506 8.00 16 17 39 hispanic other female technical
## 507 18.16 18 7 31 cauc other male technical
## 508 12.00 16 14 36 cauc other female technical
## 509 8.89 16 22 44 cauc other female technical
## 510 9.50 17 14 37 cauc other female technical
## 511 13.65 16 11 33 cauc other male technical
## 512 12.00 18 23 47 cauc other male technical
## 513 15.00 12 39 57 cauc other male technical
## 514 12.67 16 15 37 cauc other male technical
## 515 7.38 14 15 35 hispanic other female technical
## 516 15.56 16 10 32 cauc other male technical
## 517 7.45 12 25 43 cauc south female technical
## 518 6.25 14 12 32 cauc other female technical
## 519 6.25 16 7 29 hispanic south female technical
## 520 9.37 17 7 30 cauc other male technical
## 521 22.50 16 17 39 cauc other male technical
## 522 7.50 16 10 32 cauc other male technical
## 523 7.00 17 2 25 cauc south male technical
## 524 5.75 9 34 49 other south female technical
## 525 7.67 15 11 32 cauc other female technical
## 526 12.50 15 10 31 cauc other male technical
## 527 16.00 12 12 30 cauc south male technical
## 528 11.79 16 6 28 cauc other female technical
## 529 11.36 18 5 29 cauc other male technical
## 530 6.10 12 33 51 other other female technical
## 531 23.25 17 25 48 other other female technical
## 532 19.88 12 13 31 cauc south male technical
## 533 15.38 16 33 55 cauc other male technical
## 346 6.00 4 54 64 cauc other male services
## 347 7.14 14 17 37 cauc other male services
## 348 3.40 8 29 43 other other female services
## 349 6.00 15 26 47 cauc south female services
## 350 3.75 2 16 24 hispanic other male services
## 351 8.89 8 29 43 other other female services
## 352 4.35 11 20 37 cauc other female services
## 353 13.10 10 38 54 other south female services
## 354 4.35 8 37 51 other south female services
## 355 3.50 9 48 63 cauc other male services
## 356 3.80 12 16 34 cauc other female services
## 357 5.26 8 38 52 cauc other female services
## 358 3.35 14 0 20 other other male services
## 359 16.26 12 14 32 other other male services
## 360 4.25 12 2 20 cauc other female services
## 361 4.50 16 21 43 cauc other male services
## 362 8.00 13 15 34 cauc other female services
## 363 4.00 16 20 42 cauc other female services
## 364 7.96 14 12 32 cauc other female services
## 365 4.00 12 7 25 hispanic south male services
## 366 4.15 11 4 21 cauc other male services
## 367 5.95 13 9 28 cauc south male services
## 368 3.60 12 43 61 hispanic south female services
## 369 8.75 10 19 35 cauc south male services
## 370 3.40 8 49 63 cauc other female services
## 371 4.28 12 38 56 cauc other female services
## 372 5.35 12 13 31 cauc other female services
## 373 5.00 12 14 32 cauc other female services
## 374 7.65 12 20 38 cauc other male services
## 375 6.94 12 7 25 cauc other female services
## 376 7.50 12 9 27 cauc other female services
## 377 3.60 12 6 24 cauc other female services
## 378 1.75 12 5 23 cauc south female services
## 379 3.45 13 1 20 other south female services
## 380 9.63 14 22 42 cauc other male services
## 381 8.49 12 24 42 cauc other female services
## 382 8.99 12 15 33 cauc other female services
## 383 3.65 11 8 25 cauc south female services
## 384 3.50 11 17 34 cauc south female services
## 385 3.43 12 2 20 other south male services
## 386 5.50 12 20 38 cauc south male services
## 387 6.93 12 26 44 cauc other male services
## 388 3.51 10 37 53 other south female services
## 389 3.75 12 41 59 cauc other female services
## 390 4.17 12 27 45 cauc other female services
## 391 9.57 12 5 23 cauc other female services
## 392 14.67 14 16 36 other other male services
## 393 12.50 14 19 39 cauc other female services
## 394 5.50 12 10 28 cauc other male services
## 395 5.15 13 1 20 cauc south male services
## 396 8.00 12 43 61 other other female services
## 397 5.83 13 3 22 other other male services
## 398 3.35 12 0 18 cauc other female services
## 399 7.00 12 26 44 cauc south female services
## 400 10.00 10 25 41 cauc other female services
## 401 8.00 12 15 33 cauc other female services
## 402 6.88 14 10 30 cauc south female services
## 403 5.55 11 45 62 cauc other female services
## 404 7.50 11 3 20 other other male services
## 405 8.93 8 47 61 hispanic other male services
## 406 9.00 16 6 28 other other female services
## 407 3.50 10 33 49 cauc south female services
## 408 5.77 16 3 25 cauc other male services
## 409 25.00 14 4 24 hispanic other male services
## 410 6.85 14 34 54 other other male services
## 411 6.50 11 39 56 cauc south male services
## 412 3.75 12 17 35 cauc south female services
## 413 3.50 9 47 62 cauc other male services
## 414 4.50 11 2 19 cauc other male services
## 415 2.01 13 0 19 cauc south male services
## 416 4.17 14 24 44 cauc other female services
## 417 13.00 12 25 43 other other male services
## 418 3.98 14 6 26 cauc other female services
## 419 7.50 12 10 28 cauc other female services
## 420 13.12 12 33 51 other other female services
## 421 4.00 12 12 30 cauc other male services
## 422 3.95 12 9 27 cauc south female services
## 423 13.00 11 18 35 cauc south male services
## 424 9.00 12 10 28 cauc other male services
## 425 4.55 8 45 59 cauc south female services
## 426 9.50 9 46 61 cauc other female services
## 427 4.50 7 14 27 hispanic south male services
## 428 8.75 11 36 53 cauc other female services
## 249 5.00 14 17 37 hispanic other female office
## 250 8.75 13 10 29 cauc south female office
## 251 10.00 16 7 29 cauc other female office
## 252 8.50 12 25 43 cauc other female office
## 253 8.63 12 18 36 other other female office
## 254 9.00 16 27 49 cauc other female office
## 255 5.50 16 2 24 cauc other female office
## 256 11.11 13 13 32 cauc other male office
## 257 10.00 14 24 44 cauc other female office
## 258 5.20 18 13 37 hispanic south female office
## 259 8.00 14 15 35 cauc other female office
## 260 3.56 12 12 30 hispanic south female office
## 261 5.20 12 24 42 cauc other female office
## 262 11.67 12 43 61 cauc other female office
## 263 11.32 12 13 31 cauc other female office
## 264 7.50 12 16 34 cauc south female office
## 265 5.50 11 24 41 cauc other female office
## 266 5.00 16 4 26 cauc south female office
## 267 7.75 12 24 42 cauc other female office
## 268 5.25 12 45 63 cauc other female office
## 269 9.00 12 20 38 cauc other male office
## 270 9.65 12 38 56 cauc other female office
## 271 5.21 18 10 34 cauc south male office
## 272 7.00 11 16 33 other other female office
## 273 12.16 12 32 50 other south female office
## 274 5.25 16 2 24 cauc south female office
## 275 10.32 13 28 47 cauc south female office
## 276 3.35 16 3 25 other other male office
## 277 7.70 13 8 27 cauc other female office
## 278 9.17 12 44 62 cauc other female office
## 279 8.43 12 12 30 cauc south male office
## 280 4.00 12 8 26 other south male office
## 281 4.13 12 4 22 cauc other female office
## 282 3.00 12 28 46 cauc south female office
## 283 4.25 13 0 19 cauc south female office
## 284 7.53 14 1 21 cauc south male office
## 285 10.53 14 12 32 cauc other female office
## 286 5.00 12 39 57 cauc other female office
## 287 15.03 12 24 42 cauc other female office
## 288 11.25 17 32 55 other other female office
## 289 6.25 16 4 26 other other male office
## 290 3.50 12 25 43 other other female office
## 291 6.85 12 8 26 other other male office
## 292 12.50 13 16 35 cauc other female office
## 293 12.00 12 5 23 cauc south male office
## 294 6.00 13 31 50 cauc other male office
## 295 9.50 12 25 43 cauc other female office
## 296 4.10 12 15 33 cauc other female office
## 297 10.43 14 15 35 cauc south female office
## 298 5.00 12 0 18 cauc other female office
## 299 7.69 12 19 37 cauc other male office
## 300 5.50 12 21 39 other other female office
## 301 6.40 12 6 24 cauc other female office
## 302 12.50 12 14 32 cauc other female office
## 303 6.25 13 30 49 cauc other female office
## 304 8.00 12 8 26 cauc other female office
## 305 9.60 9 33 48 cauc other male office
## 306 9.10 13 16 35 hispanic other male office
## 307 7.50 12 20 38 cauc south female office
## 308 5.00 13 6 25 cauc south female office
## 309 7.00 12 10 28 cauc other female office
## 310 3.55 13 1 20 cauc south female office
## 311 8.50 12 2 20 other south male office
## 312 4.50 13 0 19 cauc south female office
## 313 7.88 16 17 39 other other male office
## 314 5.25 12 8 26 cauc other female office
## 315 5.00 12 4 22 cauc south male office
## 316 9.33 12 15 33 cauc other female office
## 317 10.50 12 29 47 cauc other female office
## 318 7.50 12 23 41 other south female office
## 319 9.50 12 39 57 cauc south female office
## 320 9.60 12 14 32 cauc south female office
## 321 5.87 17 6 29 other south female office
## 322 11.02 14 12 32 cauc south male office
## 323 5.00 12 26 44 cauc south female office
## 324 5.62 14 32 52 cauc other female office
## 325 12.50 15 6 27 cauc other female office
## 326 10.81 12 40 58 cauc other female office
## 327 5.40 12 18 36 cauc other female office
## 328 7.00 11 12 29 cauc other female office
## 329 4.59 12 36 54 cauc south female office
## 330 6.00 12 19 37 cauc other female office
## 331 11.71 16 42 64 cauc other female office
## 332 5.62 13 2 21 hispanic other female office
## 333 5.50 12 33 51 cauc other female office
## 334 4.85 12 14 32 cauc south female office
## 335 6.75 12 22 40 cauc other male office
## 336 4.25 12 20 38 cauc other female office
## 337 5.75 12 15 33 cauc other female office
## 338 3.50 12 35 53 cauc other male office
## 339 3.35 12 7 25 cauc other female office
## 340 10.62 12 45 63 cauc other female office
## 341 8.00 12 9 27 cauc other female office
## 342 4.75 12 2 20 cauc south female office
## 343 8.50 17 3 26 cauc south male office
## 344 8.85 14 19 39 other other female office
## 345 8.00 12 14 32 cauc south female office
## 211 4.55 13 33 52 cauc other female sales
## 212 9.00 12 16 34 cauc other male sales
## 213 13.33 18 10 34 cauc other male sales
## 214 15.00 14 22 42 cauc other male sales
## 215 7.50 14 2 22 cauc other male sales
## 216 4.25 12 29 47 cauc south female sales
## 217 12.50 12 43 61 cauc other male sales
## 218 5.13 12 5 23 cauc other female sales
## 219 3.35 16 14 36 other south female sales
## 220 11.11 12 28 46 cauc south male sales
## 221 3.84 11 25 42 other south female sales
## 222 6.40 12 45 63 cauc other female sales
## 223 5.56 14 5 25 cauc south male sales
## 224 10.00 12 20 38 cauc south male sales
## 225 5.65 16 6 28 cauc other female sales
## 226 11.50 16 16 38 cauc other male sales
## 227 3.50 11 33 50 cauc other female sales
## 228 3.35 13 2 21 cauc south female sales
## 229 4.75 12 10 28 cauc south female sales
## 230 19.98 14 44 64 cauc south male sales
## 231 3.50 14 6 26 cauc south female sales
## 232 4.00 12 15 33 cauc other female sales
## 233 7.00 12 5 23 cauc other male sales
## 234 6.25 13 4 23 cauc other female sales
## 235 4.50 14 14 34 cauc other male sales
## 236 14.29 14 32 52 cauc other female sales
## 237 5.00 12 14 32 cauc other female sales
## 238 13.75 14 21 41 cauc other male sales
## 239 13.71 12 43 61 cauc other male sales
## 240 7.50 12 27 45 other south female sales
## 241 3.80 12 4 22 cauc other female sales
## 242 5.00 14 0 20 hispanic other male sales
## 243 9.42 12 32 50 cauc south male sales
## 244 5.50 12 20 38 cauc other male sales
## 245 3.75 15 4 25 cauc south male sales
## 246 3.50 12 34 52 cauc other male sales
## 247 5.80 13 5 24 cauc other male sales
## 248 12.00 17 13 36 cauc other male sales
## 156 24.98 16 18 40 cauc other male management
## 157 16.65 14 21 41 cauc south male management
## 158 6.25 14 2 22 cauc other male management
## 159 4.55 12 4 22 hispanic south female management
## 160 11.25 12 30 48 hispanic south female management
## 161 21.25 13 32 51 cauc other male management
## 162 12.65 17 13 36 cauc other female management
## 163 7.50 12 17 35 cauc other male management
## 164 10.25 14 26 46 cauc other female management
## 165 3.35 16 9 31 cauc other male management
## 166 13.45 16 8 30 other other male management
## 167 4.84 15 1 22 cauc other male management
## 168 26.29 17 32 55 cauc south male management
## 169 6.58 12 24 42 cauc other female management
## 170 44.50 14 1 21 cauc other female management
## 171 15.00 12 42 60 cauc other male management
## 172 11.25 16 3 25 other other female management
## 173 7.00 12 32 50 cauc other female management
## 174 10.00 14 22 42 other other male management
## 175 14.53 16 18 40 cauc other male management
## 176 20.00 18 19 43 cauc other female management
## 177 22.50 15 12 33 cauc other male management
## 178 3.64 12 42 60 cauc other female management
## 179 10.62 12 34 52 cauc south male management
## 180 24.98 18 29 53 cauc other male management
## 181 6.00 16 8 30 cauc south male management
## 182 19.00 18 13 37 cauc other male management
## 183 13.20 16 10 32 cauc other male management
## 184 22.50 16 22 44 cauc other male management
## 185 15.00 16 10 32 cauc south male management
## 186 6.88 17 15 38 cauc other female management
## 187 11.84 12 26 44 cauc other male management
## 188 16.14 14 16 36 cauc other male management
## 189 13.95 18 14 38 cauc other female management
## 190 13.16 12 38 56 cauc other female management
## 191 5.30 12 14 32 other south male management
## 192 4.50 12 7 25 cauc other female management
## 193 10.00 18 13 37 cauc south female management
## 194 10.00 10 20 36 cauc other male management
## 195 10.00 16 7 29 hispanic other male management
## 196 9.37 16 26 48 cauc other female management
## 197 5.80 16 14 36 cauc other male management
## 198 17.86 13 36 55 cauc other male management
## 199 1.00 12 24 42 cauc other male management
## 200 8.80 14 41 61 cauc south male management
## 201 9.00 16 7 29 other other male management
## 202 18.16 17 14 37 cauc south male management
## 203 7.81 12 1 19 cauc south female management
## 204 10.62 16 6 28 cauc other female management
## 205 4.50 12 3 21 cauc other female management
## 206 17.25 15 31 52 cauc other male management
## 207 10.50 13 14 33 cauc other female management
## 208 9.22 14 13 33 cauc other female management
## 209 15.00 16 26 48 other other male management
## 210 22.50 18 14 38 cauc other male management
## sector union married
## 1 manufacturing no yes
## 1100 manufacturing no yes
## 2 manufacturing no no
## 3 other no no
## 4 other no yes
## 5 other yes no
## 6 other no no
## 7 other no no
## 8 manufacturing no yes
## 9 other no no
## 10 other yes yes
## 11 manufacturing yes no
## 12 other no yes
## 13 other yes no
## 14 other no yes
## 15 construction no yes
## 16 other no yes
## 17 manufacturing yes yes
## 18 other no no
## 19 other no yes
## 20 manufacturing yes yes
## 21 manufacturing yes yes
## 22 other no no
## 23 other no yes
## 24 other no yes
## 25 manufacturing no yes
## 26 manufacturing no yes
## 27 other no yes
## 28 manufacturing no yes
## 29 other no yes
## 30 other no no
## 31 other no no
## 32 other no yes
## 33 other no no
## 34 manufacturing no no
## 35 other no no
## 36 construction no yes
## 37 construction yes yes
## 38 other no no
## 39 manufacturing no yes
## 40 other no no
## 41 manufacturing yes yes
## 42 manufacturing no yes
## 43 manufacturing no yes
## 44 construction no no
## 45 manufacturing no yes
## 46 manufacturing no yes
## 47 other no no
## 48 other yes yes
## 49 manufacturing no yes
## 50 other no yes
## 51 manufacturing yes yes
## 52 manufacturing no yes
## 53 manufacturing no yes
## 54 other no no
## 55 manufacturing no no
## 56 manufacturing no no
## 57 manufacturing no yes
## 58 manufacturing yes no
## 59 manufacturing no yes
## 60 other no no
## 61 construction yes yes
## 62 manufacturing no yes
## 63 construction no no
## 64 manufacturing yes no
## 65 construction no yes
## 66 manufacturing yes yes
## 67 construction yes yes
## 68 manufacturing no yes
## 69 manufacturing yes yes
## 70 manufacturing no no
## 71 other yes yes
## 72 other no yes
## 73 manufacturing no yes
## 74 manufacturing no yes
## 75 manufacturing yes yes
## 76 manufacturing yes yes
## 77 other yes yes
## 78 other no yes
## 79 manufacturing yes yes
## 80 other no no
## 81 other yes yes
## 82 manufacturing yes no
## 83 other no no
## 84 manufacturing yes no
## 85 manufacturing no no
## 86 other yes yes
## 87 other no yes
## 88 other no no
## 89 manufacturing yes yes
## 90 manufacturing no yes
## 91 manufacturing no yes
## 92 other no no
## 93 manufacturing no yes
## 94 manufacturing no yes
## 95 other yes yes
## 96 manufacturing no yes
## 97 construction yes yes
## 98 manufacturing no yes
## 99 other no yes
## 100 other yes yes
## 101 construction no yes
## 102 other no no
## 103 manufacturing no yes
## 104 manufacturing no no
## 105 other no yes
## 106 other yes yes
## 107 construction no yes
## 108 other yes yes
## 109 manufacturing no yes
## 110 other yes yes
## 111 construction no no
## 112 construction yes yes
## 113 construction no no
## 114 construction no yes
## 115 other yes no
## 116 construction no no
## 117 other yes yes
## 118 other no yes
## 119 other no yes
## 120 other yes yes
## 121 manufacturing no no
## 122 other no yes
## 123 manufacturing yes yes
## 124 construction no no
## 125 manufacturing no no
## 126 manufacturing no yes
## 127 other no yes
## 128 manufacturing no yes
## 129 other no no
## 130 other yes no
## 131 manufacturing no no
## 132 other no yes
## 133 manufacturing no no
## 134 manufacturing no no
## 135 construction no yes
## 136 other no no
## 137 manufacturing no yes
## 138 manufacturing no yes
## 139 other no yes
## 140 other no yes
## 141 manufacturing no yes
## 142 manufacturing yes no
## 143 construction yes yes
## 144 construction yes yes
## 145 other no yes
## 146 manufacturing no no
## 147 other yes yes
## 148 other yes yes
## 149 manufacturing no yes
## 150 manufacturing no no
## 151 manufacturing no yes
## 152 other no yes
## 153 other no no
## 154 other no no
## 155 manufacturing no yes
## 429 construction yes yes
## 430 other no yes
## 431 manufacturing no yes
## 432 manufacturing no no
## 433 other no yes
## 434 other no yes
## 435 other no yes
## 436 manufacturing no yes
## 437 other yes no
## 438 other no yes
## 439 manufacturing yes yes
## 440 other no yes
## 441 other no no
## 442 other no yes
## 443 other no no
## 444 other no yes
## 445 other no yes
## 446 other no yes
## 447 other no yes
## 448 other yes yes
## 449 other no no
## 450 other no yes
## 451 other no yes
## 452 other no yes
## 453 manufacturing no no
## 454 other no yes
## 455 other no yes
## 456 other no yes
## 457 manufacturing no no
## 458 other no no
## 459 other no yes
## 460 other no yes
## 461 other no yes
## 462 other no no
## 463 other no no
## 464 other no yes
## 465 other no no
## 466 other no yes
## 467 other no no
## 468 other yes no
## 469 other no yes
## 470 manufacturing no yes
## 471 other no yes
## 472 other yes yes
## 473 other no yes
## 474 other no yes
## 475 other no yes
## 476 other no no
## 477 other no yes
## 478 other no yes
## 479 other yes yes
## 480 construction no yes
## 481 other no yes
## 482 other no yes
## 483 other yes yes
## 484 manufacturing no no
## 485 other no no
## 486 manufacturing no no
## 487 other no no
## 488 other no yes
## 489 other no yes
## 490 other no yes
## 491 other yes no
## 492 other yes yes
## 493 other no yes
## 494 other no no
## 495 other no no
## 496 manufacturing no no
## 497 other yes yes
## 498 other no yes
## 499 other yes no
## 500 other yes yes
## 501 other no yes
## 502 other no yes
## 503 other no yes
## 504 other no no
## 505 other yes no
## 506 other no yes
## 507 other no yes
## 508 other no yes
## 509 other yes yes
## 510 other no yes
## 511 other no yes
## 512 other yes yes
## 513 other yes yes
## 514 other no yes
## 515 other no no
## 516 other no no
## 517 other no no
## 518 other no yes
## 519 other no yes
## 520 other yes yes
## 521 manufacturing no yes
## 522 other yes yes
## 523 other no yes
## 524 other yes yes
## 525 other no yes
## 526 other no no
## 527 other no yes
## 528 other yes no
## 529 other no no
## 530 other no yes
## 531 other yes yes
## 532 other yes yes
## 533 manufacturing no yes
## 346 other no yes
## 347 other no yes
## 348 other no yes
## 349 other no no
## 350 other no no
## 351 other no no
## 352 other no yes
## 353 other no yes
## 354 other no yes
## 355 other no no
## 356 other no no
## 357 other no yes
## 358 other no no
## 359 other yes no
## 360 other no yes
## 361 other no yes
## 362 other no yes
## 363 other no no
## 364 other no yes
## 365 other no no
## 366 other no yes
## 367 other no yes
## 368 other no yes
## 369 other no no
## 370 other no no
## 371 other no yes
## 372 other no yes
## 373 other no yes
## 374 other no no
## 375 other no no
## 376 manufacturing yes yes
## 377 other no no
## 378 other no yes
## 379 other no no
## 380 other yes yes
## 381 other no yes
## 382 other yes no
## 383 other no yes
## 384 other no yes
## 385 other no no
## 386 other no yes
## 387 other yes yes
## 388 other no yes
## 389 other no no
## 390 other no yes
## 391 other yes yes
## 392 other no yes
## 393 other no yes
## 394 other no yes
## 395 other yes no
## 396 other yes yes
## 397 other no no
## 398 other no no
## 399 other no yes
## 400 other yes yes
## 401 other no yes
## 402 other no no
## 403 other yes no
## 404 other no no
## 405 other yes yes
## 406 other no yes
## 407 other no no
## 408 manufacturing no no
## 409 other yes no
## 410 other yes yes
## 411 other no yes
## 412 other no yes
## 413 other yes yes
## 414 other no no
## 415 other no no
## 416 other no no
## 417 other yes yes
## 418 other no no
## 419 other no no
## 420 other no yes
## 421 other no no
## 422 other no yes
## 423 other yes yes
## 424 other no yes
## 425 other no no
## 426 other yes yes
## 427 other no yes
## 428 other no no
## 249 other no yes
## 250 other no yes
## 251 other no yes
## 252 other no no
## 253 other no yes
## 254 manufacturing no yes
## 255 other no no
## 256 other no yes
## 257 other no no
## 258 other no yes
## 259 other yes no
## 260 other no no
## 261 other no yes
## 262 construction no yes
## 263 manufacturing no yes
## 264 other no yes
## 265 other no yes
## 266 other no yes
## 267 other no yes
## 268 other no yes
## 269 other yes yes
## 270 other no yes
## 271 other no yes
## 272 other no yes
## 273 other no yes
## 274 other no no
## 275 other no no
## 276 other no no
## 277 other yes no
## 278 manufacturing no yes
## 279 other no yes
## 280 other no yes
## 281 other no yes
## 282 other no yes
## 283 other no no
## 284 other no no
## 285 manufacturing no yes
## 286 other no yes
## 287 other no yes
## 288 other no yes
## 289 other no no
## 290 other no no
## 291 other no no
## 292 other no yes
## 293 other no no
## 294 other no no
## 295 other no no
## 296 other no yes
## 297 other no yes
## 298 other no no
## 299 other no yes
## 300 other no no
## 301 other no no
## 302 other yes yes
## 303 other no yes
## 304 other no no
## 305 other yes no
## 306 other no no
## 307 other no no
## 308 other no yes
## 309 other yes yes
## 310 other no no
## 311 other no no
## 312 other no no
## 313 other no yes
## 314 other no no
## 315 other no no
## 316 other no no
## 317 other no yes
## 318 other no yes
## 319 other no yes
## 320 other no yes
## 321 other no no
## 322 other yes yes
## 323 other no no
## 324 other no yes
## 325 other no yes
## 326 other no yes
## 327 manufacturing no yes
## 328 other no no
## 329 construction no yes
## 330 other no yes
## 331 manufacturing no no
## 332 other no yes
## 333 other no yes
## 334 other no yes
## 335 other no no
## 336 other no yes
## 337 other no yes
## 338 other no yes
## 339 other no yes
## 340 manufacturing no no
## 341 other no no
## 342 other no yes
## 343 other no no
## 344 other yes yes
## 345 other no yes
## 211 other no yes
## 212 other no yes
## 213 other no yes
## 214 other no no
## 215 other no no
## 216 other no yes
## 217 manufacturing no yes
## 218 other no yes
## 219 other no yes
## 220 other no yes
## 221 other no yes
## 222 other no yes
## 223 other no no
## 224 manufacturing no yes
## 225 other no yes
## 226 other no yes
## 227 other no yes
## 228 other no yes
## 229 other no no
## 230 other no yes
## 231 other no yes
## 232 other no no
## 233 other no yes
## 234 manufacturing no yes
## 235 other no yes
## 236 other no yes
## 237 other no yes
## 238 other no yes
## 239 other yes yes
## 240 other no yes
## 241 other no no
## 242 other no no
## 243 other no yes
## 244 other no yes
## 245 other no no
## 246 other no yes
## 247 other no no
## 248 manufacturing no yes
## 156 other no yes
## 157 other no yes
## 158 other no no
## 159 other no no
## 160 other no yes
## 161 other no no
## 162 other no yes
## 163 other no no
## 164 other no yes
## 165 other no no
## 166 other no no
## 167 other yes yes
## 168 other no yes
## 169 other no yes
## 170 other no no
## 171 manufacturing no yes
## 172 manufacturing no no
## 173 other no yes
## 174 other no no
## 175 other no yes
## 176 other no yes
## 177 other no yes
## 178 other no yes
## 179 other no yes
## 180 other no yes
## 181 other no no
## 182 manufacturing no no
## 183 other no no
## 184 other no yes
## 185 other no yes
## 186 other no yes
## 187 other no yes
## 188 other no no
## 189 other no yes
## 190 other no yes
## 191 other no yes
## 192 other no yes
## 193 other no no
## 194 other no yes
## 195 other yes yes
## 196 other no yes
## 197 other no yes
## 198 other no no
## 199 other no yes
## 200 other no yes
## 201 other no yes
## 202 other no no
## 203 other no no
## 204 manufacturing no yes
## 205 other no yes
## 206 other no yes
## 207 manufacturing no yes
## 208 other no yes
## 209 manufacturing yes yes
## 210 other no yes
#Lập bảng tần số
sec <- h$sector
table(sec)
## sec
## manufacturing construction other
## 99 24 411
#Nhận xét:ngành dựa vào yếu tố cấp độ cho thấy có 441 người làm ngành khác chiếm tỷ lệ cao nhất 76,97%, ngành chế tạo và khai khoáng là 99 người chiếm tỷ lệ vừa phải 18,54%, ngành xây dựng 24 người chiếm tỷ lệ rất thấp 4,49%
#Lập bảng tần số cho biến "experience"
exp <- h$experience
table(cut(exp,6))
##
## (-0.055,9.17] (9.17,18.3] (18.3,27.5] (27.5,36.7] (36.7,45.8]
## 156 169 89 61 51
## (45.8,55.1]
## 8
#Nhận xét: Số năm kinh nghiệm làm việc ở trong khoảng (-0.055,9.17] và (9.17,18.3] chiếm tỉ lệ cao lần lượt là 156 người (chiếm 29,21%) và 169 người (chiếm 31,65%), trong khoảng (18.3,27.5], (27.5,36.7], (36.7,45.8] chiếm tỷ lệ vừa phải lần lượt là 89 nguời (16,67%), 61 người (chiếm 11,42%) và 51 người (chiếm 9,55%) và khoảng (45.8,55.1] chiếm tỷ lệ rất thấp 1,98%