#Đọc dữ liệu vào RT
os <- read.csv("Osteo data.csv", header = TRUE)
head(os)
## id lean.mass fat.mass pcfat age height weight bmi osta osteo osteo.group
## 1 1 27.98 16.49 37.09 76 156.0 45.0 18.5 6.2 2 Osteoporosis
## 2 8 29.02 27.54 48.70 54 153.0 56.0 23.9 -0.4 1 Osteopenia
## 3 21 31.72 20.65 39.43 56 158.2 51.5 20.6 0.9 1 Osteopenia
## 4 38 35.96 21.96 37.92 54 154.0 51.0 21.5 0.6 1 Osteopenia
## 5 39 35.00 26.29 42.89 60 159.5 60.0 23.6 0.0 1 Osteopenia
## 6 53 32.58 19.82 37.82 53 156.0 51.0 21.0 0.4 1 Osteopenia
os$Feet <- os$height*0.33
os$Pound <- os$weight*2.21
head(os)
## id lean.mass fat.mass pcfat age height weight bmi osta osteo osteo.group
## 1 1 27.98 16.49 37.09 76 156.0 45.0 18.5 6.2 2 Osteoporosis
## 2 8 29.02 27.54 48.70 54 153.0 56.0 23.9 -0.4 1 Osteopenia
## 3 21 31.72 20.65 39.43 56 158.2 51.5 20.6 0.9 1 Osteopenia
## 4 38 35.96 21.96 37.92 54 154.0 51.0 21.5 0.6 1 Osteopenia
## 5 39 35.00 26.29 42.89 60 159.5 60.0 23.6 0.0 1 Osteopenia
## 6 53 32.58 19.82 37.82 53 156.0 51.0 21.0 0.4 1 Osteopenia
## Feet Pound
## 1 51.480 99.450
## 2 50.490 123.760
## 3 52.206 113.815
## 4 50.820 112.710
## 5 52.635 132.600
## 6 51.480 112.710
summary(lm(pcfat~bmi, data = os))
##
## Call:
## lm(formula = pcfat ~ bmi, data = os)
##
## Residuals:
## Min 1Q Median 3Q Max
## -13.9528 -2.1885 0.3133 2.6410 8.1807
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 25.79338 1.51238 17.05 <2e-16 ***
## bmi 0.73140 0.06431 11.37 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.627 on 298 degrees of freedom
## Multiple R-squared: 0.3027, Adjusted R-squared: 0.3003
## F-statistic: 129.3 on 1 and 298 DF, p-value: < 2.2e-16
library(ggplot2)