Dataset

#Data File
FS <- read.csv("fampilot.csv", header = T, na.strings=c(".", "", " ", "NA", "-99"))

#Sample Size: Number of participants (rows)
nrow(FS)
## [1] 104

Conditions

Control Condition

Biochar

Quiz Questions & Attention Check

## Time Spent Reading Instructions 
describe(FS$BioCon_InstTime_Page.Submit)
## FS$BioCon_InstTime_Page.Submit 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       12       92       12        1    4.141    4.035    1.193    1.236 
##      .25      .50      .75      .90      .95 
##    1.714    2.664    4.636    5.651   11.156 
## 
## lowest :  1.184  1.201  1.546  1.770  2.202, highest:  3.294  4.447  5.201  5.701 17.824
##                                                                          
## Value       1.184  1.201  1.546  1.770  2.202  2.412  2.916  3.294  4.447
## Frequency       1      1      1      1      1      1      1      1      1
## Proportion  0.083  0.083  0.083  0.083  0.083  0.083  0.083  0.083  0.083
##                                
## Value       5.201  5.701 17.824
## Frequency       1      1      1
## Proportion  0.083  0.083  0.083
INSTminutes_BIOC <- (mean(FS$BioCon_InstTime_Page.Submit, na.rm = TRUE)/60)
print(INSTminutes_BIOC)
## [1] 0.069025
## Time Spent Reading Technology Description (before proceeding to next page of survey)
  ### Raw Time Spent (Seconds) 
  describe(FS$BIO_Control_Time_Page.Submit)
## FS$BIO_Control_Time_Page.Submit 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       12       92       12        1    13.47    14.92    1.103    1.323 
##      .25      .50      .75      .90      .95 
##    1.987   12.120   19.876   24.402   35.114 
## 
## lowest :  0.908  1.263  1.861  2.029  3.526, highest: 15.368 19.800 20.102 24.880 47.623
##                                                                          
## Value       0.908  1.263  1.861  2.029  3.526  8.998 15.243 15.368 19.800
## Frequency       1      1      1      1      1      1      1      1      1
## Proportion  0.083  0.083  0.083  0.083  0.083  0.083  0.083  0.083  0.083
##                                
## Value      20.102 24.880 47.623
## Frequency       1      1      1
## Proportion  0.083  0.083  0.083
  sd(FS$BIO_Control_Time_Page.Submit, na.rm = TRUE)
## [1] 13.74699
  range(FS$BIO_Control_Time_Page.Submit, na.rm = TRUE)
## [1]  0.908 47.623
  ### Convert to Minutes 
  TECHminutes_BIOC <- (mean(FS$BIO_Control_Time_Page.Submit, na.rm = TRUE)/60)
  print(TECHminutes_BIOC)
## [1] 0.2244458
## Attention Checks 

# Attention Check 1: What technology did you just read about?
FS$ATN_BIO_Control1 <- as.numeric(as.character(FS$BIO_Control_ATN))
FS$ATN_BIO_Control <- factor(FS$ATN_BIO_Control1, levels = c(1, 2, 3, 4), 
                   labels = c("Biochar", "Biofuel", "Enhanced Weathering", "Wind Energy"))
describe(FS$ATN_BIO_Control)
## FS$ATN_BIO_Control 
##        n  missing distinct 
##       12       92        4 
##                                                                       
## Value                  Biochar             Biofuel Enhanced Weathering
## Frequency                    6                   2                   1
## Proportion               0.500               0.167               0.083
##                               
## Value              Wind Energy
## Frequency                    3
## Proportion               0.250
#### Time spent answering attention check #1:
  ##### (Seconds)
  describe(FS$BIO_Control_ATN_TIME_Page.Submit)
## FS$BIO_Control_ATN_TIME_Page.Submit 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       12       92       12        1    7.102     4.23    2.914    3.575 
##      .25      .50      .75      .90      .95 
##    5.002    5.793    9.001   13.373   13.799 
## 
## lowest :  2.232  3.472  4.501  5.169  5.608, highest:  6.338  8.648 10.059 13.741 13.869
##                                                                          
## Value       2.232  3.472  4.501  5.169  5.608  5.666  5.921  6.338  8.648
## Frequency       1      1      1      1      1      1      1      1      1
## Proportion  0.083  0.083  0.083  0.083  0.083  0.083  0.083  0.083  0.083
##                                
## Value      10.059 13.741 13.869
## Frequency       1      1      1
## Proportion  0.083  0.083  0.083
  sd(FS$BIO_Control_ATN_TIME_Page.Submit, na.rm = TRUE)
## [1] 3.749796
  range(FS$BIO_Control_ATN_TIME_Page.Submit, na.rm = TRUE)
## [1]  2.232 13.869
  ##### (Minutes)
  ATN1_BIOC <- (mean(FS$BIO_Control_ATN_TIME_Page.Submit, na.rm = TRUE)/60)
  print(ATN1_BIOC)
## [1] 0.1183667
### Attention Check 2: Describe as much as you can about the technology you read about.
describe(FS$BF_Control_ATN2)
## FS$BF_Control_ATN2 
##        n  missing distinct 
##       11       93       11 
## 
## lowest : Bio fuel is created with use of corn’s ethonal and burns cleaner                                                                               Climate change affects the environment in detrimental ways and we need to protect the planet                                                   i would suggest the alternative.                                                                                                               It described a method of producing fuel from plant matter by heating it, then refining it so it can be used for fuel in cars and trucks, etc.  it was very concerning                                                                                                                        
## highest: They take grass plants and grains a process them into oil later refine them more and they are made into biofuel and used in vehicles for oil.  Unsure                                                                                                                                         Using mostly organic materials  they are processed into fuel                                                                                   Using plant life (grass etc) to ultimately create fuel for vehicles, industry etc.                                                             Wind energy to substitute energy used
  #### Time spent answering attention check #2
  ##### (Seconds)
  describe(FS$BIO_Control_ATN2TIME_Page.Submit)
## FS$BIO_Control_ATN2TIME_Page.Submit 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       12       92       12        1    33.39    36.06    5.280    6.495 
##      .25      .50      .75      .90      .95 
##   10.802   20.997   36.945   94.639  104.537 
## 
## lowest :   4.164   6.194   9.200  11.336  13.902
## highest:  29.821  36.800  37.379 101.001 108.858
##                                                                           
## Value        4.164   6.194   9.200  11.336  13.902  19.612  22.382  29.821
## Frequency        1       1       1       1       1       1       1       1
## Proportion   0.083   0.083   0.083   0.083   0.083   0.083   0.083   0.083
##                                           
## Value       36.800  37.379 101.001 108.858
## Frequency        1       1       1       1
## Proportion   0.083   0.083   0.083   0.083
  sd(FS$BIO_Control_ATN2TIME_Page.Submit, na.rm = TRUE)
## [1] 35.24338
  range(FS$BIO_Control_ATN2TIME_Page.Submit, na.rm = TRUE)
## [1]   4.164 108.858
  ##### (Minutes)
  ATN2_BIOC <- (mean(FS$BIO_Control_ATN2TIME_Page.Submit, na.rm = TRUE)/60)
  print(ATN2_BIOC)
## [1] 0.5564569

Technology Ratings

### Naturalness
FS$N1_BioControl<- as.numeric(FS$Nat_BIO_Control_30)
FS$N2R_BioControl <- as.numeric(100 - FS$Nat_BIO_Control_31)
FS$N3R_BioControl <- as.numeric(100 - FS$Nat_BIO_Control_35)
FS$N4R_BioControl <- as.numeric(100- FS$Nat_BIO_Control_36)

hist(FS$N1_BioControl)

hist(FS$N2R_BioControl)

hist(FS$N3R_BioControl)

hist(FS$N4R_BioControl)

FS$NatScore_BioControl <- rowMeans(FS [, c( "N1_BioControl" , "N2R_BioControl", "N3R_BioControl", "N4R_BioControl")], na.rm=TRUE)
describe(FS$NatScore_BioControl)
## FS$NatScore_BioControl 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       12       92       11    0.997    45.85    13.35    29.43    33.48 
##      .25      .50      .75      .90      .95 
##    40.38    45.25    55.12    58.12    61.06 
## 
## lowest : 24.75 33.25 35.50 42.00 44.00, highest: 46.00 54.50 57.00 58.25 64.50
##                                                                             
## Value      24.75 33.25 35.50 42.00 44.00 45.25 46.00 54.50 57.00 58.25 64.50
## Frequency      1     1     1     1     1     2     1     1     1     1     1
## Proportion 0.083 0.083 0.083 0.083 0.083 0.167 0.083 0.083 0.083 0.083 0.083
sd(FS$NatScore_BioControl, na.rm = TRUE)
## [1] 11.40497
FS$NatScale_BioControl <- data.frame(FS$N1_BioControl, FS$N2R_BioControl, FS$N3R_BioControl, FS$N4R_BioControl)
describe(FS$NatScale_BioControl)
## FS$NatScale_BioControl 
## 
##  4  Variables      104  Observations
## --------------------------------------------------------------------------------
## FS.N1_BioControl 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       12       92       11    0.997    72.58    25.92    39.70    46.90 
##      .25      .50      .75      .90      .95 
##    61.75    70.00    95.75    98.90    99.45 
## 
## lowest :  32  46  55  64  67, highest:  75  95  98  99 100
##                                                                             
## Value         32    46    55    64    67    73    75    95    98    99   100
## Frequency      1     1     1     1     2     1     1     1     1     1     1
## Proportion 0.083 0.083 0.083 0.083 0.167 0.083 0.083 0.083 0.083 0.083 0.083
## --------------------------------------------------------------------------------
## FS.N2R_BioControl 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       12       92       12        1    36.58    27.68     6.60    12.50 
##      .25      .50      .75      .90      .95 
##    20.00    33.00    52.25    65.90    69.60 
## 
## lowest :  0 12 17 21 26, highest: 44 48 65 66 74
##                                                                             
## Value          0    12    17    21    26    32    34    44    48    65    66
## Frequency      1     1     1     1     1     1     1     1     1     1     1
## Proportion 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083
##                 
## Value         74
## Frequency      1
## Proportion 0.083
## --------------------------------------------------------------------------------
## FS.N3R_BioControl 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       12       92       11    0.997     31.5    26.52     0.00     1.50 
##      .25      .50      .75      .90      .95 
##    15.75    30.00    44.75    62.30    66.25 
## 
## lowest :  0 15 16 24 27, highest: 39 44 47 64 69
##                                                                             
## Value          0    15    16    24    27    33    39    44    47    64    69
## Frequency      2     1     1     1     1     1     1     1     1     1     1
## Proportion 0.167 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083
## --------------------------------------------------------------------------------
## FS.N4R_BioControl 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       12       92       12        1    42.75    30.65     3.30     7.80 
##      .25      .50      .75      .90      .95 
##    28.50    43.50    63.75    69.60    77.20 
## 
## lowest :  0  6 24 30 34, highest: 47 63 66 70 86
##                                                                             
## Value          0     6    24    30    34    42    45    47    63    66    70
## Frequency      1     1     1     1     1     1     1     1     1     1     1
## Proportion 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083
##                 
## Value         86
## Frequency      1
## Proportion 0.083
## --------------------------------------------------------------------------------
psych::alpha(FS$NatScale_BioControl)
## Number of categories should be increased  in order to count frequencies.
## Warning in psych::alpha(FS$NatScale_BioControl): Some items were negatively correlated with the total scale and probably 
## should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( FS.N1_BioControl ) were negatively correlated with the total scale and 
## probably should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## 
## Reliability analysis   
## Call: psych::alpha(x = FS$NatScale_BioControl)
## 
##   raw_alpha std.alpha G6(smc) average_r   S/N  ase mean sd median_r
##     -0.077     -0.18     0.5    -0.039 -0.15 0.14   46 11   -0.098
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt    -0.46 -0.08  0.23
## Duhachek -0.36 -0.08  0.20
## 
##  Reliability if an item is dropped:
##                   raw_alpha std.alpha G6(smc) average_r      S/N alpha se var.r
## FS.N1_BioControl      0.651   0.64694    0.64   0.37919  1.83238     0.06 0.079
## FS.N2R_BioControl    -2.011  -2.40787   -0.56  -0.30808 -0.70656     0.46 0.170
## FS.N3R_BioControl     0.064  -0.00052    0.37  -0.00017 -0.00052     0.15 0.348
## FS.N4R_BioControl    -1.185  -1.26490   -0.16  -0.22874 -0.55848     0.35 0.268
##                   med.r
## FS.N1_BioControl   0.33
## FS.N2R_BioControl -0.36
## FS.N3R_BioControl -0.32
## FS.N4R_BioControl -0.32
## 
##  Item statistics 
##                    n raw.r std.r r.cor r.drop mean sd
## FS.N1_BioControl  12 -0.22 -0.20 -0.61  -0.59   73 22
## FS.N2R_BioControl 12  0.90  0.90  0.93   0.67   37 23
## FS.N3R_BioControl 12  0.39  0.41  0.25  -0.10   32 22
## FS.N4R_BioControl 12  0.80  0.77  0.76   0.37   43 26
cor(FS$NatScale_BioControl, use= "complete.obs")
##                   FS.N1_BioControl FS.N2R_BioControl FS.N3R_BioControl
## FS.N1_BioControl         1.0000000        -0.3226682        -0.6926110
## FS.N2R_BioControl       -0.3226682         1.0000000         0.3290523
## FS.N3R_BioControl       -0.6926110         0.3290523         1.0000000
## FS.N4R_BioControl       -0.3589965         0.6811426         0.1273688
##                   FS.N4R_BioControl
## FS.N1_BioControl         -0.3589965
## FS.N2R_BioControl         0.6811426
## FS.N3R_BioControl         0.1273688
## FS.N4R_BioControl         1.0000000
# Familiarity 
FS$Fam_BioControl <- as.numeric(FS$Fam_BIO_Control_31)
hist(FS$Fam_BioControl)

describe(FS$Fam_BioControl)
## FS$Fam_BioControl 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       12       92       12        1    41.33    32.48     7.15    13.40 
##      .25      .50      .75      .90      .95 
##    19.25    38.50    66.25    67.90    79.25 
## 
## lowest :  0 13 17 20 30, highest: 45 66 67 68 93
##                                                                             
## Value          0    13    17    20    30    38    39    45    66    67    68
## Frequency      1     1     1     1     1     1     1     1     1     1     1
## Proportion 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083
##                 
## Value         93
## Frequency      1
## Proportion 0.083
sd(FS$Fam_BioControl, na.rm = TRUE)
## [1] 27.57579
### Understanding 
FS$Und_BioControl <- as.numeric(FS$Fam_BIO_Control_33)
hist(FS$Und_BioControl)

describe(FS$Und_BioControl)
## FS$Und_BioControl 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       12       92       11    0.997       52    31.09    19.50    25.00 
##      .25      .50      .75      .90      .95 
##    34.00    47.00    63.75    90.30    95.60 
## 
## lowest :  14  24  34  38  40, highest:  59  60  75  92 100
##                                                                             
## Value         14    24    34    38    40    54    59    60    75    92   100
## Frequency      1     1     2     1     1     1     1     1     1     1     1
## Proportion 0.083 0.083 0.167 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083
sd(FS$Und_BioControl, na.rm = TRUE)
## [1] 26.57066
### Fluency 
FS$Fluency_BioControl <- as.numeric(FS$Fluency_BIO_Control_30)
hist(FS$Fluency_BioControl)

describe(FS$Fluency_BioControl)
## FS$Fluency_BioControl 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       12       92       10    0.986    71.58    32.35    30.50    35.80 
##      .25      .50      .75      .90      .95 
##    49.00    76.00    99.25   100.00   100.00 
## 
## lowest :  25  35  43  51  63, highest:  75  77  91  99 100
##                                                                       
## Value         25    35    43    51    63    75    77    91    99   100
## Frequency      1     1     1     1     1     1     1     1     1     3
## Proportion 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.250
sd(FS$Fluency_BioControl, na.rm = TRUE)
## [1] 27.6585
### Risk 
FS$R1_BioControl<- as.numeric(FS$Risk_BIO_Control_30)
FS$R2_BioControl <- as.numeric(FS$Risk_BIO_Control_31)
FS$R3_BioControl <- as.numeric(FS$Risk_BIO_Control_32)

hist(FS$R1_BioControl)

hist(FS$R2_BioControl)

hist(FS$R3_BioControl)

FS$RiskScore_BioControl <- rowMeans(FS [, c( "R1_BioControl" , "R2_BioControl", "R3_BioControl")], na.rm=TRUE)
describe(FS$RiskScore_BioControl)
## FS$RiskScore_BioControl 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       12       92       10    0.993    54.39    16.61    34.28    36.33 
##      .25      .50      .75      .90      .95 
##    45.58    56.17    61.33    66.63    74.02 
## 
## lowest : 33.00000 35.33333 45.33333 45.66667 53.66667
## highest: 58.66667 59.66667 66.33333 66.66667 83.00000
##                                                                          
## Value      33.00000 35.33333 45.33333 45.66667 53.66667 58.66667 59.66667
## Frequency         1        1        1        2        1        1        2
## Proportion    0.083    0.083    0.083    0.167    0.083    0.083    0.167
##                                      
## Value      66.33333 66.66667 83.00000
## Frequency         1        1        1
## Proportion    0.083    0.083    0.083
sd(FS$RiskScore_BioControl, na.rm = TRUE)
## [1] 14.27425
FS$RiskScale_BioControl <- data.frame(FS$R1_BioControl, FS$R2_BioControl, FS$R3_BioControl)
describe(FS$RiskScale_BioControl)
## FS$RiskScale_BioControl 
## 
##  3  Variables      104  Observations
## --------------------------------------------------------------------------------
## FS.R1_BioControl 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       12       92       10    0.993    50.58     26.5    18.15    33.00 
##      .25      .50      .75      .90      .95 
##    35.25    57.00    66.25    76.60    77.00 
## 
## lowest :  0 33 36 37 53, highest: 61 63 64 73 77
##                                                                       
## Value          0    33    36    37    53    61    63    64    73    77
## Frequency      1     2     1     1     1     1     1     1     1     2
## Proportion 0.083 0.167 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.167
## --------------------------------------------------------------------------------
## FS.R2_BioControl 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       12       92       12        1    45.08    30.56     6.05    12.60 
##      .25      .50      .75      .90      .95 
##    31.50    41.00    69.25    74.50    77.70 
## 
## lowest :  0 11 27 33 36, highest: 57 69 70 75 81
##                                                                             
## Value          0    11    27    33    36    38    44    57    69    70    75
## Frequency      1     1     1     1     1     1     1     1     1     1     1
## Proportion 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083
##                 
## Value         81
## Frequency      1
## Proportion 0.083
## --------------------------------------------------------------------------------
## FS.R3_BioControl 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       12       92       10    0.993     67.5    26.39    33.00    35.00 
##      .25      .50      .75      .90      .95 
##    58.25    62.00    90.50    94.70    96.80 
## 
## lowest : 33 53 60 61 63, highest: 71 90 92 95 99
##                                                                       
## Value         33    53    60    61    63    71    90    92    95    99
## Frequency      2     1     2     1     1     1     1     1     1     1
## Proportion 0.167 0.083 0.167 0.083 0.083 0.083 0.083 0.083 0.083 0.083
## --------------------------------------------------------------------------------
psych::alpha(FS$RiskScale_BioControl)
## Number of categories should be increased  in order to count frequencies.
## Warning in psych::alpha(FS$RiskScale_BioControl): Some items were negatively correlated with the total scale and probably 
## should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( FS.R3_BioControl ) were negatively correlated with the total scale and 
## probably should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## 
## Reliability analysis   
## Call: psych::alpha(x = FS$RiskScale_BioControl)
## 
##   raw_alpha std.alpha G6(smc) average_r   S/N  ase mean sd median_r
##      0.096      0.06    0.44     0.021 0.063 0.15   54 14    -0.21
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt    -0.25   0.1  0.36
## Duhachek -0.20   0.1  0.39
## 
##  Reliability if an item is dropped:
##                  raw_alpha std.alpha G6(smc) average_r   S/N alpha se var.r
## FS.R1_BioControl     -1.46     -1.49   -0.43     -0.43 -0.60    0.478    NA
## FS.R2_BioControl     -0.53     -0.53   -0.21     -0.21 -0.35    0.301    NA
## FS.R3_BioControl      0.82      0.82    0.70      0.70  4.65    0.035    NA
##                  med.r
## FS.R1_BioControl -0.43
## FS.R2_BioControl -0.21
## FS.R3_BioControl  0.70
## 
##  Item statistics 
##                   n raw.r std.r r.cor r.drop mean sd
## FS.R1_BioControl 12  0.85  0.84  0.84   0.51   51 23
## FS.R2_BioControl 12  0.76  0.72  0.72   0.23   45 26
## FS.R3_BioControl 12  0.16  0.21 -0.37  -0.35   68 23
cor(FS$RiskScale_BioControl, use= "complete.obs")
##                  FS.R1_BioControl FS.R2_BioControl FS.R3_BioControl
## FS.R1_BioControl        1.0000000        0.6993546       -0.2109897
## FS.R2_BioControl        0.6993546        1.0000000       -0.4262864
## FS.R3_BioControl       -0.2109897       -0.4262864        1.0000000
### Benefit
FS$B1_BioControl<- as.numeric(FS$Ben_BIO_Control_40)
FS$B2_BioControl <- as.numeric(FS$Ben_BIO_Control_42)
FS$B3_BioControl <- as.numeric(FS$Ben_BIO_Control_43)
FS$B4_BioControl <- as.numeric(FS$Ben_BIO_Control_45)

hist(FS$B1_BioControl)

hist(FS$B2_BioControl)

hist(FS$B3_BioControl)

hist(FS$B4_BioControl)

FS$BenScore_BioControl <- rowMeans(FS [, c( "B1_BioControl" , "B2_BioControl", "B3_BioControl", "B4_BioControl")], na.rm=TRUE)
describe(FS$BenScore_BioControl)
## FS$BenScore_BioControl 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       12       92       12        1    67.92    21.37    44.14    51.03 
##      .25      .50      .75      .90      .95 
##    58.56    64.75    82.44    88.70    93.95 
## 
## lowest :  35.75  51.00  51.25  61.00  62.75, highest:  67.50  81.25  86.00  89.00 100.00
##                                                                          
## Value       35.75  51.00  51.25  61.00  62.75  63.25  66.25  67.50  81.25
## Frequency       1      1      1      1      1      1      1      1      1
## Proportion  0.083  0.083  0.083  0.083  0.083  0.083  0.083  0.083  0.083
##                                
## Value       86.00  89.00 100.00
## Frequency       1      1      1
## Proportion  0.083  0.083  0.083
sd(FS$BenScore_BioControl, na.rm = TRUE)
## [1] 18.28199
FS$BenScale_BioControl <- data.frame(FS$B1_BioControl, FS$B2_BioControl, FS$B3_BioControl, FS$B4_BioControl)
describe(FS$BenScale_BioControl)
## FS$BenScale_BioControl 
## 
##  4  Variables      104  Observations
## --------------------------------------------------------------------------------
## FS.B1_BioControl 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       12       92       11    0.997    66.67    19.73    43.45    52.50 
##      .25      .50      .75      .90      .95 
##    58.50    65.50    77.50    84.40    91.75 
## 
## lowest :  33  52  57  59  60, highest:  67  77  79  85 100
##                                                                             
## Value         33    52    57    59    60    64    67    77    79    85   100
## Frequency      1     1     1     1     1     1     2     1     1     1     1
## Proportion 0.083 0.083 0.083 0.083 0.083 0.083 0.167 0.083 0.083 0.083 0.083
## --------------------------------------------------------------------------------
## FS.B2_BioControl 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       12       92       12        1    69.58    21.98    43.80    51.70 
##      .25      .50      .75      .90      .95 
##    58.75    68.00    84.25    94.00    97.25 
## 
## lowest :  35  51  58  59  62, highest:  70  84  85  95 100
##                                                                             
## Value         35    51    58    59    62    67    69    70    84    85    95
## Frequency      1     1     1     1     1     1     1     1     1     1     1
## Proportion 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083
##                 
## Value        100
## Frequency      1
## Proportion 0.083
## --------------------------------------------------------------------------------
## FS.B3_BioControl 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       12       92       12        1       67    25.15    37.20    40.20 
##      .25      .50      .75      .90      .95 
##    53.25    64.00    88.00    91.90    95.60 
## 
## lowest :  35  39  51  54  60, highest:  67  87  91  92 100
##                                                                             
## Value         35    39    51    54    60    63    65    67    87    91    92
## Frequency      1     1     1     1     1     1     1     1     1     1     1
## Proportion 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083
##                 
## Value        100
## Frequency      1
## Proportion 0.083
## --------------------------------------------------------------------------------
## FS.B4_BioControl 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       12       92       11    0.997    68.42    24.38    36.00    37.50 
##      .25      .50      .75      .90      .95 
##    59.25    69.50    78.00    94.80    97.25 
## 
## lowest :  36  51  62  64  69, highest:  72  73  93  95 100
##                                                                             
## Value         36    51    62    64    69    70    72    73    93    95   100
## Frequency      2     1     1     1     1     1     1     1     1     1     1
## Proportion 0.167 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083
## --------------------------------------------------------------------------------
psych::alpha(FS$BenScale_BioControl)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = FS$BenScale_BioControl)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r
##       0.95      0.95    0.99      0.83  20 0.0082   68 18     0.84
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.93  0.95  0.96
## Duhachek  0.93  0.95  0.97
## 
##  Reliability if an item is dropped:
##                  raw_alpha std.alpha G6(smc) average_r S/N alpha se  var.r
## FS.B1_BioControl      0.94      0.94    0.93      0.84  16    0.010 0.0073
## FS.B2_BioControl      0.94      0.94    0.94      0.84  16    0.010 0.0077
## FS.B3_BioControl      0.93      0.93    0.91      0.82  14    0.012 0.0034
## FS.B4_BioControl      0.93      0.93    0.91      0.82  13    0.013 0.0033
##                  med.r
## FS.B1_BioControl  0.83
## FS.B2_BioControl  0.85
## FS.B3_BioControl  0.85
## FS.B4_BioControl  0.83
## 
##  Item statistics 
##                   n raw.r std.r r.cor r.drop mean sd
## FS.B1_BioControl 12  0.92  0.93  0.92   0.87   67 17
## FS.B2_BioControl 12  0.92  0.92  0.91   0.86   70 19
## FS.B3_BioControl 12  0.95  0.94  0.94   0.90   67 21
## FS.B4_BioControl 12  0.95  0.95  0.94   0.91   68 21
cor(FS$BenScale_BioControl, use= "complete.obs")
##                  FS.B1_BioControl FS.B2_BioControl FS.B3_BioControl
## FS.B1_BioControl        1.0000000        0.8652740        0.7532350
## FS.B2_BioControl        0.8652740        1.0000000        0.8332712
## FS.B3_BioControl        0.7532350        0.8332712        1.0000000
## FS.B4_BioControl        0.8482679        0.7575033        0.9280455
##                  FS.B4_BioControl
## FS.B1_BioControl        0.8482679
## FS.B2_BioControl        0.7575033
## FS.B3_BioControl        0.9280455
## FS.B4_BioControl        1.0000000
### Support
FS$S1_BioControl<- as.numeric(FS$Sup_BIO_Control_40)
FS$S2_BioControl <- as.numeric(FS$Sup_BIO_Control_42)
FS$S3_BioControl <- as.numeric(FS$Sup_BIO_Control_43)
FS$S4_BioControl <- as.numeric(FS$Sup_BIO_Control_45)

hist(FS$S1_BioControl)

hist(FS$S2_BioControl)

hist(FS$S3_BioControl)

hist(FS$S4_BioControl)

FS$SupScore_BioControl <- rowMeans(FS [, c( "S1_BioControl" , "S2_BioControl", "S3_BioControl", "S4_BioControl")], na.rm=TRUE)
describe(FS$SupScore_BioControl)
## FS$SupScore_BioControl 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       12       92       12        1    64.83    24.31    36.23    41.80 
##      .25      .50      .75      .90      .95 
##    54.62    60.00    83.06    92.03    95.79 
## 
## lowest : 31.00 40.50 53.50 55.00 55.75, highest: 62.25 82.25 85.50 92.75 99.50
##                                                                             
## Value      31.00 40.50 53.50 55.00 55.75 59.50 60.50 62.25 82.25 85.50 92.75
## Frequency      1     1     1     1     1     1     1     1     1     1     1
## Proportion 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083
##                 
## Value      99.50
## Frequency      1
## Proportion 0.083
sd(FS$SupScore_BioControl, na.rm = TRUE)
## [1] 20.91089
FS$SupScale_BioControl <- data.frame(FS$S1_BioControl, FS$S2_BioControl, FS$S3_BioControl, FS$S4_BioControl)
describe(FS$SupScale_BioControl)
## FS$SupScale_BioControl 
## 
##  4  Variables      104  Observations
## --------------------------------------------------------------------------------
## FS.S1_BioControl 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       12       92       12        1    64.92    24.26    36.40    41.30 
##      .25      .50      .75      .90      .95 
##    54.50    61.50    77.75    96.20    98.90 
## 
## lowest :  32  40  53  55  56, highest:  65  77  80  98 100
##                                                                             
## Value         32    40    53    55    56    59    64    65    77    80    98
## Frequency      1     1     1     1     1     1     1     1     1     1     1
## Proportion 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083
##                 
## Value        100
## Frequency      1
## Proportion 0.083
## --------------------------------------------------------------------------------
## FS.S2_BioControl 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       12       92       10    0.993    66.25    26.74    35.85    40.30 
##      .25      .50      .75      .90      .95 
##    52.00    61.50    82.25    99.50   100.00 
## 
## lowest :  32  39  52  56  61, highest:  62  68  78  95 100
##                                                                       
## Value         32    39    52    56    61    62    68    78    95   100
## Frequency      1     1     2     1     1     1     1     1     1     2
## Proportion 0.083 0.083 0.167 0.083 0.083 0.083 0.083 0.083 0.083 0.167
## --------------------------------------------------------------------------------
## FS.S3_BioControl 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       12       92       12        1    62.42     23.8    35.05    41.10 
##      .25      .50      .75      .90      .95 
##    51.75    58.50    74.25    90.00    95.05 
## 
## lowest :  29  40  51  52  55, highest:  61  72  81  91 100
##                                                                             
## Value         29    40    51    52    55    57    60    61    72    81    91
## Frequency      1     1     1     1     1     1     1     1     1     1     1
## Proportion 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083
##                 
## Value        100
## Frequency      1
## Proportion 0.083
## --------------------------------------------------------------------------------
## FS.S4_BioControl 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       12       92       11    0.997    65.75    24.95     37.6     44.2 
##      .25      .50      .75      .90      .95 
##     55.0     59.0     82.5     97.2     98.9 
## 
## lowest :  31  43  55  56  58, highest:  63  80  90  98 100
##                                                                             
## Value         31    43    55    56    58    60    63    80    90    98   100
## Frequency      1     1     2     1     1     1     1     1     1     1     1
## Proportion 0.083 0.083 0.167 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083
## --------------------------------------------------------------------------------
psych::alpha(FS$SupScale_BioControl)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = FS$SupScale_BioControl)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r
##       0.98      0.98    0.98      0.93  57 0.0028   65 21     0.93
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.98  0.98  0.99
## Duhachek  0.98  0.98  0.99
## 
##  Reliability if an item is dropped:
##                  raw_alpha std.alpha G6(smc) average_r S/N alpha se   var.r
## FS.S1_BioControl      0.97      0.97    0.97      0.93  38   0.0046 0.00142
## FS.S2_BioControl      0.97      0.97    0.96      0.93  38   0.0044 0.00019
## FS.S3_BioControl      0.98      0.99    0.98      0.96  67   0.0025 0.00026
## FS.S4_BioControl      0.97      0.98    0.97      0.93  40   0.0044 0.00108
##                  med.r
## FS.S1_BioControl  0.91
## FS.S2_BioControl  0.93
## FS.S3_BioControl  0.96
## FS.S4_BioControl  0.93
## 
##  Item statistics 
##                   n raw.r std.r r.cor r.drop mean sd
## FS.S1_BioControl 12  0.98  0.98  0.98   0.97   65 21
## FS.S2_BioControl 12  0.98  0.98  0.98   0.97   66 23
## FS.S3_BioControl 12  0.96  0.96  0.94   0.93   62 20
## FS.S4_BioControl 12  0.98  0.98  0.97   0.96   66 22
cor(FS$SupScale_BioControl, use= "complete.obs")
##                  FS.S1_BioControl FS.S2_BioControl FS.S3_BioControl
## FS.S1_BioControl        1.0000000        0.9638984        0.9278995
## FS.S2_BioControl        0.9638984        1.0000000        0.8983275
## FS.S3_BioControl        0.9278995        0.8983275        1.0000000
## FS.S4_BioControl        0.9388624        0.9692017        0.9114829
##                  FS.S4_BioControl
## FS.S1_BioControl        0.9388624
## FS.S2_BioControl        0.9692017
## FS.S3_BioControl        0.9114829
## FS.S4_BioControl        1.0000000

Biofuel

Quiz Questions & Attention Check

## Time Spent Reading Instructions 
describe(FS$BFCon_InstTime_Page.Submit)
## FS$BFCon_InstTime_Page.Submit 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       11       93       11        1    5.493    6.819    1.100    1.296 
##      .25      .50      .75      .90      .95 
##    1.445    2.126    5.391    7.897   18.242 
## 
## lowest :  0.904  1.296  1.331  1.559  1.891, highest:  4.051  4.682  6.099  7.897 28.588
##                                                                          
## Value       0.904  1.296  1.331  1.559  1.891  2.126  4.051  4.682  6.099
## Frequency       1      1      1      1      1      1      1      1      1
## Proportion  0.091  0.091  0.091  0.091  0.091  0.091  0.091  0.091  0.091
##                         
## Value       7.897 28.588
## Frequency       1      1
## Proportion  0.091  0.091
INSTminutes_BFC <- (mean(FS$BFCon_InstTime_Page.Submit, na.rm = TRUE)/60)
print(INSTminutes_BFC)
## [1] 0.09155152
## Time Spent Reading Technology Description (before proceeding to next page of survey)
  ### Raw Time Spent (Seconds) 
  describe(FS$BF_Control_Time_Page.Submit)
## FS$BF_Control_Time_Page.Submit 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       11       93       11        1     23.1    39.95   0.7865   0.9770 
##      .25      .50      .75      .90      .95 
##   1.2000   2.0060  16.5030  26.7830 105.3970 
## 
## lowest :   0.596   0.977   1.110   1.290   1.871
## highest:   2.486  15.304  17.702  26.783 184.011
##                                                                           
## Value        0.596   0.977   1.110   1.290   1.871   2.006   2.486  15.304
## Frequency        1       1       1       1       1       1       1       1
## Proportion   0.091   0.091   0.091   0.091   0.091   0.091   0.091   0.091
##                                   
## Value       17.702  26.783 184.011
## Frequency        1       1       1
## Proportion   0.091   0.091   0.091
  sd(FS$BF_Control_Time_Page.Submit, na.rm = TRUE)
## [1] 54.10313
  range(FS$BF_Control_Time_Page.Submit, na.rm = TRUE)
## [1]   0.596 184.011
  ### Convert to Minutes 
  TECHminutes_BFC <- (mean(FS$BF_Control_Time_Page.Submit, na.rm = TRUE)/60)
  print(TECHminutes_BFC)
## [1] 0.3850545
## Attention Checks
# Attention Check 1: What technology did you just read about?
FS$ATN_BF_Control1 <- as.numeric(as.character(FS$BF_Control_ATN))
FS$ATN_BF_Control <- factor(FS$ATN_BF_Control1, levels = c(1, 2, 3, 4), 
                   labels = c("Biochar", "Biofuel", "Enhanced Weathering", "Wind Energy"))
describe(FS$ATN_BF_Control)
## FS$ATN_BF_Control 
##        n  missing distinct 
##       11       93        4 
##                                                                       
## Value                  Biochar             Biofuel Enhanced Weathering
## Frequency                    1                   6                   2
## Proportion               0.091               0.545               0.182
##                               
## Value              Wind Energy
## Frequency                    2
## Proportion               0.182
#### Time spent answering attention check #1:
  ##### (Seconds)
  describe(FS$BF_Control_ATN_TIME_Page.Submit)
## FS$BF_Control_ATN_TIME_Page.Submit 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       11       93       11        1    8.316    5.553    3.681    3.929 
##      .25      .50      .75      .90      .95 
##    4.624    7.338    8.973   16.721   17.690 
## 
## lowest :  3.433  3.929  4.044  5.204  5.801, highest:  8.401  8.495  9.450 16.721 18.659
##                                                                          
## Value       3.433  3.929  4.044  5.204  5.801  7.338  8.401  8.495  9.450
## Frequency       1      1      1      1      1      1      1      1      1
## Proportion  0.091  0.091  0.091  0.091  0.091  0.091  0.091  0.091  0.091
##                         
## Value      16.721 18.659
## Frequency       1      1
## Proportion  0.091  0.091
  sd(FS$BF_Control_ATN_TIME_Page.Submit, na.rm = TRUE)
## [1] 5.072007
  range(FS$BF_Control_ATN_TIME_Page.Submit, na.rm = TRUE)
## [1]  3.433 18.659
  ##### (Minutes)
  ATN1_BFC <- (mean(FS$BF_Control_ATN_TIME_Page.Submit, na.rm = TRUE)/60)
  print(ATN1_BFC)
## [1] 0.1385985
### Attention Check 2: Describe as much as you can about the technology you read about.
describe(FS$BF_Control_ATN2)
## FS$BF_Control_ATN2 
##        n  missing distinct 
##       11       93       11 
## 
## lowest : Bio fuel is created with use of corn’s ethonal and burns cleaner                                                                               Climate change affects the environment in detrimental ways and we need to protect the planet                                                   i would suggest the alternative.                                                                                                               It described a method of producing fuel from plant matter by heating it, then refining it so it can be used for fuel in cars and trucks, etc.  it was very concerning                                                                                                                        
## highest: They take grass plants and grains a process them into oil later refine them more and they are made into biofuel and used in vehicles for oil.  Unsure                                                                                                                                         Using mostly organic materials  they are processed into fuel                                                                                   Using plant life (grass etc) to ultimately create fuel for vehicles, industry etc.                                                             Wind energy to substitute energy used
  #### Time spent answering attention check #2
  ##### (Seconds)
  describe(FS$BF_Control_ATN2_TIME_Page.Submit)
## FS$BF_Control_ATN2_TIME_Page.Submit 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       11       93       11        1    34.44     27.4    8.005   10.928 
##      .25      .50      .75      .90      .95 
##   12.713   41.379   49.704   51.201   66.621 
## 
## lowest :  5.081 10.928 11.644 13.781 21.039, highest: 42.344 49.531 49.878 51.201 82.042
##                                                                          
## Value       5.081 10.928 11.644 13.781 21.039 41.379 42.344 49.531 49.878
## Frequency       1      1      1      1      1      1      1      1      1
## Proportion  0.091  0.091  0.091  0.091  0.091  0.091  0.091  0.091  0.091
##                         
## Value      51.201 82.042
## Frequency       1      1
## Proportion  0.091  0.091
  sd(FS$BF_Control_ATN2_TIME_Page.Submit, na.rm = TRUE)
## [1] 23.79995
  range(FS$BF_Control_ATN2_TIME_Page.Submit, na.rm = TRUE)
## [1]  5.081 82.042
  ##### (Minutes)
  ATN2_BFC <- (mean(FS$BF_Control_ATN2_TIME_Page.Submit, na.rm = TRUE)/60)
  print(ATN2_BFC)
## [1] 0.5740121

Technology Ratings

### Naturalness
FS$N1_BFControl <- as.numeric(FS$Nat_BF_Control_30)
FS$N2R_BFControl <- as.numeric(100 - FS$Nat_BF_Control_31)
FS$N3R_BFControl <- as.numeric(100 - FS$Nat_BF_Control_35)
FS$N4R_BFControl <- as.numeric(100- FS$Nat_BF_Control_36)

hist(FS$N1_BFControl)

hist(FS$N2R_BFControl)

hist(FS$N3R_BFControl)

hist(FS$N4R_BFControl)

FS$NatScore_BFControl <- rowMeans(FS [, c( "N1_BFControl" , "N2R_BFControl", "N3R_BFControl", "N4R_BFControl")], na.rm=TRUE)
describe(FS$NatScore_BFControl)
## FS$NatScore_BFControl 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       11       93       11        1    50.16    16.17    30.25    35.25 
##      .25      .50      .75      .90      .95 
##    41.38    52.25    58.75    66.00    67.75 
## 
## lowest : 25.25 35.25 37.00 45.75 49.25, highest: 54.00 54.25 63.25 66.00 69.50
##                                                                             
## Value      25.25 35.25 37.00 45.75 49.25 52.25 54.00 54.25 63.25 66.00 69.50
## Frequency      1     1     1     1     1     1     1     1     1     1     1
## Proportion 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091
sd(FS$NatScore_BFControl, na.rm = TRUE)
## [1] 13.66898
FS$NatScale_BFControl <- data.frame(FS$N1_BFControl, FS$N2R_BFControl, FS$N3R_BFControl, FS$N4R_BFControl)
describe(FS$NatScale_BFControl)
## FS$NatScale_BFControl 
## 
##  4  Variables      104  Observations
## --------------------------------------------------------------------------------
## FS.N1_BFControl 
##        n  missing distinct     Info     Mean      Gmd 
##       11       93        9    0.991    72.73    25.53 
## 
## lowest :  42  43  51  58  69, highest:  69  81  84  91 100
##                                                                 
## Value         42    43    51    58    69    81    84    91   100
## Frequency      1     1     1     1     1     2     1     1     2
## Proportion 0.091 0.091 0.091 0.091 0.091 0.182 0.091 0.091 0.182
## --------------------------------------------------------------------------------
## FS.N2R_BFControl 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       11       93       11        1    44.18    26.04     12.0     24.0 
##      .25      .50      .75      .90      .95 
##     33.0     48.0     56.0     74.0     75.5 
## 
## lowest :  0 24 32 34 36, highest: 49 54 58 74 77
##                                                                             
## Value          0    24    32    34    36    48    49    54    58    74    77
## Frequency      1     1     1     1     1     1     1     1     1     1     1
## Proportion 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091
## --------------------------------------------------------------------------------
## FS.N3R_BFControl 
##        n  missing distinct     Info     Mean      Gmd 
##       11       93        9    0.982    22.36    26.29 
## 
## lowest :  0 12 13 15 16, highest: 16 25 41 49 75
##                                                                 
## Value          0    12    13    15    16    25    41    49    75
## Frequency      3     1     1     1     1     1     1     1     1
## Proportion 0.273 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091
## --------------------------------------------------------------------------------
## FS.N4R_BFControl 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       11       93       11        1    61.36    35.02     14.0     27.0 
##      .25      .50      .75      .90      .95 
##     45.5     65.0     84.5     89.0     94.5 
## 
## lowest :   1  27  43  48  56, highest:  77  83  86  89 100
##                                                                             
## Value          1    27    43    48    56    65    77    83    86    89   100
## Frequency      1     1     1     1     1     1     1     1     1     1     1
## Proportion 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091
## --------------------------------------------------------------------------------
psych::alpha(FS$NatScale_BFControl)
## Number of categories should be increased  in order to count frequencies.
## Warning in psych::alpha(FS$NatScale_BFControl): Some items were negatively correlated with the total scale and probably 
## should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( FS.N1_BFControl ) were negatively correlated with the total scale and 
## probably should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## 
## Reliability analysis   
## Call: psych::alpha(x = FS$NatScale_BFControl)
## 
##   raw_alpha std.alpha G6(smc) average_r  S/N  ase mean sd median_r
##       0.26       0.2    0.27     0.059 0.25 0.11   50 14    0.029
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt    -0.01  0.26  0.46
## Duhachek  0.04  0.26  0.47
## 
##  Reliability if an item is dropped:
##                  raw_alpha std.alpha G6(smc) average_r    S/N alpha se var.r
## FS.N1_BFControl     0.5127     0.504   0.435     0.253  1.017    0.079 0.023
## FS.N2R_BFControl    0.0056    -0.082   0.049    -0.026 -0.076    0.156 0.083
## FS.N3R_BFControl    0.2189     0.196   0.221     0.075  0.243    0.126 0.070
## FS.N4R_BFControl   -0.2193    -0.224  -0.096    -0.065 -0.183    0.206 0.030
##                   med.r
## FS.N1_BFControl   0.298
## FS.N2R_BFControl -0.123
## FS.N3R_BFControl -0.028
## FS.N4R_BFControl -0.028
## 
##  Item statistics 
##                   n raw.r std.r r.cor r.drop mean sd
## FS.N1_BFControl  11  0.20  0.27 -0.30  -0.19   73 21
## FS.N2R_BFControl 11  0.64  0.66  0.51   0.29   44 22
## FS.N3R_BFControl 11  0.53  0.52  0.24   0.12   22 24
## FS.N4R_BFControl 11  0.78  0.71  0.68   0.35   61 30
cor(FS$NatScale_BFControl, use= "complete.obs")
##                  FS.N1_BFControl FS.N2R_BFControl FS.N3R_BFControl
## FS.N1_BFControl       1.00000000      -0.02765433      -0.25275517
## FS.N2R_BFControl     -0.02765433       1.00000000       0.08516666
## FS.N3R_BFControl     -0.25275517       0.08516666       1.00000000
## FS.N4R_BFControl     -0.12330003       0.37606837       0.29817082
##                  FS.N4R_BFControl
## FS.N1_BFControl        -0.1233000
## FS.N2R_BFControl        0.3760684
## FS.N3R_BFControl        0.2981708
## FS.N4R_BFControl        1.0000000
### Familiarity 
FS$Fam_BFControl <- as.numeric(FS$Fam_BF_Control_32)
hist(FS$Fam_BFControl)

describe(FS$Fam_BFControl)
## FS$Fam_BFControl 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       11       93       11        1    59.09    33.45     14.0     15.0 
##      .25      .50      .75      .90      .95 
##     40.5     69.0     77.5     86.0     93.0 
## 
## lowest :  13  15  35  46  61, highest:  70  76  79  86 100
##                                                                             
## Value         13    15    35    46    61    69    70    76    79    86   100
## Frequency      1     1     1     1     1     1     1     1     1     1     1
## Proportion 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091
sd(FS$Fam_BFControl, na.rm = TRUE)
## [1] 28.49721
### Understanding 
FS$Und_BFControl <- as.numeric(FS$Fam_BF_Control_31)
hist(FS$Und_BFControl)

describe(FS$Und_BFControl)
## FS$Und_BFControl 
##        n  missing distinct     Info     Mean      Gmd 
##       11       93        9    0.991    77.45     22.4 
## 
## lowest :  43  52  65  69  73, highest:  73  83  90  94 100
##                                                                 
## Value         43    52    65    69    73    83    90    94   100
## Frequency      1     1     1     1     1     2     1     1     2
## Proportion 0.091 0.091 0.091 0.091 0.091 0.182 0.091 0.091 0.182
sd(FS$Und_BFControl, na.rm = TRUE)
## [1] 18.94921
### Fluency 
FS$Fluency_BFControl <- as.numeric(FS$Fluency_BF_Control_30)
hist(FS$Fluency_BFControl)

describe(FS$Fluency_BFControl)
## FS$Fluency_BFControl 
##        n  missing distinct     Info     Mean      Gmd 
##       11       93        9    0.991    74.09    30.18 
## 
## lowest :  22  36  55  70  72, highest:  72  85  94  96 100
##                                                                 
## Value         22    36    55    70    72    85    94    96   100
## Frequency      1     1     1     1     1     2     1     1     2
## Proportion 0.091 0.091 0.091 0.091 0.091 0.182 0.091 0.091 0.182
sd(FS$Fluency_BFControl, na.rm = TRUE)
## [1] 26.47057
### Risk
FS$R1_BFControl<- as.numeric(FS$Risk_BF_Control_30)
FS$R2_BFControl <- as.numeric(FS$Risk_BF_Control_31)
FS$R3_BFControl <- as.numeric(FS$Risk_BF_Control_32)
length(FS$R1_BFControl)
## [1] 104
length(FS$R2_BFControl)
## [1] 104
length(FS$R3_BFControl)
## [1] 104
hist(FS$R1_BFControl)

hist(FS$R2_BFControl)

hist(FS$R3_BFControl)

FS$RiskScore_BFControl <- rowMeans(FS [, c( "R1_BFControl" , "R2_BFControl", "R3_BFControl")], na.rm=TRUE)
describe(FS$RiskScore_BFControl)
## FS$RiskScore_BFControl 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       11       93       10    0.995    55.06    20.15    36.17    39.00 
##      .25      .50      .75      .90      .95 
##    44.17    47.33    65.33    70.67    83.00 
## 
## lowest : 33.33333 39.00000 43.00000 45.33333 47.33333
## highest: 53.66667 61.33333 69.33333 70.66667 95.33333
##                                                                          
## Value      33.33333 39.00000 43.00000 45.33333 47.33333 53.66667 61.33333
## Frequency         1        1        1        1        2        1        1
## Proportion    0.091    0.091    0.091    0.091    0.182    0.091    0.091
##                                      
## Value      69.33333 70.66667 95.33333
## Frequency         1        1        1
## Proportion    0.091    0.091    0.091
sd(FS$RiskScore_BFControl, na.rm = TRUE)
## [1] 17.88843
FS$RiskScale_BFControl <- data.frame(FS$R1_BFControl, FS$R2_BFControl, FS$R3_BFControl)
describe(FS$RiskScale_BFControl)
## FS$RiskScale_BFControl 
## 
##  3  Variables      104  Observations
## --------------------------------------------------------------------------------
## FS.R1_BFControl 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       11       93       11        1    46.91    38.95      0.5      1.0 
##      .25      .50      .75      .90      .95 
##     18.0     60.0     66.0     81.0     89.5 
## 
## lowest :  0  1 14 22 46, highest: 62 65 67 81 98
##                                                                             
## Value          0     1    14    22    46    60    62    65    67    81    98
## Frequency      1     1     1     1     1     1     1     1     1     1     1
## Proportion 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091
## --------------------------------------------------------------------------------
## FS.R2_BFControl 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       11       93       10    0.995    42.27    40.47      0.0      0.0 
##      .25      .50      .75      .90      .95 
##     17.5     40.0     64.5     95.0     95.5 
## 
## lowest :  0 13 22 29 40, highest: 41 63 66 95 96
##                                                                       
## Value          0    13    22    29    40    41    63    66    95    96
## Frequency      2     1     1     1     1     1     1     1     1     1
## Proportion 0.182 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091
## --------------------------------------------------------------------------------
## FS.R3_BFControl 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       11       93       11        1       76    20.87     47.5     55.0 
##      .25      .50      .75      .90      .95 
##     66.5     77.0     88.5     93.0     96.5 
## 
## lowest :  40  55  65  68  76, highest:  85  87  90  93 100
##                                                                             
## Value         40    55    65    68    76    77    85    87    90    93   100
## Frequency      1     1     1     1     1     1     1     1     1     1     1
## Proportion 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091
## --------------------------------------------------------------------------------
psych::alpha(FS$RiskScale_BFControl)
## Number of categories should be increased  in order to count frequencies.
## Warning in psych::alpha(FS$RiskScale_BFControl): Some items were negatively correlated with the total scale and probably 
## should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( FS.R3_BFControl ) were negatively correlated with the total scale and 
## probably should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## 
## Reliability analysis   
## Call: psych::alpha(x = FS$RiskScale_BFControl)
## 
##   raw_alpha std.alpha G6(smc) average_r    S/N  ase mean sd median_r
##       0.16    -0.068    0.18    -0.022 -0.064 0.12   55 18  -0.0011
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt    -0.17  0.16  0.40
## Duhachek -0.07  0.16  0.38
## 
##  Reliability if an item is dropped:
##                 raw_alpha std.alpha G6(smc) average_r     S/N alpha se var.r
## FS.R1_BFControl   -0.0019   -0.0023 -0.0011   -0.0011 -0.0023    0.161    NA
## FS.R2_BFControl   -1.0631   -1.4185 -0.4150   -0.4150 -0.5865    0.328    NA
## FS.R3_BFControl    0.5191    0.5194  0.3508    0.3508  1.0806    0.094    NA
##                   med.r
## FS.R1_BFControl -0.0011
## FS.R2_BFControl -0.4150
## FS.R3_BFControl  0.3508
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean sd
## FS.R1_BFControl 11 0.701  0.55  0.32   0.12   47 33
## FS.R2_BFControl 11 0.853  0.80  0.70   0.38   42 34
## FS.R3_BFControl 11 0.076  0.34 -0.31  -0.25   76 18
cor(FS$RiskScale_BFControl, use= "complete.obs")
##                 FS.R1_BFControl FS.R2_BFControl FS.R3_BFControl
## FS.R1_BFControl       1.0000000     0.350772493    -0.414955019
## FS.R2_BFControl       0.3507725     1.000000000    -0.001147297
## FS.R3_BFControl      -0.4149550    -0.001147297     1.000000000
### Benefit
FS$B1_BFControl<- as.numeric(FS$Ben_BF_Control_40)
FS$B2_BFControl <- as.numeric(FS$Ben_BF_Control_42)
FS$B3_BFControl <- as.numeric(FS$Ben_BF_Control_43)
FS$B4_BFControl <- as.numeric(FS$Ben_BF_Control_44)

hist(FS$B1_BFControl)

hist(FS$B2_BFControl)

hist(FS$B3_BFControl)

hist(FS$B4_BFControl)

FS$BenScore_BFControl <- rowMeans(FS [, c( "B1_BFControl" , "B2_BFControl", "B3_BFControl", "B4_BFControl")], na.rm=TRUE)
describe(FS$BenScore_BFControl)
## FS$BenScore_BFControl 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       11       93       11        1    77.45    22.42    51.50    57.75 
##      .25      .50      .75      .90      .95 
##    63.00    75.75    93.88    99.50    99.75 
## 
## lowest :  45.25  57.75  60.50  65.50  70.75, highest:  89.25  93.50  94.25  99.50 100.00
##                                                                          
## Value       45.25  57.75  60.50  65.50  70.75  75.75  89.25  93.50  94.25
## Frequency       1      1      1      1      1      1      1      1      1
## Proportion  0.091  0.091  0.091  0.091  0.091  0.091  0.091  0.091  0.091
##                         
## Value       99.50 100.00
## Frequency       1      1
## Proportion  0.091  0.091
sd(FS$BenScore_BFControl, na.rm = TRUE)
## [1] 18.91191
FS$BenScale_BFControl <- data.frame(FS$B1_BFControl, FS$B2_BFControl, FS$B3_BFControl, FS$B4_BFControl)
describe(FS$BenScale_BFControl)
## FS$BenScale_BFControl 
## 
##  4  Variables      104  Observations
## --------------------------------------------------------------------------------
## FS.B1_BFControl 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       11       93       10    0.995       79    20.25     54.5     57.0 
##      .25      .50      .75      .90      .95 
##     67.5     77.0     93.0    100.0    100.0 
## 
## lowest :  52  57  67  68  73, highest:  77  89  92  94 100
##                                                                       
## Value         52    57    67    68    73    77    89    92    94   100
## Frequency      1     1     1     1     1     1     1     1     1     2
## Proportion 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.182
## --------------------------------------------------------------------------------
## FS.B2_BFControl 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       11       93       10    0.995    81.09    21.56     51.5     60.0 
##      .25      .50      .75      .90      .95 
##     71.0     86.0     96.5    100.0    100.0 
## 
## lowest :  43  60  66  76  77, highest:  86  91  95  98 100
##                                                                       
## Value         43    60    66    76    77    86    91    95    98   100
## Frequency      1     1     1     1     1     1     1     1     1     2
## Proportion 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.182
## --------------------------------------------------------------------------------
## FS.B3_BFControl 
##        n  missing distinct     Info     Mean      Gmd 
##       11       93        9    0.982    74.82    28.76 
## 
## lowest :  32  43  58  59  70, highest:  70  73  91  97 100
##                                                                 
## Value         32    43    58    59    70    73    91    97   100
## Frequency      1     1     1     1     1     1     1     1     3
## Proportion 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.273
## --------------------------------------------------------------------------------
## FS.B4_BFControl 
##        n  missing distinct     Info     Mean      Gmd 
##       11       93        8    0.977    74.91    29.56 
## 
## lowest :  18  43  66  69  81, highest:  69  81  88  93 100
##                                                           
## Value         18    43    66    69    81    88    93   100
## Frequency      1     1     2     1     1     1     1     3
## Proportion 0.091 0.091 0.182 0.091 0.091 0.091 0.091 0.273
## --------------------------------------------------------------------------------
psych::alpha(FS$BenScale_BFControl)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = FS$BenScale_BFControl)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.88       0.9    0.92      0.69   9 0.019   77 19     0.76
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.84  0.88  0.92
## Duhachek  0.85  0.88  0.92
## 
##  Reliability if an item is dropped:
##                 raw_alpha std.alpha G6(smc) average_r  S/N alpha se   var.r
## FS.B1_BFControl      0.87      0.89    0.86      0.73  8.1    0.022 0.01008
## FS.B2_BFControl      0.80      0.82    0.82      0.60  4.5    0.033 0.04181
## FS.B3_BFControl      0.81      0.84    0.88      0.63  5.2    0.033 0.04956
## FS.B4_BFControl      0.91      0.92    0.89      0.80 12.3    0.013 0.00061
##                 med.r
## FS.B1_BFControl  0.73
## FS.B2_BFControl  0.63
## FS.B3_BFControl  0.73
## FS.B4_BFControl  0.80
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean sd
## FS.B1_BFControl 11  0.81  0.84  0.81   0.70   79 17
## FS.B2_BFControl 11  0.95  0.96  0.95   0.91   81 19
## FS.B3_BFControl 11  0.93  0.93  0.89   0.85   75 25
## FS.B4_BFControl 11  0.82  0.78  0.71   0.63   75 26
cor(FS$BenScale_BFControl, use= "complete.obs")
##                 FS.B1_BFControl FS.B2_BFControl FS.B3_BFControl FS.B4_BFControl
## FS.B1_BFControl       1.0000000       0.7956334       0.7847937       0.3797788
## FS.B2_BFControl       0.7956334       1.0000000       0.8320682       0.7254958
## FS.B3_BFControl       0.7847937       0.8320682       1.0000000       0.6313735
## FS.B4_BFControl       0.3797788       0.7254958       0.6313735       1.0000000
### Support
FS$S1_BFControl<- as.numeric(FS$Sup_BF_Control_40)
FS$S2_BFControl <- as.numeric(FS$Sup_BF_Control_42)
FS$S3_BFControl <- as.numeric(FS$Sup_BF_Control_43)
FS$S4_BFControl <- as.numeric(FS$Sup_BF_Control_45)

hist(FS$S1_BFControl)

hist(FS$S2_BFControl)

hist(FS$S3_BFControl)

hist(FS$S4_BFControl)

FS$SupScore_BFControl <- rowMeans(FS [, c( "S1_BFControl" , "S2_BFControl", "S3_BFControl", "S4_BFControl")], na.rm=TRUE)
describe(FS$SupScore_BFControl)
## FS$SupScore_BFControl 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       11       93       11        1    75.82    20.95    53.88    56.00 
##      .25      .50      .75      .90      .95 
##    63.88    69.25    93.62    99.50    99.75 
## 
## lowest :  51.75  56.00  62.50  65.25  66.75, highest:  75.75  92.00  95.25  99.50 100.00
##                                                                          
## Value       51.75  56.00  62.50  65.25  66.75  69.25  75.75  92.00  95.25
## Frequency       1      1      1      1      1      1      1      1      1
## Proportion  0.091  0.091  0.091  0.091  0.091  0.091  0.091  0.091  0.091
##                         
## Value       99.50 100.00
## Frequency       1      1
## Proportion  0.091  0.091
sd(FS$SupScore_BFControl, na.rm = TRUE)
## [1] 17.80874
FS$SupScale_BFControl <- data.frame(FS$S1_BFControl, FS$S2_BFControl, FS$S3_BFControl, FS$S4_BFControl)
describe(FS$SupScale_BFControl)
## FS$SupScale_BFControl 
## 
##  4  Variables      104  Observations
## --------------------------------------------------------------------------------
## FS.S1_BFControl 
##        n  missing distinct     Info     Mean      Gmd 
##       11       93        9    0.982    78.18    25.56 
## 
## lowest :  41  52  61  62  73, highest:  73  74  98  99 100
##                                                                 
## Value         41    52    61    62    73    74    98    99   100
## Frequency      1     1     1     1     1     1     1     1     3
## Proportion 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.273
## --------------------------------------------------------------------------------
## FS.S2_BFControl 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       11       93       10    0.995    81.64    19.89     56.5     62.0 
##      .25      .50      .75      .90      .95 
##     69.0     88.0     96.0    100.0    100.0 
## 
## lowest :  51  62  67  71  78, highest:  88  89  94  98 100
##                                                                       
## Value         51    62    67    71    78    88    89    94    98   100
## Frequency      1     1     1     1     1     1     1     1     1     2
## Proportion 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.182
## --------------------------------------------------------------------------------
## FS.S3_BFControl 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       11       93       10    0.995    73.73    26.76     40.0     52.0 
##      .25      .50      .75      .90      .95 
##     60.5     71.0     92.5    100.0    100.0 
## 
## lowest :  28  52  60  61  67, highest:  71  87  89  96 100
##                                                                       
## Value         28    52    60    61    67    71    87    89    96   100
## Frequency      1     1     1     1     1     1     1     1     1     2
## Proportion 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.182
## --------------------------------------------------------------------------------
## FS.S4_BFControl 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       11       93       10    0.995    69.73    29.38     33.5     52.0 
##      .25      .50      .75      .90      .95 
##     57.0     70.0     92.5    100.0    100.0 
## 
## lowest :  15  52  56  58  60, highest:  70  71  91  94 100
##                                                                       
## Value         15    52    56    58    60    70    71    91    94   100
## Frequency      1     1     1     1     1     1     1     1     1     2
## Proportion 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.182
## --------------------------------------------------------------------------------
psych::alpha(FS$SupScale_BFControl)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = FS$SupScale_BFControl)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.82      0.84    0.85      0.56 5.2 0.031   76 18     0.52
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.75  0.82  0.87
## Duhachek  0.76  0.82  0.88
## 
##  Reliability if an item is dropped:
##                 raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## FS.S1_BFControl      0.68      0.70    0.64      0.44 2.4    0.055 0.027  0.37
## FS.S2_BFControl      0.75      0.76    0.72      0.51 3.1    0.045 0.040  0.42
## FS.S3_BFControl      0.75      0.78    0.81      0.55 3.6    0.046 0.097  0.42
## FS.S4_BFControl      0.89      0.90    0.90      0.76 9.4    0.018 0.018  0.74
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean sd
## FS.S1_BFControl 11  0.91  0.93  0.96   0.83   78 22
## FS.S2_BFControl 11  0.84  0.87  0.88   0.74   82 17
## FS.S3_BFControl 11  0.84  0.84  0.76   0.68   74 23
## FS.S4_BFControl 11  0.69  0.64  0.43   0.41   70 26
cor(FS$SupScale_BFControl, use= "complete.obs")
##                 FS.S1_BFControl FS.S2_BFControl FS.S3_BFControl FS.S4_BFControl
## FS.S1_BFControl       1.0000000       0.9012425       0.7396963       0.4154768
## FS.S2_BFControl       0.9012425       1.0000000       0.6314288       0.3226014
## FS.S3_BFControl       0.7396963       0.6314288       1.0000000       0.3731801
## FS.S4_BFControl       0.4154768       0.3226014       0.3731801       1.0000000

Enhanced Weathering

Quiz Questions & Attention Check

## Time Spent Reading Instructions 
describe(FS$EWCon_InstTime_Page.Submit)
## FS$EWCon_InstTime_Page.Submit 
##        n  missing distinct     Info     Mean      Gmd 
##        9       95        9        1    4.983    4.936 
## 
## lowest :  0.933  1.251  1.834  3.000  3.782, highest:  3.782  5.072  5.894  6.201 16.883
##                                                                          
## Value       0.933  1.251  1.834  3.000  3.782  5.072  5.894  6.201 16.883
## Frequency       1      1      1      1      1      1      1      1      1
## Proportion  0.111  0.111  0.111  0.111  0.111  0.111  0.111  0.111  0.111
INSTminutes_EWC <- (mean(FS$EWCon_InstTime_Page.Submit, na.rm = TRUE)/60)
print(INSTminutes_EWC)
## [1] 0.08305556
## Time Spent Reading Technology Description (before proceeding to next page of survey)
  ### Raw Time Spent (Seconds) 
  describe(FS$EW_Control_Time_Page.Submit)
## FS$EW_Control_Time_Page.Submit 
##        n  missing distinct     Info     Mean      Gmd 
##        9       95        9        1    19.38    23.89 
## 
## lowest :  0.901  1.105  2.571 10.801 14.540, highest: 14.540 17.703 18.297 35.483 73.033
##                                                                          
## Value       0.901  1.105  2.571 10.801 14.540 17.703 18.297 35.483 73.033
## Frequency       1      1      1      1      1      1      1      1      1
## Proportion  0.111  0.111  0.111  0.111  0.111  0.111  0.111  0.111  0.111
  sd(FS$EW_Control_Time_Page.Submit, na.rm = TRUE)
## [1] 22.90456
  range(FS$EW_Control_Time_Page.Submit, na.rm = TRUE)
## [1]  0.901 73.033
  ### Convert to Minutes 
  TECHminutes_EWC <- (mean(FS$EW_Control_Time_Page.Submit, na.rm = TRUE)/60)
  print(TECHminutes_EWC)
## [1] 0.3230259
## Attention Checks
### Attention Check 1: What technology did you just read about?
FS$ATN_EW_Control1 <- as.numeric(as.character(FS$EW_Control_ATN))
FS$ATN_EW_Control <- factor(FS$ATN_EW_Control1, levels = c(1, 2, 3, 4), 
                   labels = c("Biochar", "Biofuel", "Enhanced Weathering", "Wind Energy"))
describe(FS$ATN_EW_Control)
## FS$ATN_EW_Control 
##        n  missing distinct 
##        9       95        2 
##                                                   
## Value      Enhanced Weathering         Wind Energy
## Frequency                    7                   2
## Proportion               0.778               0.222
#### Time spent answering attention check #1:
  ##### (Seconds)
  describe(FS$EW_Control_ATNTIME_Page.Submit)
## FS$EW_Control_ATNTIME_Page.Submit 
##        n  missing distinct     Info     Mean      Gmd 
##        9       95        9        1    22.42    33.66 
## 
## lowest :   3.504   3.588   3.900   6.321   7.912
## highest:   7.912   9.693  10.785  10.881 145.198
##                                                                           
## Value        3.504   3.588   3.900   6.321   7.912   9.693  10.785  10.881
## Frequency        1       1       1       1       1       1       1       1
## Proportion   0.111   0.111   0.111   0.111   0.111   0.111   0.111   0.111
##                   
## Value      145.198
## Frequency        1
## Proportion   0.111
  sd(FS$EW_Control_ATNTIME_Page.Submit, na.rm = TRUE)
## [1] 46.13844
  range(FS$EW_Control_ATNTIME_Page.Submit, na.rm = TRUE)
## [1]   3.504 145.198
  ##### (Minutes)
  ATN1_EWC <- (mean(FS$EW_Control_ATNTIME_Page.Submit, na.rm = TRUE)/60)
  print(ATN1_EWC)
## [1] 0.3736704
### Attention Check 2: Describe as much as you can about the technology you read about.
describe(FS$EW_Control_ATN2)
## FS$EW_Control_ATN2 
##        n  missing distinct 
##        9       95        9 
## 
## lowest : drawing CO2 out of the atmosphere via reactions with minerals and water                                                                      Enhanced weathering is a process that speeds up and removes co2                                                                              Enhanced weathering is when you're working with rocks in the ocean and using that for fuel                                                   I'm not sure I understood it.                                                                                                                Iy is based off of fuel and energy stored.                                                                                                  
## highest: Iy is based off of fuel and energy stored.                                                                                                   The climate change method is sustainable. It uses natural processes to achieve a better use of technology. It aims to help the environment.  UC is developing a new sensor to detect climate change                                                                                       Very new and exciting                                                                                                                        Weather changes because of man but also as well because of time.
  #### Time spent answering attention check #2
  ##### (Seconds)
  describe(FS$EW_Control_ATN2TIME_Page.Submit)
## FS$EW_Control_ATN2TIME_Page.Submit 
##        n  missing distinct     Info     Mean      Gmd 
##        9       95        9        1    45.68    35.13 
## 
## lowest : 11.118 11.201 18.936 33.854 36.401, highest: 36.401 66.401 71.750 73.540 87.921
##                                                                          
## Value      11.118 11.201 18.936 33.854 36.401 66.401 71.750 73.540 87.921
## Frequency       1      1      1      1      1      1      1      1      1
## Proportion  0.111  0.111  0.111  0.111  0.111  0.111  0.111  0.111  0.111
  sd(FS$EW_Control_ATN2TIME_Page.Submit, na.rm = TRUE)
## [1] 29.56775
  range(FS$EW_Control_ATN2TIME_Page.Submit, na.rm = TRUE)
## [1] 11.118 87.921
  ##### (Minutes)
  ATN2_EWC <- (mean(FS$EW_Control_ATN2TIME_Page.Submit, na.rm = TRUE)/60)
  print(ATN2_EWC)
## [1] 0.761337

Technology Ratings

### Naturalness
FS$N1_EWControl <- as.numeric(FS$Nat_EW_Control_30)
FS$N2R_EWControl <- as.numeric(100 - FS$Nat_EW_Control_31)
FS$N3R_EWControl <- as.numeric(100 - FS$Nat_EW_Control_35)
FS$N4R_EWControl <- as.numeric(100- FS$Nat_EW_Control_36)

hist(FS$N1_EWControl)

hist(FS$N2R_EWControl)

hist(FS$N3R_EWControl)

hist(FS$N4R_EWControl)

FS$NatScore_EWControl <- rowMeans(FS [, c( "N1_EWControl" , "N2R_EWControl", "N3R_EWControl", "N4R_EWControl")], na.rm=TRUE)
describe(FS$NatScore_EWControl)
## FS$NatScore_EWControl 
##        n  missing distinct     Info     Mean      Gmd 
##        9       95        9        1    35.78    22.61 
## 
## lowest :  6.25 17.00 28.00 30.25 31.75, highest: 31.75 38.00 50.50 50.75 69.50
##                                                                 
## Value       6.25 17.00 28.00 30.25 31.75 38.00 50.50 50.75 69.50
## Frequency      1     1     1     1     1     1     1     1     1
## Proportion 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111
sd(FS$NatScore_EWControl, na.rm = TRUE)
## [1] 19.08797
FS$NatScale_EWControl <- data.frame(FS$N1_EWControl, FS$N2R_EWControl, FS$N3R_EWControl, FS$N4R_EWControl)
describe(FS$NatScale_EWControl)
## FS$NatScale_EWControl 
## 
##  4  Variables      104  Observations
## --------------------------------------------------------------------------------
## FS.N1_EWControl 
##        n  missing distinct     Info     Mean      Gmd 
##        9       95        8    0.992    47.22    35.56 
## 
## lowest :  16  17  40  43  48, highest:  43  48  51  93 100
##                                                           
## Value         16    17    40    43    48    51    93   100
## Frequency      1     2     1     1     1     1     1     1
## Proportion 0.111 0.222 0.111 0.111 0.111 0.111 0.111 0.111
## --------------------------------------------------------------------------------
## FS.N2R_EWControl 
##        n  missing distinct     Info     Mean      Gmd 
##        9       95        9        1    27.22    30.39 
## 
## lowest :  0  4  8  9 18, highest: 18 36 40 52 78
##                                                                 
## Value          0     4     8     9    18    36    40    52    78
## Frequency      1     1     1     1     1     1     1     1     1
## Proportion 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111
## --------------------------------------------------------------------------------
## FS.N3R_EWControl 
##        n  missing distinct     Info     Mean      Gmd 
##        9       95        9        1    17.33    19.83 
## 
## lowest :  0  1  5  7 12, highest: 12 20 27 33 51
##                                                                 
## Value          0     1     5     7    12    20    27    33    51
## Frequency      1     1     1     1     1     1     1     1     1
## Proportion 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111
## --------------------------------------------------------------------------------
## FS.N4R_EWControl 
##        n  missing distinct     Info     Mean      Gmd 
##        9       95        9        1    51.33    38.89 
## 
## lowest :   3  16  36  39  51, highest:  51  52  76  89 100
##                                                                 
## Value          3    16    36    39    51    52    76    89   100
## Frequency      1     1     1     1     1     1     1     1     1
## Proportion 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111
## --------------------------------------------------------------------------------
psych::alpha(FS$NatScale_EWControl)
## Number of categories should be increased  in order to count frequencies.
## Warning in psych::alpha(FS$NatScale_EWControl): Some items were negatively correlated with the total scale and probably 
## should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( FS.N3R_EWControl ) were negatively correlated with the total scale and 
## probably should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## 
## Reliability analysis   
## Call: psych::alpha(x = FS$NatScale_EWControl)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.65      0.58    0.78      0.25 1.4 0.051   36 19     0.36
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.52  0.65  0.75
## Duhachek  0.55  0.65  0.75
## 
##  Reliability if an item is dropped:
##                  raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r
## FS.N1_EWControl       0.39      0.39    0.55      0.17 0.63    0.097  0.15
## FS.N2R_EWControl      0.53      0.31    0.66      0.13 0.44    0.058  0.46
## FS.N3R_EWControl      0.79      0.78    0.81      0.54 3.56    0.036  0.10
## FS.N4R_EWControl      0.38      0.38    0.51      0.17 0.61    0.099  0.14
##                  med.r
## FS.N1_EWControl   0.38
## FS.N2R_EWControl -0.25
## FS.N3R_EWControl  0.38
## FS.N4R_EWControl  0.34
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean sd
## FS.N1_EWControl  9  0.85  0.75  0.77  0.650   47 31
## FS.N2R_EWControl 9  0.74  0.81  0.67  0.503   27 26
## FS.N3R_EWControl 9  0.15  0.34  0.12 -0.076   17 17
## FS.N4R_EWControl 9  0.86  0.76  0.79  0.656   51 32
cor(FS$NatScale_EWControl, use= "complete.obs")
##                  FS.N1_EWControl FS.N2R_EWControl FS.N3R_EWControl
## FS.N1_EWControl        1.0000000        0.3434190       -0.2535695
## FS.N2R_EWControl       0.3434190        1.0000000        0.4170933
## FS.N3R_EWControl      -0.2535695        0.4170933        1.0000000
## FS.N4R_EWControl       0.9071150        0.3769751       -0.2706262
##                  FS.N4R_EWControl
## FS.N1_EWControl         0.9071150
## FS.N2R_EWControl        0.3769751
## FS.N3R_EWControl       -0.2706262
## FS.N4R_EWControl        1.0000000
### Familiarity 
FS$Fam_EWControl <- as.numeric(FS$Fam_EW_Control_34)
hist(FS$Fam_EWControl)

describe(FS$Fam_EWControl)
## FS$Fam_EWControl 
##        n  missing distinct     Info     Mean      Gmd 
##        9       95        7    0.983    39.22    35.83 
## 
## lowest :  0 28 39 40 52, highest: 39 40 52 79 87
##                                                     
## Value          0    28    39    40    52    79    87
## Frequency      2     2     1     1     1     1     1
## Proportion 0.222 0.222 0.111 0.111 0.111 0.111 0.111
sd(FS$Fam_EWControl, na.rm = TRUE)
## [1] 30.32646
### Understanding 
FS$Und_EWControl <- as.numeric(FS$Fam_EW_Control_33)
hist(FS$Und_EWControl)

describe(FS$Und_EWControl)
## FS$Und_EWControl 
##        n  missing distinct     Info     Mean      Gmd 
##        9       95        8    0.992    46.33    37.61 
## 
## lowest :  0 22 28 39 63, highest: 39 63 70 80 93
##                                                           
## Value          0    22    28    39    63    70    80    93
## Frequency      1     2     1     1     1     1     1     1
## Proportion 0.111 0.222 0.111 0.111 0.111 0.111 0.111 0.111
sd(FS$Und_EWControl, na.rm = TRUE)
## [1] 31.36479
### Fluency 
FS$Fluency_EWControl <- as.numeric(FS$Fluency_EW_Control_30)
hist(FS$Fluency_EWControl)

describe(FS$Fluency_EWControl)
## FS$Fluency_EWControl 
##        n  missing distinct     Info     Mean      Gmd 
##        9       95        8    0.992    68.78    37.67 
## 
## lowest :  0 37 51 72 82, highest: 72 82 88 91 99
##                                                           
## Value          0    37    51    72    82    88    91    99
## Frequency      1     1     1     1     1     1     1     2
## Proportion 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.222
sd(FS$Fluency_EWControl, na.rm = TRUE)
## [1] 33.41324
### Risk
FS$R1_EWControl<- as.numeric(FS$Risk_EW_Control_32)
FS$R2_EWControl <- as.numeric(FS$Risk_EW_Control_33)
FS$R3_EWControl <- as.numeric(FS$Risk_EW_Control_34)

hist(FS$R1_EWControl)

hist(FS$R2_EWControl)

hist(FS$R3_EWControl)

FS$RiskScore_EWControl <- rowMeans(FS [, c( "R1_EWControl" , "R2_EWControl", "R3_EWControl")], na.rm=TRUE)
describe(FS$RiskScore_EWControl)
## FS$RiskScore_EWControl 
##        n  missing distinct     Info     Mean      Gmd 
##        9       95        9        1    55.11    28.06 
## 
## lowest : 17.33333 37.00000 41.66667 48.33333 50.00000
## highest: 50.00000 61.33333 61.66667 82.33333 96.33333
##                                                                          
## Value      17.33333 37.00000 41.66667 48.33333 50.00000 61.33333 61.66667
## Frequency         1        1        1        1        1        1        1
## Proportion    0.111    0.111    0.111    0.111    0.111    0.111    0.111
##                             
## Value      82.33333 96.33333
## Frequency         1        1
## Proportion    0.111    0.111
sd(FS$RiskScore_EWControl, na.rm = TRUE)
## [1] 23.79601
FS$RiskScale_EWControl <- data.frame(FS$R1_EWControl, FS$R2_EWControl, FS$R3_EWControl)
describe(FS$RiskScale_EWControl)
## FS$RiskScale_EWControl 
## 
##  3  Variables      104  Observations
## --------------------------------------------------------------------------------
## FS.R1_EWControl 
##        n  missing distinct     Info     Mean      Gmd 
##        9       95        9        1    53.78    37.33 
## 
## lowest :   0  25  29  50  60, highest:  60  68  69  83 100
##                                                                 
## Value          0    25    29    50    60    68    69    83   100
## Frequency      1     1     1     1     1     1     1     1     1
## Proportion 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111
## --------------------------------------------------------------------------------
## FS.R2_EWControl 
##        n  missing distinct     Info     Mean      Gmd 
##        9       95        9        1    43.56    39.28 
## 
## lowest :  0 12 19 24 49, highest: 49 50 58 81 99
##                                                                 
## Value          0    12    19    24    49    50    58    81    99
## Frequency      1     1     1     1     1     1     1     1     1
## Proportion 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111
## --------------------------------------------------------------------------------
## FS.R3_EWControl 
##        n  missing distinct     Info     Mean      Gmd 
##        9       95        8    0.992       68       17 
## 
## lowest : 50 52 58 70 75, highest: 70 75 76 83 90
##                                                           
## Value         50    52    58    70    75    76    83    90
## Frequency      1     1     2     1     1     1     1     1
## Proportion 0.111 0.111 0.222 0.111 0.111 0.111 0.111 0.111
## --------------------------------------------------------------------------------
psych::alpha(FS$RiskScale_EWControl)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = FS$RiskScale_EWControl)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.84      0.86    0.85      0.67 6.1 0.018   55 24     0.61
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.77  0.84  0.88
## Duhachek  0.80  0.84  0.87
## 
##  Reliability if an item is dropped:
##                 raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r med.r
## FS.R1_EWControl      0.62      0.76    0.61      0.61  3.2    0.048    NA  0.61
## FS.R2_EWControl      0.56      0.69    0.52      0.52  2.2    0.060    NA  0.52
## FS.R3_EWControl      0.94      0.94    0.88      0.88 14.6    0.013    NA  0.88
## 
##  Item statistics 
##                 n raw.r std.r r.cor r.drop mean sd
## FS.R1_EWControl 9  0.95  0.91  0.89   0.84   54 31
## FS.R2_EWControl 9  0.97  0.94  0.94   0.89   44 33
## FS.R3_EWControl 9  0.71  0.81  0.62   0.59   68 14
cor(FS$RiskScale_EWControl, use= "complete.obs")
##                 FS.R1_EWControl FS.R2_EWControl FS.R3_EWControl
## FS.R1_EWControl       1.0000000       0.8796381       0.5231592
## FS.R2_EWControl       0.8796381       1.0000000       0.6128176
## FS.R3_EWControl       0.5231592       0.6128176       1.0000000
### Benefit
FS$B1_EWControl<- as.numeric(FS$Ben_EW_Control_40)
FS$B2_EWControl <- as.numeric(FS$Ben_EW_Control_42)
FS$B3_EWControl <- as.numeric(FS$Ben_EW_Control_43)
FS$B4_EWControl <- as.numeric(FS$Ben_EW_Control_51)

hist(FS$B1_EWControl)

hist(FS$B2_EWControl)

hist(FS$B3_EWControl)

hist(FS$B4_EWControl)

FS$BenScore_EWControl <- rowMeans(FS [, c( "B1_EWControl" , "B2_EWControl", "B3_EWControl", "B4_EWControl")], na.rm=TRUE)
describe(FS$BenScore_EWControl)
## FS$BenScore_EWControl 
##        n  missing distinct     Info     Mean      Gmd 
##        9       95        9        1    65.25    24.86 
## 
## lowest : 32.50 50.00 52.00 54.50 64.00, highest: 64.00 69.25 76.00 91.25 97.75
##                                                                 
## Value      32.50 50.00 52.00 54.50 64.00 69.25 76.00 91.25 97.75
## Frequency      1     1     1     1     1     1     1     1     1
## Proportion 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111
sd(FS$BenScore_EWControl, na.rm = TRUE)
## [1] 20.80152
FS$BenScale_EWControl <- data.frame(FS$B1_EWControl, FS$B2_EWControl, FS$B3_EWControl, FS$B4_EWControl)
describe(FS$BenScale_EWControl)
## FS$BenScale_EWControl 
## 
##  4  Variables      104  Observations
## --------------------------------------------------------------------------------
## FS.B1_EWControl 
##        n  missing distinct     Info     Mean      Gmd 
##        9       95        9        1    61.78    29.56 
## 
## lowest : 23 36 50 52 58, highest: 58 73 76 93 95
##                                                                 
## Value         23    36    50    52    58    73    76    93    95
## Frequency      1     1     1     1     1     1     1     1     1
## Proportion 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111
## --------------------------------------------------------------------------------
## FS.B2_EWControl 
##        n  missing distinct     Info     Mean      Gmd 
##        9       95        9        1       61       31 
## 
## lowest : 16 34 50 52 65, highest: 65 70 76 90 96
##                                                                 
## Value         16    34    50    52    65    70    76    90    96
## Frequency      1     1     1     1     1     1     1     1     1
## Proportion 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111
## --------------------------------------------------------------------------------
## FS.B3_EWControl 
##        n  missing distinct     Info     Mean      Gmd 
##        9       95        9        1    67.78    25.17 
## 
## lowest :  40  50  52  55  61, highest:  61  76  82  94 100
##                                                                 
## Value         40    50    52    55    61    76    82    94   100
## Frequency      1     1     1     1     1     1     1     1     1
## Proportion 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111
## --------------------------------------------------------------------------------
## FS.B4_EWControl 
##        n  missing distinct     Info     Mean      Gmd 
##        9       95        8    0.992    70.44    22.06 
## 
## lowest :  50  51  52  62  67, highest:  62  67  76  88 100
##                                                           
## Value         50    51    52    62    67    76    88   100
## Frequency      1     1     1     1     1     1     2     1
## Proportion 0.111 0.111 0.111 0.111 0.111 0.111 0.222 0.111
## --------------------------------------------------------------------------------
psych::alpha(FS$BenScale_EWControl)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = FS$BenScale_EWControl)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.94      0.95    0.97      0.82  18 0.011   65 21     0.82
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.92  0.94  0.95
## Duhachek  0.92  0.94  0.96
## 
##  Reliability if an item is dropped:
##                 raw_alpha std.alpha G6(smc) average_r  S/N alpha se  var.r
## FS.B1_EWControl      0.89      0.91    0.94      0.77  9.9   0.0204 0.0344
## FS.B2_EWControl      0.97      0.98    0.99      0.94 45.9   0.0048 0.0023
## FS.B3_EWControl      0.89      0.90    0.89      0.75  9.0   0.0187 0.0180
## FS.B4_EWControl      0.92      0.93    0.92      0.81 12.5   0.0146 0.0175
##                 med.r
## FS.B1_EWControl  0.71
## FS.B2_EWControl  0.96
## FS.B3_EWControl  0.75
## FS.B4_EWControl  0.75
## 
##  Item statistics 
##                 n raw.r std.r r.cor r.drop mean sd
## FS.B1_EWControl 9  0.97  0.97  0.97   0.93   62 25
## FS.B2_EWControl 9  0.85  0.83  0.74   0.71   61 26
## FS.B3_EWControl 9  0.97  0.98  1.00   0.95   68 21
## FS.B4_EWControl 9  0.92  0.94  0.95   0.87   70 19
cor(FS$BenScale_EWControl, use= "complete.obs")
##                 FS.B1_EWControl FS.B2_EWControl FS.B3_EWControl FS.B4_EWControl
## FS.B1_EWControl       1.0000000       0.7492446       0.9584845       0.8834541
## FS.B2_EWControl       0.7492446       1.0000000       0.7132660       0.6151490
## FS.B3_EWControl       0.9584845       0.7132660       1.0000000       0.9738896
## FS.B4_EWControl       0.8834541       0.6151490       0.9738896       1.0000000
### Support
FS$S1_EWControl<- as.numeric(FS$Sup_EW_Control_40)
FS$S2_EWControl <- as.numeric(FS$Sup_EW_Control_42)
FS$S3_EWControl <- as.numeric(FS$Sup_EW_Control_43)
FS$S4_EWControl <- as.numeric(FS$Sup_EW_Control_45)

hist(FS$S1_EWControl)

hist(FS$S2_EWControl)

hist(FS$S3_EWControl)

hist(FS$S4_EWControl)

FS$SupScore_EWControl <- rowMeans(FS [, c( "S1_EWControl" , "S2_EWControl", "S3_EWControl", "S4_EWControl")], na.rm=TRUE)
describe(FS$SupScore_EWControl)
## FS$SupScore_EWControl 
##        n  missing distinct     Info     Mean      Gmd 
##        9       95        9        1    57.08    26.57 
## 
## lowest : 15.75 37.00 50.00 54.00 55.75, highest: 55.75 64.25 65.50 75.00 96.50
##                                                                 
## Value      15.75 37.00 50.00 54.00 55.75 64.25 65.50 75.00 96.50
## Frequency      1     1     1     1     1     1     1     1     1
## Proportion 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111
sd(FS$SupScore_EWControl, na.rm = TRUE)
## [1] 22.83124
FS$SupScale_EWControl <- data.frame(FS$S1_EWControl, FS$S2_EWControl, FS$S3_EWControl, FS$S4_EWControl)
describe(FS$SupScale_EWControl)
## FS$SupScale_EWControl 
## 
##  4  Variables      104  Observations
## --------------------------------------------------------------------------------
## FS.S1_EWControl 
##        n  missing distinct     Info     Mean      Gmd 
##        9       95        9        1    65.33    31.22 
## 
## lowest : 17 38 50 64 73, highest: 73 76 77 94 99
##                                                                 
## Value         17    38    50    64    73    76    77    94    99
## Frequency      1     1     1     1     1     1     1     1     1
## Proportion 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111
## --------------------------------------------------------------------------------
## FS.S2_EWControl 
##        n  missing distinct     Info     Mean      Gmd 
##        9       95        8    0.992    67.89    29.22 
## 
## lowest :  17  50  54  64  75, highest:  64  75  87  89 100
##                                                           
## Value         17    50    54    64    75    87    89   100
## Frequency      1     1     1     1     2     1     1     1
## Proportion 0.111 0.111 0.111 0.111 0.222 0.111 0.111 0.111
## --------------------------------------------------------------------------------
## FS.S3_EWControl 
##        n  missing distinct     Info     Mean      Gmd 
##        9       95        9        1    46.67    37.78 
## 
## lowest :   0  18  23  30  50, highest:  50  62  63  74 100
##                                                                 
## Value          0    18    23    30    50    62    63    74   100
## Frequency      1     1     1     1     1     1     1     1     1
## Proportion 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111
## --------------------------------------------------------------------------------
## FS.S4_EWControl 
##        n  missing distinct     Info     Mean      Gmd 
##        9       95        9        1    48.44    36.61 
## 
## lowest :  0 11 17 50 61, highest: 61 67 68 75 87
##                                                                 
## Value          0    11    17    50    61    67    68    75    87
## Frequency      1     1     1     1     1     1     1     1     1
## Proportion 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111
## --------------------------------------------------------------------------------
psych::alpha(FS$SupScale_EWControl)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = FS$SupScale_EWControl)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.81      0.81    0.96      0.52 4.3 0.036   57 23     0.34
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.74  0.81  0.86
## Duhachek  0.74  0.81  0.88
## 
##  Reliability if an item is dropped:
##                 raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## FS.S1_EWControl      0.78      0.77    0.80      0.52 3.3    0.037  0.10  0.39
## FS.S2_EWControl      0.75      0.74    0.78      0.48 2.8    0.043  0.13  0.30
## FS.S3_EWControl      0.76      0.79    0.87      0.55 3.7    0.046  0.13  0.39
## FS.S4_EWControl      0.73      0.76    0.83      0.51 3.1    0.053  0.16  0.29
## 
##  Item statistics 
##                 n raw.r std.r r.cor r.drop mean sd
## FS.S1_EWControl 9  0.75  0.79  0.79   0.57   65 26
## FS.S2_EWControl 9  0.79  0.83  0.83   0.64   68 25
## FS.S3_EWControl 9  0.81  0.77  0.73   0.62   47 32
## FS.S4_EWControl 9  0.84  0.81  0.78   0.68   48 31
cor(FS$SupScale_EWControl, use= "complete.obs")
##                 FS.S1_EWControl FS.S2_EWControl FS.S3_EWControl FS.S4_EWControl
## FS.S1_EWControl       1.0000000       0.9703386       0.2588807       0.2958704
## FS.S2_EWControl       0.9703386       1.0000000       0.2949075       0.3853197
## FS.S3_EWControl       0.2588807       0.2949075       1.0000000       0.8921764
## FS.S4_EWControl       0.2958704       0.3853197       0.8921764       1.0000000

Less Familiar Condition

Biochar

Quiz Questions & Attention Check

## Time Spent Reading Instructions 
describe(FS$BIOUF_InstTime_Page.Submit)
## FS$BIOUF_InstTime_Page.Submit 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       11       93       11        1     5.09    4.856    1.265    1.384 
##      .25      .50      .75      .90      .95 
##    1.954    2.501    8.534   11.094   12.107 
## 
## lowest :  1.147  1.384  1.950  1.959  2.136, highest:  3.631  8.090  8.978 11.094 13.120
##                                                                          
## Value       1.147  1.384  1.950  1.959  2.136  2.501  3.631  8.090  8.978
## Frequency       1      1      1      1      1      1      1      1      1
## Proportion  0.091  0.091  0.091  0.091  0.091  0.091  0.091  0.091  0.091
##                         
## Value      11.094 13.120
## Frequency       1      1
## Proportion  0.091  0.091
INSTminutes_BIOUF <- (mean(FS$BIOUF_InstTime_Page.Submit, na.rm = TRUE)/60)
print(INSTminutes_BIOUF)
## [1] 0.08483333
## Time Spent Reading Technology Description (before proceeding to next page of survey)
  ### Raw Time Spent (Seconds) 
  describe(FS$BIO_UF_Time_Page.Submit)
## FS$BIO_UF_Time_Page.Submit 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       11       93       11        1    18.89    21.33    1.886    2.101 
##      .25      .50      .75      .90      .95 
##    2.809   11.035   31.795   36.246   47.597 
## 
## lowest :  1.671  2.101  2.465  3.154  5.275, highest: 23.277 31.354 32.236 36.246 58.949
##                                                                          
## Value       1.671  2.101  2.465  3.154  5.275 11.035 23.277 31.354 32.236
## Frequency       1      1      1      1      1      1      1      1      1
## Proportion  0.091  0.091  0.091  0.091  0.091  0.091  0.091  0.091  0.091
##                         
## Value      36.246 58.949
## Frequency       1      1
## Proportion  0.091  0.091
  sd(FS$BIO_UF_Time_Page.Submit, na.rm = TRUE)
## [1] 18.97763
  range(FS$BIO_UF_Time_Page.Submit, na.rm = TRUE)
## [1]  1.671 58.949
  ### Convert to Minutes 
  TECHminutes_BIOUF <- (mean(FS$BIO_UF_Time_Page.Submit, na.rm = TRUE)/60)
  print(TECHminutes_BIOUF)
## [1] 0.3147924
## Attention and Manipulation Checks

# Attention Check 1: What technology did you just read about?
FS$ATN_BIO_UF1 <- as.numeric(as.character(FS$BIO_UF_ATN))
FS$ATN_BIO_UF <- factor(FS$ATN_BIO_Control1, levels = c(1, 2, 3, 4), 
                   labels = c("Biochar", "Biofuel", "Enhanced Weathering", "Wind Energy"))
describe(FS$ATN_BIO_UF)
## FS$ATN_BIO_UF 
##        n  missing distinct 
##       12       92        4 
##                                                                       
## Value                  Biochar             Biofuel Enhanced Weathering
## Frequency                    6                   2                   1
## Proportion               0.500               0.167               0.083
##                               
## Value              Wind Energy
## Frequency                    3
## Proportion               0.250
#### Time spent answering attention check #1:
  ##### (Seconds)
  describe(FS$BIO_UF_ATNTime_Page.Submit)
## FS$BIO_UF_ATNTime_Page.Submit 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       11       93       11        1    8.449    4.454    4.335    4.368 
##      .25      .50      .75      .90      .95 
##    5.155    8.736   10.329   11.501   14.451 
## 
## lowest :  4.301  4.368  4.808  5.502  6.810, highest:  8.859 10.136 10.521 11.501 17.402
##                                                                          
## Value       4.301  4.368  4.808  5.502  6.810  8.736  8.859 10.136 10.521
## Frequency       1      1      1      1      1      1      1      1      1
## Proportion  0.091  0.091  0.091  0.091  0.091  0.091  0.091  0.091  0.091
##                         
## Value      11.501 17.402
## Frequency       1      1
## Proportion  0.091  0.091
  sd(FS$BIO_UF_ATNTime_Page.Submit, na.rm = TRUE)
## [1] 3.941434
  range(FS$BIO_UF_ATNTime_Page.Submit, na.rm = TRUE)
## [1]  4.301 17.402
  ##### (Minutes)
  ATN1_BIOUF <- (mean(FS$BIO_UF_ATNTime_Page.Submit, na.rm = TRUE)/60)
  print(ATN1_BIOUF)
## [1] 0.1408242
### Attention Check 2: Describe as much as you can about the technology you read about.
describe(FS$BIO_UF_ATN2)
## FS$BIO_UF_ATN2 
##        n  missing distinct 
##       11       93       11 
## 
## lowest : A long-term pattern of weather in a particular area. Weather is a particular region and time period. i really havnt done that                                                                             It deals with how charcoal is made and then placed in the ground for later use                       It's changing 24/7                                                                                   Needs attention now                                                                                 
## highest: Noithing I can remember                                                                              That it’s very inconsistent                                                                          Turning plant based materials into carbon to be stored underground for long periods.                 Using animal & plant remains to make by burning without oxygen a carbon product to be used later.    You burn biomass with out oxygen which create coal which can used in the soil
  #### Time spent answering attention check #2
  ##### (Seconds)
  describe(FS$BIO_UF_ATN2Time_Page.Submit)
## FS$BIO_UF_ATN2Time_Page.Submit 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       11       93       11        1     41.7    26.18    16.76    17.17 
##      .25      .50      .75      .90      .95 
##    22.90    42.70    52.81    75.16    78.00 
## 
## lowest : 16.360 17.166 22.201 23.603 31.042, highest: 43.991 50.363 55.258 75.164 80.841
##                                                                          
## Value      16.360 17.166 22.201 23.603 31.042 42.699 43.991 50.363 55.258
## Frequency       1      1      1      1      1      1      1      1      1
## Proportion  0.091  0.091  0.091  0.091  0.091  0.091  0.091  0.091  0.091
##                         
## Value      75.164 80.841
## Frequency       1      1
## Proportion  0.091  0.091
  sd(FS$BIO_UF_ATN2Time_Page.Submit, na.rm = TRUE)
## [1] 22.32109
  range(FS$BIO_UF_ATN2Time_Page.Submit, na.rm = TRUE)
## [1] 16.360 80.841
  ##### (Minutes)
  ATN2_BFUF <- (mean(FS$BIO_UF_ATN2Time_Page.Submit, na.rm = TRUE)/60)
  print(ATN2_BFUF)
## [1] 0.6949818
### Quiz Questions
FS$BIO_UF_Quiz1
##   [1]  4 NA NA NA NA NA NA NA NA NA  4 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
##  [26] NA NA  4 NA NA NA NA NA NA NA NA NA NA NA NA NA NA  4  4 NA NA NA  3 NA NA
##  [51] NA NA NA NA NA NA  4 NA NA NA NA NA NA NA NA NA  4 NA NA NA NA  2 NA NA NA
##  [76] NA NA NA NA NA  1 NA NA NA NA NA NA NA  4 NA NA NA NA NA NA NA NA NA NA NA
## [101] NA NA NA NA
FS$BIO_UF_QuizTime_Page.Submit
##   [1] 47.978     NA     NA     NA     NA     NA     NA     NA     NA     NA
##  [11] 11.490     NA     NA     NA     NA     NA     NA     NA     NA     NA
##  [21]     NA     NA     NA     NA     NA     NA     NA 19.280     NA     NA
##  [31]     NA     NA     NA     NA     NA     NA     NA     NA     NA     NA
##  [41]     NA     NA 30.639  6.460     NA     NA     NA  8.401     NA     NA
##  [51]     NA     NA     NA     NA     NA     NA 10.392     NA     NA     NA
##  [61]     NA     NA     NA     NA     NA     NA 39.268     NA     NA     NA
##  [71]     NA 33.687     NA     NA     NA     NA     NA     NA     NA     NA
##  [81] 32.319     NA     NA     NA     NA     NA     NA     NA 34.151     NA
##  [91]     NA     NA     NA     NA     NA     NA     NA     NA     NA     NA
## [101]     NA     NA     NA     NA

Technology Ratings

#Naturalness
FS$N1_BioUF<- as.numeric(FS$Nat_BIO_UF_30)
FS$N2R_BioUF <- as.numeric(100 - FS$Nat_BIO_UF_31)
FS$N3R_BioUF <- as.numeric(100 - FS$Nat_BIO_UF_35)
FS$N4R_BioUF <- as.numeric(100- FS$Nat_BIO_UF_36)

hist(FS$N1_BioUF)

hist(FS$N2R_BioUF)

hist(FS$N3R_BioUF)

hist(FS$N4R_BioUF)

FS$NatScore_BioUF <- rowMeans(FS [, c( "N1_BioUF" , "N2R_BioUF", "N3R_BioUF", "N4R_BioUF")], na.rm=TRUE)
describe(FS$NatScore_BioUF)
## FS$NatScore_BioUF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       11       93       11        1     44.2     24.2    14.75    25.00 
##      .25      .50      .75      .90      .95 
##    28.25    49.75    59.75    63.50    68.25 
## 
## lowest :  4.50 25.00 25.75 30.75 44.50, highest: 50.00 56.25 63.25 63.50 73.00
##                                                                             
## Value       4.50 25.00 25.75 30.75 44.50 49.75 50.00 56.25 63.25 63.50 73.00
## Frequency      1     1     1     1     1     1     1     1     1     1     1
## Proportion 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091
sd(FS$NatScore_BioUF, na.rm = TRUE)
## [1] 20.59272
FS$NatScale_BioUF <- data.frame(FS$N1_BioUF, FS$N2R_BioUF, FS$N3R_BioUF, FS$N4R_BioUF)
describe(FS$NatScale_BioUF)
## FS$NatScale_BioUF 
## 
##  4  Variables      104  Observations
## --------------------------------------------------------------------------------
## FS.N1_BioUF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       11       93       10    0.995    60.27    40.87      8.0     16.0 
##      .25      .50      .75      .90      .95 
##     38.0     60.0     88.5    100.0    100.0 
## 
## lowest :   0  16  26  50  57, highest:  60  77  85  92 100
##                                                                       
## Value          0    16    26    50    57    60    77    85    92   100
## Frequency      1     1     1     1     1     1     1     1     1     2
## Proportion 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.182
## --------------------------------------------------------------------------------
## FS.N2R_BioUF 
##        n  missing distinct     Info     Mean      Gmd 
##       11       93        8    0.977    32.45    41.42 
## 
## lowest :  0  7 17 34 37, highest: 34 37 65 93 97
##                                                           
## Value          0     7    17    34    37    65    93    97
## Frequency      3     2     1     1     1     1     1     1
## Proportion 0.273 0.182 0.091 0.091 0.091 0.091 0.091 0.091
## --------------------------------------------------------------------------------
## FS.N3R_BioUF 
##        n  missing distinct     Info     Mean      Gmd 
##       11       93        8    0.955    22.82    31.09 
## 
## lowest :   0   2  19  23  28, highest:  23  28  38  41 100
##                                                           
## Value          0     2    19    23    28    38    41   100
## Frequency      4     1     1     1     1     1     1     1
## Proportion 0.364 0.091 0.091 0.091 0.091 0.091 0.091 0.091
## --------------------------------------------------------------------------------
## FS.N4R_BioUF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       11       93       10    0.995    61.27    44.87      0.5      1.0 
##      .25      .50      .75      .90      .95 
##     33.0     65.0     94.0     97.0     98.5 
## 
## lowest :   0   1  16  50  65, highest:  92  93  95  97 100
##                                                                       
## Value          0     1    16    50    65    92    93    95    97   100
## Frequency      1     1     1     1     2     1     1     1     1     1
## Proportion 0.091 0.091 0.091 0.091 0.182 0.091 0.091 0.091 0.091 0.091
## --------------------------------------------------------------------------------
psych::alpha(FS$NatScale_BioUF)
## Number of categories should be increased  in order to count frequencies.
## Warning in psych::alpha(FS$NatScale_BioUF): Some items were negatively correlated with the total scale and probably 
## should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( FS.N1_BioUF ) were negatively correlated with the total scale and 
## probably should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## 
## Reliability analysis   
## Call: psych::alpha(x = FS$NatScale_BioUF)
## 
##   raw_alpha std.alpha G6(smc) average_r  S/N   ase mean sd median_r
##       0.35      0.33    0.73      0.11 0.49 0.098   44 21     0.25
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.12  0.35  0.53
## Duhachek  0.16  0.35  0.54
## 
##  Reliability if an item is dropped:
##              raw_alpha std.alpha G6(smc) average_r     S/N alpha se var.r
## FS.N1_BioUF      0.789    0.8051    0.81    0.5792  4.1298    0.038 0.065
## FS.N2R_BioUF    -0.026   -0.1249    0.44   -0.0384 -0.1110    0.161 0.270
## FS.N3R_BioUF     0.060   -0.0035    0.50   -0.0012 -0.0035    0.153 0.277
## FS.N4R_BioUF    -0.445   -0.3936    0.55   -0.1039 -0.2824    0.235 0.713
##               med.r
## FS.N1_BioUF   0.468
## FS.N2R_BioUF  0.099
## FS.N3R_BioUF  0.099
## FS.N4R_BioUF -0.570
## 
##  Item statistics 
##               n  raw.r  std.r r.cor r.drop mean sd
## FS.N1_BioUF  11 -0.013 -0.037 -0.27  -0.40   60 35
## FS.N2R_BioUF 11  0.751  0.768  0.79   0.42   32 37
## FS.N3R_BioUF 11  0.689  0.719  0.73   0.41   23 30
## FS.N4R_BioUF 11  0.874  0.853  0.71   0.63   61 39
cor(FS$NatScale_BioUF, use= "complete.obs")
##              FS.N1_BioUF FS.N2R_BioUF FS.N3R_BioUF FS.N4R_BioUF
## FS.N1_BioUF   1.00000000   -0.5700846   -0.6126885   0.09866055
## FS.N2R_BioUF -0.57008456    1.0000000    0.8710117   0.46794490
## FS.N3R_BioUF -0.61268851    0.8710117    1.0000000   0.39873696
## FS.N4R_BioUF  0.09866055    0.4679449    0.3987370   1.00000000
### Familiarity 
FS$Fam_BioUF <- as.numeric(FS$Fam_BIO_UF_31)
hist(FS$Fam_BioUF)

describe(FS$Fam_BioUF)
## FS$Fam_BioUF 
##        n  missing distinct     Info     Mean      Gmd 
##       11       93        9    0.982    33.64    42.51 
## 
## lowest :  0  2 19 20 23, highest: 23 35 81 94 96
##                                                                 
## Value          0     2    19    20    23    35    81    94    96
## Frequency      3     1     1     1     1     1     1     1     1
## Proportion 0.273 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091
sd(FS$Fam_BioUF, na.rm = TRUE)
## [1] 38.32303
### Understanding 
FS$Und_BioUF <- as.numeric(FS$Fam_BIO_UF_33)
hist(FS$Und_BioUF)

describe(FS$Und_BioUF)
## FS$Und_BioUF 
##        n  missing distinct     Info     Mean      Gmd 
##       11       93        9    0.991    41.36    46.15 
## 
## lowest :  0  3 14 22 24, highest: 24 29 80 92 99
##                                                                 
## Value          0     3    14    22    24    29    80    92    99
## Frequency      2     1     1     1     1     1     1     2     1
## Proportion 0.182 0.091 0.091 0.091 0.091 0.091 0.091 0.182 0.091
sd(FS$Und_BioUF, na.rm = TRUE)
## [1] 40.51487
### Fluency 
FS$Fluency_BioUF <- as.numeric(FS$Fluency_BIO_UF_34)
hist(FS$Fluency_BioUF)

describe(FS$Fluency_BioUF)
## FS$Fluency_BioUF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       11       93       10    0.995       74    33.38     13.5     25.0 
##      .25      .50      .75      .90      .95 
##     72.5     85.0     95.5    100.0    100.0 
## 
## lowest :   2  25  72  73  77, highest:  85  89  95  96 100
##                                                                       
## Value          2    25    72    73    77    85    89    95    96   100
## Frequency      1     1     1     1     1     1     1     1     1     2
## Proportion 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.182
sd(FS$Fluency_BioUF, na.rm = TRUE)
## [1] 31.97186
### Risk
FS$R1_BIOUF <- as.numeric(FS$Risk_BIO_UF_30)
FS$R2_BIOUF <- as.numeric(FS$Risk_BIO_UF_31)
FS$R3_BIOUF <- as.numeric(FS$Risk_BIO_UF_32)

hist(FS$R1_BIOUF)

hist(FS$R2_BIOUF)

hist(FS$R3_BIOUF)

FS$RiskScore_BIOUF <- rowMeans(FS [, c( "R1_BIOUF" , "R2_BIOUF", "R3_BIOUF")], na.rm=TRUE)
describe(FS$RiskScore_BIOUF)
## FS$RiskScore_BIOUF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       11       93       10    0.995    38.88    22.98    10.00    19.00 
##      .25      .50      .75      .90      .95 
##    32.67    33.33    52.83    66.33    66.50 
## 
## lowest :  1.00000 19.00000 32.33333 33.00000 33.33333
## highest: 37.00000 43.33333 62.33333 66.33333 66.66667
##                                                                          
## Value       1.00000 19.00000 32.33333 33.00000 33.33333 37.00000 43.33333
## Frequency         1        1        1        1        2        1        1
## Proportion    0.091    0.091    0.091    0.091    0.182    0.091    0.091
##                                      
## Value      62.33333 66.33333 66.66667
## Frequency         1        1        1
## Proportion    0.091    0.091    0.091
sd(FS$RiskScore_BIOUF, na.rm = TRUE)
## [1] 20.16998
FS$RiskScale_BIOUF <- data.frame(FS$R1_BIOUF, FS$R2_BIOUF, FS$R3_BIOUF)
describe(FS$RiskScale_BIOUF)
## FS$RiskScale_BIOUF 
## 
##  3  Variables      104  Observations
## --------------------------------------------------------------------------------
## FS.R1_BIOUF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       11       93       11        1    24.18    33.35      0.5      1.0 
##      .25      .50      .75      .90      .95 
##      4.0     12.0     20.5     82.0     91.0 
## 
## lowest :   0   1   2   6   8, highest:  14  18  23  82 100
##                                                                             
## Value          0     1     2     6     8    12    14    18    23    82   100
## Frequency      1     1     1     1     1     1     1     1     1     1     1
## Proportion 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091
## --------------------------------------------------------------------------------
## FS.R2_BIOUF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       11       93       10    0.995    32.55    42.47      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      3.5     12.0     59.5     90.0     95.0 
## 
## lowest :   0   1   6   8  12, highest:  22  48  71  90 100
##                                                                       
## Value          0     1     6     8    12    22    48    71    90   100
## Frequency      2     1     1     1     1     1     1     1     1     1
## Proportion 0.182 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091
## --------------------------------------------------------------------------------
## FS.R3_BIOUF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       11       93       10    0.995    59.91    44.87      0.5      1.0 
##      .25      .50      .75      .90      .95 
##     26.5     76.0     89.0     99.0     99.5 
## 
## lowest :   0   1  17  36  69, highest:  76  83  95  99 100
##                                                                       
## Value          0     1    17    36    69    76    83    95    99   100
## Frequency      1     1     1     1     1     1     2     1     1     1
## Proportion 0.091 0.091 0.091 0.091 0.091 0.091 0.182 0.091 0.091 0.091
## --------------------------------------------------------------------------------
psych::alpha(FS$RiskScale_BIOUF)
## Number of categories should be increased  in order to count frequencies.
## Warning in psych::alpha(FS$RiskScale_BIOUF): Some items were negatively correlated with the total scale and probably 
## should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( FS.R3_BIOUF ) were negatively correlated with the total scale and 
## probably should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## 
## Reliability analysis   
## Call: psych::alpha(x = FS$RiskScale_BIOUF)
## 
##   raw_alpha std.alpha G6(smc) average_r   S/N  ase mean sd median_r
##      -0.19     -0.13    0.33    -0.039 -0.11 0.21   39 20    -0.37
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt    -0.66 -0.19  0.15
## Duhachek -0.60 -0.19  0.21
## 
##  Reliability if an item is dropped:
##             raw_alpha std.alpha G6(smc) average_r   S/N alpha se var.r med.r
## FS.R1_BIOUF     -1.19     -1.19   -0.37     -0.37 -0.54    0.430    NA -0.37
## FS.R2_BIOUF     -1.44     -1.47   -0.42     -0.42 -0.59    0.473    NA -0.42
## FS.R3_BIOUF      0.81      0.81    0.68      0.68  4.24    0.038    NA  0.68
## 
##  Item statistics 
##              n raw.r std.r r.cor r.drop mean sd
## FS.R1_BIOUF 11  0.72  0.76  0.78   0.22   24 34
## FS.R2_BIOUF 11  0.77  0.79  0.81   0.22   33 38
## FS.R3_BIOUF 11  0.17  0.12 -0.63  -0.43   60 39
cor(FS$RiskScale_BIOUF, use= "complete.obs")
##             FS.R1_BIOUF FS.R2_BIOUF FS.R3_BIOUF
## FS.R1_BIOUF   1.0000000   0.6792979  -0.4228377
## FS.R2_BIOUF   0.6792979   1.0000000  -0.3739449
## FS.R3_BIOUF  -0.4228377  -0.3739449   1.0000000
### Benefit
FS$B1_BIOUF <- as.numeric(FS$Ben_BIO_UF_40)
FS$B2_BIOUF <- as.numeric(FS$Ben_BIO_UF_41)
FS$B3_BIOUF <- as.numeric(FS$Ben_BIO_UF_42)
FS$B4_BIOUF <- as.numeric(FS$Ben_BIO_UF_43)

hist(FS$B1_BIOUF)

hist(FS$B2_BIOUF)

hist(FS$B3_BIOUF)

hist(FS$B4_BIOUF)

FS$BenScore_BIOUF <- rowMeans(FS [, c( "B1_BIOUF" , "B2_BIOUF", "B3_BIOUF", "B4_BIOUF")], na.rm=TRUE)
describe(FS$BenScore_BIOUF)
## FS$BenScore_BIOUF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       11       93       11        1    63.32    39.78     1.00     2.00 
##      .25      .50      .75      .90      .95 
##    51.25    69.00    87.75    99.75    99.88 
## 
## lowest :   0.00   2.00  49.75  52.75  65.75, highest:  82.00  85.00  90.50  99.75 100.00
##                                                                          
## Value        0.00   2.00  49.75  52.75  65.75  69.00  82.00  85.00  90.50
## Frequency       1      1      1      1      1      1      1      1      1
## Proportion  0.091  0.091  0.091  0.091  0.091  0.091  0.091  0.091  0.091
##                         
## Value       99.75 100.00
## Frequency       1      1
## Proportion  0.091  0.091
sd(FS$BenScore_BIOUF, na.rm = TRUE)
## [1] 35.11963
FS$BenScale_BIOUF <- data.frame(FS$B1_BIOUF, FS$B2_BIOUF, FS$B3_BIOUF, FS$B4_BIOUF)
describe(FS$BenScale_BIOUF)
## FS$BenScale_BIOUF 
## 
##  4  Variables      104  Observations
## --------------------------------------------------------------------------------
## FS.B1_BIOUF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       11       93       10    0.995    56.55     45.2      1.0      2.0 
##      .25      .50      .75      .90      .95 
##     24.0     65.0     87.5    100.0    100.0 
## 
## lowest :   0   2  23  25  50, highest:  65  82  87  88 100
##                                                                       
## Value          0     2    23    25    50    65    82    87    88   100
## Frequency      1     1     1     1     1     1     1     1     1     2
## Proportion 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.182
## --------------------------------------------------------------------------------
## FS.B2_BIOUF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       11       93       10    0.995    64.18    42.07      1.0      2.0 
##      .25      .50      .75      .90      .95 
##     45.0     76.0     90.5    100.0    100.0 
## 
## lowest :   0   2  27  63  70, highest:  76  87  88  93 100
##                                                                       
## Value          0     2    27    63    70    76    87    88    93   100
## Frequency      1     1     1     1     1     1     1     1     1     2
## Proportion 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.182
## --------------------------------------------------------------------------------
## FS.B3_BIOUF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       11       93       10    0.995    66.55    40.55      0.5      1.0 
##      .25      .50      .75      .90      .95 
##     53.0     80.0     91.5    100.0    100.0 
## 
## lowest :   0   1  31  75  79, highest:  80  83  91  92 100
##                                                                       
## Value          0     1    31    75    79    80    83    91    92   100
## Frequency      1     1     1     1     1     1     1     1     1     2
## Proportion 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.182
## --------------------------------------------------------------------------------
## FS.B4_BIOUF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       11       93       11        1       66    39.09      1.5      3.0 
##      .25      .50      .75      .90      .95 
##     54.0     82.0     86.5     99.0     99.5 
## 
## lowest :   0   3  33  75  78, highest:  83  84  89  99 100
##                                                                             
## Value          0     3    33    75    78    82    83    84    89    99   100
## Frequency      1     1     1     1     1     1     1     1     1     1     1
## Proportion 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091
## --------------------------------------------------------------------------------
psych::alpha(FS$BenScale_BIOUF)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = FS$BenScale_BIOUF)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r
##       0.95      0.95    0.99      0.84  21 0.0087   63 35     0.82
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.94  0.95  0.97
## Duhachek  0.94  0.95  0.97
## 
##  Reliability if an item is dropped:
##             raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## FS.B1_BIOUF      0.96      0.96    0.96      0.88  22   0.0085 0.010  0.82
## FS.B2_BIOUF      0.93      0.93    0.94      0.81  13   0.0140 0.025  0.73
## FS.B3_BIOUF      0.94      0.94    0.94      0.83  15   0.0116 0.012  0.82
## FS.B4_BIOUF      0.93      0.94    0.94      0.83  14   0.0120 0.013  0.82
## 
##  Item statistics 
##              n raw.r std.r r.cor r.drop mean sd
## FS.B1_BIOUF 11  0.91  0.90  0.89   0.83   57 38
## FS.B2_BIOUF 11  0.96  0.96  0.95   0.92   64 37
## FS.B3_BIOUF 11  0.94  0.94  0.95   0.89   67 38
## FS.B4_BIOUF 11  0.94  0.95  0.95   0.90   66 36
cor(FS$BenScale_BIOUF, use= "complete.obs")
##             FS.B1_BIOUF FS.B2_BIOUF FS.B3_BIOUF FS.B4_BIOUF
## FS.B1_BIOUF   1.0000000   0.9453717   0.7160649   0.7276280
## FS.B2_BIOUF   0.9453717   1.0000000   0.8214827   0.8196501
## FS.B3_BIOUF   0.7160649   0.8214827   1.0000000   0.9977035
## FS.B4_BIOUF   0.7276280   0.8196501   0.9977035   1.0000000
### Support
FS$S1_BIOUF <- as.numeric(FS$Sup_BIO_UF_40)
FS$S2_BIOUF <- as.numeric(FS$Sup_BIO_UF_42)
FS$S3_BIOUF <- as.numeric(FS$Sup_BIO_UF_43)
FS$S4_BIOUF <- as.numeric(FS$Sup_BIO_UF_45)

hist(FS$S1_BIOUF)

hist(FS$S2_BIOUF)

hist(FS$S3_BIOUF)

hist(FS$S4_BIOUF)

FS$SupScore_BIOUF <- rowMeans(FS [, c( "S1_BIOUF" , "S2_BIOUF", "S3_BIOUF", "S4_BIOUF")], na.rm=TRUE)
describe(FS$SupScore_BIOUF)
## FS$SupScore_BIOUF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       11       93       11        1    61.11     39.6    1.125    2.250 
##      .25      .50      .75      .90      .95 
##   47.000   70.000   83.875   99.500   99.750 
## 
## lowest :   0.00   2.25  46.75  47.25  62.75, highest:  76.00  81.75  86.00  99.50 100.00
##                                                                          
## Value        0.00   2.25  46.75  47.25  62.75  70.00  76.00  81.75  86.00
## Frequency       1      1      1      1      1      1      1      1      1
## Proportion  0.091  0.091  0.091  0.091  0.091  0.091  0.091  0.091  0.091
##                         
## Value       99.50 100.00
## Frequency       1      1
## Proportion  0.091  0.091
sd(FS$SupScore_BIOUF, na.rm = TRUE)
## [1] 34.54334
FS$SupScale_BIOUF <- data.frame(FS$S1_BIOUF, FS$S2_BIOUF, FS$S3_BIOUF, FS$S4_BIOUF)
describe(FS$SupScale_BIOUF)
## FS$SupScale_BIOUF 
## 
##  4  Variables      104  Observations
## --------------------------------------------------------------------------------
## FS.S1_BIOUF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       11       93       10    0.995    65.55    41.16        1        2 
##      .25      .50      .75      .90      .95 
##       49       82       91      100      100 
## 
## lowest :   0   2  40  58  69, highest:  82  88  89  93 100
##                                                                       
## Value          0     2    40    58    69    82    88    89    93   100
## Frequency      1     1     1     1     1     1     1     1     1     2
## Proportion 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.182
## --------------------------------------------------------------------------------
## FS.S2_BIOUF 
##        n  missing distinct     Info     Mean      Gmd 
##       11       93        9    0.991       65    39.64 
## 
## lowest :   0   3  45  58  72, highest:  72  76  85  88 100
##                                                                 
## Value          0     3    45    58    72    76    85    88   100
## Frequency      1     1     1     1     1     1     1     2     2
## Proportion 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.182 0.182
## --------------------------------------------------------------------------------
## FS.S3_BIOUF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       11       93       11        1    51.73    45.67        1        2 
##      .25      .50      .75      .90      .95 
##       15       64       82       98       99 
## 
## lowest :   0   2   9  21  41, highest:  70  80  84  98 100
##                                                                             
## Value          0     2     9    21    41    64    70    80    84    98   100
## Frequency      1     1     1     1     1     1     1     1     1     1     1
## Proportion 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091
## --------------------------------------------------------------------------------
## FS.S4_BIOUF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       11       93       10    0.995    62.18    41.45        1        2 
##      .25      .50      .75      .90      .95 
##       44       71       87      100      100 
## 
## lowest :   0   2  25  63  69, highest:  71  80  84  90 100
##                                                                       
## Value          0     2    25    63    69    71    80    84    90   100
## Frequency      1     1     1     1     1     1     1     1     1     2
## Proportion 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.182
## --------------------------------------------------------------------------------
psych::alpha(FS$SupScale_BIOUF)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = FS$SupScale_BIOUF)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r
##       0.95      0.95    0.96      0.84  21 0.0081   61 35     0.84
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.94  0.95  0.97
## Duhachek  0.94  0.95  0.97
## 
##  Reliability if an item is dropped:
##             raw_alpha std.alpha G6(smc) average_r S/N alpha se  var.r med.r
## FS.S1_BIOUF      0.93      0.93    0.91      0.81  13    0.013 0.0059  0.79
## FS.S2_BIOUF      0.92      0.92    0.91      0.80  12    0.013 0.0066  0.79
## FS.S3_BIOUF      0.97      0.97    0.97      0.93  38    0.005 0.0032  0.90
## FS.S4_BIOUF      0.93      0.93    0.94      0.82  14    0.013 0.0215  0.75
## 
##  Item statistics 
##              n raw.r std.r r.cor r.drop mean sd
## FS.S1_BIOUF 11  0.96  0.96  0.98   0.93   66 37
## FS.S2_BIOUF 11  0.97  0.97  0.98   0.94   65 35
## FS.S3_BIOUF 11  0.87  0.87  0.79   0.78   52 39
## FS.S4_BIOUF 11  0.95  0.95  0.93   0.92   62 37
cor(FS$SupScale_BIOUF, use= "complete.obs")
##             FS.S1_BIOUF FS.S2_BIOUF FS.S3_BIOUF FS.S4_BIOUF
## FS.S1_BIOUF   1.0000000   0.9916145   0.7297306   0.8908961
## FS.S2_BIOUF   0.9916145   1.0000000   0.7458561   0.8963154
## FS.S3_BIOUF   0.7297306   0.7458561   1.0000000   0.7917099
## FS.S4_BIOUF   0.8908961   0.8963154   0.7917099   1.0000000

Biofuel

Quiz Questions & Attention Check

## Time Spent Reading Instructions 
describe(FS$BFUF_InstTime_Page.Submit)
## FS$BFUF_InstTime_Page.Submit 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       13       91       13        1    6.974     6.64   0.8056   0.9380 
##      .25      .50      .75      .90      .95 
##   2.1350   6.1010  10.8890  15.3906  16.9648 
## 
## lowest :  0.706  0.872  1.202  2.135  2.976, highest:  7.383 10.889 11.865 16.272 18.004
##                                                                          
## Value       0.706  0.872  1.202  2.135  2.976  5.902  6.101  6.351  7.383
## Frequency       1      1      1      1      1      1      1      1      1
## Proportion  0.077  0.077  0.077  0.077  0.077  0.077  0.077  0.077  0.077
##                                       
## Value      10.889 11.865 16.272 18.004
## Frequency       1      1      1      1
## Proportion  0.077  0.077  0.077  0.077
INSTminutes_BFUF <- (mean(FS$BFUF_InstTime_Page.Submit, na.rm = TRUE)/60)
print(INSTminutes_BFUF)
## [1] 0.1162282
## Time Spent Reading Technology Description (before proceeding to next page of survey)
  ### Raw Time Spent (Seconds) 
  describe(FS$BF_UF_Time_Page.Submit)
## FS$BF_UF_Time_Page.Submit 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       13       91       13        1    17.71    17.91   0.9346   1.2156 
##      .25      .50      .75      .90      .95 
##   7.8830  12.7400  24.4870  41.6902  43.6104 
## 
## lowest :  0.682  1.103  1.666  7.883  8.612, highest: 20.280 24.487 38.307 42.536 45.222
##                                                                          
## Value       0.682  1.103  1.666  7.883  8.612 11.072 12.740 15.606 20.280
## Frequency       1      1      1      1      1      1      1      1      1
## Proportion  0.077  0.077  0.077  0.077  0.077  0.077  0.077  0.077  0.077
##                                       
## Value      24.487 38.307 42.536 45.222
## Frequency       1      1      1      1
## Proportion  0.077  0.077  0.077  0.077
  sd(FS$BF_UF_Time_Page.Submit, na.rm = TRUE)
## [1] 15.61436
  range(FS$BF_UF_Time_Page.Submit, na.rm = TRUE)
## [1]  0.682 45.222
  ### Convert to Minutes 
  TECHminutes_BFUF <- (mean(FS$BF_UF_Time_Page.Submit, na.rm = TRUE)/60)
  print(TECHminutes_BFUF)
## [1] 0.2951231
## Attention and Manipulation Checks

# Attention Check 1: What technology did you just read about?
FS$ATN_BF_UF1 <- as.numeric(as.character(FS$BF_UF_ATN))
FS$ATN_BF_UF <- factor(FS$ATN_BF_UF1, levels = c(1, 2, 3, 4), 
                   labels = c("Biochar", "Biofuel", "Enhanced Weathering", "Wind Energy"))
describe(FS$ATN_BF_UF)
## FS$ATN_BF_UF 
##        n  missing distinct 
##       13       91        2 
##                                                   
## Value                  Biofuel Enhanced Weathering
## Frequency                   12                   1
## Proportion               0.923               0.077
#### Time spent answering attention check #1:
  ##### (Seconds)
  describe(FS$BF_UF_ATNTime_Page.Submit)
## FS$BF_UF_ATNTime_Page.Submit 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       13       91       13        1    5.512    2.741    2.834    3.373 
##      .25      .50      .75      .90      .95 
##    3.882    4.811    7.160    8.299    9.375 
## 
## lowest :  2.170  3.276  3.762  3.882  4.224, highest:  5.342  7.160  7.876  8.405 10.830
##                                                                          
## Value       2.170  3.276  3.762  3.882  4.224  4.584  4.811  5.338  5.342
## Frequency       1      1      1      1      1      1      1      1      1
## Proportion  0.077  0.077  0.077  0.077  0.077  0.077  0.077  0.077  0.077
##                                       
## Value       7.160  7.876  8.405 10.830
## Frequency       1      1      1      1
## Proportion  0.077  0.077  0.077  0.077
  sd(FS$BF_UF_ATNTime_Page.Submit, na.rm = TRUE)
## [1] 2.413741
  range(FS$BF_UF_ATNTime_Page.Submit, na.rm = TRUE)
## [1]  2.17 10.83
  ##### (Minutes)
  ATN1_BFUF <- (mean(FS$BF_UF_ATNTime_Page.Submit, na.rm = TRUE)/60)
  print(ATN1_BFUF)
## [1] 0.09187179
### Attention Check 2: Describe as much as you can about the technology you read about.
describe(FS$BF_UF_ATN2)
## FS$BF_UF_ATN2 
##        n  missing distinct 
##       13       91       13 
## 
## lowest : BIOFUEL IS A COOL LIQUID THAT CAN BE MADE FROM WASTE FROM PLANTS TREES AND BE USED TO POWER CARS AND MANY OTHER THINGS                                              Biofuel is made from plants, such as grass and agricultural waste.  Then turned in to an oil that can be used as fuel                                               biofuel is made using plants by heating or cooling them.  this makes oil which can be made into biofuel as used to fuel cars etc.                                   Biofuel process uses bio-degradable matter to produce fuel and thus save our environment from overuse and other problems.                                           Biofuel processes plants like grasses and trees by heating them or cooling them until they become a type of oil; which is then refined to be used in cars for fuel.
## highest: It takes energy from plants and other things to turn into energy.                                                                                                   It's about biofuel and it's been derived from plants which is pretty awesome and then they use it to fuel cars Etc                                                  None                                                                                                                                                                not sure of it                                                                                                                                                      The introduction of plant based field, biofuels which can power automobiles, aircraft
  #### Time spent answering attention check #2
  ##### (Seconds)
  describe(FS$BF_UF_ATN2Time_Page.Submit)
## FS$BF_UF_ATN2Time_Page.Submit 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       13       91       13        1    49.05    44.87    12.27    19.20 
##      .25      .50      .75      .90      .95 
##    26.11    30.68    63.30    97.13   124.16 
## 
## lowest :   3.003  18.447  22.237  26.107  27.322
## highest:  36.905  63.301  87.920  99.427 161.258
##                                                                           
## Value        3.003  18.447  22.237  26.107  27.322  29.405  30.684  31.600
## Frequency        1       1       1       1       1       1       1       1
## Proportion   0.077   0.077   0.077   0.077   0.077   0.077   0.077   0.077
##                                                   
## Value       36.905  63.301  87.920  99.427 161.258
## Frequency        1       1       1       1       1
## Proportion   0.077   0.077   0.077   0.077   0.077
  sd(FS$BF_UF_ATN2Time_Page.Submit, na.rm = TRUE)
## [1] 43.58132
  range(FS$BF_UF_ATN2Time_Page.Submit, na.rm = TRUE)
## [1]   3.003 161.258
  ##### (Minutes)
  ATN2_BFUF <- (mean(FS$BF_UF_ATN2Time_Page.Submit, na.rm = TRUE)/60)
  print(ATN2_BFUF)
## [1] 0.8174564
### Quiz Questions
FS$BF_UF_Quiz1
##   [1] NA NA NA  3 NA NA NA NA  3  3 NA NA NA NA NA NA NA NA NA NA NA NA  3 NA NA
##  [26]  3 NA NA NA NA NA  3 NA NA NA NA NA NA NA NA  3 NA NA NA NA NA NA NA NA NA
##  [51] NA NA NA NA NA NA NA NA NA  3 NA NA NA NA NA NA NA NA NA NA  3 NA NA NA NA
##  [76] NA NA NA NA NA NA NA  3 NA NA NA NA  3 NA NA  3 NA NA NA NA NA NA NA NA NA
## [101]  3 NA NA NA
FS$BF_UF_QuizTime_Page.Submit
##   [1]     NA     NA     NA  4.201     NA     NA     NA     NA 33.980  8.466
##  [11]     NA     NA     NA     NA     NA     NA     NA     NA     NA     NA
##  [21]     NA     NA 12.301     NA     NA 17.800     NA     NA     NA     NA
##  [31]     NA  8.724     NA     NA     NA     NA     NA     NA     NA     NA
##  [41] 22.104     NA     NA     NA     NA     NA     NA     NA     NA     NA
##  [51]     NA     NA     NA     NA     NA     NA     NA     NA     NA  9.169
##  [61]     NA     NA     NA     NA     NA     NA     NA     NA     NA     NA
##  [71]  5.601     NA     NA     NA     NA     NA     NA     NA     NA     NA
##  [81]     NA     NA 26.897     NA     NA     NA     NA  9.954     NA     NA
##  [91] 23.577     NA     NA     NA     NA     NA     NA     NA     NA     NA
## [101] 35.010     NA     NA     NA

Technology Ratings

#Naturalness
FS$N1_BFUF <- as.numeric(FS$Nat_BF_UF_30)
FS$N2R_BFUF <- as.numeric(100 - FS$Nat_BF_UF_31)
FS$N3R_BFUF <- as.numeric(100 - FS$Nat_BF_UF_35)
FS$N4R_BFUF <- as.numeric(100- FS$Nat_BF_UF_36)

hist(FS$N1_BFUF)

hist(FS$N2R_BFUF)

hist(FS$N3R_BFUF)

hist(FS$N4R_BFUF)

FS$NatScore_BFUF <- rowMeans(FS [, c( "N1_BFUF" , "N2R_BFUF", "N3R_BFUF", "N4R_BFUF")], na.rm=TRUE)
describe(FS$NatScore_BFUF)
## FS$NatScore_BFUF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       13       91       13        1    57.13    19.02    36.30    37.55 
##      .25      .50      .75      .90      .95 
##    45.00    56.75    72.00    76.10    79.10 
## 
## lowest : 34.50 37.50 37.75 45.00 49.00, highest: 65.75 72.00 72.50 77.00 82.25
##                                                                             
## Value      34.50 37.50 37.75 45.00 49.00 54.25 56.75 58.50 65.75 72.00 72.50
## Frequency      1     1     1     1     1     1     1     1     1     1     1
## Proportion 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077
##                       
## Value      77.00 82.25
## Frequency      1     1
## Proportion 0.077 0.077
sd(FS$NatScore_BFUF, na.rm = TRUE)
## [1] 15.95326
FS$NatScale_BFUF <- data.frame(FS$N1_BFUF, FS$N2R_BFUF, FS$N3R_BFUF, FS$N4R_BFUF)
describe(FS$NatScale_BFUF)
## FS$NatScale_BFUF 
## 
##  4  Variables      104  Observations
## --------------------------------------------------------------------------------
## FS.N1_BFUF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       13       91       10    0.973    84.46    19.05     56.8     61.0 
##      .25      .50      .75      .90      .95 
##     78.0     88.0    100.0    100.0    100.0 
## 
## lowest :  52  60  65  78  79, highest:  83  88  96  97 100
##                                                                       
## Value         52    60    65    78    79    83    88    96    97   100
## Frequency      1     1     1     1     1     1     1     1     1     4
## Proportion 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.308
## --------------------------------------------------------------------------------
## FS.N2R_BFUF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       13       91       13        1    51.31    39.62      1.2      6.2 
##      .25      .50      .75      .90      .95 
##     33.0     44.0     88.0     92.4     95.8 
## 
## lowest :   0   2  23  33  40, highest:  65  88  90  93 100
##                                                                             
## Value          0     2    23    33    40    41    44    48    65    88    90
## Frequency      1     1     1     1     1     1     1     1     1     1     1
## Proportion 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077
##                       
## Value         93   100
## Frequency      1     1
## Proportion 0.077 0.077
## --------------------------------------------------------------------------------
## FS.N3R_BFUF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       13       91       11    0.989       25    20.49      0.0      0.0 
##      .25      .50      .75      .90      .95 
##     14.0     26.0     36.0     45.6     47.2 
## 
## lowest :  0 14 20 25 26, highest: 33 36 44 46 49
##                                                                             
## Value          0    14    20    25    26    32    33    36    44    46    49
## Frequency      3     1     1     1     1     1     1     1     1     1     1
## Proportion 0.231 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077
## --------------------------------------------------------------------------------
## FS.N4R_BFUF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       13       91       12    0.997    67.77    29.28     28.0     38.4 
##      .25      .50      .75      .90      .95 
##     50.0     73.0     86.0     96.8     98.8 
## 
## lowest :  16  36  48  50  59, highest:  77  86  92  98 100
##                                                                             
## Value         16    36    48    50    59    69    73    77    86    92    98
## Frequency      1     1     1     1     1     1     1     2     1     1     1
## Proportion 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.154 0.077 0.077 0.077
##                 
## Value        100
## Frequency      1
## Proportion 0.077
## --------------------------------------------------------------------------------
psych::alpha(FS$NatScale_BFUF)
## Number of categories should be increased  in order to count frequencies.
## Warning in psych::alpha(FS$NatScale_BFUF): Some items were negatively correlated with the total scale and probably 
## should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( FS.N3R_BFUF ) were negatively correlated with the total scale and 
## probably should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## 
## Reliability analysis   
## Call: psych::alpha(x = FS$NatScale_BFUF)
## 
##   raw_alpha std.alpha G6(smc) average_r  S/N   ase mean sd median_r
##       0.56      0.42    0.79      0.15 0.71 0.045   57 16     0.24
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.41  0.56  0.69
## Duhachek  0.48  0.56  0.65
## 
##  Reliability if an item is dropped:
##             raw_alpha std.alpha G6(smc) average_r   S/N alpha se var.r  med.r
## FS.N1_BFUF       0.57      0.50    0.57     0.247  0.98    0.059 0.178  0.036
## FS.N2R_BFUF     -0.11     -0.42    0.51    -0.109 -0.29    0.150 0.364 -0.027
## FS.N3R_BFUF      0.77      0.79    0.74     0.549  3.65    0.032 0.025  0.465
## FS.N4R_BFUF      0.11     -0.30    0.64    -0.083 -0.23    0.093 0.379  0.036
## 
##  Item statistics 
##              n raw.r std.r  r.cor r.drop mean sd
## FS.N1_BFUF  13 0.481  0.48 0.4562   0.24   84 17
## FS.N2R_BFUF 13 0.948  0.93 0.8824   0.80   51 34
## FS.N3R_BFUF 13 0.084  0.11 0.0066  -0.19   25 17
## FS.N4R_BFUF 13 0.891  0.89 0.8008   0.74   68 25
cor(FS$NatScale_BFUF, use= "complete.obs")
##             FS.N1_BFUF FS.N2R_BFUF FS.N3R_BFUF FS.N4R_BFUF
## FS.N1_BFUF   1.0000000  0.46472581 -0.74888857  0.45025439
## FS.N2R_BFUF  0.4647258  1.00000000  0.03551076  0.73236668
## FS.N3R_BFUF -0.7488886  0.03551076  1.00000000 -0.02731077
## FS.N4R_BFUF  0.4502544  0.73236668 -0.02731077  1.00000000
### Familiarity
FS$Fam_BFUF <- as.numeric(FS$Fam_BF_UF_32)
hist(FS$Fam_BFUF)

describe(FS$Fam_BFUF)
## FS$Fam_BFUF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       13       91       13        1    42.15    30.85      2.4      7.4 
##      .25      .50      .75      .90      .95 
##     25.0     38.0     65.0     68.4     75.0 
## 
## lowest :  0  4 21 25 32, highest: 60 65 66 69 84
##                                                                             
## Value          0     4    21    25    32    33    38    51    60    65    66
## Frequency      1     1     1     1     1     1     1     1     1     1     1
## Proportion 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077
##                       
## Value         69    84
## Frequency      1     1
## Proportion 0.077 0.077
sd(FS$Fam_BFUF, na.rm = TRUE)
## [1] 26.04114
### Understanding 
FS$Und_BFUF <- as.numeric(FS$Fam_BF_UF_31)
hist(FS$Und_BFUF)

describe(FS$Und_BFUF)
## FS$Und_BFUF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       13       91       13        1       71    18.28     44.8     53.8 
##      .25      .50      .75      .90      .95 
##     63.0     74.0     82.0     86.6     89.0 
## 
## lowest : 34 52 61 63 65, highest: 81 82 85 87 92
##                                                                             
## Value         34    52    61    63    65    71    74    76    81    82    85
## Frequency      1     1     1     1     1     1     1     1     1     1     1
## Proportion 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077
##                       
## Value         87    92
## Frequency      1     1
## Proportion 0.077 0.077
sd(FS$Und_BFUF, na.rm = TRUE)
## [1] 16.01562
### Fluency 
FS$Fluency_BFUF <- as.numeric(FS$Fluency_BF_UF_34)
hist(FS$Fluency_BFUF)

describe(FS$Fluency_BFUF)
## FS$Fluency_BFUF 
##        n  missing distinct     Info     Mean      Gmd 
##       13       91        8    0.967    88.08    14.82 
## 
## lowest :  65  68  71  83  84, highest:  83  84  88  99 100
##                                                           
## Value         65    68    71    83    84    88    99   100
## Frequency      1     1     1     1     1     2     2     4
## Proportion 0.077 0.077 0.077 0.077 0.077 0.154 0.154 0.308
sd(FS$Fluency_BFUF, na.rm = TRUE)
## [1] 13.15587
### Risk
FS$R1_BFUF <- as.numeric(FS$Risk_BF_UF_30)
FS$R2_BFUF <- as.numeric(FS$Risk_BF_UF_31)
FS$R3_BFUF <- as.numeric(FS$Risk_BF_UF_32)

hist(FS$R1_BFUF)

hist(FS$R2_BFUF)

hist(FS$R3_BFUF)

FS$RiskScore_BFUF <- rowMeans(FS [, c( "R1_BFUF" , "R2_BFUF", "R3_BFUF")], na.rm=TRUE)
describe(FS$RiskScore_BFUF)
## FS$RiskScore_BFUF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       13       91       12    0.997    46.51     16.9    29.47    33.33 
##      .25      .50      .75      .90      .95 
##    34.00    47.67    50.67    62.13    70.67 
## 
## lowest : 23.66667 33.33333 34.00000 38.33333 44.66667
## highest: 50.00000 50.66667 54.66667 64.00000 80.66667
##                                                                          
## Value      23.66667 33.33333 34.00000 38.33333 44.66667 47.66667 49.66667
## Frequency         1        2        1        1        1        1        1
## Proportion    0.077    0.154    0.077    0.077    0.077    0.077    0.077
##                                                        
## Value      50.00000 50.66667 54.66667 64.00000 80.66667
## Frequency         1        1        1        1        1
## Proportion    0.077    0.077    0.077    0.077    0.077
sd(FS$RiskScore_BFUF, na.rm = TRUE)
## [1] 14.93233
FS$RiskScale_BFUF <- data.frame(FS$R1_BFUF, FS$R2_BFUF, FS$R3_BFUF)
describe(FS$RiskScale_BFUF)
## FS$RiskScale_BFUF 
## 
##  3  Variables      104  Observations
## --------------------------------------------------------------------------------
## FS.R1_BFUF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       13       91       11    0.989    34.92    34.85      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      7.0     40.0     52.0     74.0     77.8 
## 
## lowest :  0  7 11 31 40, highest: 44 52 70 75 82
##                                                                             
## Value          0     7    11    31    40    42    44    52    70    75    82
## Frequency      3     1     1     1     1     1     1     1     1     1     1
## Proportion 0.231 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077
## --------------------------------------------------------------------------------
## FS.R2_BFUF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       13       91       10    0.973    25.62    29.77      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      0.0     22.0     42.0     54.2     66.0 
## 
## lowest :  0  5 12 22 33, highest: 35 42 47 56 81
##                                                                       
## Value          0     5    12    22    33    35    42    47    56    81
## Frequency      4     1     1     1     1     1     1     1     1     1
## Proportion 0.308 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077
## --------------------------------------------------------------------------------
## FS.R3_BFUF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       13       91       11    0.989       79    21.13     49.4     53.6 
##      .25      .50      .75      .90      .95 
##     70.0     79.0     92.0    100.0    100.0 
## 
## lowest :  47  51  64  70  71, highest:  79  88  90  92 100
##                                                                             
## Value         47    51    64    70    71    75    79    88    90    92   100
## Frequency      1     1     1     1     1     1     1     1     1     1     3
## Proportion 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.231
## --------------------------------------------------------------------------------
psych::alpha(FS$RiskScale_BFUF)
## Number of categories should be increased  in order to count frequencies.
## Warning in psych::alpha(FS$RiskScale_BFUF): Some items were negatively correlated with the total scale and probably 
## should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( FS.R3_BFUF ) were negatively correlated with the total scale and 
## probably should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## 
## Reliability analysis   
## Call: psych::alpha(x = FS$RiskScale_BFUF)
## 
##   raw_alpha std.alpha G6(smc) average_r   S/N  ase mean sd median_r
##      0.097      -0.4     0.5      -0.1 -0.28 0.11   47 15    -0.47
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt    -0.25   0.1  0.36
## Duhachek -0.12   0.1  0.31
## 
##  Reliability if an item is dropped:
##            raw_alpha std.alpha G6(smc) average_r   S/N alpha se var.r med.r
## FS.R1_BFUF     -3.12     -3.73   -0.65     -0.65 -0.79    0.724    NA -0.65
## FS.R2_BFUF     -1.41     -1.75   -0.47     -0.47 -0.64    0.408    NA -0.47
## FS.R3_BFUF      0.89      0.89    0.80      0.80  8.13    0.022    NA  0.80
## 
##  Item statistics 
##             n raw.r  std.r r.cor r.drop mean sd
## FS.R1_BFUF 13  0.94  0.868  0.90   0.63   35 30
## FS.R2_BFUF 13  0.85  0.748  0.82   0.45   26 26
## FS.R3_BFUF 13 -0.28 -0.076 -0.63  -0.58   79 18
cor(FS$RiskScale_BFUF, use= "complete.obs")
##            FS.R1_BFUF FS.R2_BFUF FS.R3_BFUF
## FS.R1_BFUF  1.0000000  0.8025360 -0.4662278
## FS.R2_BFUF  0.8025360  1.0000000 -0.6506604
## FS.R3_BFUF -0.4662278 -0.6506604  1.0000000
### Benefit
FS$B1_BFUF <- as.numeric(FS$Ben_BF_UF_40)
FS$B2_BFUF <- as.numeric(FS$Ben_BF_UF_42)
FS$B3_BFUF <- as.numeric(FS$Ben_BF_UF_43)
FS$B4_BFUF <- as.numeric(FS$Ben_BF_UF_44)

hist(FS$B1_BFUF)

hist(FS$B2_BFUF)

hist(FS$B3_BFUF)

hist(FS$B4_BFUF)

FS$BenScore_BFUF <- rowMeans(FS [, c( "B1_BFUF" , "B2_BFUF", "B3_BFUF", "B4_BFUF")], na.rm=TRUE)
describe(FS$BenScore_BFUF)
## FS$BenScore_BFUF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       13       91       13        1    76.33    19.04    55.00    57.70 
##      .25      .50      .75      .90      .95 
##    63.75    74.50    89.75    98.50    99.70 
## 
## lowest :  52.00  57.00  60.50  63.75  70.50, highest:  83.00  89.75  94.50  99.50 100.00
##                                                                          
## Value       52.00  57.00  60.50  63.75  70.50  72.00  74.50  75.25  83.00
## Frequency       1      1      1      1      1      1      1      1      1
## Proportion  0.077  0.077  0.077  0.077  0.077  0.077  0.077  0.077  0.077
##                                       
## Value       89.75  94.50  99.50 100.00
## Frequency       1      1      1      1
## Proportion  0.077  0.077  0.077  0.077
sd(FS$BenScore_BFUF, na.rm = TRUE)
## [1] 16.03004
FS$BenScale_BFUF <- data.frame(FS$B1_BFUF, FS$B2_BFUF, FS$B3_BFUF, FS$B4_BFUF)
describe(FS$BenScale_BFUF)
## FS$BenScale_BFUF 
## 
##  4  Variables      104  Observations
## --------------------------------------------------------------------------------
## FS.B1_BFUF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       13       91       11    0.995    71.15    21.56     50.0     50.4 
##      .25      .50      .75      .90      .95 
##     54.0     73.0     81.0     98.6    100.0 
## 
## lowest :  50  52  54  55  68, highest:  74  75  81  93 100
##                                                                             
## Value         50    52    54    55    68    73    74    75    81    93   100
## Frequency      2     1     1     1     1     1     1     1     1     1     2
## Proportion 0.154 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.154
## --------------------------------------------------------------------------------
## FS.B2_BFUF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       13       91       13        1    78.54    18.67     53.8     57.6 
##      .25      .50      .75      .90      .95 
##     69.0     75.0     94.0     97.8     98.8 
## 
## lowest :  52  55  68  69  73, highest:  88  94  97  98 100
##                                                                             
## Value         52    55    68    69    73    74    75    78    88    94    97
## Frequency      1     1     1     1     1     1     1     1     1     1     1
## Proportion 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077
##                       
## Value         98   100
## Frequency      1     1
## Proportion 0.077 0.077
## --------------------------------------------------------------------------------
## FS.B3_BFUF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       13       91       11    0.995    77.54    19.77     53.8     56.4 
##      .25      .50      .75      .90      .95 
##     66.0     74.0     94.0     99.0    100.0 
## 
## lowest :  52  55  62  66  71, highest:  81  87  94  95 100
##                                                                             
## Value         52    55    62    66    71    74    81    87    94    95   100
## Frequency      1     1     1     1     2     1     1     1     1     1     2
## Proportion 0.077 0.077 0.077 0.077 0.154 0.077 0.077 0.077 0.077 0.077 0.154
## --------------------------------------------------------------------------------
## FS.B4_BFUF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       13       91       11    0.995    78.08    18.51     57.4     61.4 
##      .25      .50      .75      .90      .95 
##     67.0     75.0     94.0     99.0    100.0 
## 
## lowest :  52  61  63  67  70, highest:  81  82  94  95 100
##                                                                             
## Value         52    61    63    67    70    75    81    82    94    95   100
## Frequency      1     1     1     1     1     2     1     1     1     1     2
## Proportion 0.077 0.077 0.077 0.077 0.077 0.154 0.077 0.077 0.077 0.077 0.154
## --------------------------------------------------------------------------------
psych::alpha(FS$BenScale_BFUF)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = FS$BenScale_BFUF)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r
##       0.97      0.97    0.98       0.9  38 0.0049   76 16     0.92
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.96  0.97  0.98
## Duhachek  0.96  0.97  0.98
## 
##  Reliability if an item is dropped:
##            raw_alpha std.alpha G6(smc) average_r S/N alpha se   var.r med.r
## FS.B1_BFUF      0.98      0.98    0.97      0.94  46   0.0038 0.00045  0.93
## FS.B2_BFUF      0.95      0.96    0.96      0.88  22   0.0085 0.00541  0.92
## FS.B3_BFUF      0.97      0.97    0.97      0.93  38   0.0051 0.00118  0.92
## FS.B4_BFUF      0.95      0.95    0.95      0.87  21   0.0089 0.00463  0.90
## 
##  Item statistics 
##             n raw.r std.r r.cor r.drop mean sd
## FS.B1_BFUF 13  0.94  0.94  0.92   0.89   71 18
## FS.B2_BFUF 13  0.98  0.98  0.98   0.97   79 16
## FS.B3_BFUF 13  0.94  0.95  0.93   0.90   78 17
## FS.B4_BFUF 13  0.99  0.99  0.99   0.98   78 16
cor(FS$BenScale_BFUF, use= "complete.obs")
##            FS.B1_BFUF FS.B2_BFUF FS.B3_BFUF FS.B4_BFUF
## FS.B1_BFUF  1.0000000  0.8955391  0.7963913  0.9205421
## FS.B2_BFUF  0.8955391  1.0000000  0.9266377  0.9633837
## FS.B3_BFUF  0.7963913  0.9266377  1.0000000  0.9267151
## FS.B4_BFUF  0.9205421  0.9633837  0.9267151  1.0000000
### Support
FS$S1_BFUF <- as.numeric(FS$Sup_BF_UF_40)
FS$S2_BFUF <- as.numeric(FS$Sup_BF_UF_42)
FS$S3_BFUF <- as.numeric(FS$Sup_BF_UF_43)
FS$S4_BFUF <- as.numeric(FS$Sup_BF_UF_45)

hist(FS$S1_BFUF)

hist(FS$S2_BFUF)

hist(FS$S3_BFUF)

hist(FS$S4_BFUF)

FS$SupScore_BFUF <- rowMeans(FS [, c( "S1_BFUF" , "S2_BFUF", "S3_BFUF", "S4_BFUF")], na.rm=TRUE)
describe(FS$SupScore_BFUF)
## FS$SupScore_BFUF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       13       91       12    0.997    70.62    23.18    49.20    50.60 
##      .25      .50      .75      .90      .95 
##    54.75    63.50    88.25    99.30    99.85 
## 
## lowest :  48.00  50.00  53.00  54.75  56.75, highest:  85.25  88.25  97.50  99.75 100.00
##                                                                          
## Value       48.00  50.00  53.00  54.75  56.75  63.50  64.50  85.25  88.25
## Frequency       1      1      1      1      2      1      1      1      1
## Proportion  0.077  0.077  0.077  0.077  0.154  0.077  0.077  0.077  0.077
##                                
## Value       97.50  99.75 100.00
## Frequency       1      1      1
## Proportion  0.077  0.077  0.077
sd(FS$SupScore_BFUF, na.rm = TRUE)
## [1] 20.27149
FS$SupScale_BFUF <- data.frame(FS$S1_BFUF, FS$S2_BFUF, FS$S3_BFUF, FS$S4_BFUF)
describe(FS$SupScale_BFUF)
## FS$SupScale_BFUF 
## 
##  4  Variables      104  Observations
## --------------------------------------------------------------------------------
## FS.S1_BFUF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       13       91       11    0.989    75.15    25.44     48.4     50.4 
##      .25      .50      .75      .90      .95 
##     53.0     82.0     99.0     99.0     99.4 
## 
## lowest :  46  50  52  53  57, highest:  82  86  93  99 100
##                                                                             
## Value         46    50    52    53    57    61    82    86    93    99   100
## Frequency      1     1     1     1     1     1     1     1     1     3     1
## Proportion 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.231 0.077
## --------------------------------------------------------------------------------
## FS.S2_BFUF 
##        n  missing distinct     Info     Mean      Gmd 
##       13       91        8    0.981    79.23    22.23 
## 
## lowest :  56  57  65  71  82, highest:  71  82  88  99 100
##                                                           
## Value         56    57    65    71    82    88    99   100
## Frequency      2     2     1     1     1     1     2     3
## Proportion 0.154 0.154 0.077 0.077 0.077 0.077 0.154 0.231
## --------------------------------------------------------------------------------
## FS.S3_BFUF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       13       91       11    0.995    61.77    35.79      6.6     18.8 
##      .25      .50      .75      .90      .95 
##     52.0     57.0     86.0     99.4    100.0 
## 
## lowest :   0  11  50  52  55, highest:  66  77  86  97 100
##                                                                             
## Value          0    11    50    52    55    57    66    77    86    97   100
## Frequency      1     1     1     2     1     1     1     1     1     1     2
## Proportion 0.077 0.077 0.077 0.154 0.077 0.077 0.077 0.077 0.077 0.077 0.154
## --------------------------------------------------------------------------------
## FS.S4_BFUF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       13       91       11    0.989    66.31    33.87     25.2     43.2 
##      .25      .50      .75      .90      .95 
##     50.0     62.0     95.0    100.0    100.0 
## 
## lowest :   0  42  48  50  52, highest:  62  63  93  95 100
##                                                                             
## Value          0    42    48    50    52    57    62    63    93    95   100
## Frequency      1     1     1     1     1     1     1     1     1     1     3
## Proportion 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.231
## --------------------------------------------------------------------------------
psych::alpha(FS$SupScale_BFUF)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = FS$SupScale_BFUF)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.78      0.79    0.96      0.48 3.7 0.039   71 20     0.33
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt      0.7  0.78  0.84
## Duhachek   0.7  0.78  0.85
## 
##  Reliability if an item is dropped:
##            raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## FS.S1_BFUF      0.74      0.71    0.80      0.45 2.4    0.038  0.17  0.28
## FS.S2_BFUF      0.77      0.75    0.82      0.50 2.9    0.038  0.14  0.37
## FS.S3_BFUF      0.72      0.78    0.86      0.54 3.5    0.053  0.14  0.37
## FS.S4_BFUF      0.62      0.70    0.82      0.44 2.4    0.073  0.21  0.21
## 
##  Item statistics 
##             n raw.r std.r r.cor r.drop mean sd
## FS.S1_BFUF 13  0.72  0.82  0.82   0.54   75 22
## FS.S2_BFUF 13  0.66  0.77  0.77   0.49   79 19
## FS.S3_BFUF 13  0.81  0.72  0.69   0.59   62 31
## FS.S4_BFUF 13  0.89  0.82  0.79   0.75   66 30
cor(FS$SupScale_BFUF, use= "complete.obs")
##            FS.S1_BFUF FS.S2_BFUF FS.S3_BFUF FS.S4_BFUF
## FS.S1_BFUF  1.0000000  0.9718411  0.2069772  0.3690695
## FS.S2_BFUF  0.9718411  1.0000000  0.1422023  0.2831316
## FS.S3_BFUF  0.2069772  0.1422023  1.0000000  0.9106395
## FS.S4_BFUF  0.3690695  0.2831316  0.9106395  1.0000000

Enhanced Weathering

Quiz Questions & Attention Check

## Time Spent Reading Instructions 
describe(FS$EWUF_InstTime_Page.Submit)
## FS$EWUF_InstTime_Page.Submit 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       12       92       12        1    10.92    13.02   0.6986   0.7045 
##      .25      .50      .75      .90      .95 
##   1.1365   6.2980  16.7423  29.3580  30.4238 
## 
## lowest :  0.697  0.700  0.745  1.267  3.025, highest: 12.935 14.406 23.751 29.981 30.965
##                                                                          
## Value       0.697  0.700  0.745  1.267  3.025  3.267  9.329 12.935 14.406
## Frequency       1      1      1      1      1      1      1      1      1
## Proportion  0.083  0.083  0.083  0.083  0.083  0.083  0.083  0.083  0.083
##                                
## Value      23.751 29.981 30.965
## Frequency       1      1      1
## Proportion  0.083  0.083  0.083
INSTminutes_EWUF <- (mean(FS$EWUF_InstTime_Page.Submit, na.rm = TRUE)/60)
print(INSTminutes_EWUF)
## [1] 0.1820389
## Time Spent Reading Technology Description (before proceeding to next page of survey)
  ### Raw Time Spent (Seconds) 
  describe(FS$EW_UF_Time_Page.Submit)
## FS$EW_UF_Time_Page.Submit 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       12       92       12        1    19.37    22.51    1.490    1.780 
##      .25      .50      .75      .90      .95 
##    2.572    7.582   36.560   48.597   49.466 
## 
## lowest :  1.193  1.733  2.201  2.696  3.259, highest: 31.295 35.131 40.846 49.458 49.476
##                                                                          
## Value       1.193  1.733  2.201  2.696  3.259  3.498 11.665 31.295 35.131
## Frequency       1      1      1      1      1      1      1      1      1
## Proportion  0.083  0.083  0.083  0.083  0.083  0.083  0.083  0.083  0.083
##                                
## Value      40.846 49.458 49.476
## Frequency       1      1      1
## Proportion  0.083  0.083  0.083
  sd(FS$EW_UF_Time_Page.Submit, na.rm = TRUE)
## [1] 20.11017
  range(FS$EW_UF_Time_Page.Submit, na.rm = TRUE)
## [1]  1.193 49.476
  ### Convert to Minutes 
  TECHminutes_EWUF <- (mean(FS$EW_UF_Time_Page.Submit, na.rm = TRUE)/60)
  print(TECHminutes_EWUF)
## [1] 0.3228486
## Attention and Manipulation Checks

# Attention Check 1: What technology did you just read about?
FS$ATN_EW_UF1 <- as.numeric(as.character(FS$EW_UF_ATN))
FS$ATN_EW_UF <- factor(FS$ATN_EW_UF1, levels = c(1, 2, 3, 4), 
                   labels = c("Biochar", "Biofuel", "Enhanced Weathering", "Wind Energy"))
describe(FS$ATN_EW_UF)
## FS$ATN_EW_UF 
##        n  missing distinct 
##       12       92        3 
##                                                                       
## Value                  Biofuel Enhanced Weathering         Wind Energy
## Frequency                    4                   7                   1
## Proportion               0.333               0.583               0.083
#### Time spent answering attention check #1:
  ##### (Seconds)
  describe(FS$EW_UF_ATNTime_Page.Submit)
## FS$EW_UF_ATNTime_Page.Submit 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       12       92       12        1    7.979    6.498    2.767    3.660 
##      .25      .50      .75      .90      .95 
##    3.821    5.734   10.072   13.306   18.065 
## 
## lowest :  1.688  3.649  3.761  3.841  3.959, highest:  9.466  9.751 11.037 13.558 23.574
##                                                                          
## Value       1.688  3.649  3.761  3.841  3.959  4.749  6.720  9.466  9.751
## Frequency       1      1      1      1      1      1      1      1      1
## Proportion  0.083  0.083  0.083  0.083  0.083  0.083  0.083  0.083  0.083
##                                
## Value      11.037 13.558 23.574
## Frequency       1      1      1
## Proportion  0.083  0.083  0.083
  sd(FS$EW_UF_ATNTime_Page.Submit, na.rm = TRUE)
## [1] 6.108491
  range(FS$EW_UF_ATNTime_Page.Submit, na.rm = TRUE)
## [1]  1.688 23.574
  ##### (Minutes)
  ATN1_EWUF <- (mean(FS$EW_UF_ATNTime_Page.Submit, na.rm = TRUE)/60)
  print(ATN1_EWUF)
## [1] 0.1329903
### Attention Check 2: Describe as much as you can about the technology you read about.
describe(FS$EW_UF_ATN2)
## FS$EW_UF_ATN2 
##        n  missing distinct 
##       11       93       11 
## 
## lowest : Carbon dioxide is removed from the air by interacting with water and minerals.                                                                                                                                                    Enhanced weathering uses rocks to capture carbon from the atmosphere and then creates bicarbonate to then push it from the land to waterways and eventually enhance the ocean floor                                               I do not remember what climate change method I read about                                                                                                                                                                         It was many people in many life                                                                                                                                                                                                   It's taking carbon dioxide out of the air                                                                                                                                                                                        
## highest: Making gas and groceries prices going up                                                                                                                                                                                          Minerals are scattered on land. Rain and air react with the minerals to form bicarbonate, which sequesters carbon from the atmosphere. It is eventually washed to the ocean floor. This process is similar to ocean alkinization. Nature idd                                                                                                                                                                                                                        Speeds up the process of weathering                                                                                                                                                                                               That the climate system has the most to do with climate change
  #### Time spent answering attention check #2
  ##### (Seconds)
  describe(FS$EW_UF_ATN2Time_Page.Submit)
## FS$EW_UF_ATN2Time_Page.Submit 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       12       92       12        1    37.69    34.07    5.781    7.371 
##      .25      .50      .75      .90      .95 
##   12.438   37.014   55.318   66.838   82.497 
## 
## lowest :   4.258   7.027  10.467  13.095  19.230
## highest:  38.071  51.801  65.867  66.946 101.504
##                                                                           
## Value        4.258   7.027  10.467  13.095  19.230  36.202  37.827  38.071
## Frequency        1       1       1       1       1       1       1       1
## Proportion   0.083   0.083   0.083   0.083   0.083   0.083   0.083   0.083
##                                           
## Value       51.801  65.867  66.946 101.504
## Frequency        1       1       1       1
## Proportion   0.083   0.083   0.083   0.083
  sd(FS$EW_UF_ATN2Time_Page.Submit, na.rm = TRUE)
## [1] 29.64683
  range(FS$EW_UF_ATN2Time_Page.Submit, na.rm = TRUE)
## [1]   4.258 101.504
  ##### (Minutes)
  ATN2_EWUF <- (mean(FS$EW_UF_ATN2Time_Page.Submit, na.rm = TRUE)/60)
  print(ATN2_EWUF)
## [1] 0.6281875
### Quiz Questions
FS$EW_UF_Quiz1
##   [1] NA NA NA NA NA NA NA  2 NA NA NA NA NA NA NA NA NA NA NA NA  2 NA NA NA NA
##  [26] NA NA NA  2 NA NA NA NA NA NA NA NA NA  2  2 NA NA NA NA NA NA NA NA  3 NA
##  [51] NA NA NA NA NA NA NA NA NA NA NA NA  2  1 NA NA NA  2 NA NA NA NA NA NA  2
##  [76] NA NA NA NA NA NA NA NA NA NA  2 NA NA NA NA NA  2 NA NA NA NA NA NA NA NA
## [101] NA NA NA NA
FS$EW_UF_QuizTime_Page.Submit
##   [1]     NA     NA     NA     NA     NA     NA     NA 23.357     NA     NA
##  [11]     NA     NA     NA     NA     NA     NA     NA     NA     NA     NA
##  [21] 23.733     NA     NA     NA     NA     NA     NA     NA  1.887     NA
##  [31]     NA     NA     NA     NA     NA     NA     NA     NA  9.601  2.764
##  [41]     NA     NA     NA     NA     NA     NA     NA     NA 14.062     NA
##  [51]     NA     NA     NA     NA     NA     NA     NA     NA     NA     NA
##  [61]     NA     NA 91.249 13.088     NA     NA     NA 29.460     NA     NA
##  [71]     NA     NA     NA     NA 42.036     NA     NA     NA     NA     NA
##  [81]     NA     NA     NA     NA     NA 41.100     NA     NA     NA     NA
##  [91]     NA 27.529     NA     NA     NA     NA     NA     NA     NA     NA
## [101]     NA     NA     NA     NA

Technology Ratings

### Naturalness
FS$N1_EWUF <- as.numeric(FS$Nat_EW_UF_30)
FS$N2R_EWUF <- as.numeric(100 - FS$Nat_EW_UF_31)
FS$N3R_EWUF <- as.numeric(100 - FS$Nat_EW_UF_35)
FS$N4R_EWUF <- as.numeric(100- FS$Nat_EW_UF_36)

hist(FS$N1_EWUF)

hist(FS$N2R_EWUF)

hist(FS$N3R_EWUF)

hist(FS$N4R_EWUF)

FS$NatScore_EWUF <- rowMeans(FS [, c( "N1_EWUF" , "N2R_EWUF", "N3R_EWUF", "N4R_EWUF")], na.rm=TRUE)
describe(FS$NatScore_EWUF)
## FS$NatScore_EWUF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       12       92       12        1    41.42    17.95    19.10    27.50 
##      .25      .50      .75      .90      .95 
##    35.56    39.38    47.44    60.83    64.26 
## 
## lowest :  9.75 26.75 34.25 36.00 36.75, highest: 42.75 43.50 59.25 61.00 68.25
##                                                                             
## Value       9.75 26.75 34.25 36.00 36.75 38.25 40.50 42.75 43.50 59.25 61.00
## Frequency      1     1     1     1     1     1     1     1     1     1     1
## Proportion 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083
##                 
## Value      68.25
## Frequency      1
## Proportion 0.083
sd(FS$NatScore_EWUF, na.rm = TRUE)
## [1] 15.837
FS$NatScale_EWUF <- data.frame(FS$N1_EWUF, FS$N2R_EWUF, FS$N3R_EWUF, FS$N4R_EWUF)
describe(FS$NatScale_EWUF)
## FS$NatScale_EWUF 
## 
##  4  Variables      104  Observations
## --------------------------------------------------------------------------------
## FS.N1_EWUF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       12       92       11    0.997    55.83    26.45    21.30    24.40 
##      .25      .50      .75      .90      .95 
##    40.75    59.50    75.25    79.90    80.00 
## 
## lowest : 18 24 28 45 53, highest: 63 70 74 79 80
##                                                                             
## Value         18    24    28    45    53    56    63    70    74    79    80
## Frequency      1     1     1     1     1     1     1     1     1     1     2
## Proportion 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.167
## --------------------------------------------------------------------------------
## FS.N2R_EWUF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       12       92       12        1    32.92    29.05     3.85     7.70 
##      .25      .50      .75      .90      .95 
##    15.50    27.00    49.75    67.90    71.70 
## 
## lowest :  0  7 14 16 18, highest: 37 47 58 69 75
##                                                                             
## Value          0     7    14    16    18    20    34    37    47    58    69
## Frequency      1     1     1     1     1     1     1     1     1     1     1
## Proportion 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083
##                 
## Value         75
## Frequency      1
## Proportion 0.083
## --------------------------------------------------------------------------------
## FS.N3R_EWUF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       12       92       10    0.986    30.42    27.56     0.00     0.00 
##      .25      .50      .75      .90      .95 
##    15.75    32.00    38.75    62.90    69.05 
## 
## lowest :  0 21 25 31 33, highest: 35 37 44 65 74
##                                                                       
## Value          0    21    25    31    33    35    37    44    65    74
## Frequency      3     1     1     1     1     1     1     1     1     1
## Proportion 0.250 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083
## --------------------------------------------------------------------------------
## FS.N4R_EWUF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       12       92       12        1     46.5    30.12    15.65    17.50 
##      .25      .50      .75      .90      .95 
##    22.75    45.00    68.50    79.00    80.90 
## 
## lowest : 14 17 22 23 28, highest: 64 68 70 80 82
##                                                                             
## Value         14    17    22    23    28    43    47    64    68    70    80
## Frequency      1     1     1     1     1     1     1     1     1     1     1
## Proportion 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083
##                 
## Value         82
## Frequency      1
## Proportion 0.083
## --------------------------------------------------------------------------------
psych::alpha(FS$NatScale_EWUF)
## Number of categories should be increased  in order to count frequencies.
## Warning in psych::alpha(FS$NatScale_EWUF): Some items were negatively correlated with the total scale and probably 
## should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( FS.N2R_EWUF ) were negatively correlated with the total scale and 
## probably should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## 
## Reliability analysis   
## Call: psych::alpha(x = FS$NatScale_EWUF)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.56      0.56    0.58      0.24 1.3 0.071   41 16      0.2
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.40  0.56  0.68
## Duhachek  0.42  0.56  0.70
## 
##  Reliability if an item is dropped:
##             raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r  med.r
## FS.N1_EWUF       0.34      0.34    0.37      0.15 0.52    0.113 0.098 0.0066
## FS.N2R_EWUF      0.75      0.75    0.68      0.50 2.99    0.042 0.013 0.5079
## FS.N3R_EWUF      0.40      0.41    0.46      0.19 0.69    0.105 0.136 0.0210
## FS.N4R_EWUF      0.31      0.32    0.29      0.14 0.47    0.119 0.045 0.0210
## 
##  Item statistics 
##              n raw.r std.r  r.cor r.drop mean sd
## FS.N1_EWUF  12  0.75  0.76  0.693  0.517   56 23
## FS.N2R_EWUF 12  0.37  0.36 -0.014 -0.019   33 25
## FS.N3R_EWUF 12  0.72  0.72  0.578  0.442   30 24
## FS.N4R_EWUF 12  0.78  0.78  0.754  0.524   46 25
cor(FS$NatScale_EWUF, use= "complete.obs")
##             FS.N1_EWUF FS.N2R_EWUF FS.N3R_EWUF FS.N4R_EWUF
## FS.N1_EWUF  1.00000000  0.02096275  0.38072385  0.60979735
## FS.N2R_EWUF 0.02096275  1.00000000  0.00655408 -0.06858307
## FS.N3R_EWUF 0.38072385  0.00655408  1.00000000  0.50785833
## FS.N4R_EWUF 0.60979735 -0.06858307  0.50785833  1.00000000
### Familiarity 
FS$Fam_EWUF <- as.numeric(FS$Fam_EW_UF_34)
hist(FS$Fam_EWUF)

describe(FS$Fam_EWUF)
## FS$Fam_EWUF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       12       92       11    0.997    40.92    39.83     0.00     1.60 
##      .25      .50      .75      .90      .95 
##    16.75    25.50    73.50    80.40    89.55 
## 
## lowest :   0  16  17  22  23, highest:  56  73  75  81 100
##                                                                             
## Value          0    16    17    22    23    28    56    73    75    81   100
## Frequency      2     1     1     1     1     1     1     1     1     1     1
## Proportion 0.167 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083
sd(FS$Fam_EWUF, na.rm = TRUE)
## [1] 34.24898
### Understanding 
FS$Und_EWUF <- as.numeric(FS$Fam_EW_UF_33)
hist(FS$Und_EWUF)

describe(FS$Und_EWUF)
## FS$Und_EWUF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       12       92       11    0.997    60.42    35.08     0.55     3.80 
##      .25      .50      .75      .90      .95 
##    56.00    70.00    80.50    82.00    90.10 
## 
## lowest :   0   1  29  65  67, highest:  72  79  80  82 100
##                                                                             
## Value          0     1    29    65    67    68    72    79    80    82   100
## Frequency      1     1     1     1     1     1     1     1     1     2     1
## Proportion 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.167 0.083
sd(FS$Und_EWUF, na.rm = TRUE)
## [1] 32.54496
### Fluency 
FS$Fluency_EWUF <- as.numeric(FS$Fluency_EW_UF_34)
hist(FS$Fluency_EWUF)

describe(FS$Fluency_EWUF)
## FS$Fluency_EWUF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       12       92       11    0.997    68.75    32.32     19.4     24.8 
##      .25      .50      .75      .90      .95 
##     59.0     75.5     86.0     99.8    100.0 
## 
## lowest :  15  23  41  65  72, highest:  77  78  82  98 100
##                                                                             
## Value         15    23    41    65    72    74    77    78    82    98   100
## Frequency      1     1     1     1     1     1     1     1     1     1     2
## Proportion 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.167
sd(FS$Fluency_EWUF, na.rm = TRUE)
## [1] 28.51196
### Risk
FS$R1_EWUF <- as.numeric(FS$Risk_EW_UF_32)
FS$R2_EWUF <- as.numeric(FS$Risk_EW_UF_33)
FS$R3_EWUF <- as.numeric(FS$Risk_EW_UF_34)

hist(FS$R1_EWUF)

hist(FS$R2_EWUF)

hist(FS$R3_EWUF)

FS$RiskScore_EWUF <- rowMeans(FS [, c( "R1_EWUF" , "R2_EWUF", "R3_EWUF")], na.rm=TRUE)
describe(FS$RiskScore_EWUF)
## FS$RiskScore_EWUF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       12       92       12        1    47.76    25.79    16.77    19.23 
##      .25      .50      .75      .90      .95 
##    34.58    44.67    67.12    77.05    78.30 
## 
## lowest : 15.66667 17.66667 33.33333 35.00000 36.66667
## highest: 53.66667 66.66667 68.50000 78.00000 78.66667
##                                                                          
## Value      15.66667 17.66667 33.33333 35.00000 36.66667 39.33333 50.00000
## Frequency         1        1        1        1        1        1        1
## Proportion    0.083    0.083    0.083    0.083    0.083    0.083    0.083
##                                                        
## Value      53.66667 66.66667 68.50000 78.00000 78.66667
## Frequency         1        1        1        1        1
## Proportion    0.083    0.083    0.083    0.083    0.083
sd(FS$RiskScore_EWUF, na.rm = TRUE)
## [1] 21.7377
FS$RiskScale_EWUF <- data.frame(FS$R1_BFUF, FS$R2_BFUF, FS$R3_BFUF)
describe(FS$RiskScale_EWUF)
## FS$RiskScale_EWUF 
## 
##  3  Variables      104  Observations
## --------------------------------------------------------------------------------
## FS.R1_BFUF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       13       91       11    0.989    34.92    34.85      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      7.0     40.0     52.0     74.0     77.8 
## 
## lowest :  0  7 11 31 40, highest: 44 52 70 75 82
##                                                                             
## Value          0     7    11    31    40    42    44    52    70    75    82
## Frequency      3     1     1     1     1     1     1     1     1     1     1
## Proportion 0.231 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077
## --------------------------------------------------------------------------------
## FS.R2_BFUF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       13       91       10    0.973    25.62    29.77      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      0.0     22.0     42.0     54.2     66.0 
## 
## lowest :  0  5 12 22 33, highest: 35 42 47 56 81
##                                                                       
## Value          0     5    12    22    33    35    42    47    56    81
## Frequency      4     1     1     1     1     1     1     1     1     1
## Proportion 0.308 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077
## --------------------------------------------------------------------------------
## FS.R3_BFUF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       13       91       11    0.989       79    21.13     49.4     53.6 
##      .25      .50      .75      .90      .95 
##     70.0     79.0     92.0    100.0    100.0 
## 
## lowest :  47  51  64  70  71, highest:  79  88  90  92 100
##                                                                             
## Value         47    51    64    70    71    75    79    88    90    92   100
## Frequency      1     1     1     1     1     1     1     1     1     1     3
## Proportion 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.231
## --------------------------------------------------------------------------------
psych::alpha(FS$RiskScale_EWUF)
## Number of categories should be increased  in order to count frequencies.
## Warning in psych::alpha(FS$RiskScale_EWUF): Some items were negatively correlated with the total scale and probably 
## should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( FS.R3_BFUF ) were negatively correlated with the total scale and 
## probably should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## 
## Reliability analysis   
## Call: psych::alpha(x = FS$RiskScale_EWUF)
## 
##   raw_alpha std.alpha G6(smc) average_r   S/N  ase mean sd median_r
##      0.097      -0.4     0.5      -0.1 -0.28 0.11   47 15    -0.47
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt    -0.25   0.1  0.36
## Duhachek -0.12   0.1  0.31
## 
##  Reliability if an item is dropped:
##            raw_alpha std.alpha G6(smc) average_r   S/N alpha se var.r med.r
## FS.R1_BFUF     -3.12     -3.73   -0.65     -0.65 -0.79    0.724    NA -0.65
## FS.R2_BFUF     -1.41     -1.75   -0.47     -0.47 -0.64    0.408    NA -0.47
## FS.R3_BFUF      0.89      0.89    0.80      0.80  8.13    0.022    NA  0.80
## 
##  Item statistics 
##             n raw.r  std.r r.cor r.drop mean sd
## FS.R1_BFUF 13  0.94  0.868  0.90   0.63   35 30
## FS.R2_BFUF 13  0.85  0.748  0.82   0.45   26 26
## FS.R3_BFUF 13 -0.28 -0.076 -0.63  -0.58   79 18
cor(FS$RiskScale_EWUF, use= "complete.obs")
##            FS.R1_BFUF FS.R2_BFUF FS.R3_BFUF
## FS.R1_BFUF  1.0000000  0.8025360 -0.4662278
## FS.R2_BFUF  0.8025360  1.0000000 -0.6506604
## FS.R3_BFUF -0.4662278 -0.6506604  1.0000000
### Benefit
FS$B1_EWUF <- as.numeric(FS$Ben_EW_UF_40)
FS$B2_EWUF <- as.numeric(FS$Ben_EW_UF_42)
FS$B3_EWUF <- as.numeric(FS$Ben_EW_UF_43)
FS$B4_EWUF <- as.numeric(FS$Ben_EW_UF_51)

hist(FS$B1_EWUF)

hist(FS$B2_EWUF)

hist(FS$B3_EWUF)

hist(FS$B4_EWUF)

FS$BenScore_EWUF <- rowMeans(FS [, c( "B1_EWUF" , "B2_EWUF", "B3_EWUF", "B4_EWUF")], na.rm=TRUE)
describe(FS$BenScore_EWUF)
## FS$BenScore_EWUF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       12       92       12        1     65.9    25.17    29.75    50.50 
##      .25      .50      .75      .90      .95 
##    58.56    71.50    80.31    81.85    90.10 
## 
## lowest :   5.00  50.00  55.00  59.75  60.25, highest:  75.00  80.25  80.50  82.00 100.00
##                                                                          
## Value        5.00  50.00  55.00  59.75  60.25  70.00  73.00  75.00  80.25
## Frequency       1      1      1      1      1      1      1      1      1
## Proportion  0.083  0.083  0.083  0.083  0.083  0.083  0.083  0.083  0.083
##                                
## Value       80.50  82.00 100.00
## Frequency       1      1      1
## Proportion  0.083  0.083  0.083
sd(FS$BenScore_EWUF, na.rm = TRUE)
## [1] 23.62839
FS$BenScale_EWUF <- data.frame(FS$B1_BFUF, FS$B2_BFUF, FS$B3_BFUF, FS$B4_BFUF)
describe(FS$BenScale_EWUF)
## FS$BenScale_EWUF 
## 
##  4  Variables      104  Observations
## --------------------------------------------------------------------------------
## FS.B1_BFUF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       13       91       11    0.995    71.15    21.56     50.0     50.4 
##      .25      .50      .75      .90      .95 
##     54.0     73.0     81.0     98.6    100.0 
## 
## lowest :  50  52  54  55  68, highest:  74  75  81  93 100
##                                                                             
## Value         50    52    54    55    68    73    74    75    81    93   100
## Frequency      2     1     1     1     1     1     1     1     1     1     2
## Proportion 0.154 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.154
## --------------------------------------------------------------------------------
## FS.B2_BFUF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       13       91       13        1    78.54    18.67     53.8     57.6 
##      .25      .50      .75      .90      .95 
##     69.0     75.0     94.0     97.8     98.8 
## 
## lowest :  52  55  68  69  73, highest:  88  94  97  98 100
##                                                                             
## Value         52    55    68    69    73    74    75    78    88    94    97
## Frequency      1     1     1     1     1     1     1     1     1     1     1
## Proportion 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077
##                       
## Value         98   100
## Frequency      1     1
## Proportion 0.077 0.077
## --------------------------------------------------------------------------------
## FS.B3_BFUF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       13       91       11    0.995    77.54    19.77     53.8     56.4 
##      .25      .50      .75      .90      .95 
##     66.0     74.0     94.0     99.0    100.0 
## 
## lowest :  52  55  62  66  71, highest:  81  87  94  95 100
##                                                                             
## Value         52    55    62    66    71    74    81    87    94    95   100
## Frequency      1     1     1     1     2     1     1     1     1     1     2
## Proportion 0.077 0.077 0.077 0.077 0.154 0.077 0.077 0.077 0.077 0.077 0.154
## --------------------------------------------------------------------------------
## FS.B4_BFUF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       13       91       11    0.995    78.08    18.51     57.4     61.4 
##      .25      .50      .75      .90      .95 
##     67.0     75.0     94.0     99.0    100.0 
## 
## lowest :  52  61  63  67  70, highest:  81  82  94  95 100
##                                                                             
## Value         52    61    63    67    70    75    81    82    94    95   100
## Frequency      1     1     1     1     1     2     1     1     1     1     2
## Proportion 0.077 0.077 0.077 0.077 0.077 0.154 0.077 0.077 0.077 0.077 0.154
## --------------------------------------------------------------------------------
psych::alpha(FS$BenScale_EWUF)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = FS$BenScale_EWUF)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r
##       0.97      0.97    0.98       0.9  38 0.0049   76 16     0.92
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.96  0.97  0.98
## Duhachek  0.96  0.97  0.98
## 
##  Reliability if an item is dropped:
##            raw_alpha std.alpha G6(smc) average_r S/N alpha se   var.r med.r
## FS.B1_BFUF      0.98      0.98    0.97      0.94  46   0.0038 0.00045  0.93
## FS.B2_BFUF      0.95      0.96    0.96      0.88  22   0.0085 0.00541  0.92
## FS.B3_BFUF      0.97      0.97    0.97      0.93  38   0.0051 0.00118  0.92
## FS.B4_BFUF      0.95      0.95    0.95      0.87  21   0.0089 0.00463  0.90
## 
##  Item statistics 
##             n raw.r std.r r.cor r.drop mean sd
## FS.B1_BFUF 13  0.94  0.94  0.92   0.89   71 18
## FS.B2_BFUF 13  0.98  0.98  0.98   0.97   79 16
## FS.B3_BFUF 13  0.94  0.95  0.93   0.90   78 17
## FS.B4_BFUF 13  0.99  0.99  0.99   0.98   78 16
cor(FS$BenScale_EWUF, use= "complete.obs")
##            FS.B1_BFUF FS.B2_BFUF FS.B3_BFUF FS.B4_BFUF
## FS.B1_BFUF  1.0000000  0.8955391  0.7963913  0.9205421
## FS.B2_BFUF  0.8955391  1.0000000  0.9266377  0.9633837
## FS.B3_BFUF  0.7963913  0.9266377  1.0000000  0.9267151
## FS.B4_BFUF  0.9205421  0.9633837  0.9267151  1.0000000
### Support
FS$S1_EWUF <- as.numeric(FS$Sup_EW_UF_40)
FS$S2_EWUF <- as.numeric(FS$Sup_EW_UF_42)
FS$S3_EWUF <- as.numeric(FS$Sup_EW_UF_43)
FS$S4_EWUF <- as.numeric(FS$Sup_EW_UF_45)

hist(FS$S1_EWUF)

hist(FS$S2_EWUF)

hist(FS$S3_EWUF)

hist(FS$S4_EWUF)

FS$SupScore_EWUF <- rowMeans(FS [, c( "S1_EWUF" , "S2_EWUF", "S3_EWUF", "S4_EWUF")], na.rm=TRUE)
describe(FS$SupScore_EWUF)
## FS$SupScore_EWUF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       12       92       12        1    67.03    27.38    22.96    27.43 
##      .25      .50      .75      .90      .95 
##    61.06    67.50    83.62    91.12    95.46 
## 
## lowest :  22.00000  23.75000  60.50000  61.25000  63.25000
## highest:  78.33333  83.00000  85.50000  91.75000 100.00000
##                                                                       
## Value       22.00000  23.75000  60.50000  61.25000  63.25000  63.50000
## Frequency          1         1         1         1         1         1
## Proportion     0.083     0.083     0.083     0.083     0.083     0.083
##                                                                       
## Value       71.50000  78.33333  83.00000  85.50000  91.75000 100.00000
## Frequency          1         1         1         1         1         1
## Proportion     0.083     0.083     0.083     0.083     0.083     0.083
sd(FS$SupScore_EWUF, na.rm = TRUE)
## [1] 24.20685
FS$SupScale_EWUF <- data.frame(FS$S1_BFUF, FS$S2_BFUF, FS$S3_BFUF, FS$S4_BFUF)
describe(FS$SupScale_EWUF)
## FS$SupScale_EWUF 
## 
##  4  Variables      104  Observations
## --------------------------------------------------------------------------------
## FS.S1_BFUF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       13       91       11    0.989    75.15    25.44     48.4     50.4 
##      .25      .50      .75      .90      .95 
##     53.0     82.0     99.0     99.0     99.4 
## 
## lowest :  46  50  52  53  57, highest:  82  86  93  99 100
##                                                                             
## Value         46    50    52    53    57    61    82    86    93    99   100
## Frequency      1     1     1     1     1     1     1     1     1     3     1
## Proportion 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.231 0.077
## --------------------------------------------------------------------------------
## FS.S2_BFUF 
##        n  missing distinct     Info     Mean      Gmd 
##       13       91        8    0.981    79.23    22.23 
## 
## lowest :  56  57  65  71  82, highest:  71  82  88  99 100
##                                                           
## Value         56    57    65    71    82    88    99   100
## Frequency      2     2     1     1     1     1     2     3
## Proportion 0.154 0.154 0.077 0.077 0.077 0.077 0.154 0.231
## --------------------------------------------------------------------------------
## FS.S3_BFUF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       13       91       11    0.995    61.77    35.79      6.6     18.8 
##      .25      .50      .75      .90      .95 
##     52.0     57.0     86.0     99.4    100.0 
## 
## lowest :   0  11  50  52  55, highest:  66  77  86  97 100
##                                                                             
## Value          0    11    50    52    55    57    66    77    86    97   100
## Frequency      1     1     1     2     1     1     1     1     1     1     2
## Proportion 0.077 0.077 0.077 0.154 0.077 0.077 0.077 0.077 0.077 0.077 0.154
## --------------------------------------------------------------------------------
## FS.S4_BFUF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       13       91       11    0.989    66.31    33.87     25.2     43.2 
##      .25      .50      .75      .90      .95 
##     50.0     62.0     95.0    100.0    100.0 
## 
## lowest :   0  42  48  50  52, highest:  62  63  93  95 100
##                                                                             
## Value          0    42    48    50    52    57    62    63    93    95   100
## Frequency      1     1     1     1     1     1     1     1     1     1     3
## Proportion 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.231
## --------------------------------------------------------------------------------
psych::alpha(FS$SupScale_EWUF)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = FS$SupScale_EWUF)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.78      0.79    0.96      0.48 3.7 0.039   71 20     0.33
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt      0.7  0.78  0.84
## Duhachek   0.7  0.78  0.85
## 
##  Reliability if an item is dropped:
##            raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## FS.S1_BFUF      0.74      0.71    0.80      0.45 2.4    0.038  0.17  0.28
## FS.S2_BFUF      0.77      0.75    0.82      0.50 2.9    0.038  0.14  0.37
## FS.S3_BFUF      0.72      0.78    0.86      0.54 3.5    0.053  0.14  0.37
## FS.S4_BFUF      0.62      0.70    0.82      0.44 2.4    0.073  0.21  0.21
## 
##  Item statistics 
##             n raw.r std.r r.cor r.drop mean sd
## FS.S1_BFUF 13  0.72  0.82  0.82   0.54   75 22
## FS.S2_BFUF 13  0.66  0.77  0.77   0.49   79 19
## FS.S3_BFUF 13  0.81  0.72  0.69   0.59   62 31
## FS.S4_BFUF 13  0.89  0.82  0.79   0.75   66 30
cor(FS$SupScale_EWUF, use= "complete.obs")
##            FS.S1_BFUF FS.S2_BFUF FS.S3_BFUF FS.S4_BFUF
## FS.S1_BFUF  1.0000000  0.9718411  0.2069772  0.3690695
## FS.S2_BFUF  0.9718411  1.0000000  0.1422023  0.2831316
## FS.S3_BFUF  0.2069772  0.1422023  1.0000000  0.9106395
## FS.S4_BFUF  0.3690695  0.2831316  0.9106395  1.0000000

More Familiar Condition

Biochar

Quiz Questions & Attention Check

### Minutes spent reading instructions before proceeding to next page in the survey
describe(FS$BioFam_InstTime_Page.Submit)
## FS$BioFam_InstTime_Page.Submit 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       13       91       13        1    6.564    5.393    1.502    1.598 
##      .25      .50      .75      .90      .95 
##    2.409    5.752    8.365    9.974   14.099 
## 
## lowest :  1.496  1.506  1.967  2.409  3.814, highest:  8.189  8.365  9.045 10.206 19.938
##                                                                          
## Value       1.496  1.506  1.967  2.409  3.814  5.702  5.752  6.949  8.189
## Frequency       1      1      1      1      1      1      1      1      1
## Proportion  0.077  0.077  0.077  0.077  0.077  0.077  0.077  0.077  0.077
##                                       
## Value       8.365  9.045 10.206 19.938
## Frequency       1      1      1      1
## Proportion  0.077  0.077  0.077  0.077
INSTminutes_BIOFAM <- (mean(FS$BioFam_InstTime_Page.Submit, na.rm = TRUE)/60)
print(INSTminutes_BIOFAM)
## [1] 0.1094077
## Time Spent Reading Technology Description (before proceeding to next page of survey)
  ### Raw Time Spent (Seconds) 
  describe(FS$BIO_Fam_Time_Page.Submit)
## FS$BIO_Fam_Time_Page.Submit 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       13       91       13        1    22.25    21.99    1.387    2.112 
##      .25      .50      .75      .90      .95 
##    5.309   19.901   31.701   49.423   50.874 
## 
## lowest :  0.795  1.781  3.435  5.309  5.784, highest: 27.245 31.701 48.759 49.589 52.802
##                                                                          
## Value       0.795  1.781  3.435  5.309  5.784 19.554 19.901 22.552 27.245
## Frequency       1      1      1      1      1      1      1      1      1
## Proportion  0.077  0.077  0.077  0.077  0.077  0.077  0.077  0.077  0.077
##                                       
## Value      31.701 48.759 49.589 52.802
## Frequency       1      1      1      1
## Proportion  0.077  0.077  0.077  0.077
  sd(FS$BIO_Fam_Time_Page.Submit, na.rm = TRUE)
## [1] 18.93442
  range(FS$BIO_Fam_Time_Page.Submit, na.rm = TRUE)
## [1]  0.795 52.802
  ### Convert to Minutes 
  TECHminutes_BIOFAM <- (mean(FS$BIO_Fam_Time_Page.Submit, na.rm = TRUE)/60)
  print(TECHminutes_BIOFAM)
## [1] 0.3707782
## Attention and Manipulation Checks

# Attention Check 1: What technology did you just read about?
FS$ATN_BIO_FAM1 <- as.numeric(as.character(FS$BIO_FAM_ATN))
FS$ATN_BIO_FAM <- factor(FS$ATN_BIO_FAM1, levels = c(1, 2, 3, 4), 
                   labels = c("Biochar", "Biofuel", "Enhanced Weathering", "Wind Energy"))
describe(FS$ATN_BIO_FAM)
## FS$ATN_BIO_FAM 
##        n  missing distinct 
##       13       91        4 
##                                                                       
## Value                  Biochar             Biofuel Enhanced Weathering
## Frequency                    8                   1                   1
## Proportion               0.615               0.077               0.077
##                               
## Value              Wind Energy
## Frequency                    3
## Proportion               0.231
#### Time Spent answering attention check #1:
  ##### (Seconds)
  describe(FS$BIO_Blurred_ATN_TIME_Page.Submit)
## FS$BIO_Blurred_ATN_TIME_Page.Submit 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       13       91       13        1    8.729    5.187    3.550    4.451 
##      .25      .50      .75      .90      .95 
##    4.748    8.018   11.723   13.568   15.315 
## 
## lowest :  2.273  4.402  4.645  4.748  5.789, highest: 10.127 11.723 12.667 13.793 17.597
##                                                                          
## Value       2.273  4.402  4.645  4.748  5.789  7.992  8.018  9.702 10.127
## Frequency       1      1      1      1      1      1      1      1      1
## Proportion  0.077  0.077  0.077  0.077  0.077  0.077  0.077  0.077  0.077
##                                       
## Value      11.723 12.667 13.793 17.597
## Frequency       1      1      1      1
## Proportion  0.077  0.077  0.077  0.077
  sd(FS$BIO_Blurred_ATN_TIME_Page.Submit, na.rm = TRUE)
## [1] 4.418532
  range(FS$BIO_Blurred_ATN_TIME_Page.Submit, na.rm = TRUE)
## [1]  2.273 17.597
  ##### (Minutes)
  ATN1_BIOFAM <- (mean(FS$BIO_Blurred_ATN_TIME_Page.Submit, na.rm = TRUE)/60)
  print(ATN1_BIOFAM)
## [1] 0.1454821
### Attention Check 2: Describe as much as you can about the technology you read about.
describe(FS$BIO_Fam_ATN2)
## FS$BIO_Fam_ATN2 
##        n  missing distinct 
##       13       91       13 
## 
## lowest :   Burn in absence of oxygen her coal                                                    Burn away all leaving behind the carbon which is stored underground until it is needed. Burning off non-carbon remains                                                          Carbon dioxide is burned off.  Leaves charcoal for further use                          changes plant matter by removing the oxygen from it                                    
## highest: I would need to read over the subject once more, short term memory loss                 I would say the process of turning biomass into biocar                                  It burns plant parts into carbon                                                        It's something  to know about  and learn  from it                                       None
  #### Time spent answering attention check #2
  ##### (Seconds)
  describe(FS$BIO_Fam_ATN2_TIME_Page.Submit)
## FS$BIO_Fam_ATN2_TIME_Page.Submit 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       13       91       13        1    47.06    42.79    9.156   11.899 
##      .25      .50      .75      .90      .95 
##   24.193   31.101   57.230   73.625  117.923 
## 
## lowest :   8.488   9.602  21.085  24.193  28.265
## highest:  53.155  57.230  60.200  76.981 179.335
##                                                                           
## Value        8.488   9.602  21.085  24.193  28.265  30.301  31.101  31.808
## Frequency        1       1       1       1       1       1       1       1
## Proportion   0.077   0.077   0.077   0.077   0.077   0.077   0.077   0.077
##                                                   
## Value       53.155  57.230  60.200  76.981 179.335
## Frequency        1       1       1       1       1
## Proportion   0.077   0.077   0.077   0.077   0.077
  sd(FS$BIO_Fam_ATN2_TIME_Page.Submit, na.rm = TRUE)
## [1] 44.6422
  range(FS$BIO_Fam_ATN2_TIME_Page.Submit, na.rm = TRUE)
## [1]   8.488 179.335
  ##### (Minutes)
  ATN2_BIOFAM <- (mean(FS$BIO_Fam_ATN2_TIME_Page.Submit, na.rm = TRUE)/60)
  print(ATN2_BIOFAM)
## [1] 0.7842872
## Quiz Questions 
FS$BIO_Fam_Quiz1
##   [1] NA NA NA NA NA NA  1 NA NA NA NA NA NA NA  4 NA NA  4 NA NA NA NA NA NA NA
##  [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA  4 NA  3 NA NA NA
##  [51] NA  4 NA  4  4 NA NA NA NA NA NA  4 NA NA NA  1 NA NA NA NA NA NA NA NA NA
##  [76] NA NA NA NA  4 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA  3 NA
## [101] NA  1 NA NA
FS$BIO_Fam_Quiz2
##   [1] NA NA NA NA NA NA  3 NA NA NA NA NA NA NA  3 NA NA  4 NA NA NA NA NA NA NA
##  [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA  3 NA  2 NA NA NA
##  [51] NA  4 NA  3  4 NA NA NA NA NA NA  3 NA NA NA  3 NA NA NA NA NA NA NA NA NA
##  [76] NA NA NA NA  4 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA  3 NA
## [101] NA  3 NA NA
FS$BIO_Fam_Quiz3
##   [1] NA NA NA NA NA NA  1 NA NA NA NA NA NA NA  2 NA NA  1 NA NA NA NA NA NA NA
##  [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA  2 NA  1 NA NA NA
##  [51] NA  1 NA  2  1 NA NA NA NA NA NA  2 NA NA NA  2 NA NA NA NA NA NA NA NA NA
##  [76] NA NA NA NA  2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA  2 NA
## [101] NA  2 NA NA
FS$BIO_Fam_Quiz4
##   [1] NA NA NA NA NA NA  1 NA NA NA NA NA NA NA  1 NA NA  1 NA NA NA NA NA NA NA
##  [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA  1 NA  1 NA NA NA
##  [51] NA  1 NA  1  1 NA NA NA NA NA NA  1 NA NA NA  1 NA NA NA NA NA NA NA NA NA
##  [76] NA NA NA NA  1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA  2 NA
## [101] NA  1 NA NA
FS$Bio_Fam_QuizTime_Page.Submit
##   [1]      NA      NA      NA      NA      NA      NA  25.400      NA      NA
##  [10]      NA      NA      NA      NA      NA  95.574      NA      NA  13.062
##  [19]      NA      NA      NA      NA      NA      NA      NA      NA      NA
##  [28]      NA      NA      NA      NA      NA      NA      NA      NA      NA
##  [37]      NA      NA      NA      NA      NA      NA      NA      NA  25.607
##  [46]      NA   8.256      NA      NA      NA      NA  50.288      NA  53.307
##  [55] 129.020      NA      NA      NA      NA      NA      NA  37.639      NA
##  [64]      NA      NA  79.747      NA      NA      NA      NA      NA      NA
##  [73]      NA      NA      NA      NA      NA      NA      NA  41.237      NA
##  [82]      NA      NA      NA      NA      NA      NA      NA      NA      NA
##  [91]      NA      NA      NA      NA      NA      NA      NA      NA  13.099
## [100]      NA      NA  46.119      NA      NA

Technology Ratings

### Naturalness
FS$N1_BioFAM<- as.numeric(FS$Nat_BIO_Fam_30)
FS$N2R_BioFAM <- as.numeric(100 - FS$Nat_BIO_Fam_31)
FS$N3R_BioFAM <- as.numeric(100 - FS$Nat_BIO_Fam_35)
FS$N4R_BioFAM <- as.numeric(100- FS$Nat_BIO_Fam_36)

hist(FS$N1_BioFAM)

hist(FS$N2R_BioFAM)

hist(FS$N3R_BioFAM)

hist(FS$N4R_BioFAM)

FS$NatScore_BioFAM <- rowMeans(FS [, c( "N1_BioFAM" , "N2R_BioFAM", "N3R_BioFAM", "N4R_BioFAM")], na.rm=TRUE)
describe(FS$NatScore_BioFAM)
## FS$NatScore_BioFAM 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       13       91       13        1    47.15    15.66    29.05    33.05 
##      .25      .50      .75      .90      .95 
##    39.25    45.50    51.50    67.50    72.20 
## 
## lowest : 25.00 31.75 38.25 39.25 42.00, highest: 47.25 51.50 55.50 70.50 74.75
##                                                                             
## Value      25.00 31.75 38.25 39.25 42.00 44.75 45.50 47.00 47.25 51.50 55.50
## Frequency      1     1     1     1     1     1     1     1     1     1     1
## Proportion 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077
##                       
## Value      70.50 74.75
## Frequency      1     1
## Proportion 0.077 0.077
sd(FS$NatScore_BioFAM, na.rm = TRUE)
## [1] 13.84458
FS$NatScale_BioFAM <- data.frame(FS$N1_BioFAM, FS$N2R_BioFAM, FS$N3R_BioFAM, FS$N4R_BioFAM)
describe(FS$NatScale_BioFAM)
## FS$NatScale_BioFAM 
## 
##  4  Variables      104  Observations
## --------------------------------------------------------------------------------
## FS.N1_BioFAM 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       13       91       10    0.986       80     22.9     42.8     52.6 
##      .25      .50      .75      .90      .95 
##     76.0     87.0     95.0    100.0    100.0 
## 
## lowest :  32  50  63  76  84, highest:  87  88  89  95 100
##                                                                       
## Value         32    50    63    76    84    87    88    89    95   100
## Frequency      1     1     1     2     1     1     1     1     1     3
## Proportion 0.077 0.077 0.077 0.154 0.077 0.077 0.077 0.077 0.077 0.231
## --------------------------------------------------------------------------------
## FS.N2R_BioFAM 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       13       91       11    0.995    29.92    29.15      0.0      2.0 
##      .25      .50      .75      .90      .95 
##     15.0     23.0     48.0     62.8     74.0 
## 
## lowest :  0 10 15 22 23, highest: 30 48 50 66 86
##                                                                             
## Value          0    10    15    22    23    24    30    48    50    66    86
## Frequency      2     1     2     1     1     1     1     1     1     1     1
## Proportion 0.154 0.077 0.154 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077
## --------------------------------------------------------------------------------
## FS.N3R_BioFAM 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       13       91       11    0.989    25.31     32.1      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      6.0     17.0     24.0     76.8     92.8 
## 
## lowest :   0   6  10  12  17, highest:  22  24  32  88 100
##                                                                             
## Value          0     6    10    12    17    18    22    24    32    88   100
## Frequency      3     1     1     1     1     1     1     1     1     1     1
## Proportion 0.231 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077
## --------------------------------------------------------------------------------
## FS.N4R_BioFAM 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       13       91       13        1    53.38    36.74      7.2     14.2 
##      .25      .50      .75      .90      .95 
##     33.0     59.0     79.0     83.4     90.4 
## 
## lowest :   0  12  23  33  34, highest:  76  79  81  84 100
##                                                                             
## Value          0    12    23    33    34    47    59    66    76    79    81
## Frequency      1     1     1     1     1     1     1     1     1     1     1
## Proportion 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077
##                       
## Value         84   100
## Frequency      1     1
## Proportion 0.077 0.077
## --------------------------------------------------------------------------------
psych::alpha(FS$NatScale_BioFAM)
## Number of categories should be increased  in order to count frequencies.
## Warning in psych::alpha(FS$NatScale_BioFAM): Some items were negatively correlated with the total scale and probably 
## should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( FS.N1_BioFAM ) were negatively correlated with the total scale and 
## probably should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## 
## Reliability analysis   
## Call: psych::alpha(x = FS$NatScale_BioFAM)
## 
##   raw_alpha std.alpha G6(smc) average_r   S/N  ase mean sd median_r
##    -0.0093      -0.3    0.48    -0.061 -0.23 0.14   47 14    -0.12
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt    -0.37 -0.01  0.27
## Duhachek -0.28 -0.01  0.26
## 
##  Reliability if an item is dropped:
##               raw_alpha std.alpha G6(smc) average_r   S/N alpha se var.r  med.r
## FS.N1_BioFAM       0.53      0.55    0.66     0.290  1.22    0.085 0.226  0.019
## FS.N2R_BioFAM     -0.68     -0.96   -0.43    -0.195 -0.49    0.259 0.037 -0.250
## FS.N3R_BioFAM     -1.36     -2.07   -0.61    -0.290 -0.67    0.340 0.104 -0.250
## FS.N4R_BioFAM      0.16     -0.16    0.66    -0.048 -0.14    0.112 0.609 -0.353
## 
##  Item statistics 
##                n raw.r std.r  r.cor r.drop mean sd
## FS.N1_BioFAM  13 -0.26 -0.13 -0.536 -0.552   80 21
## FS.N2R_BioFAM 13  0.72  0.67  0.849  0.348   30 26
## FS.N3R_BioFAM 13  0.85  0.83  1.014  0.453   25 32
## FS.N4R_BioFAM 13  0.48  0.43 -0.077 -0.088   53 31
cor(FS$NatScale_BioFAM, use= "complete.obs")
##               FS.N1_BioFAM FS.N2R_BioFAM FS.N3R_BioFAM FS.N4R_BioFAM
## FS.N1_BioFAM     1.0000000   -0.62995324    -0.3528685   -0.25026991
## FS.N2R_BioFAM   -0.6299532    1.00000000     0.8388256    0.01120342
## FS.N3R_BioFAM   -0.3528685    0.83882563     1.0000000    0.01876070
## FS.N4R_BioFAM   -0.2502699    0.01120342     0.0187607    1.00000000
### Familiarity 
FS$Fam_BioFAM <- as.numeric(FS$Fam_BIO_Fam_31)
hist(FS$Fam_BioFAM)

describe(FS$Fam_BioFAM)
## FS$Fam_BioFAM 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       13       91       12    0.997    45.54    33.59      9.6     16.6 
##      .25      .50      .75      .90      .95 
##     26.0     46.0     64.0     78.8     89.2 
## 
## lowest :   0  16  19  26  31, highest:  60  64  66  82 100
##                                                                             
## Value          0    16    19    26    31    46    51    60    64    66    82
## Frequency      1     1     1     1     2     1     1     1     1     1     1
## Proportion 0.077 0.077 0.077 0.077 0.154 0.077 0.077 0.077 0.077 0.077 0.077
##                 
## Value        100
## Frequency      1
## Proportion 0.077
sd(FS$Fam_BioFAM, na.rm = TRUE)
## [1] 28.50326
### Understanding 
FS$Und_BioFAM <- as.numeric(FS$Fam_BIO_Fam_33)
hist(FS$Und_BioFAM)

describe(FS$Und_BioFAM)
## FS$Und_BioFAM 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       13       91       13        1    60.54    30.46     30.8     32.4 
##      .25      .50      .75      .90      .95 
##     36.0     54.0     84.0     93.0     97.0 
## 
## lowest :  29  32  34  36  40, highest:  83  84  85  95 100
##                                                                             
## Value         29    32    34    36    40    51    54    64    83    84    85
## Frequency      1     1     1     1     1     1     1     1     1     1     1
## Proportion 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077
##                       
## Value         95   100
## Frequency      1     1
## Proportion 0.077 0.077
sd(FS$Und_BioFAM, na.rm = TRUE)
## [1] 25.95064
### Fluency 
FS$Fluency_BioFAM <- as.numeric(FS$Fluency_BIO_Fam_34)
hist(FS$Fluency_BioFAM)

describe(FS$Fluency_BioFAM)
## FS$Fluency_BioFAM 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       13       91       10    0.973    75.08    30.95     21.6     29.2 
##      .25      .50      .75      .90      .95 
##     65.0     80.0    100.0    100.0    100.0 
## 
## lowest :  21  22  58  65  70, highest:  73  80  91  96 100
##                                                                       
## Value         21    22    58    65    70    73    80    91    96   100
## Frequency      1     1     1     1     1     1     1     1     1     4
## Proportion 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.308
sd(FS$Fluency_BioFAM, na.rm = TRUE)
## [1] 27.93582
### Risk
FS$R1_BioFAM <- as.numeric(FS$Risk_BIO_Fam_30)
FS$R2_BioFAM <- as.numeric(FS$Risk_BIO_Fam_31)
FS$R3_BioFAM <- as.numeric(FS$Risk_BIO_Fam_32)

hist(FS$R1_BioFAM)

hist(FS$R2_BioFAM)

hist(FS$R3_BioFAM)

FS$RiskScore_BioFAM <- rowMeans(FS [, c( "R1_BioFAM" , "R2_BioFAM", "R3_BioFAM")], na.rm=TRUE)
describe(FS$RiskScore_BioFAM)
## FS$RiskScore_BioFAM 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       13       91       13        1    46.21     16.7    28.47    34.73 
##      .25      .50      .75      .90      .95 
##    36.67    44.00    53.67    58.27    69.07 
## 
## lowest : 19.66667 34.33333 36.33333 36.66667 40.33333
## highest: 48.66667 53.66667 54.00000 59.33333 83.66667
##                                                                          
## Value      19.66667 34.33333 36.33333 36.66667 40.33333 43.00000 44.00000
## Frequency         1        1        1        1        1        1        1
## Proportion    0.077    0.077    0.077    0.077    0.077    0.077    0.077
##                                                                 
## Value      47.00000 48.66667 53.66667 54.00000 59.33333 83.66667
## Frequency         1        1        1        1        1        1
## Proportion    0.077    0.077    0.077    0.077    0.077    0.077
sd(FS$RiskScore_BioFAM, na.rm = TRUE)
## [1] 15.2264
FS$RiskScale_BioFAM <- data.frame(FS$R1_BioFAM, FS$R2_BioFAM, FS$R3_BioFAM)
describe(FS$RiskScale_BioFAM)
## FS$RiskScale_BioFAM 
## 
##  3  Variables      104  Observations
## --------------------------------------------------------------------------------
## FS.R1_BioFAM 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       13       91       13        1    42.38    32.72      4.8      7.6 
##      .25      .50      .75      .90      .95 
##     23.0     43.0     62.0     77.4     85.4 
## 
## lowest :  3  6 14 23 28, highest: 52 62 63 81 92
##                                                                             
## Value          3     6    14    23    28    39    43    45    52    62    63
## Frequency      1     1     1     1     1     1     1     1     1     1     1
## Proportion 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077
##                       
## Value         81    92
## Frequency      1     1
## Proportion 0.077 0.077
## --------------------------------------------------------------------------------
## FS.R2_BioFAM 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       13       91       13        1    32.62    25.97      1.8      5.2 
##      .25      .50      .75      .90      .95 
##     22.0     33.0     42.0     59.6     70.2 
## 
## lowest :  0  3 14 22 23, highest: 38 42 46 63 81
##                                                                             
## Value          0     3    14    22    23    25    33    34    38    42    46
## Frequency      1     1     1     1     1     1     1     1     1     1     1
## Proportion 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077
##                       
## Value         63    81
## Frequency      1     1
## Proportion 0.077 0.077
## --------------------------------------------------------------------------------
## FS.R3_BioFAM 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       13       91       12    0.997    63.62    33.38     19.2     24.2 
##      .25      .50      .75      .90      .95 
##     44.0     70.0     82.0     97.8    100.0 
## 
## lowest :  15  22  33  44  53, highest:  73  81  82  89 100
##                                                                             
## Value         15    22    33    44    53    65    70    73    81    82    89
## Frequency      1     1     1     1     1     1     1     1     1     1     1
## Proportion 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077
##                 
## Value        100
## Frequency      2
## Proportion 0.154
## --------------------------------------------------------------------------------
psych::alpha(FS$RiskScale_BioFAM)
## Number of categories should be increased  in order to count frequencies.
## Warning in psych::alpha(FS$RiskScale_BioFAM): Some items were negatively correlated with the total scale and probably 
## should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( FS.R3_BioFAM ) were negatively correlated with the total scale and 
## probably should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## 
## Reliability analysis   
## Call: psych::alpha(x = FS$RiskScale_BioFAM)
## 
##   raw_alpha std.alpha G6(smc) average_r  S/N  ase mean sd median_r
##      0.012      0.13    0.69     0.049 0.16 0.18   46 15   -0.068
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt    -0.37  0.01  0.30
## Duhachek -0.34  0.01  0.37
## 
##  Reliability if an item is dropped:
##              raw_alpha std.alpha G6(smc) average_r   S/N alpha se var.r  med.r
## FS.R1_BioFAM     -0.14     -0.15  -0.068    -0.068 -0.13     0.22    NA -0.068
## FS.R2_BioFAM     -2.21     -2.21  -0.525    -0.525 -0.69     0.63    NA -0.525
## FS.R3_BioFAM      0.84      0.85   0.741     0.741  5.71     0.03    NA  0.741
## 
##  Item statistics 
##               n raw.r std.r  r.cor r.drop mean sd
## FS.R1_BioFAM 13  0.64  0.67  0.658  0.053   42 28
## FS.R2_BioFAM 13  0.90  0.92  0.906  0.680   33 23
## FS.R3_BioFAM 13  0.27  0.22 -0.059 -0.342   64 28
cor(FS$RiskScale_BioFAM, use= "complete.obs")
##              FS.R1_BioFAM FS.R2_BioFAM FS.R3_BioFAM
## FS.R1_BioFAM    1.0000000   0.74059030  -0.52530643
## FS.R2_BioFAM    0.7405903   1.00000000  -0.06776323
## FS.R3_BioFAM   -0.5253064  -0.06776323   1.00000000
### Benefit
FS$B1_BioFAM <- as.numeric(FS$Ben_BIO_Fam_40)
FS$B2_BioFAM <- as.numeric(FS$Ben_BIO_Fam_41)
FS$B3_BioFAM <- as.numeric(FS$Ben_BIO_Fam_42)
FS$B4_BioFAM <- as.numeric(FS$Ben_BIO_Fam_43)

hist(FS$B1_BioFAM)

hist(FS$B2_BioFAM)

hist(FS$B3_BioFAM)

hist(FS$B4_BioFAM)

FS$BenScore_BioFAM <- rowMeans(FS [, c( "B1_BioFAM" , "B2_BioFAM", "B3_BioFAM", "B4_BioFAM")], na.rm=TRUE)
describe(FS$BenScore_BioFAM)
## FS$BenScore_BioFAM 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       13       91       13        1    70.42    27.82    33.30    45.20 
##      .25      .50      .75      .90      .95 
##    56.50    75.75    87.75    96.25    98.80 
## 
## lowest :  17.25  44.00  50.00  56.50  61.25, highest:  85.50  87.75  89.25  98.00 100.00
##                                                                          
## Value       17.25  44.00  50.00  56.50  61.25  65.50  75.75  84.75  85.50
## Frequency       1      1      1      1      1      1      1      1      1
## Proportion  0.077  0.077  0.077  0.077  0.077  0.077  0.077  0.077  0.077
##                                       
## Value       87.75  89.25  98.00 100.00
## Frequency       1      1      1      1
## Proportion  0.077  0.077  0.077  0.077
sd(FS$BenScore_BioFAM, na.rm = TRUE)
## [1] 24.14504
FS$BenScale_BioFAM <- data.frame(FS$B1_BioFAM, FS$B2_BioFAM, FS$B3_BioFAM, FS$B4_BioFAM)
describe(FS$BenScale_BioFAM)
## FS$BenScale_BioFAM 
## 
##  4  Variables      104  Observations
## --------------------------------------------------------------------------------
## FS.B1_BioFAM 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       13       91       11    0.995    63.92    34.03     17.6     26.2 
##      .25      .50      .75      .90      .95 
##     43.0     59.0     87.0     97.8    100.0 
## 
## lowest :  11  22  43  54  56, highest:  83  84  87  89 100
##                                                                             
## Value         11    22    43    54    56    59    83    84    87    89   100
## Frequency      1     1     2     1     1     1     1     1     1     1     2
## Proportion 0.077 0.077 0.154 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.154
## --------------------------------------------------------------------------------
## FS.B2_BioFAM 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       13       91       12    0.997    73.77    27.18     32.0     47.4 
##      .25      .50      .75      .90      .95 
##     62.0     85.0     88.0     96.4     98.8 
## 
## lowest :  11  46  53  62  69, highest:  87  88  90  98 100
##                                                                             
## Value         11    46    53    62    69    83    85    87    88    90    98
## Frequency      1     1     1     1     1     1     1     2     1     1     1
## Proportion 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.154 0.077 0.077 0.077
##                 
## Value        100
## Frequency      1
## Proportion 0.077
## --------------------------------------------------------------------------------
## FS.B3_BioFAM 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       13       91       11    0.995    76.62    25.56     39.8     49.6 
##      .25      .50      .75      .90      .95 
##     66.0     83.0     90.0     99.6    100.0 
## 
## lowest :  26  49  52  66  72, highest:  83  88  90  98 100
##                                                                             
## Value         26    49    52    66    72    82    83    88    90    98   100
## Frequency      1     1     1     1     1     1     1     1     2     1     2
## Proportion 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.154 0.077 0.154
## --------------------------------------------------------------------------------
## FS.B4_BioFAM 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       13       91       13        1    67.38    32.21     22.0     31.6 
##      .25      .50      .75      .90      .95 
##     52.0     81.0     89.0     93.2     96.4 
## 
## lowest :  10  30  38  52  55, highest:  86  89  90  94 100
##                                                                             
## Value         10    30    38    52    55    68    81    83    86    89    90
## Frequency      1     1     1     1     1     1     1     1     1     1     1
## Proportion 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077
##                       
## Value         94   100
## Frequency      1     1
## Proportion 0.077 0.077
## --------------------------------------------------------------------------------
psych::alpha(FS$BenScale_BioFAM)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = FS$BenScale_BioFAM)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.94      0.94    0.99      0.79  15 0.012   70 24     0.79
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.91  0.94  0.95
## Duhachek  0.91  0.94  0.96
## 
##  Reliability if an item is dropped:
##              raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r med.r
## FS.B1_BioFAM      0.94      0.94    0.97      0.85 17.0    0.011 0.014  0.83
## FS.B2_BioFAM      0.90      0.90    0.92      0.76  9.3    0.016 0.027  0.74
## FS.B3_BioFAM      0.93      0.93    0.95      0.81 13.2    0.013 0.015  0.83
## FS.B4_BioFAM      0.89      0.90    0.93      0.75  9.1    0.021 0.039  0.68
## 
##  Item statistics 
##               n raw.r std.r r.cor r.drop mean sd
## FS.B1_BioFAM 13  0.89  0.87  0.85   0.79   64 29
## FS.B2_BioFAM 13  0.94  0.95  0.95   0.89   74 25
## FS.B3_BioFAM 13  0.89  0.90  0.90   0.81   77 23
## FS.B4_BioFAM 13  0.96  0.95  0.95   0.93   67 28
cor(FS$BenScale_BioFAM, use= "complete.obs")
##              FS.B1_BioFAM FS.B2_BioFAM FS.B3_BioFAM FS.B4_BioFAM
## FS.B1_BioFAM    1.0000000    0.6812088    0.6005103    0.9276168
## FS.B2_BioFAM    0.6812088    1.0000000    0.9761429    0.8341729
## FS.B3_BioFAM    0.6005103    0.9761429    1.0000000    0.7404802
## FS.B4_BioFAM    0.9276168    0.8341729    0.7404802    1.0000000
### Support
FS$S1_BioFAM <- as.numeric(FS$Sup_BIO_Fam_40)
FS$S2_BioFAM <- as.numeric(FS$Sup_BIO_Fam_42)
FS$S3_BioFAM <- as.numeric(FS$Sup_BIO_Fam_43)
FS$S4_BioFAM <- as.numeric(FS$Sup_BIO_Fam_45)

hist(FS$S1_BioFAM)

hist(FS$S2_BioFAM)

hist(FS$S3_BioFAM)

hist(FS$S4_BioFAM)

FS$SupScore_BioFAM <- rowMeans(FS [, c( "S1_BioFAM" , "S2_BioFAM", "S3_BioFAM", "S4_BioFAM")], na.rm=TRUE)
describe(FS$SupScore_BioFAM)
## FS$SupScore_BioFAM 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       13       91       12    0.997    70.87    30.54    26.70    37.15 
##      .25      .50      .75      .90      .95 
##    56.50    82.75    91.50    98.95   100.00 
## 
## lowest :  16.50  33.50  51.75  56.50  60.25, highest:  84.00  89.00  91.50  94.75 100.00
##                                                                          
## Value       16.50  33.50  51.75  56.50  60.25  60.75  82.75  84.00  89.00
## Frequency       1      1      1      1      1      1      1      1      1
## Proportion  0.077  0.077  0.077  0.077  0.077  0.077  0.077  0.077  0.077
##                                
## Value       91.50  94.75 100.00
## Frequency       1      1      2
## Proportion  0.077  0.077  0.154
sd(FS$SupScore_BioFAM, na.rm = TRUE)
## [1] 26.57549
FS$SupScale_BioFAM <- data.frame(FS$S1_BioFAM, FS$S2_BioFAM, FS$S3_BioFAM, FS$S4_BioFAM)
describe(FS$SupScale_BioFAM)
## FS$SupScale_BioFAM 
## 
##  4  Variables      104  Observations
## --------------------------------------------------------------------------------
## FS.S1_BioFAM 
##        n  missing distinct     Info     Mean      Gmd 
##       13       91        7    0.959    73.46    29.97 
## 
## lowest :  16  41  53  61  83, highest:  53  61  83  99 100
##                                                     
## Value         16    41    53    61    83    99   100
## Frequency      1     1     2     1     4     1     3
## Proportion 0.077 0.077 0.154 0.077 0.308 0.077 0.231
## --------------------------------------------------------------------------------
## FS.S2_BioFAM 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       13       91       12    0.997    68.92    33.97     23.0     28.0 
##      .25      .50      .75      .90      .95 
##     50.0     85.0     91.0     99.4    100.0 
## 
## lowest :  17  27  32  50  60, highest:  86  88  91  97 100
##                                                                             
## Value         17    27    32    50    60    63    85    86    88    91    97
## Frequency      1     1     1     1     1     1     1     1     1     1     1
## Proportion 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077
##                 
## Value        100
## Frequency      2
## Proportion 0.154
## --------------------------------------------------------------------------------
## FS.S3_BioFAM 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       13       91       11    0.995    73.62    30.23     27.0     38.4 
##      .25      .50      .75      .90      .95 
##     60.0     83.0     92.0     99.8    100.0 
## 
## lowest :  15  35  52  60  62, highest:  85  91  92  99 100
##                                                                             
## Value         15    35    52    60    62    83    85    91    92    99   100
## Frequency      1     1     1     1     1     2     1     1     1     1     2
## Proportion 0.077 0.077 0.077 0.077 0.077 0.154 0.077 0.077 0.077 0.077 0.154
## --------------------------------------------------------------------------------
## FS.S4_BioFAM 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       13       91       12    0.997    67.46    37.51     14.4     19.6 
##      .25      .50      .75      .90      .95 
##     52.0     78.0     98.0     99.8    100.0 
## 
## lowest :   9  18  26  52  60, highest:  82  90  98  99 100
##                                                                             
## Value          9    18    26    52    60    65    78    82    90    98    99
## Frequency      1     1     1     1     1     1     1     1     1     1     1
## Proportion 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077
##                 
## Value        100
## Frequency      2
## Proportion 0.154
## --------------------------------------------------------------------------------
psych::alpha(FS$SupScale_BioFAM)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = FS$SupScale_BioFAM)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.94      0.94    0.99      0.79  15 0.012   71 27     0.75
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.91  0.94  0.95
## Duhachek  0.91  0.94  0.96
## 
##  Reliability if an item is dropped:
##              raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r med.r
## FS.S1_BioFAM      0.93      0.93    0.96      0.82 13.8    0.012 0.020  0.78
## FS.S2_BioFAM      0.89      0.90    0.92      0.76  9.5    0.020 0.030  0.70
## FS.S3_BioFAM      0.91      0.91    0.96      0.78 10.4    0.016 0.034  0.73
## FS.S4_BioFAM      0.93      0.93    0.93      0.82 13.7    0.013 0.014  0.78
## 
##  Item statistics 
##               n raw.r std.r r.cor r.drop mean sd
## FS.S1_BioFAM 13  0.88  0.90  0.89   0.80   73 27
## FS.S2_BioFAM 13  0.96  0.95  0.95   0.92   69 29
## FS.S3_BioFAM 13  0.92  0.93  0.92   0.87   74 27
## FS.S4_BioFAM 13  0.91  0.90  0.90   0.83   67 33
cor(FS$SupScale_BioFAM, use= "complete.obs")
##              FS.S1_BioFAM FS.S2_BioFAM FS.S3_BioFAM FS.S4_BioFAM
## FS.S1_BioFAM    1.0000000    0.7274995    0.9526996    0.6215522
## FS.S2_BioFAM    0.7274995    1.0000000    0.7823678    0.9802210
## FS.S3_BioFAM    0.9526996    0.7823678    1.0000000    0.7031719
## FS.S4_BioFAM    0.6215522    0.9802210    0.7031719    1.0000000

Biofuel

Quiz Questions & Attention Check

### Minutes spent reading instructions before proceeding to next page in the survey
describe(FS$BF_Fam_InstTime_Page.Submit)
## FS$BF_Fam_InstTime_Page.Submit 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       14       90       14        1    9.801    11.86   0.7672   0.7933 
##      .25      .50      .75      .90      .95 
##   1.8975   4.9950  15.8738  22.4891  28.2868 
## 
## lowest :  0.725  0.790  0.801  1.858  2.016, highest: 14.802 16.231 20.289 23.432 37.303
##                                                                          
## Value       0.725  0.790  0.801  1.858  2.016  2.116  4.895  5.095  6.867
## Frequency       1      1      1      1      1      1      1      1      1
## Proportion  0.071  0.071  0.071  0.071  0.071  0.071  0.071  0.071  0.071
##                                              
## Value      14.802 16.231 20.289 23.432 37.303
## Frequency       1      1      1      1      1
## Proportion  0.071  0.071  0.071  0.071  0.071
INSTminutes_BFFAM <- (mean(FS$BF_Fam_InstTime_Page.Submit, na.rm = TRUE)/60)
print(INSTminutes_BFFAM)
## [1] 0.1633571
## Time Spent Reading Technology Description (before proceeding to next page of survey)
  ### Raw Time Spent (Seconds) 
  describe(FS$BF_Fam_Time_Page.Submit)
## FS$BF_Fam_Time_Page.Submit 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       14       90       14        1    16.43    18.27    1.071    1.353 
##      .25      .50      .75      .90      .95 
##    3.576   11.518   23.448   37.799   45.031 
## 
## lowest :  0.701  1.270  1.547  3.036  5.197, highest: 15.056 26.245 34.599 39.171 55.915
##                                                                          
## Value       0.701  1.270  1.547  3.036  5.197  9.558 10.007 13.028 14.656
## Frequency       1      1      1      1      1      1      1      1      1
## Proportion  0.071  0.071  0.071  0.071  0.071  0.071  0.071  0.071  0.071
##                                              
## Value      15.056 26.245 34.599 39.171 55.915
## Frequency       1      1      1      1      1
## Proportion  0.071  0.071  0.071  0.071  0.071
  sd(FS$BF_Fam_Time_Page.Submit, na.rm = TRUE)
## [1] 16.66886
  range(FS$BF_Fam_Time_Page.Submit, na.rm = TRUE)
## [1]  0.701 55.915
  ### Convert to Minutes 
  TECHminutes_BFFAM <- (mean(FS$BF_Fam_Time_Page.Submit, na.rm = TRUE)/60)
  print(TECHminutes_BFFAM)
## [1] 0.2737929
## Attention and Manipulation Checks

# Attention Check 1: What technology did you just read about?
FS$ATN_BF_FAM1 <- as.numeric(as.character(FS$BF_Fam_ATN))
FS$ATN_BF_FAM <- factor(FS$ATN_BF_FAM1, levels = c(1, 2, 3, 4), 
                   labels = c("Biochar", "Biofuel", "Enhanced Weathering", "Wind Energy"))
describe(FS$ATN_BF_FAM)
## FS$ATN_BF_FAM 
##        n  missing distinct 
##       14       90        2 
##                                   
## Value          Biofuel Wind Energy
## Frequency           10           4
## Proportion       0.714       0.286
#### Time Spent answering attention check #1:
  ##### (Seconds)
  describe(FS$BF_Fam_ATN_TIME_Page.Submit)
## FS$BF_Fam_ATN_TIME_Page.Submit 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       14       90       14        1    29.37     46.6    4.465    5.437 
##      .25      .50      .75      .90      .95 
##    5.920    6.436    7.929   28.032  127.930 
## 
## lowest :   2.768   5.379   5.572   5.899   5.983
## highest:   7.475   8.080   9.268  36.074 298.519
##                                                                           
## Value        2.768   5.379   5.572   5.899   5.983   6.318   6.394   6.477
## Frequency        1       1       1       1       1       1       1       1
## Proportion   0.071   0.071   0.071   0.071   0.071   0.071   0.071   0.071
##                                                           
## Value        7.043   7.475   8.080   9.268  36.074 298.519
## Frequency        1       1       1       1       1       1
## Proportion   0.071   0.071   0.071   0.071   0.071   0.071
  sd(FS$BF_Fam_ATN_TIME_Page.Submit, na.rm = TRUE)
## [1] 77.88165
  range(FS$BF_Fam_ATN_TIME_Page.Submit, na.rm = TRUE)
## [1]   2.768 298.519
  ##### (Minutes)
  ATN1_BFFAM <- (mean(FS$BF_Fam_ATN_TIME_Page.Submit, na.rm = TRUE)/60)
  print(ATN1_BFFAM)
## [1] 0.4895821
### Attention Check 2: Describe as much as you can about the technology you read about.
FS$ATN2_BFFAM <- FS$BF_Blurred_ATN2
FS$ATN2_BFFAM_Time <- FS$BF_Blurred_ATN2_TIME_Page.Submit
describe(FS$ATN2_BFFAM)
## FS$ATN2_BFFAM 
##        n  missing distinct 
##       14       90       14 
## 
## lowest : Biofuel can be used instead of natural fossil fuel                                                                                                                                                                       Biofuel is created by using things that would go to the dump, leaves, brush, etc and instead it is made in to biofuel.                                                                                                   Biofuel takes grass etc. & cools or heats it to make a fuel that is then refined so it can be used for cars, planes etc.                                                                                                 biofuel uses plants to create oil                                                                                                                                                                                        Fuel derived from plants                                                                                                                                                                                                
## highest: The climate change goes at far as the governments control to the society                                                                                                                                                 To help our country stop burning oil which causes climate change, biofuels have been created from plants such as grass, trees and agricultural waste by changing their properties and using them as fuels for cars, etc. Turning plants into fuel                                                                                                                                                                                                 Very all quality creative in nature                                                                                                                                                                                      Wind
  #### Time spent answering attention check #2
  ##### (Seconds)
  describe(FS$ATN2_BFFAM_Time)
## FS$ATN2_BFFAM_Time 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       14       90       14        1    52.27    59.56    7.306    7.744 
##      .25      .50      .75      .90      .95 
##   14.905   26.352   68.183  146.175  154.258 
## 
## lowest :   7.001   7.470   8.385  14.856  15.053
## highest:  52.863  73.290 139.251 149.143 163.758
##                                                                           
## Value        7.001   7.470   8.385  14.856  15.053  17.358  22.493  30.211
## Frequency        1       1       1       1       1       1       1       1
## Proportion   0.071   0.071   0.071   0.071   0.071   0.071   0.071   0.071
##                                                           
## Value       30.701  52.863  73.290 139.251 149.143 163.758
## Frequency        1       1       1       1       1       1
## Proportion   0.071   0.071   0.071   0.071   0.071   0.071
  sd(FS$ATN2_BFFAM_Time, na.rm = TRUE)
## [1] 56.60002
  range(FS$ATN2_BFFAM_Time, na.rm = TRUE)
## [1]   7.001 163.758
  ##### (Minutes)
  ATN2_BFFAM <- (mean(FS$ATN2_BFFAM_Time, na.rm = TRUE)/60)
  print(ATN2_BFFAM)
## [1] 0.8712298
## Quiz Questions 
FS$BF_Fam_Quiz1
##   [1] NA NA  2 NA NA  3 NA NA NA NA NA  3 NA NA NA NA NA NA NA  3 NA NA NA  2 NA
##  [26] NA NA NA NA NA NA NA NA NA NA NA  3 NA NA NA NA NA NA NA NA NA NA NA NA NA
##  [51] NA NA NA NA NA  3 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA  3  3 NA
##  [76] NA NA  3 NA NA NA  3 NA NA NA NA NA NA NA NA NA NA  2 NA NA  3 NA  2 NA NA
## [101] NA NA NA NA
FS$BF_Fam_Quiz2
##   [1] NA NA  1 NA NA  1 NA NA NA NA NA  1 NA NA NA NA NA NA NA  1 NA NA NA  1 NA
##  [26] NA NA NA NA NA NA NA NA NA NA NA  2 NA NA NA NA NA NA NA NA NA NA NA NA NA
##  [51] NA NA NA NA NA  1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA  1  1 NA
##  [76] NA NA  1 NA NA NA  1 NA NA NA NA NA NA NA NA NA NA  1 NA NA  1 NA  1 NA NA
## [101] NA NA NA NA
FS$BF_Fam_Quiz3
##   [1] NA NA  1 NA NA  1 NA NA NA NA NA  1 NA NA NA NA NA NA NA  1 NA NA NA  2 NA
##  [26] NA NA NA NA NA NA NA NA NA NA NA  1 NA NA NA NA NA NA NA NA NA NA NA NA NA
##  [51] NA NA NA NA NA  1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA  1  1 NA
##  [76] NA NA  1 NA NA NA  1 NA NA NA NA NA NA NA NA NA NA  1 NA NA  1 NA  1 NA NA
## [101] NA NA NA NA
FS$BF_Fam_Quiz4
##   [1] NA NA  2 NA NA  4 NA NA NA NA NA  5 NA NA NA NA NA NA NA  4 NA NA NA  2 NA
##  [26] NA NA NA NA NA NA NA NA NA NA NA  4 NA NA NA NA NA NA NA NA NA NA NA NA NA
##  [51] NA NA NA NA NA  1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA  4  1 NA
##  [76] NA NA  5 NA NA NA  4 NA NA NA NA NA NA NA NA NA NA  4 NA NA  5 NA  2 NA NA
## [101] NA NA NA NA
FS$Q737_Page.Submit
##   [1]     NA     NA 18.791     NA     NA 45.250     NA     NA     NA     NA
##  [11]     NA 65.245     NA     NA     NA     NA     NA     NA     NA 57.789
##  [21]     NA     NA     NA 14.495     NA     NA     NA     NA     NA     NA
##  [31]     NA     NA     NA     NA     NA     NA 11.869     NA     NA     NA
##  [41]     NA     NA     NA     NA     NA     NA     NA     NA     NA     NA
##  [51]     NA     NA     NA     NA     NA 71.067     NA     NA     NA     NA
##  [61]     NA     NA     NA     NA     NA     NA     NA     NA     NA     NA
##  [71]     NA     NA 46.319 37.704     NA     NA     NA 45.689     NA     NA
##  [81]     NA 41.303     NA     NA     NA     NA     NA     NA     NA     NA
##  [91]     NA     NA 55.527     NA     NA 51.460     NA 13.550     NA     NA
## [101]     NA     NA     NA     NA

Technology Ratings

### Naturalness
FS$N1_BFFAM<- as.numeric(FS$Nat_BF_Fam_30)
FS$N2R_BFFAM <- as.numeric(100 - FS$Nat_BF_Fam_31)
FS$N3R_BFFAM <- as.numeric(100 - FS$Nat_BF_Fam_35)
FS$N4R_BFFAM <- as.numeric(100- FS$Nat_BF_Fam_36)

hist(FS$N1_BFFAM)

hist(FS$N2R_BFFAM)

hist(FS$N3R_BFFAM)

hist(FS$N4R_BFFAM)

FS$NatScore_BFFAM <- rowMeans(FS [, c( "N1_BFFAM" , "N2R_BFFAM", "N3R_BFFAM", "N4R_BioFAM")], na.rm=TRUE)
describe(FS$NatScore_BFFAM)
## FS$NatScore_BFFAM 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       27       77       24    0.998    48.91    25.93    15.30    27.60 
##      .25      .50      .75      .90      .95 
##    33.33    47.00    62.50    79.80    83.10 
## 
## lowest :   0.00000  12.00000  23.00000  30.66667  33.00000
## highest:  76.00000  79.00000  81.00000  84.00000 100.00000
sd(FS$NatScore_BFFAM, na.rm = TRUE)
## [1] 22.81973
FS$NatScale_BFFAM <- data.frame(FS$N1_BFFAM, FS$N2R_BFFAM, FS$N3R_BFFAM, FS$N4R_BFFAM)
describe(FS$NatScale_BFFAM)
## FS$NatScale_BFFAM 
## 
##  4  Variables      104  Observations
## --------------------------------------------------------------------------------
## FS.N1_BFFAM 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       14       90       10    0.976    76.64    25.88     39.9     51.4 
##      .25      .50      .75      .90      .95 
##     66.5     79.5     97.5    100.0    100.0 
## 
## lowest :  23  49  57  66  68, highest:  71  79  80  90 100
##                                                                       
## Value         23    49    57    66    68    71    79    80    90   100
## Frequency      1     1     1     1     1     1     1     1     2     4
## Proportion 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.143 0.286
## --------------------------------------------------------------------------------
## FS.N2R_BFFAM 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       14       90       10    0.976    29.07    30.69      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      5.0     24.5     41.5     62.7     77.4 
## 
## lowest :  0 20 23 24 25, highest: 37 43 48 69 93
##                                                                       
## Value          0    20    23    24    25    37    43    48    69    93
## Frequency      4     1     1     1     2     1     1     1     1     1
## Proportion 0.286 0.071 0.071 0.071 0.143 0.071 0.071 0.071 0.071 0.071
## --------------------------------------------------------------------------------
## FS.N3R_BFFAM 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       14       90       11    0.989    28.57    30.02     0.00     0.00 
##      .25      .50      .75      .90      .95 
##     9.25    27.50    45.00    62.20    69.60 
## 
## lowest :  0  9 10 25 30, highest: 33 49 58 64 80
##                                                                             
## Value          0     9    10    25    30    32    33    49    58    64    80
## Frequency      3     1     2     1     1     1     1     1     1     1     1
## Proportion 0.214 0.071 0.143 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071
## --------------------------------------------------------------------------------
## FS.N4R_BFFAM 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       14       90       13    0.998    69.21    34.45    19.50    26.00 
##      .25      .50      .75      .90      .95 
##    54.50    73.00    95.75    99.70   100.00 
## 
## lowest :  13  23  33  54  56, highest:  91  92  97  99 100
##                                                                             
## Value         13    23    33    54    56    65    71    75    91    92    97
## Frequency      1     1     1     1     1     1     1     1     1     1     1
## Proportion 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071
##                       
## Value         99   100
## Frequency      1     2
## Proportion 0.071 0.143
## --------------------------------------------------------------------------------
psych::alpha(FS$NatScale_BFFAM)
## Number of categories should be increased  in order to count frequencies.
## Warning in psych::alpha(FS$NatScale_BFFAM): Some items were negatively correlated with the total scale and probably 
## should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( FS.N1_BFFAM FS.N4R_BFFAM ) were negatively correlated with the total scale and 
## probably should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Warning in sqrt(Vtc): NaNs produced
## 
## Reliability analysis   
## Call: psych::alpha(x = FS$NatScale_BFFAM)
## 
##   raw_alpha std.alpha G6(smc) average_r   S/N  ase mean  sd median_r
##       -1.2      -1.6   -0.25     -0.18 -0.61 0.36   51 9.6    -0.28
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt    -2.04 -1.25 -0.62
## Duhachek -1.95 -1.25 -0.54
## 
##  Reliability if an item is dropped:
##              raw_alpha std.alpha G6(smc) average_r    S/N alpha se var.r med.r
## FS.N1_BFFAM      -0.12     -0.05   0.200    -0.016 -0.047     0.20  0.21 -0.23
## FS.N2R_BFFAM     -0.85     -1.05  -0.053    -0.206 -0.513     0.28  0.27 -0.23
## FS.N3R_BFFAM     -1.06     -1.12  -0.184    -0.214 -0.529     0.33  0.24 -0.33
## FS.N4R_BFFAM     -1.34     -1.92  -0.116    -0.281 -0.658     0.31  0.47 -0.64
## 
##  Item statistics 
##               n  raw.r std.r r.cor r.drop mean sd
## FS.N1_BFFAM  14 -0.092 -0.02   NaN  -0.57   77 23
## FS.N2R_BFFAM 14  0.426  0.40   NaN  -0.31   29 28
## FS.N3R_BFFAM 14  0.438  0.42   NaN  -0.26   29 26
## FS.N4R_BFFAM 14  0.582  0.56   NaN  -0.24   69 30
cor(FS$NatScale_BFFAM, use= "complete.obs")
##              FS.N1_BFFAM FS.N2R_BFFAM FS.N3R_BFFAM FS.N4R_BFFAM
## FS.N1_BFFAM    1.0000000   -0.6364889   -0.7117792    0.3206001
## FS.N2R_BFFAM  -0.6364889    1.0000000    0.5060330   -0.3269525
## FS.N3R_BFFAM  -0.7117792    0.5060330    1.0000000   -0.2270946
## FS.N4R_BFFAM   0.3206001   -0.3269525   -0.2270946    1.0000000
### Familiarity
FS$Fam_BFFAM <- as.numeric(FS$Fam_BF_Fam_32)
hist(FS$Fam_BFFAM)

describe(FS$Fam_BFFAM)
## FS$Fam_BFFAM 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       14       90       14        1    55.86    33.01    14.30    23.20 
##      .25      .50      .75      .90      .95 
##    31.50    64.00    74.75    85.80    89.10 
## 
## lowest :  0 22 26 28 42, highest: 74 75 83 87 93
##                                                                             
## Value          0    22    26    28    42    51    58    70    73    74    75
## Frequency      1     1     1     1     1     1     1     1     1     1     1
## Proportion 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071
##                             
## Value         83    87    93
## Frequency      1     1     1
## Proportion 0.071 0.071 0.071
sd(FS$Fam_BFFAM, na.rm = TRUE)
## [1] 28.32465
### Understanding 
FS$Und_BFFAM <- as.numeric(FS$Fam_BF_Fam_31)
hist(FS$Und_BFFAM)

describe(FS$Und_BFFAM)
## FS$Und_BFFAM 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       13       91       13        1    67.69    34.44     18.6     25.4 
##      .25      .50      .75      .90      .95 
##     55.0     76.0     88.0     97.8     99.4 
## 
## lowest :   9  25  27  55  61, highest:  87  88  93  99 100
##                                                                             
## Value          9    25    27    55    61    74    76    86    87    88    93
## Frequency      1     1     1     1     1     1     1     1     1     1     1
## Proportion 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077
##                       
## Value         99   100
## Frequency      1     1
## Proportion 0.077 0.077
sd(FS$Und_BFFAM, na.rm = TRUE)
## [1] 30.30782
### Fluency 
FS$Fluency_BFFAM <- as.numeric(FS$Fluency_BF_Fam_34)
hist(FS$Fluency_BFFAM)

describe(FS$Fluency_BFFAM)
## FS$Fluency_BFFAM 
##        n  missing distinct     Info     Mean      Gmd 
##       14       90        9    0.969    76.93    30.36 
## 
## lowest :  11  20  54  70  80, highest:  80  83  87  98 100
##                                                                 
## Value         11    20    54    70    80    83    87    98   100
## Frequency      1     1     1     1     1     1     3     1     4
## Proportion 0.071 0.071 0.071 0.071 0.071 0.071 0.214 0.071 0.286
sd(FS$Fluency_BFFAM, na.rm = TRUE)
## [1] 29.2008
### Risk
FS$R1_BFFAM <- as.numeric(FS$Risk_BF_Fam_30)
FS$R2_BFFAM <- as.numeric(FS$Risk_BF_Fam_31)
FS$R3_BFFAM <- as.numeric(FS$Risk_BF_Fam_32)

hist(FS$R1_BFFAM)

hist(FS$R2_BFFAM)

hist(FS$R3_BFFAM)

FS$RiskScore_BFFAM <- rowMeans(FS [, c( "R1_BFFAM" , "R2_BFFAM", "R3_BFFAM")], na.rm=TRUE)
describe(FS$RiskScore_BFFAM)
## FS$RiskScore_BFFAM 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       14       90       12    0.991     48.6    24.11    29.30    31.00 
##      .25      .50      .75      .90      .95 
##    33.33    35.00    70.33    80.93    84.13 
## 
## lowest : 28.00000 30.00000 33.33333 33.66667 34.00000
## highest: 48.33333 77.66667 80.00000 81.33333 89.33333
##                                                                          
## Value      28.00000 30.00000 33.33333 33.66667 34.00000 36.00000 42.00000
## Frequency         1        1        3        1        1        1        1
## Proportion    0.071    0.071    0.214    0.071    0.071    0.071    0.071
##                                                        
## Value      48.33333 77.66667 80.00000 81.33333 89.33333
## Frequency         1        1        1        1        1
## Proportion    0.071    0.071    0.071    0.071    0.071
sd(FS$RiskScore_BFFAM, na.rm = TRUE)
## [1] 22.65051
FS$RiskScale_BFFAM <- data.frame(FS$R1_BFFAM, FS$R2_BFFAM, FS$R3_BFFAM)
describe(FS$RiskScale_BFFAM)
## FS$RiskScale_BFFAM 
## 
##  3  Variables      104  Observations
## --------------------------------------------------------------------------------
## FS.R1_BFFAM 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       14       90       11    0.978    41.14    45.58     0.00     0.00 
##      .25      .50      .75      .90      .95 
##     1.25    36.00    80.75    90.70    94.15 
## 
## lowest :   0   5  14  31  41, highest:  77  82  90  91 100
##                                                                             
## Value          0     5    14    31    41    45    77    82    90    91   100
## Frequency      4     1     1     1     1     1     1     1     1     1     1
## Proportion 0.286 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071
## --------------------------------------------------------------------------------
## FS.R2_BFFAM 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       14       90       12    0.991    31.29    36.31     0.00     0.00 
##      .25      .50      .75      .90      .95 
##     5.25    20.50    50.00    77.80    82.50 
## 
## lowest :  0  5  6 11 16, highest: 44 52 75 79 89
##                                                                             
## Value          0     5     6    11    16    25    36    44    52    75    79
## Frequency      3     1     1     1     1     1     1     1     1     1     1
## Proportion 0.214 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071
##                 
## Value         89
## Frequency      1
## Proportion 0.071
## --------------------------------------------------------------------------------
## FS.R3_BFFAM 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       13       91       11    0.989    76.85     27.9     27.8     48.0 
##      .25      .50      .75      .90      .95 
##     76.0     86.0     90.0    100.0    100.0 
## 
## lowest :   2  45  60  76  80, highest:  86  88  89  90 100
##                                                                             
## Value          2    45    60    76    80    83    86    88    89    90   100
## Frequency      1     1     1     1     1     1     1     1     1     1     3
## Proportion 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.231
## --------------------------------------------------------------------------------
psych::alpha(FS$RiskScale_BFFAM)
## Number of categories should be increased  in order to count frequencies.
## Warning in psych::alpha(FS$RiskScale_BFFAM): Some items were negatively correlated with the total scale and probably 
## should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( FS.R3_BFFAM ) were negatively correlated with the total scale and 
## probably should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## 
## Reliability analysis   
## Call: psych::alpha(x = FS$RiskScale_BFFAM)
## 
##   raw_alpha std.alpha G6(smc) average_r  S/N  ase mean sd median_r
##       0.35      0.29    0.78      0.12 0.42 0.11   49 23    0.088
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.09  0.35  0.54
## Duhachek  0.14  0.35  0.56
## 
##  Reliability if an item is dropped:
##             raw_alpha std.alpha G6(smc) average_r   S/N alpha se var.r  med.r
## FS.R1_BFFAM      0.16      0.16   0.088     0.088  0.19    0.163    NA  0.088
## FS.R2_BFFAM     -1.50     -1.68  -0.457    -0.457 -0.63    0.453    NA -0.457
## FS.R3_BFFAM      0.83      0.85   0.734     0.734  5.51    0.031    NA  0.734
## 
##  Item statistics 
##              n raw.r std.r r.cor r.drop mean sd
## FS.R1_BFFAM 14  0.77  0.66  0.64   0.24   41 39
## FS.R2_BFFAM 14  0.94  0.94  0.93   0.86   31 32
## FS.R3_BFFAM 13  0.18  0.33  0.13  -0.23   77 28
cor(FS$RiskScale_BFFAM, use= "complete.obs")
##             FS.R1_BFFAM FS.R2_BFFAM FS.R3_BFFAM
## FS.R1_BFFAM   1.0000000   0.7325566   -0.440161
## FS.R2_BFFAM   0.7325566   1.0000000    0.084938
## FS.R3_BFFAM  -0.4401610   0.0849380    1.000000
### Benefit
FS$B1_BFFAM <- as.numeric(FS$Ben_BF_Fam_40)
FS$B2_BFFAM <- as.numeric(FS$Ben_BF_Fam_42)
FS$B3_BFFAM <- as.numeric(FS$Ben_BF_Fam_43)
FS$B4_BFFAM <- as.numeric(FS$Ben_BF_Fam_44)

hist(FS$B1_BFFAM)

hist(FS$B2_BFFAM)

hist(FS$B3_BFFAM)

hist(FS$B4_BFFAM)

FS$BenScore_BFFAM <- rowMeans(FS [, c( "B1_BFFAM" , "B2_BFFAM", "B3_BFFAM", "B4_BFFAM")], na.rm=TRUE)
describe(FS$BenScore_BFFAM)
## FS$BenScore_BFFAM 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       14       90       10    0.976       76    30.26    20.75    33.40 
##      .25      .50      .75      .90      .95 
##    77.88    86.38    97.00   100.00   100.00 
## 
## lowest :   4.50  29.50  42.50  77.50  79.00, highest:  82.75  85.25  87.50  88.00 100.00
##                                                                          
## Value        4.50  29.50  42.50  77.50  79.00  82.75  85.25  87.50  88.00
## Frequency       1      1      1      1      1      1      1      2      1
## Proportion  0.071  0.071  0.071  0.071  0.071  0.071  0.071  0.143  0.071
##                  
## Value      100.00
## Frequency       4
## Proportion  0.286
sd(FS$BenScore_BFFAM, na.rm = TRUE)
## [1] 29.41954
FS$BenScale_BFFAM <- data.frame(FS$B1_BFFAM, FS$B2_BFFAM, FS$B3_BFFAM, FS$B4_BFFAM)
describe(FS$BenScale_BFFAM)
## FS$BenScale_BFFAM 
## 
##  4  Variables      104  Observations
## --------------------------------------------------------------------------------
## FS.B1_BFFAM 
##        n  missing distinct     Info     Mean      Gmd 
##       14       90        9    0.974    75.43    30.04 
## 
## lowest :   0  34  45  79  80, highest:  80  81  83  91 100
##                                                                 
## Value          0    34    45    79    80    81    83    91   100
## Frequency      1     1     1     1     2     1     2     1     4
## Proportion 0.071 0.071 0.071 0.071 0.143 0.071 0.143 0.071 0.286
## --------------------------------------------------------------------------------
## FS.B2_BFFAM 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       14       90       11    0.978    76.64    30.12    26.60    35.60 
##      .25      .50      .75      .90      .95 
##    75.25    85.50    98.75   100.00   100.00 
## 
## lowest :  11  35  37  75  76, highest:  83  88  91  95 100
##                                                                             
## Value         11    35    37    75    76    82    83    88    91    95   100
## Frequency      1     1     1     1     1     1     1     1     1     1     4
## Proportion 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.286
## --------------------------------------------------------------------------------
## FS.B3_BFFAM 
##        n  missing distinct     Info     Mean      Gmd 
##       14       90        9    0.974    76.14    30.86 
## 
## lowest :   7  19  49  76  80, highest:  80  87  88  90 100
##                                                                 
## Value          7    19    49    76    80    87    88    90   100
## Frequency      1     1     1     1     2     1     1     2     4
## Proportion 0.071 0.071 0.071 0.071 0.143 0.071 0.071 0.143 0.286
## --------------------------------------------------------------------------------
## FS.B4_BFFAM 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       14       90       10    0.976    75.79    31.79    19.50    32.70 
##      .25      .50      .75      .90      .95 
##    75.25    86.00    98.75   100.00   100.00 
## 
## lowest :   0  30  39  74  79, highest:  84  86  88  95 100
##                                                                       
## Value          0    30    39    74    79    84    86    88    95   100
## Frequency      1     1     1     1     1     1     2     1     1     4
## Proportion 0.071 0.071 0.071 0.071 0.071 0.071 0.143 0.071 0.071 0.286
## --------------------------------------------------------------------------------
psych::alpha(FS$BenScale_BFFAM)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = FS$BenScale_BFFAM)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N     ase mean sd median_r
##       0.99      0.99       1      0.98 175 0.00096   76 29     0.98
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.99  0.99     1
## Duhachek  0.99  0.99     1
## 
##  Reliability if an item is dropped:
##             raw_alpha std.alpha G6(smc) average_r S/N alpha se   var.r med.r
## FS.B1_BFFAM      0.99      0.99    0.99      0.98 120  0.00152 2.2e-04  0.97
## FS.B2_BFFAM      0.99      0.99    0.99      0.98 138  0.00129 7.7e-05  0.98
## FS.B3_BFFAM      0.99      0.99    1.00      0.98 185  0.00097 1.0e-04  0.99
## FS.B4_BFFAM      0.99      0.99    0.99      0.97 106  0.00162 5.5e-05  0.97
## 
##  Item statistics 
##              n raw.r std.r r.cor r.drop mean sd
## FS.B1_BFFAM 14  0.99  0.99  0.99   0.99   75 29
## FS.B2_BFFAM 14  0.99  0.99  0.99   0.98   77 28
## FS.B3_BFFAM 14  0.99  0.99  0.98   0.98   76 30
## FS.B4_BFFAM 14  1.00  1.00  1.00   0.99   76 31
cor(FS$BenScale_BFFAM, use= "complete.obs")
##             FS.B1_BFFAM FS.B2_BFFAM FS.B3_BFFAM FS.B4_BFFAM
## FS.B1_BFFAM   1.0000000   0.9727136   0.9797318   0.9868653
## FS.B2_BFFAM   0.9727136   1.0000000   0.9648551   0.9925309
## FS.B3_BFFAM   0.9797318   0.9648551   1.0000000   0.9694491
## FS.B4_BFFAM   0.9868653   0.9925309   0.9694491   1.0000000
### Support 
FS$S1_BFFAM <- as.numeric(FS$Sup_BF_Fam_40)
FS$S2_BFFAM <- as.numeric(FS$Sup_BF_Fam_42)
FS$S3_BFFAM <- as.numeric(FS$Sup_BF_Fam_43)
FS$S4_BFFAM <- as.numeric(FS$Sup_BF_Fam_45)

hist(FS$S1_BFFAM)

hist(FS$S2_BFFAM)

hist(FS$S3_BFFAM)

hist(FS$S4_BFFAM)

FS$SupScore_BFFAM <- rowMeans(FS [, c( "S1_BFFAM" , "S2_BFFAM", "S3_BFFAM", "S4_BFFAM")], na.rm=TRUE)
describe(FS$SupScore_BFFAM)
## FS$SupScore_BFFAM 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       14       90       13    0.998     81.2    20.98    40.81    55.27 
##      .25      .50      .75      .90      .95 
##    78.31    85.12    95.12    99.62   100.00 
## 
## lowest :  30.25  46.50  75.75  78.00  79.25, highest:  88.75  90.25  96.75  98.75 100.00
##                                                                          
## Value       30.25  46.50  75.75  78.00  79.25  82.25  84.50  85.75  88.75
## Frequency       1      1      1      1      1      1      1      1      1
## Proportion  0.071  0.071  0.071  0.071  0.071  0.071  0.071  0.071  0.071
##                                       
## Value       90.25  96.75  98.75 100.00
## Frequency       1      1      1      2
## Proportion  0.071  0.071  0.071  0.143
sd(FS$SupScore_BFFAM, na.rm = TRUE)
## [1] 20.13803
FS$SupScale_BFFAM <- data.frame(FS$S1_BFFAM, FS$S2_BFFAM, FS$S3_BFFAM, FS$S4_BFFAM)
describe(FS$SupScale_BFFAM)
## FS$SupScale_BFFAM 
## 
##  4  Variables      104  Observations
## --------------------------------------------------------------------------------
## FS.S1_BFFAM 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       14       90       10    0.976    82.21    22.03    39.75    51.90 
##      .25      .50      .75      .90      .95 
##    81.25    86.50    99.00   100.00   100.00 
## 
## lowest :  30  45  68  80  85, highest:  86  87  88  96 100
##                                                                       
## Value         30    45    68    80    85    86    87    88    96   100
## Frequency      1     1     1     1     1     2     1     1     1     4
## Proportion 0.071 0.071 0.071 0.071 0.071 0.143 0.071 0.071 0.071 0.286
## --------------------------------------------------------------------------------
## FS.S2_BFFAM 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       14       90       11    0.989    83.21    19.86    46.55    62.00 
##      .25      .50      .75      .90      .95 
##    78.75    90.00    94.25   100.00   100.00 
## 
## lowest :  29  56  76  77  84, highest:  90  91  92  95 100
##                                                                             
## Value         29    56    76    77    84    85    90    91    92    95   100
## Frequency      1     1     1     1     1     1     2     1     1     1     3
## Proportion 0.071 0.071 0.071 0.071 0.071 0.071 0.143 0.071 0.071 0.071 0.214
## --------------------------------------------------------------------------------
## FS.S3_BFFAM 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       14       90       11    0.978     79.5    23.11    38.75    51.20 
##      .25      .50      .75      .90      .95 
##    73.75    84.50    97.25   100.00   100.00 
## 
## lowest :  29  44  68  73  76, highest:  84  85  86  89 100
##                                                                             
## Value         29    44    68    73    76    79    84    85    86    89   100
## Frequency      1     1     1     1     1     1     1     1     1     1     4
## Proportion 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.286
## --------------------------------------------------------------------------------
## FS.S4_BFFAM 
##        n  missing distinct     Info     Mean      Gmd 
##       14       90        8    0.974    79.86    21.12 
## 
## lowest :  33  41  77  81  87, highest:  81  87  90  93 100
##                                                           
## Value         33    41    77    81    87    90    93   100
## Frequency      1     1     3     3     1     1     1     3
## Proportion 0.071 0.071 0.214 0.214 0.071 0.071 0.071 0.214
## --------------------------------------------------------------------------------
psych::alpha(FS$SupScale_BFFAM)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = FS$SupScale_BFFAM)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r
##       0.99      0.99    0.98      0.95  70 0.0023   81 20     0.95
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.98  0.99  0.99
## Duhachek  0.98  0.99  0.99
## 
##  Reliability if an item is dropped:
##             raw_alpha std.alpha G6(smc) average_r S/N alpha se   var.r med.r
## FS.S1_BFFAM      0.98      0.98    0.97      0.94  49   0.0035 2.3e-04  0.94
## FS.S2_BFFAM      0.99      0.99    0.98      0.96  78   0.0022 2.6e-05  0.96
## FS.S3_BFFAM      0.98      0.98    0.97      0.94  47   0.0036 4.2e-04  0.94
## FS.S4_BFFAM      0.98      0.98    0.97      0.94  46   0.0037 6.5e-04  0.93
## 
##  Item statistics 
##              n raw.r std.r r.cor r.drop mean sd
## FS.S1_BFFAM 14  0.98  0.98  0.98   0.97   82 21
## FS.S2_BFFAM 14  0.97  0.97  0.95   0.94   83 20
## FS.S3_BFFAM 14  0.98  0.98  0.98   0.97   80 21
## FS.S4_BFFAM 14  0.98  0.98  0.98   0.97   80 20
cor(FS$SupScale_BFFAM, use= "complete.obs")
##             FS.S1_BFFAM FS.S2_BFFAM FS.S3_BFFAM FS.S4_BFFAM
## FS.S1_BFFAM   1.0000000   0.9208410   0.9685487   0.9617508
## FS.S2_BFFAM   0.9208410   1.0000000   0.9286463   0.9383029
## FS.S3_BFFAM   0.9685487   0.9286463   1.0000000   0.9584763
## FS.S4_BFFAM   0.9617508   0.9383029   0.9584763   1.0000000

Enhanced Weathering

Quiz Questions & Attention Check

### Minutes spent reading instructions before proceeding to next page in the survey
describe(FS$EWFam_InstTime_Page.Submit)
## FS$EWFam_InstTime_Page.Submit 
##        n  missing distinct     Info     Mean      Gmd 
##        9       95        9        1    5.291    6.187 
## 
## lowest :  0.977  1.120  1.148  2.140  3.101, highest:  3.101  3.627  4.002 14.591 16.917
##                                                                          
## Value       0.977  1.120  1.148  2.140  3.101  3.627  4.002 14.591 16.917
## Frequency       1      1      1      1      1      1      1      1      1
## Proportion  0.111  0.111  0.111  0.111  0.111  0.111  0.111  0.111  0.111
INSTminutes_EWFAM <- (mean(FS$EWFam_InstTime_Page.Submit, na.rm = TRUE)/60)
print(INSTminutes_EWFAM)
## [1] 0.08819074
## Time Spent Reading Technology Description (before proceeding to next page of survey)
  ### Raw Time Spent (Seconds) 
  describe(FS$EW_Fam_Time_Page.Submit)
## FS$EW_Fam_Time_Page.Submit 
##        n  missing distinct     Info     Mean      Gmd 
##        9       95        9        1     14.7    14.97 
## 
## lowest :  1.263  3.123  6.053  6.195  7.894, highest:  7.894 19.002 21.987 27.802 38.943
##                                                                          
## Value       1.263  3.123  6.053  6.195  7.894 19.002 21.987 27.802 38.943
## Frequency       1      1      1      1      1      1      1      1      1
## Proportion  0.111  0.111  0.111  0.111  0.111  0.111  0.111  0.111  0.111
  sd(FS$EW_Fam_Time_Page.Submit, na.rm = TRUE)
## [1] 12.93735
  range(FS$EW_Fam_Time_Page.Submit, na.rm = TRUE)
## [1]  1.263 38.943
  ### Convert to Minutes 
  TECHminutes_EWFAM <- (mean(FS$EW_Fam_Time_Page.Submit, na.rm = TRUE)/60)
  print(TECHminutes_EWFAM)
## [1] 0.2449296
## Attention and Manipulation Checks

### Attention Check 1: What technology did you just read about?
FS$ATN_EW_FAM1 <- as.numeric(as.character(FS$EW_Fam_ATN))
FS$ATN_EW_FAM <- factor(FS$ATN_EW_FAM1, levels = c(1, 2, 3, 4), 
                   labels = c("Biochar", "Biofuel", "Enhanced Weathering", "Wind Energy"))
describe(FS$ATN_EW_FAM)
## FS$ATN_EW_FAM 
##        n  missing distinct 
##        9       95        3 
##                                                                       
## Value                  Biochar Enhanced Weathering         Wind Energy
## Frequency                    1                   7                   1
## Proportion               0.111               0.778               0.111
 #### Time Spent answering attention check #1:
  ##### (Seconds)
  describe(FS$EW_Fam_ATNTime_Page.Submit)
## FS$EW_Fam_ATNTime_Page.Submit 
##        n  missing distinct     Info     Mean      Gmd 
##        9       95        9        1    6.955    3.583 
## 
## lowest :  3.246  4.784  5.104  5.689  5.900, highest:  5.900  5.993  8.333  9.101 14.441
##                                                                          
## Value       3.246  4.784  5.104  5.689  5.900  5.993  8.333  9.101 14.441
## Frequency       1      1      1      1      1      1      1      1      1
## Proportion  0.111  0.111  0.111  0.111  0.111  0.111  0.111  0.111  0.111
  sd(FS$EW_Fam_ATNTime_Page.Submit, na.rm = TRUE)
## [1] 3.318165
  range(FS$EW_Fam_ATNTime_Page.Submit, na.rm = TRUE)
## [1]  3.246 14.441
  ##### (Minutes)
  ATN1_EWFAM <- (mean(FS$EW_Fam_ATNTime_Page.Submit, na.rm = TRUE)/60)
  print(ATN1_EWFAM)
## [1] 0.1159093
### Attention Check 2: Describe as much as you can about the technology you read about.
describe(FS$EW_Fam_ATN2)
## FS$EW_Fam_ATN2 
##        n  missing distinct 
##        8       96        8 
## 
## lowest : cant remember                                                                                                              I'm not sure about this one                                                                                                It can help alleviate a big part of climate change.                                                                        It takes carbon samples from rocks to see how the rock is weathering                                                       Powdered minerals are added to fields, etc. where due to run-off they end up in waterways,  thereby producing bicarbonate 
## highest: It takes carbon samples from rocks to see how the rock is weathering                                                       Powdered minerals are added to fields, etc. where due to run-off they end up in waterways,  thereby producing bicarbonate  That weathering happens naturally without any interference                                                                 The process of releasing elements into the atmosphere to provoke rain.                                                     This is about using weathering for fuel with minerals found in the ocean
  #### Time spent answering attention check #2
  ##### (Seconds)
  describe(FS$EW_Fam_ATN2TIME_Page.Submit)
## FS$EW_Fam_ATN2TIME_Page.Submit 
##        n  missing distinct     Info     Mean      Gmd 
##        9       95        9        1    36.89    33.21 
## 
## lowest :  5.642 10.244 16.000 26.986 28.102, highest: 28.102 36.100 52.079 57.591 99.247
##                                                                          
## Value       5.642 10.244 16.000 26.986 28.102 36.100 52.079 57.591 99.247
## Frequency       1      1      1      1      1      1      1      1      1
## Proportion  0.111  0.111  0.111  0.111  0.111  0.111  0.111  0.111  0.111
  sd(FS$EW_Fam_ATN2TIME_Page.Submit, na.rm = TRUE)
## [1] 29.25409
  range(FS$EW_Fam_ATN2TIME_Page.Submit, na.rm = TRUE)
## [1]  5.642 99.247
  ##### (Minutes)
  ATN2_EWFAM <- (mean(FS$EW_Fam_ATN2TIME_Page.Submit, na.rm = TRUE)/60)
  print(ATN2_EWFAM)
## [1] 0.6147981
## Quiz Questions 
FS$EW_Fam_Quiz1
##   [1] NA NA NA NA NA NA NA NA NA NA NA NA NA  2 NA NA NA NA NA NA NA  2 NA NA NA
##  [26] NA NA NA NA NA NA NA  2  4 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
##  [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA  3 NA NA NA NA NA NA
##  [76] NA NA NA  2 NA NA NA NA  2 NA NA  2 NA NA NA NA NA NA NA  3 NA NA NA NA NA
## [101] NA NA NA NA
FS$EW_Fam_Quiz2
##   [1] NA NA NA NA NA NA NA NA NA NA NA NA NA  4 NA NA NA NA NA NA NA  4 NA NA NA
##  [26] NA NA NA NA NA NA NA  3  2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
##  [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA  4 NA NA NA NA NA NA
##  [76] NA NA NA  2 NA NA NA NA  4 NA NA  3 NA NA NA NA NA NA NA  3 NA NA NA NA NA
## [101] NA NA NA NA
FS$EW_Fam_Quiz3
##   [1] NA NA NA NA NA NA NA NA NA NA NA NA NA  1 NA NA NA NA NA NA NA  1 NA NA NA
##  [26] NA NA NA NA NA NA NA  1  2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
##  [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA  1 NA NA NA NA NA NA
##  [76] NA NA NA  1 NA NA NA NA  1 NA NA  2 NA NA NA NA NA NA NA  1 NA NA NA NA NA
## [101] NA NA NA NA
FS$EW_Fam_Quiz4
##   [1] NA NA NA NA NA NA NA NA NA NA NA NA NA  2 NA NA NA NA NA NA NA  1 NA NA NA
##  [26] NA NA NA NA NA NA NA  1  1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
##  [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA  1 NA NA NA NA NA NA
##  [76] NA NA NA  2 NA NA NA NA  2 NA NA  2 NA NA NA NA NA NA NA  2 NA NA NA NA NA
## [101] NA NA NA NA
FS$EW_Fam_QuizTime_Page.Submit
##   [1]      NA      NA      NA      NA      NA      NA      NA      NA      NA
##  [10]      NA      NA      NA      NA 119.259      NA      NA      NA      NA
##  [19]      NA      NA      NA 262.403      NA      NA      NA      NA      NA
##  [28]      NA      NA      NA      NA      NA  11.549  20.672      NA      NA
##  [37]      NA      NA      NA      NA      NA      NA      NA      NA      NA
##  [46]      NA      NA      NA      NA      NA      NA      NA      NA      NA
##  [55]      NA      NA      NA      NA      NA      NA      NA      NA      NA
##  [64]      NA      NA      NA      NA      NA  78.000      NA      NA      NA
##  [73]      NA      NA      NA      NA      NA      NA  69.499      NA      NA
##  [82]      NA      NA  53.427      NA      NA  59.928      NA      NA      NA
##  [91]      NA      NA      NA      NA  91.221      NA      NA      NA      NA
## [100]      NA      NA      NA      NA      NA

Technology Ratings

### Naturalness
FS$N1_EWFAM <- as.numeric(FS$Nat_EW_Fam_30)
FS$N2R_EWFAM <- as.numeric(100 - FS$Nat_EW_Fam_31)
FS$N3R_EWFAM <- as.numeric(100 - FS$Nat_EW_Fam_35)
FS$N4R_EWFAM <- as.numeric(100- FS$Nat_EW_Fam_36)

hist(FS$N1_EWFAM)

hist(FS$N2R_EWFAM)

hist(FS$N3R_EWFAM)

hist(FS$N4R_EWFAM)

FS$NatScore_EWFAM <- rowMeans(FS [, c( "N1_EWFAM" , "N2R_EWFAM", "N3R_EWFAM", "N4R_EWFAM")], na.rm=TRUE)
describe(FS$NatScore_EWFAM)
## FS$NatScore_EWFAM 
##        n  missing distinct     Info     Mean      Gmd 
##        9       95        9        1     50.5    20.54 
## 
## lowest : 25.00 27.25 44.50 49.00 51.00, highest: 51.00 54.00 56.00 67.50 80.25
##                                                                 
## Value      25.00 27.25 44.50 49.00 51.00 54.00 56.00 67.50 80.25
## Frequency      1     1     1     1     1     1     1     1     1
## Proportion 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111
sd(FS$NatScore_EWFAM, na.rm = TRUE)
## [1] 17.48526
FS$NatScale_EWFAM <- data.frame(FS$N1_EWFAM, FS$N2R_EWFAM, FS$N3R_EWFAM, FS$N4R_EWFAM)
describe(FS$NatScale_EWFAM)
## FS$NatScale_EWFAM 
## 
##  4  Variables      104  Observations
## --------------------------------------------------------------------------------
## FS.N1_EWFAM 
##        n  missing distinct     Info     Mean      Gmd 
##        9       95        8    0.992    70.44    28.28 
## 
## lowest :  30  37  61  64  80, highest:  64  80  86  88 100
##                                                           
## Value         30    37    61    64    80    86    88   100
## Frequency      1     1     1     1     1     1     2     1
## Proportion 0.111 0.111 0.111 0.111 0.111 0.111 0.222 0.111
## --------------------------------------------------------------------------------
## FS.N2R_EWFAM 
##        n  missing distinct     Info     Mean      Gmd 
##        9       95        9        1    45.44    31.94 
## 
## lowest : 17 18 19 33 36, highest: 36 48 76 80 82
##                                                                 
## Value         17    18    19    33    36    48    76    80    82
## Frequency      1     1     1     1     1     1     1     1     1
## Proportion 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111
## --------------------------------------------------------------------------------
## FS.N3R_EWFAM 
##        n  missing distinct     Info     Mean      Gmd 
##        9       95        8    0.992    26.56    16.11 
## 
## lowest :  0 17 20 29 34, highest: 29 34 35 39 45
##                                                           
## Value          0    17    20    29    34    35    39    45
## Frequency      1     1     2     1     1     1     1     1
## Proportion 0.111 0.111 0.222 0.111 0.111 0.111 0.111 0.111
## --------------------------------------------------------------------------------
## FS.N4R_EWFAM 
##        n  missing distinct     Info     Mean      Gmd 
##        9       95        8    0.992    59.56    36.44 
## 
## lowest :  14  20  42  60  61, highest:  60  61  62  77 100
##                                                           
## Value         14    20    42    60    61    62    77   100
## Frequency      1     1     1     1     1     1     1     2
## Proportion 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.222
## --------------------------------------------------------------------------------
psych::alpha(FS$NatScale_EWFAM)
## Number of categories should be increased  in order to count frequencies.
## Warning in psych::alpha(FS$NatScale_EWFAM): Some items were negatively correlated with the total scale and probably 
## should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( FS.N3R_EWFAM ) were negatively correlated with the total scale and 
## probably should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## 
## Reliability analysis   
## Call: psych::alpha(x = FS$NatScale_EWFAM)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.66       0.6    0.84      0.28 1.5 0.048   50 17     0.34
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.54  0.66  0.76
## Duhachek  0.57  0.66  0.76
## 
##  Reliability if an item is dropped:
##              raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r  med.r
## FS.N1_EWFAM       0.37      0.34    0.47      0.14 0.51    0.092  0.13  0.349
## FS.N2R_EWFAM      0.59      0.44    0.80      0.21 0.77    0.051  0.40 -0.042
## FS.N3R_EWFAM      0.77      0.78    0.81      0.54 3.50    0.041  0.11  0.349
## FS.N4R_EWFAM      0.47      0.45    0.43      0.22 0.83    0.079  0.05  0.340
## 
##  Item statistics 
##              n raw.r std.r r.cor r.drop mean sd
## FS.N1_EWFAM  9  0.88  0.82  0.86 0.7416   70 24
## FS.N2R_EWFAM 9  0.73  0.76  0.58 0.4470   45 27
## FS.N3R_EWFAM 9  0.20  0.39  0.25 0.0061   27 14
## FS.N4R_EWFAM 9  0.84  0.74  0.78 0.6019   60 31
cor(FS$NatScale_EWFAM, use= "complete.obs")
##              FS.N1_EWFAM FS.N2R_EWFAM FS.N3R_EWFAM FS.N4R_EWFAM
## FS.N1_EWFAM   1.00000000    0.3403211  -0.04208525    0.9248821
## FS.N2R_EWFAM  0.34032106    1.0000000   0.35309423    0.3494836
## FS.N3R_EWFAM -0.04208525    0.3530942   1.00000000   -0.2676695
## FS.N4R_EWFAM  0.92488209    0.3494836  -0.26766949    1.0000000
### Familiarity 
FS$Fam_EWFAM <- as.numeric(FS$Fam_EW_Fam_34)
hist(FS$Fam_EWFAM)

describe(FS$Fam_EWFAM)
## FS$Fam_EWFAM 
##        n  missing distinct     Info     Mean      Gmd 
##        9       95        9        1    30.78    26.61 
## 
## lowest :  1  6 17 19 26, highest: 26 39 52 57 60
##                                                                 
## Value          1     6    17    19    26    39    52    57    60
## Frequency      1     1     1     1     1     1     1     1     1
## Proportion 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111
sd(FS$Fam_EWFAM, na.rm = TRUE)
## [1] 22.11209
### Understanding 
FS$Und_EWFAM <- as.numeric(FS$Fam_EW_Fam_33)
hist(FS$Und_EWFAM)

describe(FS$Und_EWFAM)
## FS$Und_EWFAM 
##        n  missing distinct     Info     Mean      Gmd 
##        9       95        9        1    54.11    26.06 
## 
## lowest : 18 26 45 53 55, highest: 55 63 64 81 82
##                                                                 
## Value         18    26    45    53    55    63    64    81    82
## Frequency      1     1     1     1     1     1     1     1     1
## Proportion 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111
sd(FS$Und_EWFAM, na.rm = TRUE)
## [1] 21.95703
### Fluency 
FS$Fluency_EWFAM <- as.numeric(FS$Fluency_EW_Fam_34)
hist(FS$Fluency_EWFAM)

describe(FS$Fluency_EWFAM)
## FS$Fluency_EWFAM 
##        n  missing distinct     Info     Mean      Gmd 
##        9       95        9        1    73.11    21.61 
## 
## lowest : 35 53 58 79 83, highest: 83 85 87 88 90
##                                                                 
## Value         35    53    58    79    83    85    87    88    90
## Frequency      1     1     1     1     1     1     1     1     1
## Proportion 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111
sd(FS$Fluency_EWFAM, na.rm = TRUE)
## [1] 19.55406
### Risk 
FS$R1_EWFAM <- as.numeric(FS$Risk_EW_Fam_32)
FS$R2_EWFAM <- as.numeric(FS$Risk_EW_Fam_33)
FS$R3_EWFAM <- as.numeric(FS$Risk_EW_Fam_34)

hist(FS$R1_EWFAM)

hist(FS$R2_EWFAM)

hist(FS$R3_EWFAM)

FS$RiskScore_EWFAM <- rowMeans(FS [, c( "R1_EWFAM" , "R2_EWFAM", "R3_EWFAM")], na.rm=TRUE)
describe(FS$RiskScore_EWFAM)
## FS$RiskScore_EWFAM 
##        n  missing distinct     Info     Mean      Gmd 
##        9       95        9        1    43.37    20.24 
## 
## lowest : 21.33333 28.00000 28.33333 31.33333 42.00000
## highest: 42.00000 53.66667 54.66667 65.33333 65.66667
##                                                                          
## Value      21.33333 28.00000 28.33333 31.33333 42.00000 53.66667 54.66667
## Frequency         1        1        1        1        1        1        1
## Proportion    0.111    0.111    0.111    0.111    0.111    0.111    0.111
##                             
## Value      65.33333 65.66667
## Frequency         1        1
## Proportion    0.111    0.111
sd(FS$RiskScore_EWFAM, na.rm = TRUE)
## [1] 16.98483
FS$RiskScale_EWFAM <- data.frame(FS$R1_EWFAM, FS$R2_EWFAM, FS$R3_EWFAM)
describe(FS$RiskScale_EWFAM)
## FS$RiskScale_EWFAM 
## 
##  3  Variables      104  Observations
## --------------------------------------------------------------------------------
## FS.R1_EWFAM 
##        n  missing distinct     Info     Mean      Gmd 
##        9       95        9        1    34.22    27.83 
## 
## lowest :  0 16 20 22 25, highest: 25 41 52 62 70
##                                                                 
## Value          0    16    20    22    25    41    52    62    70
## Frequency      1     1     1     1     1     1     1     1     1
## Proportion 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111
## --------------------------------------------------------------------------------
## FS.R2_EWFAM 
##        n  missing distinct     Info     Mean      Gmd 
##        9       95        9        1    27.78    25.11 
## 
## lowest :  0 12 14 15 19, highest: 19 34 36 55 65
##                                                                 
## Value          0    12    14    15    19    34    36    55    65
## Frequency      1     1     1     1     1     1     1     1     1
## Proportion 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111
## --------------------------------------------------------------------------------
## FS.R3_EWFAM 
##        n  missing distinct     Info     Mean      Gmd 
##        9       95        8    0.992    68.11    26.44 
## 
## lowest : 30 50 54 70 82, highest: 70 82 87 92 94
##                                                           
## Value         30    50    54    70    82    87    92    94
## Frequency      1     1     2     1     1     1     1     1
## Proportion 0.111 0.111 0.222 0.111 0.111 0.111 0.111 0.111
## --------------------------------------------------------------------------------
psych::alpha(FS$RiskScale_EWFAM)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = FS$RiskScale_EWFAM)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.63      0.63    0.73      0.36 1.7 0.066   43 17     0.19
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.49  0.63  0.74
## Duhachek  0.50  0.63  0.76
## 
##  Reliability if an item is dropped:
##             raw_alpha std.alpha G6(smc) average_r    S/N alpha se var.r med.r
## FS.R1_EWFAM     0.071     0.071   0.037     0.037  0.076    0.182    NA 0.037
## FS.R2_EWFAM     0.319     0.320   0.190     0.190  0.470    0.133    NA 0.190
## FS.R3_EWFAM     0.924     0.926   0.861     0.861 12.428    0.015    NA 0.861
## 
##  Item statistics 
##             n raw.r std.r r.cor r.drop mean sd
## FS.R1_EWFAM 9  0.90  0.90  0.93   0.72   34 23
## FS.R2_EWFAM 9  0.83  0.83  0.85   0.59   28 21
## FS.R3_EWFAM 9  0.54  0.54  0.17   0.12   68 22
cor(FS$RiskScale_EWFAM, use= "complete.obs")
##             FS.R1_EWFAM FS.R2_EWFAM FS.R3_EWFAM
## FS.R1_EWFAM   1.0000000  0.86137745  0.19014250
## FS.R2_EWFAM   0.8613774  1.00000000  0.03665473
## FS.R3_EWFAM   0.1901425  0.03665473  1.00000000
### Benefit 
FS$B1_EWFAM <- as.numeric(FS$Ben_EW_Fam_40)
FS$B2_EWFAM <- as.numeric(FS$Ben_EW_Fam_42)
FS$B3_EWFAM <- as.numeric(FS$Ben_EW_Fam_43)
FS$B4_EWFAM <- as.numeric(FS$Ben_EW_Fam_51)

hist(FS$B1_EWFAM)

hist(FS$B2_EWFAM)

hist(FS$B3_EWFAM)

hist(FS$B4_EWFAM)

FS$BenScore_EWFAM <- rowMeans(FS [, c( "B1_EWFAM" , "B2_EWFAM", "B3_EWFAM", "B4_EWFAM")], na.rm=TRUE)
describe(FS$BenScore_EWFAM)
## FS$BenScore_EWFAM 
##        n  missing distinct     Info     Mean      Gmd 
##        9       95        9        1    77.08    17.08 
## 
## lowest : 58.25 60.00 63.50 75.25 75.50, highest: 75.50 84.25 88.50 92.50 96.00
##                                                                 
## Value      58.25 60.00 63.50 75.25 75.50 84.25 88.50 92.50 96.00
## Frequency      1     1     1     1     1     1     1     1     1
## Proportion 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111
sd(FS$BenScore_EWFAM, na.rm = TRUE)
## [1] 14.20442
FS$BenScale_EWFAM <- data.frame(FS$B1_EWFAM, FS$B2_EWFAM, FS$B3_EWFAM, FS$B4_EWFAM)
describe(FS$BenScale_EWFAM)
## FS$BenScale_EWFAM 
## 
##  4  Variables      104  Observations
## --------------------------------------------------------------------------------
## FS.B1_EWFAM 
##        n  missing distinct     Info     Mean      Gmd 
##        9       95        8    0.992    71.56    17.94 
## 
## lowest : 52 60 69 70 80, highest: 70 80 82 84 95
##                                                           
## Value         52    60    69    70    80    82    84    95
## Frequency      2     1     1     1     1     1     1     1
## Proportion 0.222 0.111 0.111 0.111 0.111 0.111 0.111 0.111
## --------------------------------------------------------------------------------
## FS.B2_EWFAM 
##        n  missing distinct     Info     Mean      Gmd 
##        9       95        9        1    76.78    21.17 
## 
## lowest :  52  53  60  77  79, highest:  79  87  91  92 100
##                                                                 
## Value         52    53    60    77    79    87    91    92   100
## Frequency      1     1     1     1     1     1     1     1     1
## Proportion 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111
## --------------------------------------------------------------------------------
## FS.B3_EWFAM 
##        n  missing distinct     Info     Mean      Gmd 
##        9       95        9        1       81    14.67 
## 
## lowest :  60  64  78  81  83, highest:  83  84  88  91 100
##                                                                 
## Value         60    64    78    81    83    84    88    91   100
## Frequency      1     1     1     1     1     1     1     1     1
## Proportion 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111
## --------------------------------------------------------------------------------
## FS.B4_EWFAM 
##        n  missing distinct     Info     Mean      Gmd 
##        9       95        9        1       79       18 
## 
## lowest :  52  68  70  74  75, highest:  75  87  92  93 100
##                                                                 
## Value         52    68    70    74    75    87    92    93   100
## Frequency      1     1     1     1     1     1     1     1     1
## Proportion 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111
## --------------------------------------------------------------------------------
psych::alpha(FS$BenScale_EWFAM)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = FS$BenScale_EWFAM)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r
##       0.95      0.95    0.97      0.83  19 0.0074   77 14     0.85
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.93  0.95  0.96
## Duhachek  0.93  0.95  0.96
## 
##  Reliability if an item is dropped:
##             raw_alpha std.alpha G6(smc) average_r  S/N alpha se   var.r med.r
## FS.B1_EWFAM      0.91      0.92    0.95      0.79 11.1   0.0132 0.02454  0.79
## FS.B2_EWFAM      0.90      0.90    0.90      0.76  9.4   0.0162 0.01938  0.74
## FS.B3_EWFAM      0.97      0.98    0.97      0.93 40.3   0.0041 0.00048  0.94
## FS.B4_EWFAM      0.93      0.93    0.93      0.83 14.3   0.0108 0.01119  0.79
## 
##  Item statistics 
##             n raw.r std.r r.cor r.drop mean sd
## FS.B1_EWFAM 9  0.97  0.96  0.95   0.94   72 15
## FS.B2_EWFAM 9  0.99  0.99  0.99   0.98   77 18
## FS.B3_EWFAM 9  0.83  0.85  0.79   0.74   81 13
## FS.B4_EWFAM 9  0.94  0.93  0.93   0.89   79 15
cor(FS$BenScale_EWFAM, use= "complete.obs")
##             FS.B1_EWFAM FS.B2_EWFAM FS.B3_EWFAM FS.B4_EWFAM
## FS.B1_EWFAM   1.0000000   0.9452105   0.7427242   0.9053680
## FS.B2_EWFAM   0.9452105   1.0000000   0.7908963   0.9415400
## FS.B3_EWFAM   0.7427242   0.7908963   1.0000000   0.6283347
## FS.B4_EWFAM   0.9053680   0.9415400   0.6283347   1.0000000
### Support 
FS$S1_EWFAM <- as.numeric(FS$Sup_EW_Fam_40)
FS$S2_EWFAM <- as.numeric(FS$Sup_EW_Fam_42)
FS$S3_EWFAM <- as.numeric(FS$Sup_EW_Fam_43)
FS$S4_EWFAM <- as.numeric(FS$Sup_EW_Fam_45)

hist(FS$S1_EWFAM)

hist(FS$S2_EWFAM)

hist(FS$S3_EWFAM)

hist(FS$S4_EWFAM)

FS$SupScore_EWFAM <- rowMeans(FS [, c( "S1_EWFAM" , "S2_EWFAM", "S3_EWFAM", "S4_EWFAM")], na.rm=TRUE)
describe(FS$SupScore_EWFAM)
## FS$SupScore_EWFAM 
##        n  missing distinct     Info     Mean      Gmd 
##        9       95        9        1    69.25    29.19 
## 
## lowest :  25.75  46.50  52.00  53.75  83.75, highest:  83.75  86.00  86.75  88.75 100.00
##                                                                          
## Value       25.75  46.50  52.00  53.75  83.75  86.00  86.75  88.75 100.00
## Frequency       1      1      1      1      1      1      1      1      1
## Proportion  0.111  0.111  0.111  0.111  0.111  0.111  0.111  0.111  0.111
sd(FS$SupScore_EWFAM, na.rm = TRUE)
## [1] 25.17563
FS$SupScale_EWFAM <- data.frame(FS$S1_EWFAM, FS$S2_EWFAM, FS$S3_EWFAM, FS$S4_EWFAM)
describe(FS$SupScale_EWFAM)
## FS$SupScale_EWFAM 
## 
##  4  Variables      104  Observations
## --------------------------------------------------------------------------------
## FS.S1_EWFAM 
##        n  missing distinct     Info     Mean      Gmd 
##        9       95        8    0.992    74.22    24.33 
## 
## lowest :  50  52  53  55  86, highest:  55  86  87  98 100
##                                                           
## Value         50    52    53    55    86    87    98   100
## Frequency      1     1     1     1     1     2     1     1
## Proportion 0.111 0.111 0.111 0.111 0.111 0.222 0.111 0.111
## --------------------------------------------------------------------------------
## FS.S2_EWFAM 
##        n  missing distinct     Info     Mean      Gmd 
##        9       95        8    0.992    74.33    23.11 
## 
## lowest :  51  52  65  82  84, highest:  82  84  88  95 100
##                                                           
## Value         51    52    65    82    84    88    95   100
## Frequency      1     2     1     1     1     1     1     1
## Proportion 0.111 0.222 0.111 0.111 0.111 0.111 0.111 0.111
## --------------------------------------------------------------------------------
## FS.S3_EWFAM 
##        n  missing distinct     Info     Mean      Gmd 
##        9       95        8    0.992    62.67    37.56 
## 
## lowest :   0  24  53  54  80, highest:  54  80  83  85 100
##                                                           
## Value          0    24    53    54    80    83    85   100
## Frequency      1     1     1     1     1     1     2     1
## Proportion 0.111 0.111 0.111 0.111 0.111 0.111 0.222 0.111
## --------------------------------------------------------------------------------
## FS.S4_EWFAM 
##        n  missing distinct     Info     Mean      Gmd 
##        9       95        9        1    65.78    35.39 
## 
## lowest :   0  44  53  54  79, highest:  79  85  87  90 100
##                                                                 
## Value          0    44    53    54    79    85    87    90   100
## Frequency      1     1     1     1     1     1     1     1     1
## Proportion 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111
## --------------------------------------------------------------------------------
psych::alpha(FS$SupScale_EWFAM)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = FS$SupScale_EWFAM)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r
##       0.95      0.97    0.98      0.88  30 0.0063   69 25     0.87
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.93  0.95  0.97
## Duhachek  0.94  0.95  0.96
## 
##  Reliability if an item is dropped:
##             raw_alpha std.alpha G6(smc) average_r S/N alpha se  var.r med.r
## FS.S1_EWFAM      0.94      0.96    0.95      0.88  22   0.0076 0.0072  0.84
## FS.S2_EWFAM      0.95      0.97    0.96      0.90  28   0.0063 0.0042  0.87
## FS.S3_EWFAM      0.93      0.96    0.94      0.88  21   0.0106 0.0023  0.86
## FS.S4_EWFAM      0.92      0.95    0.94      0.87  21   0.0113 0.0028  0.87
## 
##  Item statistics 
##             n raw.r std.r r.cor r.drop mean sd
## FS.S1_EWFAM 9  0.94  0.96  0.94   0.91   74 21
## FS.S2_EWFAM 9  0.92  0.94  0.92   0.88   74 20
## FS.S3_EWFAM 9  0.97  0.96  0.96   0.95   63 33
## FS.S4_EWFAM 9  0.98  0.96  0.96   0.95   66 31
cor(FS$SupScale_EWFAM, use= "complete.obs")
##             FS.S1_EWFAM FS.S2_EWFAM FS.S3_EWFAM FS.S4_EWFAM
## FS.S1_EWFAM   1.0000000   0.9304713   0.8685514   0.8626115
## FS.S2_EWFAM   0.9304713   1.0000000   0.8256677   0.8370002
## FS.S3_EWFAM   0.8685514   0.8256677   1.0000000   0.9781287
## FS.S4_EWFAM   0.8626115   0.8370002   0.9781287   1.0000000

Behavior (Petition)

# Petition: "Would you sign a petition to your congressional representative to ask them to support investment in the development of the technology you read about today?" (1 = Yes, I would, 2 = No, I would not)
FS$Petition1 <- as.numeric(as.character(FS$Petition))
FS$Pet <- factor(FS$Petition1, levels = c(40, 42), 
                     labels = c("Yes I would", "No I would not"))
describe(FS$Pet)
## FS$Pet 
##        n  missing distinct 
##      104        0        2 
##                                         
## Value         Yes I would No I would not
## Frequency              74             30
## Proportion          0.712          0.288
table(FS$Pet)
## 
##    Yes I would No I would not 
##             74             30
# Behavior (Petition, click on link)
FS$Click1 <- as.numeric(as.character(FS$clicked))
FS$Click <- factor(FS$Click1, levels = c(0, 1), 
                     labels = c("Did not click to sign", "Clicked to sign"))
describe(FS$Click)
## FS$Click 
##        n  missing distinct 
##      104        0        2 
##                                                       
## Value      Did not click to sign       Clicked to sign
## Frequency                     98                     6
## Proportion                 0.942                 0.058
table(FS$Click)
## 
## Did not click to sign       Clicked to sign 
##                    98                     6

Individual Differences

Aversion to Tampering with Nature

# Aversion to Tampering with Nature: How much do you agree or disagree with the following statements?

## Item 1: People who push for technological fixes to environmental problems are underestimating the risks. 
## Item 2: People who say we shouldn’t tamper with nature are just being naïve.
## Item 3: Human beings have no right to meddle with the natural environment. 

FS$ATNS1 <- as.numeric(FS$ATNS_36)
FS$ATNS2 <- as.numeric(FS$ATNS_37)
FS$ATNS3 <- as.numeric(FS$ATNS_38)

# Reverse Code Item 2
FS$ATNS2R <- (100- FS$ATNS2)
describe(FS$ATNS2R)
## FS$ATNS2R 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      104        0       64    0.999    48.95    32.35     8.45    14.30 
##      .25      .50      .75      .90      .95 
##    26.50    44.50    70.25    91.00    96.70 
## 
## lowest :   0   8  11  12  13, highest:  94  95  97  98 100
describe(FS$ATNS1)
## FS$ATNS1 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      104        0       57    0.999    55.98    31.55     0.00    13.60 
##      .25      .50      .75      .90      .95 
##    36.75    60.00    76.25    89.70    97.80 
## 
## lowest :   0   3   9  12  13, highest:  89  90  91  99 100
describe(FS$ATNS2R)
## FS$ATNS2R 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      104        0       64    0.999    48.95    32.35     8.45    14.30 
##      .25      .50      .75      .90      .95 
##    26.50    44.50    70.25    91.00    96.70 
## 
## lowest :   0   8  11  12  13, highest:  94  95  97  98 100
describe(FS$ATNS3)
## FS$ATNS3 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      104        0       60    0.999    51.66    34.46     0.00     8.60 
##      .25      .50      .75      .90      .95 
##    29.75    51.50    75.75    90.00   100.00 
## 
## lowest :   0   4   7   8  10, highest:  90  92  93  96 100
range(FS$ATNS1, na.rm=TRUE)
## [1]   0 100
range(FS$ATNS2R, na.rm=TRUE)
## [1]   0 100
range(FS$ATNS3, na.rm=TRUE)
## [1]   0 100
hist(FS$ATNS1, main = 'ATNS #1: People who push for technological fixes to environmental problems are underestimating the risks.')

hist(FS$ATNS2R, main = 'ATNS #2: People who say we shouldn’t tamper with nature are just being naïve.')

hist(FS$ATNS3, main = 'ATNS #3: Human beings have no right to meddle with the natural environment.')

FS$ATNS_Scale <- data.frame(FS$ATNS1, FS$ATNS2R, FS$ATNS3)
psych::alpha(FS$ATNS_Scale)
## Number of categories should be increased  in order to count frequencies.
## Warning in psych::alpha(FS$ATNS_Scale): Some items were negatively correlated with the total scale and probably 
## should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( FS.ATNS2R ) were negatively correlated with the total scale and 
## probably should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## 
## Reliability analysis   
## Call: psych::alpha(x = FS$ATNS_Scale)
## 
##   raw_alpha std.alpha G6(smc) average_r   S/N  ase mean sd median_r
##      0.094     0.078    0.23     0.027 0.085 0.15   52 17    -0.08
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt    -0.26  0.09  0.36
## Duhachek -0.21  0.09  0.39
## 
##  Reliability if an item is dropped:
##           raw_alpha std.alpha G6(smc) average_r   S/N alpha se var.r med.r
## FS.ATNS1      -0.17     -0.17   -0.08     -0.08 -0.15    0.230    NA -0.08
## FS.ATNS2R      0.62      0.62    0.45      0.45  1.63    0.074    NA  0.45
## FS.ATNS3      -0.81     -0.81   -0.29     -0.29 -0.45    0.354    NA -0.29
## 
##  Item statistics 
##             n raw.r std.r r.cor r.drop mean sd
## FS.ATNS1  104  0.65  0.65  0.50   0.14   56 28
## FS.ATNS2R 104  0.35  0.36 -0.33  -0.21   49 28
## FS.ATNS3  104  0.78  0.77  0.68   0.31   52 30
describe(FS$ATNS_Scale)
## FS$ATNS_Scale 
## 
##  3  Variables      104  Observations
## --------------------------------------------------------------------------------
## FS.ATNS1 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      104        0       57    0.999    55.98    31.55     0.00    13.60 
##      .25      .50      .75      .90      .95 
##    36.75    60.00    76.25    89.70    97.80 
## 
## lowest :   0   3   9  12  13, highest:  89  90  91  99 100
## --------------------------------------------------------------------------------
## FS.ATNS2R 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      104        0       64    0.999    48.95    32.35     8.45    14.30 
##      .25      .50      .75      .90      .95 
##    26.50    44.50    70.25    91.00    96.70 
## 
## lowest :   0   8  11  12  13, highest:  94  95  97  98 100
## --------------------------------------------------------------------------------
## FS.ATNS3 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      104        0       60    0.999    51.66    34.46     0.00     8.60 
##      .25      .50      .75      .90      .95 
##    29.75    51.50    75.75    90.00   100.00 
## 
## lowest :   0   4   7   8  10, highest:  90  92  93  96 100
## --------------------------------------------------------------------------------
FS$ATNS_Score <- rowMeans(FS [, c("ATNS1", "ATNS2R", "ATNS3")], na.rm=TRUE)
describe(FS$ATNS_Score)
## FS$ATNS_Score 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      104        0       74        1     52.2    18.58    27.33    32.77 
##      .25      .50      .75      .90      .95 
##    41.67    53.17    61.33    70.87    79.07 
## 
## lowest :   0.00000  23.00000  24.33333  26.00000  27.33333
## highest:  84.66667  88.33333  90.66667  98.00000 100.00000
hist(FS$ATNS_Score)

cor(FS$ATNS_Scale, use= "complete.obs")
##             FS.ATNS1   FS.ATNS2R    FS.ATNS3
## FS.ATNS1   1.0000000 -0.28713434  0.44937384
## FS.ATNS2R -0.2871343  1.00000000 -0.07974749
## FS.ATNS3   0.4493738 -0.07974749  1.00000000

Climate Change Belief

# Climate Change Belief: How much do you agree or disagree with the following statements?
## Item #1: Climate change is happening. 
## Item #3: Human activity is largely responsible for recent climate change. 

FS$CCB1 <- FS$ClimateChangeBelief_48
FS$CCB2 <- FS$ClimateChangeBelief_49

#Climate Change Belief Descriptives
describe(FS$CCB1)
## FS$CCB1 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      104        0       45    0.976    74.84    30.65     2.15    23.60 
##      .25      .50      .75      .90      .95 
##    68.75    83.50   100.00   100.00   100.00 
## 
## lowest :   0   2   3   7  11, highest:  95  96  98  99 100
range(FS$CCB1, na.rm=TRUE)
## [1]   0 100
describe(FS$CCB2)
## FS$CCB2 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      104        0       56    0.991    72.72    28.24     11.2     30.8 
##      .25      .50      .75      .90      .95 
##     62.0     79.5     95.0    100.0    100.0 
## 
## lowest :   0   3   7   9  10, highest:  96  97  98  99 100
range(FS$CCB2, na.rm=TRUE)
## [1]   0 100
#Climate Change Belief Histograms
hist(FS$CCB1, main = 'Climate Change Belief #1: Climate change is happening."')

hist(FS$CCB2, main = 'Climate Change Belief #2:Human activity is largely responsible for recent climate change."')

FS$CCB_Score <- rowMeans(FS[, c('CCB1', 'CCB2')], na.rm=T)
describe(FS$CCB_Score)
## FS$CCB_Score 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      104        0       71    0.993    73.78    28.28    25.08    30.40 
##      .25      .50      .75      .90      .95 
##    63.38    80.00    96.00   100.00   100.00 
## 
## lowest :   0.0   3.0   5.5   9.0  25.0, highest:  98.0  98.5  99.0  99.5 100.0
FS$CCB_Scale <- data.frame(FS$CCB1, FS$CCB2)
psych::alpha(FS$CCB_Scale)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = FS$CCB_Scale)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.87      0.87    0.77      0.77 6.6 0.026   74 26     0.77
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.80  0.87  0.91
## Duhachek  0.81  0.87  0.92
## 
##  Reliability if an item is dropped:
##         raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## FS.CCB1      0.87      0.77    0.59      0.77 3.3       NA     0  0.77
## FS.CCB2      0.68      0.77    0.59      0.77 3.3       NA     0  0.77
## 
##  Item statistics 
##           n raw.r std.r r.cor r.drop mean sd
## FS.CCB1 104  0.95  0.94  0.82   0.77   75 30
## FS.CCB2 104  0.93  0.94  0.82   0.77   73 26
cor(FS$CCB_Scale, use= "complete.obs")
##           FS.CCB1   FS.CCB2
## FS.CCB1 1.0000000 0.7684542
## FS.CCB2 0.7684542 1.0000000

Demographics

## Gender ("What is your gender identity?" [ 1 = woman, 2 = man, 3 = prefer to self-describe, 4 = non-binary])

FS$Gen <- as.numeric(as.character(FS$Gender))
FS$Gender <- factor(FS$Gen, levels = c(1, 2, 3, 4), 
                   labels = c("Woman", "Man", "Prefer to self-describe", "Non-binary"))
table(FS$Gender)
## 
##                   Woman                     Man Prefer to self-describe 
##                      65                      39                       0 
##              Non-binary 
##                       0
## Age ("How old are you?")
range(FS$Age, na.rm = T)
## [1] 19 80
describe(FS$Age, na.rm = T)
## FS$Age 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      104        0       52    0.999    49.41    19.55    25.00    28.30 
##      .25      .50      .75      .90      .95 
##    35.00    47.50    65.00    71.00    74.85 
## 
## lowest : 19 20 21 22 25, highest: 74 75 76 77 80
sd(FS$Age, na.rm = T)
## [1] 16.89063
# Education: "Please indicate the highest level of education you have completed" (1 = Elementary/Grammar School, 2 = Middle School, 3 = High School or Equivalent, 4 = Vocational/Technical School (2 years), 5 = Some College, 6 = College or University (4 years), 7 = Master's Degree (MS, MA, MBA, etc.), 8 = Doctoral Degree (PhD), 9 = Professional Degree (MD, JD, etc.). 
FS$EdNum <- as.numeric(as.character(FS$Education))
hist(FS$EdNum, na.rm = TRUE)
## Warning in plot.window(xlim, ylim, "", ...): "na.rm" is not a graphical
## parameter
## Warning in title(main = main, sub = sub, xlab = xlab, ylab = ylab, ...):
## "na.rm" is not a graphical parameter
## Warning in axis(1, ...): "na.rm" is not a graphical parameter
## Warning in axis(2, at = yt, ...): "na.rm" is not a graphical parameter

FS$EDU <- factor(FS$EdNum, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10), 
                     labels = c("Elementary/Grammar School", "Middle School", "High School or Equivalent", "Vocational/Technical School (2 years)", "Some College", "College or University (4 years)", "Master's Degree (MS, MA, MBA, etc.)", "Doctoral Degree (PhD)", "Professional Degree (MD, JD, etc.)", "Other"))
table(FS$EDU)
## 
##             Elementary/Grammar School                         Middle School 
##                                     0                                     0 
##             High School or Equivalent Vocational/Technical School (2 years) 
##                                    36                                     5 
##                          Some College       College or University (4 years) 
##                                    26                                    25 
##   Master's Degree (MS, MA, MBA, etc.)                 Doctoral Degree (PhD) 
##                                    10                                     0 
##    Professional Degree (MD, JD, etc.)                                 Other 
##                                     2                                     0
# Region: "Which of the following best describes the area you live in?" (1 = Urban, 2 = Suburban, 3 = Rural)
FS$REG <- as.numeric(as.character(FS$Region))
FS$Region <- factor(FS$REG, levels = c(1, 2, 3), 
                     labels = c("Urban", "Suburban", "Rural"))
table(FS$Region)
## 
##    Urban Suburban    Rural 
##       35       46       23
# Primary Language Spoken 

# Ethnicity: "Which racial or ethnic group best describes you?" (1 = Asian, Asian-American, 2 = Black, Black American, 3 = Hispanic/Latino-American, 4 = Native American, 5 = Native Pacific Islander, 6 = White/Caucasian-American, 7 = Other)
FS$E <- as.numeric(as.character(FS$Ethnicity))
FS$Eth <- factor(FS$Ethnicity, levels = c(1, 2, 3, 4, 5, 6, 7), 
                     labels = c("Asian", "Black", "Hispanic", "Nat Amer", "Nat Pac", "White", "Other"))
table(FS$Eth)
## 
##    Asian    Black Hispanic Nat Amer  Nat Pac    White    Other 
##        3       18        4        2        0       77        0
print(FS$Dem_Ethnicity_7_TEXT)
## NULL
# Subjective Social Status
FS$SSS <- FS$SSS_US
describe(FS$SSS)
## FS$SSS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      104        0       10    0.978    5.548    2.419      2.0      3.0 
##      .25      .50      .75      .90      .95 
##      4.0      5.0      7.0      8.7      9.0 
## 
## lowest :  1  2  3  4  5, highest:  6  7  8  9 10
##                                                                       
## Value          1     2     3     4     5     6     7     8     9    10
## Frequency      5     2     9    16    23    16    11    11     9     2
## Proportion 0.048 0.019 0.087 0.154 0.221 0.154 0.106 0.106 0.087 0.019
range(FS$SSS)
## [1]  1 10
hist(FS$SSS)

sd(FS$SSS, na.rm = TRUE)
## [1] 2.140138

Political Ideology

# Political Party 
##Generally speaking, do you usually think of yourself as a Republican, a Democrat, an Independent, or what? (1 = Republican, 2 = Democrat, 3 = Independent, 4 = Other (write-in), 5 = No Preference)
FS$Party <- FS$Party
FS$DemStrength <- FS$DemStrength
FS$RepStrength <- FS$RepStrength
FS$PartyClose <- FS$CloserTo

describe(FS$Party)
## FS$Party 
##        n  missing distinct     Info     Mean      Gmd 
##      104        0        5    0.876    2.154    0.966 
## 
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##                                         
## Value          1     2     3     4     5
## Frequency     25    47    27     1     4
## Proportion 0.240 0.452 0.260 0.010 0.038
describe(FS$DemStrength)
## FS$DemStrength 
##        n  missing distinct     Info     Mean      Gmd 
##       47       57        2    0.601    1.277   0.4089 
##                       
## Value          1     2
## Frequency     34    13
## Proportion 0.723 0.277
describe(FS$RepStrength)
## FS$RepStrength 
##        n  missing distinct     Info     Mean      Gmd 
##       25       79        2    0.548     1.24     0.38 
##                     
## Value         1    2
## Frequency    19    6
## Proportion 0.76 0.24
describe(FS$PartyClose)
## FS$PartyClose 
##        n  missing distinct     Info     Mean      Gmd 
##       32       72        3    0.851    2.125   0.9798 
##                             
## Value          1     2     3
## Frequency     11     6    15
## Proportion 0.344 0.188 0.469
FS$PartyFull <- NA
FS$PartyFull[FS$DemStrength == 1] <- -3
FS$PartyFull[FS$DemStrength == 2] <- -2
FS$PartyFull[FS$PartyClose == 1] <- -1
FS$PartyFull[FS$PartyClose == 3] <- 0
FS$PartyFull[FS$PartyClose == 2] <- 1
FS$PartyFull[FS$RepStrength == 2] <- 2
FS$PartyFull[FS$RepStrength == 1] <- 3

describe(FS$PartyFull)
## FS$PartyFull 
##        n  missing distinct     Info     Mean      Gmd 
##      104        0        7    0.953  -0.6154    2.535 
## 
## lowest : -3 -2 -1  0  1, highest: -1  0  1  2  3
##                                                     
## Value         -3    -2    -1     0     1     2     3
## Frequency     34    13    11    15     6     6    19
## Proportion 0.327 0.125 0.106 0.144 0.058 0.058 0.183
hist(FS$PartyFull , main = 'Party Identification')

Long Form

# Control Condition 
FS$Naturalness.BioControl <- FS$NatScore_BioControl
length(FS$Naturalness.BioControl)
## [1] 104
FS$Naturalness.BFControl <- FS$NatScore_BFControl
length(FS$Naturalness.BFControl)
## [1] 104
FS$Naturalness.EWControl <- FS$NatScore_EWControl
length(FS$Naturalness.EWControl)
## [1] 104
FS$Familiarity.BioControl <- FS$Fam_BioControl
length(FS$Familiarity.BioControl)
## [1] 104
FS$Familiarity.BFControl <- FS$Fam_BFControl
length(FS$Familiarity.BFControl)
## [1] 104
FS$Familiarity.EWControl <- FS$Fam_EWControl
length(FS$Familiarity.EWControl)
## [1] 104
FS$Understanding.BioControl <- FS$Und_BioControl
length(FS$Understanding.BioControl)
## [1] 104
FS$Understanding.BFControl <- FS$Und_BFControl
length(FS$Understanding.BFControl)
## [1] 104
FS$Understanding.EWControl <- FS$Und_EWControl
length(FS$Understanding.EWControl)
## [1] 104
FS$Fluency.BioControl <- FS$Fluency_BioControl
length(FS$Fluency.BioControl)
## [1] 104
FS$Fluency.BFControl <- FS$Fluency_BFControl
length(FS$Fluency.BFControl)
## [1] 104
FS$Fluency.EWControl <- FS$Fluency_EWControl
length(FS$Fluency.EWControl)
## [1] 104
FS$Benefit.BioControl <- FS$BenScore_BioControl
length(FS$Benefit.BioControl)
## [1] 104
FS$Benefit.BFControl <- FS$BenScore_BFControl
length(FS$Benefit.BFControl)
## [1] 104
FS$Benefit.EWControl <- FS$BenScore_EWControl
length(FS$Benefit.EWControl)
## [1] 104
FS$Support.BioControl <- FS$SupScore_BioControl
length(FS$Support.BioControl)
## [1] 104
FS$Support.BFControl <- FS$SupScore_BFControl
length(FS$Support.BFControl)
## [1] 104
FS$Support.EWControl <- FS$SupScore_EWControl
length(FS$Support.EWControl)
## [1] 104
FS$Risk.BioControl <- FS$RiskScore_BioControl
length(FS$Risk.BioControl)
## [1] 104
FS$Risk.BFControl <- FS$RiskScore_BFControl
length(FS$Risk.BFControl)
## [1] 104
FS$Risk.EWControl <- FS$RiskScore_EWControl
length(FS$Risk.EWControl)
## [1] 104
# Unfamiliar Condition
FS$Naturalness.BioUnfamiliar <- FS$NatScore_BioUF
length(FS$Naturalness.BioUnfamiliar)
## [1] 104
FS$Naturalness.BFUnfamiliar <- FS$NatScore_BFUF
length(FS$Naturalness.BFUnfamiliar)
## [1] 104
FS$Naturalness.EWUnfamiliar <- FS$NatScore_EWUF
length(FS$Naturalness.EWUnfamiliar)
## [1] 104
FS$Familiarity.BioUnfamiliar <- FS$Fam_BioUF
length(FS$Familiarity.BioUnfamiliar)
## [1] 104
FS$Familiarity.BFUnfamiliar <- FS$Fam_BFUF
length(FS$Familiarity.BFUnfamiliar)
## [1] 104
FS$Familiarity.EWUnfamiliar <- FS$Fam_EWUF
length(FS$Familiarity.EWUnfamiliar)
## [1] 104
FS$Understanding.BioUnfamiliar <- FS$Und_BioUF
length(FS$Understanding.BioUnfamiliar)
## [1] 104
FS$Understanding.BFUnfamiliar <- FS$Und_BFUF
length(FS$Understanding.BFUnfamiliar)
## [1] 104
FS$Understanding.EWUnfamiliar <- FS$Und_EWUF
length(FS$Understanding.EWUnfamiliar)
## [1] 104
FS$Fluency.BioUnfamiliar <- FS$Fluency_BioUF
length(FS$Fluency.BioUnfamiliar)
## [1] 104
FS$Fluency.BFUnfamiliar <- FS$Fluency_BFUF
length(FS$Fluency.BFUnfamiliar)
## [1] 104
FS$Fluency.EWUnfamiliar <- FS$Fluency_EWUF
length(FS$Fluency.EWUnfamiliar)
## [1] 104
FS$Benefit.BioUnfamiliar <- FS$BenScore_BIOUF
length(FS$Benefit.BioUnfamiliar)
## [1] 104
FS$Benefit.BFUnfamiliar <- FS$BenScore_BFUF
length(FS$Benefit.BFUnfamiliar)
## [1] 104
FS$Benefit.EWUnfamiliar <- FS$BenScore_EWUF
length(FS$Benefit.EWUnfamiliar)
## [1] 104
FS$Support.BioUnfamiliar <- FS$SupScore_BIOUF
length(FS$Support.BioUnfamiliar)
## [1] 104
FS$Support.BFUnfamiliar <- FS$SupScore_BFUF
length(FS$Support.BFUnfamiliar)
## [1] 104
FS$Support.EWUnfamiliar <- FS$SupScore_EWUF
length(FS$Support.EWUnfamiliar)
## [1] 104
FS$Risk.BioUnfamiliar <- FS$RiskScore_BIOUF
length(FS$Risk.BioUnfamiliar)
## [1] 104
FS$Risk.BFUnfamiliar <- FS$RiskScore_BFUF
length(FS$Risk.BFUnfamiliar)
## [1] 104
FS$Risk.EWUnfamiliar <- FS$RiskScore_EWUF
length(FS$Risk.EWUnfamiliar)
## [1] 104
# Familiar Condition
FS$Naturalness.BioFamiliar <- FS$NatScore_BioFAM
length(FS$Naturalness.BioFamiliar)
## [1] 104
FS$Naturalness.BFFamiliar <- FS$NatScore_BFFAM
length(FS$Naturalness.BFFamiliar)
## [1] 104
FS$Naturalness.EWFamiliar <- FS$NatScore_EWFAM
length(FS$Naturalness.EWFamiliar)
## [1] 104
FS$Familiarity.BioFamiliar <- FS$Fam_BioFAM
length(FS$Familiarity.BioFamiliar)
## [1] 104
FS$Familiarity.BFFamiliar <- FS$Fam_BFFAM
length(FS$Familiarity.BFFamiliar)
## [1] 104
FS$Familiarity.EWFamiliar <- FS$Fam_EWFAM
length(FS$Familiarity.EWFamiliar)
## [1] 104
FS$Understanding.BioFamiliar <- FS$Und_BioFAM
length(FS$Understanding.BioFamiliar)
## [1] 104
FS$Understanding.BFFamiliar <- FS$Und_BFFAM
length(FS$Understanding.BFFamiliar)
## [1] 104
FS$Understanding.EWFamiliar <- FS$Und_EWFAM
length(FS$Understanding.EWFamiliar)
## [1] 104
FS$Fluency.BioFamiliar <- FS$Fluency_BioFAM
length(FS$Fluency.BioFamiliar)
## [1] 104
FS$Fluency.BFFamiliar <- FS$Fluency_BFFAM
length(FS$Fluency.BFFamiliar)
## [1] 104
FS$Fluency.EWFamiliar <- FS$Fluency_EWFAM
length(FS$Fluency.EWFamiliar)
## [1] 104
FS$Benefit.BioFamiliar <- FS$BenScore_BioFAM
length(FS$Benefit.BioFamiliar)
## [1] 104
FS$Benefit.BFFamiliar <- FS$BenScore_BFFAM
length(FS$Benefit.BFFamiliar)
## [1] 104
FS$Benefit.EWFamiliar <- FS$BenScore_EWFAM
length(FS$Benefit.EWFamiliar)
## [1] 104
FS$Support.BioFamiliar <- FS$SupScore_BioFAM
length(FS$Support.BioFamiliar)
## [1] 104
FS$Support.BFFamiliar <- FS$SupScore_BFFAM
length(FS$Support.BFFamiliar)
## [1] 104
FS$Support.EWFamiliar <- FS$SupScore_EWFAM
length(FS$Support.EWFamiliar)
## [1] 104
FS$Risk.BioFamiliar <- FS$RiskScore_BioFAM
length(FS$Risk.BioFamiliar)
## [1] 104
FS$Risk.BFFamiliar <- FS$RiskScore_BFFAM
length(FS$Risk.BioFamiliar)
## [1] 104
FS$Risk.EWFamiliar <- FS$RiskScore_EWFAM
length(FS$Risk.EWFamiliar)
## [1] 104
#Rename Variables to Switch to Long Format

library(lmerTest)
## 
## Attaching package: 'lmerTest'
## The following object is masked from 'package:lme4':
## 
##     lmer
## The following object is masked from 'package:stats':
## 
##     step
library(lme4)

#Reshape to long form
FSvector <- c("Naturalness.BioControl", "Naturalness.BFControl", "Naturalness.EWControl", "Familiarity.BioControl", "Familiarity.BFControl", "Familiarity.EWControl", "Naturalness.BioFamiliar","Naturalness.BFFamiliar", "Naturalness.EWFamiliar", "Familiarity.BioFamiliar", "Familiarity.BFFamiliar", "Familiarity.EWFamiliar", "Naturalness.BioUnfamiliar", "Naturalness.BFUnfamiliar", "Naturalness.EWUnfamiliar", "Familiarity.BioUnfamiliar", "Familiarity.BFUnfamiliar", "Familiarity.EWUnfamiliar", "Understanding.BioFamiliar", 
"Understanding.BFFamiliar", "Understanding.EWFamiliar", "Understanding.BioUnfamiliar", "Understanding.BFUnfamiliar", "Understanding.EWUnfamiliar","Understanding.BioControl", "Understanding.BFControl", "Understanding.EWControl", "Fluency.BioFamiliar", "Fluency.BFFamiliar", "Fluency.EWFamiliar", "Fluency.BioUnfamiliar", "Fluency.BFUnfamiliar", "Fluency.EWUnfamiliar", "Fluency.BioControl", "Fluency.BFControl", "Fluency.EWControl", "Benefit.BioFamiliar", "Benefit.BFFamiliar", "Benefit.EWFamiliar", "Benefit.BioUnfamiliar", "Benefit.BFUnfamiliar", "Benefit.EWUnfamiliar", "Benefit.BioControl", "Benefit.BFControl", "Benefit.EWControl", "Support.BioFamiliar", "Support.BFFamiliar", "Support.EWFamiliar", "Support.BioUnfamiliar", "Support.BFUnfamiliar", "Support.EWUnfamiliar", "Support.BioControl", "Support.BFControl", "Support.EWControl", "Risk.BioControl", "Risk.BFControl", "Risk.EWControl", "Risk.BioUnfamiliar", "Risk.BFUnfamiliar", "Risk.EWUnfamiliar", "Risk.BioFamiliar", "Risk.BFFamiliar", "Risk.EWFamiliar")

A <- reshape(data = FS,
       varying = FSvector,
       timevar = "Type",
       direction = "long")

Correlations

# Check variable lengths 
length(A$Naturalness)
## [1] 936
length(A$Familiarity)
## [1] 936
length(A$Support)
## [1] 936
length(A$Fluency)
## [1] 936
length(A$Understanding)
## [1] 936
length(A$Benefit)
## [1] 936
A$cor <- data.frame (A$Naturalness, A$Familiarity)
cor.test(A$Naturalness, A$Familiarity, use= "complete.obs")
## 
##  Pearson's product-moment correlation
## 
## data:  A$Naturalness and A$Familiarity
## t = -2.1835, df = 102, p-value = 0.03129
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.38810913 -0.01952201
## sample estimates:
##        cor 
## -0.2113158

ANOVAS

Center Variables

describe(A$Naturalness)
## A$Naturalness 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      117      819      100        1    47.33    20.31    21.80    25.55 
##      .25      .50      .75      .90      .95 
##    35.25    46.00    58.25    71.10    77.40 
## 
## lowest :   0.00   4.50   6.25   9.75  12.00, highest:  80.25  81.00  82.25  84.00 100.00
A$Naturalness.c <- (A$Naturalness - 47.33)

describe(A$Fluency)
## A$Fluency 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      104      832       47    0.991    74.88    28.31    21.15    28.00 
##      .25      .50      .75      .90      .95 
##    65.00    83.00    98.25   100.00   100.00 
## 
## lowest :   0   2  11  15  20, highest:  95  96  98  99 100
A$Fluency.c <- (A$Fluency - 74.88)

describe(A$Familiarity)
## A$Familiarity 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      104      832       57    0.999    43.84    34.39     0.00     0.30 
##      .25      .50      .75      .90      .95 
##    19.75    39.00    69.00    83.70    93.00 
## 
## lowest :   0   1   2   4   6, highest:  87  93  94  96 100
A$Familiarity.c <- (A$Familiarity - 43.84)

describe(A$Benefit)
## A$Benefit 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      104      832       84    0.999    71.22    25.26    29.95    46.60 
##      .25      .50      .75      .90      .95 
##    59.38    75.12    88.62    99.68   100.00 
## 
## lowest :   0.00   2.00   4.50   5.00  17.25, highest:  97.75  98.00  99.50  99.75 100.00
A$Benefit.c <- (A$Benefit - 71.22)

describe(A$Risk)
## A$Risk 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      104      832       73    0.999    48.38     21.1    19.92    28.83 
##      .25      .50      .75      .90      .95 
##    33.92    45.67    61.33    77.90    82.18 
## 
## lowest :  1.00000 15.66667 17.33333 17.66667 19.00000
## highest: 83.00000 83.66667 89.33333 95.33333 96.33333
A$Risk.c <- (A$Risk - 48.38)

describe(A$Support)
## A$Support 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      104      832       82    0.999    69.25    26.89    24.05    38.05 
##      .25      .50      .75      .90      .95 
##    54.56    69.62    88.75    99.50   100.00 
## 
## lowest :   0.00   2.25  15.75  16.50  22.00, highest:  97.50  98.75  99.50  99.75 100.00
A$Support.c <- (A$Support - 69.25)

Contrast Codes

A$C1 <- (-2/9)*(A$Type == 'BioControl') + (-2/9)*(A$Type == 'BFControl') + (-2/9)*(A$Type == 'EWControl') + (1/9)*(A$Type == 'BioUnfamiliar') + (1/9)*(A$Type == 'BFUnfamiliar') + (1/9)*(A$Type == 'EWUnfamiliar') + (1/9)*(A$Type == 'BioFamiliar') + (1/9)*(A$Type == 'BFFamiliar') + (1/9)*(A$Type == 'EWFamiliar')
                                                                                                                                                          A$C2 <- (-1/9)*(A$Type == 'BioControl') + (-1/9)*(A$Type == 'BFControl') + (-1/9)*(A$Type == 'EWControl') + (-1/9)*(A$Type == 'BioUnfamiliar') + (-1/9)*(A$Type == 'BFUnfamiliar') + (-1/9)*(A$Type == 'EWUnfamiliar') + (2/9)*(A$Type == 'BioFamiliar') + (2/9)*(A$Type == 'BFFamiliar') + (2/9)*(A$Type == 'EWFamiliar')
                                                                                                                                                          A$C3 <- (0)*(A$Type == 'BioControl') + (0)*(A$Type == 'BFControl') + (0)*(A$Type == 'EWControl') + (0)*(A$Type == 'BioUnfamiliar') + (0)*(A$Type == 'BFUnfamiliar') + (-1/9)*(A$Type == 'EWUnfamiliar') + (1/9)*(A$Type == 'BioFamiliar') + (0)*(A$Type == 'BFFamiliar') + (0)*(A$Type == 'EWFamiliar')                                                                                                                                                                       
A$C4 <- (-1/3)*(A$Type == 'BioControl') + (2/3)*(A$Type == 'BFControl') + (-1/3)*(A$Type == 'EWControl') + (-1/3)*(A$Type == 'BioUnfamiliar') + (2/3)*(A$Type == 'BFUnfamiliar') + (-1/3)*(A$Type == 'EWUnfamiliar') + (-1/3)*(A$Type == 'BioFamiliar') + (2/3)*(A$Type == 'BFFamiliar') + (-1/3)*(A$Type == 'EWFamiliar')              

                                                                                                                                                           A$C5 <- (-1/9)*(A$Type == 'BioControl') + (1/9)*(A$Type == 'BFControl') + (0)*(A$Type == 'EWControl') + (0)*(A$Type == 'BioUnfamiliar') + (0)*(A$Type == 'BFUnfamiliar') + (0)*(A$Type == 'EWUnfamiliar') + (0)*(A$Type == 'BioFamiliar') + (0)*(A$Type == 'BFFamiliar') + (0)*(A$Type == 'EWFamiliar')                                                                                                                                                                      
                                                                                                                                                                                                                                                                                                                    A$C6 <- (0)*(A$Type == 'BioControl') + (-1/9)*(A$Type == 'BFControl') + (1/9)*(A$Type == 'EWControl') + (0)*(A$Type == 'BioUnfamiliar') + (0)*(A$Type == 'BFUnfamiliar') + (0)*(A$Type == 'EWUnfamiliar') + (0)*(A$Type == 'BioFamiliar') + (0)*(A$Type == 'BFFamiliar') + (0)*(A$Type == 'EWFamiliar')                                 
                                                                                                                                                          A$C7 <- (0)*(A$Type == 'BioControl') + (0)*(A$Type == 'BFControl') + (-1/9)*(A$Type == 'EWControl') + (1/9)*(A$Type == 'BioUnfamiliar') + (0)*(A$Type == 'BFUnfamiliar') + (0)*(A$Type == 'EWUnfamiliar') + (0)*(A$Type == 'BioFamiliar') + (0)*(A$Type == 'BFFamiliar') + (0)*(A$Type == 'EWFamiliar')                                                                                                                                                                       
A$C8 <- (0)*(A$Type == 'BioControl') + (0)*(A$Type == 'BFControl') + (0)*(A$Type == 'EWControl') + (-1/9)*(A$Type == 'BioUnfamiliar') + (1/9)*(A$Type == 'BFUnfamiliar') + (0)*(A$Type == 'EWUnfamiliar') + (0)*(A$Type == 'BioFamiliar') + (0)*(A$Type == 'BFFamiliar') + (0)*(A$Type == 'EWFamiliar')    


# Testing correlations between contrast codes

# Create a matrix of the contrast codes
contrast_matrix <- cbind(A$C1, A$C2, A$C3, A$C4, A$C5, A$C6, A$C7, A$C8)

# Calculate the correlation matrix
cor_matrix <- cor(contrast_matrix)

# Print the correlation matrix
print(cor_matrix)
##              [,1]          [,2]          [,3]          [,4]          [,5]
## [1,] 1.000000e+00  5.000000e-01  4.503609e-19  6.126910e-16  2.379191e-17
## [2,] 5.000000e-01  1.000000e+00  5.000000e-01 -3.668940e-16 -7.469566e-18
## [3,] 4.503609e-19  5.000000e-01  1.000000e+00  2.401925e-18  1.734379e-34
## [4,] 6.126910e-16 -3.668940e-16  2.401925e-18  1.000000e+00  5.000000e-01
## [5,] 2.379191e-17 -7.469566e-18  1.734379e-34  5.000000e-01  1.000000e+00
## [6,] 2.517573e-17 -6.777654e-18  1.640628e-34 -5.000000e-01 -5.000000e-01
## [7,] 5.000000e-01 -1.013837e-17 -2.985006e-32 -1.611168e-18  1.420389e-34
## [8,] 3.898186e-19  1.942606e-17  3.750008e-35  5.000000e-01  4.347851e-34
##               [,6]          [,7]          [,8]
## [1,]  2.517573e-17  5.000000e-01  3.898186e-19
## [2,] -6.777654e-18 -1.013837e-17  1.942606e-17
## [3,]  1.640628e-34 -2.985006e-32  3.750008e-35
## [4,] -5.000000e-01 -1.611168e-18  5.000000e-01
## [5,] -5.000000e-01  1.420389e-34  4.347851e-34
## [6,]  1.000000e+00 -5.000000e-01  1.449069e-34
## [7,] -5.000000e-01  1.000000e+00 -5.000000e-01
## [8,]  1.449069e-34 -5.000000e-01  1.000000e+00