Customer Segmentation K-Means Clustering

# Load required libraries
library(ggplot2)
install.packages("dplyr")
Error in install.packages : Updating loaded packages
library(dplyr)
library(factoextra)
library(cluster)
library(fpc)
install.packages("flexclust")
Error in install.packages : Updating loaded packages
library(flexclust)
install.packages("mclust")
Error in install.packages : Updating loaded packages
library(mclust)
install.packages("clusterSim")
Error in install.packages : Updating loaded packages
library(cluster)
install.packages("hopkins")
Error in install.packages : Updating loaded packages
library(hopkins)

# Load the Online Retail dataset
data <- Online_Retail

# Data preprocessing
data <- data %>%
  dplyr::filter(!is.na(CustomerID)) %>%
  dplyr::select(CustomerID, InvoiceNo, InvoiceDate, UnitPrice)

# Calculate total spending (monetary value) per customer
monetary <- data %>%
  group_by(CustomerID) %>%
  summarise(monetary = sum(UnitPrice))

# Calculate the recency and frequency variables
# Recency is calculated by the time elapsed since the last day of the dataset
# Frequency is calculated by summing up the distinct invoices of a customer
recency <- data %>%
  group_by(CustomerID) %>%
  summarise(recency = as.numeric(difftime(max(data$InvoiceDate), max(InvoiceDate), units = "days")),
            frequency = n_distinct(InvoiceNo))
install.packages("hopkins")
Warning in install.packages :
  package ‘hopkins’ is in use and will not be installed
# Merge RFM variables with monetary value
rfm <- left_join(recency, monetary, by = "CustomerID")
install.packages("clusterSim")
Warning in install.packages :
  package ‘clusterSim’ is in use and will not be installed
# Data normalization
install.packages("mclust")
Warning in install.packages :
  package ‘mclust’ is in use and will not be installed
install.packages("flexclust")
Warning in install.packages :
  package ‘flexclust’ is in use and will not be installed
rfm$recency_scaled <- scale(rfm$recency)
rfm$frequency_scaled <- scale(rfm$frequency)
rfm$monetary_scaled <- scale(rfm$monetary)

# Prepare data frame to use for clustering
kmeans_data <- rfm[, c("recency_scaled", "frequency_scaled", "monetary_scaled")]
Error in exists(cacheKey, where = .rs.WorkingDataEnv, inherits = FALSE) : 
  invalid first argument
Error in assign(cacheKey, frame, .rs.CachedDataEnv) : 
  attempt to use zero-length variable name
# Calculate the Hopkins statistic
hopkins_stat <- hopkins::hopkins(X = as.matrix(kmeans_data), m = nrow(kmeans_data) - 1, method = "simple")
install.packages("dplyr")
Warning in install.packages :
  package ‘dplyr’ is in use and will not be installed
cat("Hopkins Statistic:", hopkins_stat, "\n")
Hopkins Statistic: 0.9965223 
# Prompt the user to choose the number of clusters based on the elbow plot
chosen_k <- readline(prompt = "Enter the optimal number of clusters based on the elbow plot: ")
5
chosen_k <- as.integer(chosen_k)

# Perform K-means clustering with chosen number of clusters
set.seed(123)
kmeans_model <- kmeans(kmeans_data, centers = chosen_k, nstart = 25)

# Add cluster labels to the original dataset
rfm$cluster <- as.factor(kmeans_model$cluster)

# Visualize the clusters
fviz_cluster(kmeans_model, data = kmeans_data)


# Determine and visualise the optimal number of clusters
fviz_nbclust(kmeans_data, kmeans, method = "wss")

fviz_nbclust(kmeans_data, kmeans, method = "silhouette")

fviz_nbclust(kmeans_data, kmeans, method = "gap_stat")
Clustering k = 1,2,..., K.max (= 10): .. done
Bootstrapping, b = 1,2,..., B (= 100)  [one "." per sample]:
.......
Warning: did not converge in 10 iterations
............
Warning: did not converge in 10 iterations
..........
Warning: did not converge in 10 iterations
.........
Warning: Quick-TRANSfer stage steps exceeded maximum (= 218600)
.....
Warning: did not converge in 10 iterations
....... 50 
..................
Warning: did not converge in 10 iterationsWarning: did not converge in 10 iterations
....
Warning: did not converge in 10 iterations
............
Warning: did not converge in 10 iterations
................ 100 

# Visualize data points plotted against recency, monetary, and frequency
ggplot(rfm, aes(x = recency, y = monetary, color = cluster)) +
  geom_point() +
  labs(x = "Recency", y = "Monetary", color = "Cluster") +
  theme_minimal()


ggplot(rfm, aes(x = recency, y = frequency, color = cluster)) +
  geom_point() +
  labs(x = "Recency", y = "Frequency", color = "Cluster") +
  theme_minimal()


ggplot(rfm, aes(x = monetary, y = frequency, color = cluster)) +
  geom_point() +
  labs(x = "Monetary", y = "Frequency", color = "Cluster") +
  theme_minimal()


# Cluster analysis
cluster_analysis <- rfm %>%
  group_by(cluster) %>%
  summarise(average_recency = mean(recency),
            average_frequency = mean(frequency),
            average_monetary = mean(monetary),
            count_customers = n())

print(cluster_analysis)

# Silhouette analysis
sil <- silhouette(kmeans_model$cluster, dist(kmeans_data))
avg_silhouette <- mean(sil[, "sil_width"])

cat("Average Silhouette Width:", avg_silhouette, "\n")
Average Silhouette Width: 0.4807923 
# Calculate clustering indices using cluster.stats
clustering_indices <- cluster.stats(dist(kmeans_data), kmeans_model$cluster)
print(clustering_indices)
$n
[1] 4372

$cluster.number
[1] 5

$cluster.size
[1]  157    7 2737  633  838

$min.cluster.size
[1] 7

$noisen
[1] 0

$diameter
[1] 13.829273 30.606993  2.743004  1.721251  3.480057

$average.distance
[1]  2.4269641 17.4696282  0.6597140  0.5643137  0.5776147

$median.distance
[1]  1.5497905 17.3298115  0.5625444  0.4994139  0.5228272

$separation
[1] 0.11105938 9.25206163 0.01847143 0.03082044 0.01847143

$average.toother
[1]  3.803182 26.852580  2.163191  2.553593  1.518549

$separation.matrix
          [,1]      [,2]        [,3]        [,4]        [,5]
[1,] 0.0000000  9.252062  0.11105938  2.43310143  1.25267895
[2,] 9.2520616  0.000000 17.23812325 18.90594512 16.26086404
[3,] 0.1110594 17.238123  0.00000000  1.32586933  0.01847143
[4,] 2.4331014 18.905945  1.32586933  0.00000000  0.03082044
[5,] 1.2526789 16.260864  0.01847143  0.03082044  0.00000000

$ave.between.matrix
          [,1]     [,2]      [,3]      [,4]      [,5]
[1,]  0.000000 24.82984  3.443142  4.853022  4.010454
[2,] 24.829845  0.00000 26.824289 27.222184 27.044755
[3,]  3.443142 26.82429  0.000000  2.688798  1.320363
[4,]  4.853022 27.22218  2.688798  0.000000  1.475138
[5,]  4.010454 27.04475  1.320363  1.475138  0.000000

$average.between
[1] 2.244611

$average.within
[1] 0.720542

$n.between
[1] 5247792

$n.within
[1] 4307214

$max.diameter
[1] 30.60699

$min.separation
[1] 0.01847143

$within.cluster.ss
[1] 3186.563

$clus.avg.silwidths
        1         2         3         4         5 
0.2580942 0.2730968 0.4847761 0.5851573 0.4324041 

$avg.silwidth
[1] 0.4807923

$g2
NULL

$g3
NULL

$pearsongamma
[1] 0.4133831

$dunn
[1] 0.0006035034

$dunn2
[1] 0.0755805

$entropy
[1] 1.019412

$wb.ratio
[1] 0.3210097

$ch
[1] 3400.902

$cwidegap
[1]  4.3314064 11.8906586  0.5992575  0.3625535  1.4109591

$widestgap
[1] 11.89066

$sindex
[1] 0.09642582

$corrected.rand
NULL

$vi
NULL
# Extract the Dunn index from the clustering indices list
dunn_index <- clustering_indices$dunn
cat("Dunn Index:", dunn_index, "\n")
Dunn Index: 0.0006035034 
# Calculate the Davies-Bouldin Index
db_index <- clusterSim::index.DB(kmeans_data, kmeans_model$cluster)
print(db_index)
$DB
[1] 0.8044733

$r
[1] 0.9179110 0.6717660 0.9179110 0.6613997 0.8533788

$R
          [,1]      [,2]      [,3]      [,4]      [,5]
[1,]       Inf 0.6717660 0.9179110 0.6304341 0.7667936
[2,] 0.6717660       Inf 0.5321864 0.5198163 0.5239432
[3,] 0.9179110 0.5321864       Inf 0.3892650 0.8533788
[4,] 0.6304341 0.5198163 0.3892650       Inf 0.6613997
[5,] 0.7667936 0.5239432 0.8533788 0.6613997       Inf

$d
          1        2         3         4         5
1  0.000000 22.15844  3.249879  4.606358  3.792171
2 22.158436  0.00000 24.445935 24.875517 24.686849
3  3.249879 24.44593  0.000000  2.642198  1.209690
4  4.606358 24.87552  2.642198  0.000000  1.441229
5  3.792171 24.68685  1.209690  1.441229  0.000000

$S
[1]  2.4292947 12.4559884  0.5538053  0.4747100  0.4785183

$centers
           [,1]        [,2]        [,3]
[1,] -0.8183457  3.01336556  1.09821069
[2,] -0.5162949 11.17419832 21.69689662
[3,] -0.5959877 -0.02533589 -0.03252604
[4,]  2.0175621 -0.38210357 -0.18512314
[5,]  0.5801859 -0.28651777 -0.14091961

K-Means Redone

# Remove observations in cluster 3
rfm_filtered <- rfm[rfm$cluster != 2, ]

# Prepare filtered data frame for clustering
kmeans_data_filtered <- rfm_filtered[, c("recency_scaled", "frequency_scaled", "monetary_scaled")]

# Calculate the Hopkins statistic
hopkins_stat_filtered <- hopkins::hopkins(X = as.matrix(kmeans_data_filtered), m = nrow(kmeans_data_filtered) - 1, method = "simple")
cat("Hopkins Statistic (Filtered):", hopkins_stat_filtered, "\n")
Hopkins Statistic (Filtered): 0.9991269 
# Perform K-means clustering on filtered data
set.seed(123)
kmeans_model_filtered <- kmeans(kmeans_data_filtered, centers = chosen_k, nstart = 25)

# Add cluster labels to the original dataset
rfm_filtered$cluster <- as.factor(kmeans_model_filtered$cluster)

# Visualize the clusters after filtering
fviz_cluster(kmeans_model_filtered, data = kmeans_data_filtered)


# Determine and visualise the optimal number of clusters
fviz_nbclust(kmeans_data_filtered, kmeans, method = "wss")

fviz_nbclust(kmeans_data_filtered, kmeans, method = "silhouette")

fviz_nbclust(kmeans_data_filtered, kmeans, method = "gap_stat")
Clustering k = 1,2,..., K.max (= 10): .. done
Bootstrapping, b = 1,2,..., B (= 100)  [one "." per sample]:
....
Warning: Quick-TRANSfer stage steps exceeded maximum (= 218250)
.............................................. 50 
............................
Warning: did not converge in 10 iterations
...................... 100 

# Visualize data points plotted against recency, monetary, and frequency after filtering
ggplot(rfm_filtered, aes(x = recency, y = monetary, color = cluster)) +
  geom_point() +
  labs(x = "Recency", y = "Monetary", color = "Cluster") +
  theme_minimal()


ggplot(rfm_filtered, aes(x = recency, y = frequency, color = cluster)) +
  geom_point() +
  labs(x = "Recency", y = "Frequency", color = "Cluster") +
  theme_minimal()


ggplot(rfm_filtered, aes(x = monetary, y = frequency, color = cluster)) +
  geom_point() +
  labs(x = "Monetary", y = "Frequency", color = "Cluster") +
  theme_minimal()


# Cluster analysis on filtered data
cluster_analysis_filtered <- rfm_filtered %>%
  group_by(cluster) %>%
  summarise(average_recency = mean(recency),
            average_frequency = mean(frequency),
            average_monetary = mean(monetary),
            count_customers = n())

print(cluster_analysis_filtered)

# Silhouette analysis on filtered data
sil_filtered <- silhouette(kmeans_model_filtered$cluster, dist(kmeans_data_filtered))
avg_silhouette_filtered <- mean(sil_filtered[, "sil_width"])

cat("Average Silhouette Width (filtered data):", avg_silhouette_filtered, "\n")
Average Silhouette Width (filtered data): 0.5094932 
# Calculate clustering indices using cluster.stats on filtered data
clustering_indices_filtered <- cluster.stats(dist(kmeans_data_filtered), kmeans_model_filtered$cluster)
print(clustering_indices_filtered)
$n
[1] 4365

$cluster.number
[1] 5

$cluster.size
[1]  767 2462  617  471   48

$min.cluster.size
[1] 48

$noisen
[1] 0

$diameter
[1]  3.480057  1.977773  1.721251  4.432850 13.829273

$average.distance
[1] 0.5532323 0.5007617 0.5556253 0.9763928 3.6092760

$median.distance
[1] 0.4993416 0.4762083 0.4949363 0.8248311 2.5705356

$separation
[1] 0.008527502 0.008876033 0.008527502 0.023725235 0.216424551

$average.toother
[1] 1.496943 1.900208 2.516850 1.992664 6.006580

$separation.matrix
            [,1]        [,2]        [,3]       [,4]      [,5]
[1,] 0.000000000 0.008876033 0.008527502 0.34606952 2.9538381
[2,] 0.008876033 0.000000000 1.304904340 0.02372524 2.8737423
[3,] 0.008527502 1.304904340 0.000000000 1.48149596 3.6471309
[4,] 0.346069518 0.023725235 1.481495960 0.00000000 0.2164246
[5,] 2.953838122 2.873742316 3.647130892 0.21642455 0.0000000

$ave.between.matrix
         [,1]     [,2]     [,3]     [,4]     [,5]
[1,] 0.000000 1.288422 1.412632 2.209086 6.288220
[2,] 1.288422 0.000000 2.620755 1.539219 5.956237
[3,] 1.412632 2.620755 0.000000 3.326089 6.891162
[4,] 2.209086 1.539219 3.326089 0.000000 4.652317
[5,] 6.288220 5.956237 6.891162 4.652317 0.000000

$average.between
[1] 2.013238

$average.within
[1] 0.603242

$n.between
[1] 5899329

$n.within
[1] 3625101

$max.diameter
[1] 13.82927

$min.separation
[1] 0.008527502

$within.cluster.ss
[1] 1511.353

$clus.avg.silwidths
        1         2         3         4         5 
0.4413600 0.5580084 0.5717862 0.3192309 0.1760061 

$avg.silwidth
[1] 0.5094932

$g2
NULL

$g3
NULL

$pearsongamma
[1] 0.5895107

$dunn
[1] 0.0006166269

$dunn2
[1] 0.3569751

$entropy
[1] 1.194941

$wb.ratio
[1] 0.2996378

$ch
[1] 4570.802

$cwidegap
[1] 1.4109591 0.5992575 0.3625535 2.8213618 4.3314064

$widestgap
[1] 4.331406

$sindex
[1] 0.09620177

$corrected.rand
NULL

$vi
NULL
# Extract the Dunn index from the clustering indices list for filtered data
dunn_index_filtered <- clustering_indices_filtered$dunn
cat("Dunn Index (filtered data):", dunn_index_filtered, "\n")
Dunn Index (filtered data): 0.0006166269 
# Calculate the Davies-Bouldin Index for filtered data
db_index_filtered <- clusterSim::index.DB(kmeans_data_filtered, kmeans_model_filtered$cluster)
print(db_index_filtered)
$DB
[1] 0.8351144

$r
[1] 0.6998387 0.8507658 0.6732245 0.9758716 0.9758716

$R
          [,1]      [,2]      [,3]      [,4]      [,5]
[1,]       Inf 0.6998387 0.6732245 0.6111041 0.6286032
[2,] 0.6998387       Inf 0.3318168 0.8507658 0.6528990
[3,] 0.6732245 0.3318168       Inf 0.3970572 0.5729061
[4,] 0.6111041 0.8507658 0.3970572       Inf 0.9758716
[5,] 0.6286032 0.6528990 0.5729061 0.9758716       Inf

$d
         1        2        3        4        5
1 0.000000 1.222369 1.377465 2.095054 5.930687
2 1.222369 0.000000 2.599600 1.428765 5.610816
3 1.377465 2.599600 0.000000 3.242420 6.519704
4 2.095054 1.428765 3.242420 0.000000 4.189210
5 5.930687 5.610816 6.519704 4.189210 0.000000

$S
[1] 0.4601066 0.3953546 0.4672364 0.8201897 3.2679420

$centers
           [,1]       [,2]        [,3]
[1,]  0.6622009 -0.2843701 -0.13978747
[2,] -0.5534493 -0.1655285 -0.09227753
[3,]  2.0354305 -0.3824309 -0.18487878
[4,] -0.7556678  1.1479795  0.43229235
[5,] -0.8675599  5.0559406  1.93721894

Hierarchical Clustering

# Load required libraries
library(ggplot2)
install.packages("dplyr")
library(dplyr)
library(factoextra)
library(cluster)
library(fpc)
library(flexclust)
library(mclust)
library(clusterSim)
library(hopkins)

# Load the Online Retail dataset
data <- Online_Retail

# Data preprocessing
data <- data %>%
  dplyr::filter(!is.na(CustomerID)) %>%
  dplyr::select(CustomerID, InvoiceNo, InvoiceDate, UnitPrice)

# Calculate total spending (monetary value) per customer
monetary <- data %>%
  group_by(CustomerID) %>%
  summarise(monetary = sum(UnitPrice))

# Calculate the recency and frequency variables
# Recency is calculated by the time elapsed since the last day of the dataset
# Frequency is calculated by summing up the distinct invoices of a customer
recency <- data %>%
  group_by(CustomerID) %>%
  summarise(recency = as.numeric(difftime(max(data$InvoiceDate), max(InvoiceDate), units = "days")),
            frequency = n_distinct(InvoiceNo))

# Merge RFM variables with monetary value
rfm <- left_join(recency, monetary, by = "CustomerID")

# Calculate the Hopkins statistic
hopkins_stat <- hopkins::hopkins(X = as.matrix(rfm), m = nrow(rfm) - 1, method = "simple")
print(hopkins_stat)

# Check the value of the Hopkins statistic
cat("Hopkins Statistic:", hopkins_stat, "\n")

# Data normalization
rfm$recency_scaled <- scale(rfm$recency)
rfm$frequency_scaled <- scale(rfm$frequency)
rfm$monetary_scaled <- scale(rfm$monetary)

# Perform hierarchical clustering
hclust_data <- rfm[, c("recency_scaled", "frequency_scaled", "monetary_scaled")]
hclust_model <- hclust(dist(hclust_data))

# Specify the desired number of clusters
desired_clusters <- 4

# Determine the cutoff height for the desired number of clusters
cutoff_height <- hclust_model$height[length(hclust_model$height) - (desired_clusters - 1)]
cat("Cut-off height at ", desired_clusters, " clusters:", cutoff_height, "\n")

# Plot the dendogram with an indication of the cut-off
plot(hclust_model, labels = FALSE)
abline(h = cutoff_height, col = "red", lty = 2)

# Determine and visualise the optimal number of clusters up to 10 with bootstrapping up to 10
fviz_nbclust(hclust_data, hcut, method = "wss")
fviz_nbclust(hclust_data, hcut, method = "silhouette")
gap_stat_hclust <- clusGap(hclust_data, hcut, K.max = 10, B = 10)
fviz_gap_stat(gap_stat_hclust)

# Determine the tree cut for a desired number of clusters
cut <- cutree(hclust_model, k = desired_clusters)

# Add cluster labels to the original dataset
rfm$cluster <- as.factor(cut)

# Visualize data points plotted against recency, monetary, and frequency
ggplot(rfm, aes(x = recency, y = monetary, color = cluster)) +
  geom_point() +
  labs(x = "Recency", y = "Monetary", color = "Cluster") +
  theme_minimal()

ggplot(rfm, aes(x = recency, y = frequency, color = cluster)) +
  geom_point() +
  labs(x = "Recency", y = "Frequency", color = "Cluster") +
  theme_minimal()

ggplot(rfm, aes(x = monetary, y = frequency, color = cluster)) +
  geom_point() +
  labs(x = "Monetary", y = "Frequency", color = "Cluster") +
  theme_minimal()

# Cluster analysis
cluster_analysis <- rfm %>%
  group_by(cluster) %>%
  summarise(average_recency = mean(recency),
            average_frequency = mean(frequency),
            average_monetary = mean(monetary),
            count_customers = n())

print(cluster_analysis)

# Silhouette analysis
sil <- silhouette(cut, dist(hclust_data))
avg_silhouette <- mean(sil[, "sil_width"])

cat("Average Silhouette Width:", avg_silhouette, "\n")

# Calculate clustering indices using cluster.stats
clustering_indices <- cluster.stats(dist(hclust_data), cut)
print(clustering_indices)

# Extract the Dunn index from the clustering indices list
dunn_index <- clustering_indices$dunn
cat("Dunn Index:", dunn_index, "\n")

# Calculate the Davies-Bouldin Index
db_index <- clusterSim::index.DB(hclust_data, cut)
print(db_index)

Hierarchical Clustering Redone

# Filter out observations in clusters other than cluster 1
rfm_filtered <- rfm[rfm$cluster == 1, ]

# Perform hierarchical clustering on the filtered dataset
hclust_data_filtered <- rfm_filtered[, c("recency_scaled", "frequency_scaled", "monetary_scaled")]
hclust_model_filtered <- hclust(dist(hclust_data_filtered))

# Specify the desired number of clusters
desired_clusters_filtered <- 4

# Determine the cutoff height for the desired number of clusters
cutoff_height_filtered <- hclust_model_filtered$height[length(hclust_model_filtered$height) - (desired_clusters_filtered - 1)]
cat("Cut-off height at", desired_clusters_filtered, "cluster(s):", cutoff_height_filtered, "\n")

# Plot the dendrogram with an indication of the cut-off
plot(hclust_model_filtered, labels = FALSE)
abline(h = cutoff_height_filtered, col = "red", lty = 2)

# Determine and visualize the optimal number of clusters up to 10 with bootstrapping up to 10
fviz_nbclust(hclust_data_filtered, hcut, method = "wss")
fviz_nbclust(hclust_data_filtered, hcut, method = "silhouette")
gap_stat_hclust_filtered <- clusGap(hclust_data_filtered, hcut, K.max = 10, B = 10)
fviz_gap_stat(gap_stat_hclust_filtered)

# Determine the tree cut for a desired number of clusters
cut_filtered <- cutree(hclust_model_filtered, k = desired_clusters_filtered)

# Add cluster labels to the filtered dataset
rfm_filtered$cluster <- as.factor(cut_filtered)

# Visualize data points plotted against recency, monetary, and frequency
ggplot(rfm_filtered, aes(x = recency, y = monetary, color = cluster)) +
  geom_point() +
  labs(x = "Recency", y = "Monetary", color = "Cluster") +
  theme_minimal()

ggplot(rfm_filtered, aes(x = recency, y = frequency, color = cluster)) +
  geom_point() +
  labs(x = "Recency", y = "Frequency", color = "Cluster") +
  theme_minimal()

ggplot(rfm_filtered, aes(x = monetary, y = frequency, color = cluster)) +
  geom_point() +
  labs(x = "Monetary", y = "Frequency", color = "Cluster") +
  theme_minimal()

# Cluster analysis
cluster_analysis_filtered <- rfm_filtered %>%
  group_by(cluster) %>%
  summarise(average_recency = mean(recency),
            average_frequency = mean(frequency),
            average_monetary = mean(monetary),
            count_customers = n())

print(cluster_analysis_filtered)

# Silhouette analysis
sil_filtered <- silhouette(cut_filtered, dist(hclust_data_filtered))
avg_silhouette_filtered <- mean(sil_filtered[, "sil_width"])

cat("Average Silhouette Width:", avg_silhouette_filtered, "\n")

# Calculate clustering indices using cluster.stats
clustering_indices_filtered <- cluster.stats(dist(hclust_data_filtered), cut_filtered)
print(clustering_indices_filtered)

# Extract the Dunn index from the clustering indices list
dunn_index_filtered <- clustering_indices_filtered$dunn
cat("Dunn Index:", dunn_index_filtered, "\n")

# Calculate the Davies-Bouldin Index
db_index_filtered <- clusterSim::index.DB(hclust_data_filtered, cut_filtered)
print(db_index_filtered)

DBSCAN

# Load required libraries
library(ggplot2)
library(dplyr)
library(factoextra)
library(cluster)
library(fpc)
library(flexclust)
library(mclust)

# Load the Online Retail dataset
data <- Online_Retail

# Data preprocessing
data <- data %>%
  dplyr::filter(!is.na(CustomerID)) %>%
  dplyr::select(CustomerID, InvoiceNo, InvoiceDate, UnitPrice)

# Calculate total spending (monetary value) per customer
monetary <- data %>%
  group_by(CustomerID) %>%
  summarise(monetary = sum(UnitPrice))

# Calculate the recency and frequency variables
# Recency is calculated by the time elapsed since the last day of the dataset
# Frequency is calculated by summing up the distinct invoices of a customer
recency <- data %>%
  group_by(CustomerID) %>%
  summarise(recency = as.numeric(difftime(max(data$InvoiceDate), max(InvoiceDate), units = "days")),
            frequency = n_distinct(InvoiceNo))

# Merge RFM variables with monetary value
rfm <- left_join(recency, monetary, by = "CustomerID")

# Create distance matrix of RFM data frame 

# Perform DBSCAN clustering
dbscan_model <- dbscan(dist(rfm), eps = 0.5, MinPts = 5, scale = TRUE, method = "raw", showplot = 1)

# Add cluster labels to the original dataset
rfm$cluster <- as.factor(dbscan_model$cluster)

# Visualize the clusters
fviz_cluster(dbscan_model, data = normalized_data)

# Cluster analysis
cluster_analysis <- rfm %>%
  group_by(cluster) %>%
  summarise(average_recency = mean(recency),
            average_frequency = mean(frequency),
            average_monetary = mean(monetary),
            count_customers = n())

print(cluster_analysis)

# Silhouette analysis
sil <- silhouette(dbscan_model$cluster, dist(normalized_data))
avg_silhouette <- mean(sil[, "sil_width"])
cat("Average Silhouette Width:", avg_silhouette, "\n")

# Extract cluster labels from the DBSCAN model
dbscan_labels <- dbscan_model$cluster

# Calculate clustering indices using cluster.stats
clustering_indices <- cluster.stats(dist(rfm), dbscan_labels)
print(clustering_indices)

# Extract the Dunn index from the clustering indices list
dunn_index <- clustering_indices$dunn
cat("Dunn Index:", dunn_index, "\n")

# Calculate the Davies-Bouldin Index
db_index <- clusterSim::index.DB(rfm, dbscan_labels)
print(db_index)
LS0tDQp0aXRsZTogIlJGTSBDdXN0b21lciBTZWdtZW50YXRpb24iDQphdXRob3I6ICJGcmVkZXJpY2sgSGFnZWxzdGVpbiINCmRhdGU6ICJKdW5lIDE2IDIwMjMiDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpDdXN0b21lciBTZWdtZW50YXRpb24NCkstTWVhbnMgQ2x1c3RlcmluZw0KYGBge3J9DQojIExvYWQgcmVxdWlyZWQgbGlicmFyaWVzDQpsaWJyYXJ5KGdncGxvdDIpDQppbnN0YWxsLnBhY2thZ2VzKCJkcGx5ciIpDQpsaWJyYXJ5KGRwbHlyKQ0KbGlicmFyeShmYWN0b2V4dHJhKQ0KbGlicmFyeShjbHVzdGVyKQ0KbGlicmFyeShmcGMpDQppbnN0YWxsLnBhY2thZ2VzKCJmbGV4Y2x1c3QiKQ0KbGlicmFyeShmbGV4Y2x1c3QpDQppbnN0YWxsLnBhY2thZ2VzKCJtY2x1c3QiKQ0KbGlicmFyeShtY2x1c3QpDQppbnN0YWxsLnBhY2thZ2VzKCJjbHVzdGVyU2ltIikNCmxpYnJhcnkoY2x1c3RlcikNCmluc3RhbGwucGFja2FnZXMoImhvcGtpbnMiKQ0KbGlicmFyeShob3BraW5zKQ0KDQojIExvYWQgdGhlIE9ubGluZSBSZXRhaWwgZGF0YXNldA0KZGF0YSA8LSBPbmxpbmVfUmV0YWlsDQoNCiMgRGF0YSBwcmVwcm9jZXNzaW5nDQpkYXRhIDwtIGRhdGEgJT4lDQogIGRwbHlyOjpmaWx0ZXIoIWlzLm5hKEN1c3RvbWVySUQpKSAlPiUNCiAgZHBseXI6OnNlbGVjdChDdXN0b21lcklELCBJbnZvaWNlTm8sIEludm9pY2VEYXRlLCBVbml0UHJpY2UpDQoNCiMgQ2FsY3VsYXRlIHRvdGFsIHNwZW5kaW5nIChtb25ldGFyeSB2YWx1ZSkgcGVyIGN1c3RvbWVyDQptb25ldGFyeSA8LSBkYXRhICU+JQ0KICBncm91cF9ieShDdXN0b21lcklEKSAlPiUNCiAgc3VtbWFyaXNlKG1vbmV0YXJ5ID0gc3VtKFVuaXRQcmljZSkpDQoNCiMgQ2FsY3VsYXRlIHRoZSByZWNlbmN5IGFuZCBmcmVxdWVuY3kgdmFyaWFibGVzDQojIFJlY2VuY3kgaXMgY2FsY3VsYXRlZCBieSB0aGUgdGltZSBlbGFwc2VkIHNpbmNlIHRoZSBsYXN0IGRheSBvZiB0aGUgZGF0YXNldA0KIyBGcmVxdWVuY3kgaXMgY2FsY3VsYXRlZCBieSBzdW1taW5nIHVwIHRoZSBkaXN0aW5jdCBpbnZvaWNlcyBvZiBhIGN1c3RvbWVyDQpyZWNlbmN5IDwtIGRhdGEgJT4lDQogIGdyb3VwX2J5KEN1c3RvbWVySUQpICU+JQ0KICBzdW1tYXJpc2UocmVjZW5jeSA9IGFzLm51bWVyaWMoZGlmZnRpbWUobWF4KGRhdGEkSW52b2ljZURhdGUpLCBtYXgoSW52b2ljZURhdGUpLCB1bml0cyA9ICJkYXlzIikpLA0KICAgICAgICAgICAgZnJlcXVlbmN5ID0gbl9kaXN0aW5jdChJbnZvaWNlTm8pKQ0KDQojIE1lcmdlIFJGTSB2YXJpYWJsZXMgd2l0aCBtb25ldGFyeSB2YWx1ZQ0KcmZtIDwtIGxlZnRfam9pbihyZWNlbmN5LCBtb25ldGFyeSwgYnkgPSAiQ3VzdG9tZXJJRCIpDQoNCiMgRGF0YSBub3JtYWxpemF0aW9uDQpyZm0kcmVjZW5jeV9zY2FsZWQgPC0gc2NhbGUocmZtJHJlY2VuY3kpDQpyZm0kZnJlcXVlbmN5X3NjYWxlZCA8LSBzY2FsZShyZm0kZnJlcXVlbmN5KQ0KcmZtJG1vbmV0YXJ5X3NjYWxlZCA8LSBzY2FsZShyZm0kbW9uZXRhcnkpDQoNCiMgUHJlcGFyZSBkYXRhIGZyYW1lIHRvIHVzZSBmb3IgY2x1c3RlcmluZw0Ka21lYW5zX2RhdGEgPC0gcmZtWywgYygicmVjZW5jeV9zY2FsZWQiLCAiZnJlcXVlbmN5X3NjYWxlZCIsICJtb25ldGFyeV9zY2FsZWQiKV0NCg0KIyBDYWxjdWxhdGUgdGhlIEhvcGtpbnMgc3RhdGlzdGljDQpob3BraW5zX3N0YXQgPC0gaG9wa2luczo6aG9wa2lucyhYID0gYXMubWF0cml4KGttZWFuc19kYXRhKSwgbSA9IG5yb3coa21lYW5zX2RhdGEpIC0gMSwgbWV0aG9kID0gInNpbXBsZSIpDQpjYXQoIkhvcGtpbnMgU3RhdGlzdGljOiIsIGhvcGtpbnNfc3RhdCwgIlxuIikNCg0KIyBQcm9tcHQgdGhlIHVzZXIgdG8gY2hvb3NlIHRoZSBudW1iZXIgb2YgY2x1c3RlcnMgYmFzZWQgb24gdGhlIGVsYm93IHBsb3QNCmNob3Nlbl9rIDwtIHJlYWRsaW5lKHByb21wdCA9ICJFbnRlciB0aGUgb3B0aW1hbCBudW1iZXIgb2YgY2x1c3RlcnMgYmFzZWQgb24gdGhlIGVsYm93IHBsb3Q6ICIpDQpjaG9zZW5fayA8LSBhcy5pbnRlZ2VyKGNob3Nlbl9rKQ0KDQojIFBlcmZvcm0gSy1tZWFucyBjbHVzdGVyaW5nIHdpdGggY2hvc2VuIG51bWJlciBvZiBjbHVzdGVycw0Kc2V0LnNlZWQoMTIzKQ0Ka21lYW5zX21vZGVsIDwtIGttZWFucyhrbWVhbnNfZGF0YSwgY2VudGVycyA9IGNob3Nlbl9rLCBuc3RhcnQgPSAyNSkNCg0KIyBBZGQgY2x1c3RlciBsYWJlbHMgdG8gdGhlIG9yaWdpbmFsIGRhdGFzZXQNCnJmbSRjbHVzdGVyIDwtIGFzLmZhY3RvcihrbWVhbnNfbW9kZWwkY2x1c3RlcikNCg0KIyBWaXN1YWxpemUgdGhlIGNsdXN0ZXJzDQpmdml6X2NsdXN0ZXIoa21lYW5zX21vZGVsLCBkYXRhID0ga21lYW5zX2RhdGEpDQoNCiMgRGV0ZXJtaW5lIGFuZCB2aXN1YWxpc2UgdGhlIG9wdGltYWwgbnVtYmVyIG9mIGNsdXN0ZXJzDQpmdml6X25iY2x1c3Qoa21lYW5zX2RhdGEsIGttZWFucywgbWV0aG9kID0gIndzcyIpDQpmdml6X25iY2x1c3Qoa21lYW5zX2RhdGEsIGttZWFucywgbWV0aG9kID0gInNpbGhvdWV0dGUiKQ0KZnZpel9uYmNsdXN0KGttZWFuc19kYXRhLCBrbWVhbnMsIG1ldGhvZCA9ICJnYXBfc3RhdCIpDQoNCiMgVmlzdWFsaXplIGRhdGEgcG9pbnRzIHBsb3R0ZWQgYWdhaW5zdCByZWNlbmN5LCBtb25ldGFyeSwgYW5kIGZyZXF1ZW5jeQ0KZ2dwbG90KHJmbSwgYWVzKHggPSByZWNlbmN5LCB5ID0gbW9uZXRhcnksIGNvbG9yID0gY2x1c3RlcikpICsNCiAgZ2VvbV9wb2ludCgpICsNCiAgbGFicyh4ID0gIlJlY2VuY3kiLCB5ID0gIk1vbmV0YXJ5IiwgY29sb3IgPSAiQ2x1c3RlciIpICsNCiAgdGhlbWVfbWluaW1hbCgpDQoNCmdncGxvdChyZm0sIGFlcyh4ID0gcmVjZW5jeSwgeSA9IGZyZXF1ZW5jeSwgY29sb3IgPSBjbHVzdGVyKSkgKw0KICBnZW9tX3BvaW50KCkgKw0KICBsYWJzKHggPSAiUmVjZW5jeSIsIHkgPSAiRnJlcXVlbmN5IiwgY29sb3IgPSAiQ2x1c3RlciIpICsNCiAgdGhlbWVfbWluaW1hbCgpDQoNCmdncGxvdChyZm0sIGFlcyh4ID0gbW9uZXRhcnksIHkgPSBmcmVxdWVuY3ksIGNvbG9yID0gY2x1c3RlcikpICsNCiAgZ2VvbV9wb2ludCgpICsNCiAgbGFicyh4ID0gIk1vbmV0YXJ5IiwgeSA9ICJGcmVxdWVuY3kiLCBjb2xvciA9ICJDbHVzdGVyIikgKw0KICB0aGVtZV9taW5pbWFsKCkNCg0KIyBDbHVzdGVyIGFuYWx5c2lzDQpjbHVzdGVyX2FuYWx5c2lzIDwtIHJmbSAlPiUNCiAgZ3JvdXBfYnkoY2x1c3RlcikgJT4lDQogIHN1bW1hcmlzZShhdmVyYWdlX3JlY2VuY3kgPSBtZWFuKHJlY2VuY3kpLA0KICAgICAgICAgICAgYXZlcmFnZV9mcmVxdWVuY3kgPSBtZWFuKGZyZXF1ZW5jeSksDQogICAgICAgICAgICBhdmVyYWdlX21vbmV0YXJ5ID0gbWVhbihtb25ldGFyeSksDQogICAgICAgICAgICBjb3VudF9jdXN0b21lcnMgPSBuKCkpDQoNCnByaW50KGNsdXN0ZXJfYW5hbHlzaXMpDQoNCiMgU2lsaG91ZXR0ZSBhbmFseXNpcw0Kc2lsIDwtIHNpbGhvdWV0dGUoa21lYW5zX21vZGVsJGNsdXN0ZXIsIGRpc3Qoa21lYW5zX2RhdGEpKQ0KYXZnX3NpbGhvdWV0dGUgPC0gbWVhbihzaWxbLCAic2lsX3dpZHRoIl0pDQoNCmNhdCgiQXZlcmFnZSBTaWxob3VldHRlIFdpZHRoOiIsIGF2Z19zaWxob3VldHRlLCAiXG4iKQ0KDQojIENhbGN1bGF0ZSBjbHVzdGVyaW5nIGluZGljZXMgdXNpbmcgY2x1c3Rlci5zdGF0cw0KY2x1c3RlcmluZ19pbmRpY2VzIDwtIGNsdXN0ZXIuc3RhdHMoZGlzdChrbWVhbnNfZGF0YSksIGttZWFuc19tb2RlbCRjbHVzdGVyKQ0KcHJpbnQoY2x1c3RlcmluZ19pbmRpY2VzKQ0KDQojIEV4dHJhY3QgdGhlIER1bm4gaW5kZXggZnJvbSB0aGUgY2x1c3RlcmluZyBpbmRpY2VzIGxpc3QNCmR1bm5faW5kZXggPC0gY2x1c3RlcmluZ19pbmRpY2VzJGR1bm4NCmNhdCgiRHVubiBJbmRleDoiLCBkdW5uX2luZGV4LCAiXG4iKQ0KDQojIENhbGN1bGF0ZSB0aGUgRGF2aWVzLUJvdWxkaW4gSW5kZXgNCmRiX2luZGV4IDwtIGNsdXN0ZXJTaW06OmluZGV4LkRCKGttZWFuc19kYXRhLCBrbWVhbnNfbW9kZWwkY2x1c3RlcikNCnByaW50KGRiX2luZGV4KQ0KDQpgYGANCg0KSy1NZWFucyBSZWRvbmUNCmBgYHtyfQ0KIyBSZW1vdmUgb2JzZXJ2YXRpb25zIGluIGNsdXN0ZXIgMw0KcmZtX2ZpbHRlcmVkIDwtIHJmbVtyZm0kY2x1c3RlciAhPSAyLCBdDQoNCiMgUHJlcGFyZSBmaWx0ZXJlZCBkYXRhIGZyYW1lIGZvciBjbHVzdGVyaW5nDQprbWVhbnNfZGF0YV9maWx0ZXJlZCA8LSByZm1fZmlsdGVyZWRbLCBjKCJyZWNlbmN5X3NjYWxlZCIsICJmcmVxdWVuY3lfc2NhbGVkIiwgIm1vbmV0YXJ5X3NjYWxlZCIpXQ0KDQojIENhbGN1bGF0ZSB0aGUgSG9wa2lucyBzdGF0aXN0aWMNCmhvcGtpbnNfc3RhdF9maWx0ZXJlZCA8LSBob3BraW5zOjpob3BraW5zKFggPSBhcy5tYXRyaXgoa21lYW5zX2RhdGFfZmlsdGVyZWQpLCBtID0gbnJvdyhrbWVhbnNfZGF0YV9maWx0ZXJlZCkgLSAxLCBtZXRob2QgPSAic2ltcGxlIikNCmNhdCgiSG9wa2lucyBTdGF0aXN0aWMgKEZpbHRlcmVkKToiLCBob3BraW5zX3N0YXRfZmlsdGVyZWQsICJcbiIpDQoNCiMgUGVyZm9ybSBLLW1lYW5zIGNsdXN0ZXJpbmcgb24gZmlsdGVyZWQgZGF0YQ0Kc2V0LnNlZWQoMTIzKQ0Ka21lYW5zX21vZGVsX2ZpbHRlcmVkIDwtIGttZWFucyhrbWVhbnNfZGF0YV9maWx0ZXJlZCwgY2VudGVycyA9IGNob3Nlbl9rLCBuc3RhcnQgPSAyNSkNCg0KIyBBZGQgY2x1c3RlciBsYWJlbHMgdG8gdGhlIG9yaWdpbmFsIGRhdGFzZXQNCnJmbV9maWx0ZXJlZCRjbHVzdGVyIDwtIGFzLmZhY3RvcihrbWVhbnNfbW9kZWxfZmlsdGVyZWQkY2x1c3RlcikNCg0KIyBWaXN1YWxpemUgdGhlIGNsdXN0ZXJzIGFmdGVyIGZpbHRlcmluZw0KZnZpel9jbHVzdGVyKGttZWFuc19tb2RlbF9maWx0ZXJlZCwgZGF0YSA9IGttZWFuc19kYXRhX2ZpbHRlcmVkKQ0KDQojIERldGVybWluZSBhbmQgdmlzdWFsaXNlIHRoZSBvcHRpbWFsIG51bWJlciBvZiBjbHVzdGVycw0KZnZpel9uYmNsdXN0KGttZWFuc19kYXRhX2ZpbHRlcmVkLCBrbWVhbnMsIG1ldGhvZCA9ICJ3c3MiKQ0KZnZpel9uYmNsdXN0KGttZWFuc19kYXRhX2ZpbHRlcmVkLCBrbWVhbnMsIG1ldGhvZCA9ICJzaWxob3VldHRlIikNCmZ2aXpfbmJjbHVzdChrbWVhbnNfZGF0YV9maWx0ZXJlZCwga21lYW5zLCBtZXRob2QgPSAiZ2FwX3N0YXQiKQ0KDQojIFZpc3VhbGl6ZSBkYXRhIHBvaW50cyBwbG90dGVkIGFnYWluc3QgcmVjZW5jeSwgbW9uZXRhcnksIGFuZCBmcmVxdWVuY3kgYWZ0ZXIgZmlsdGVyaW5nDQpnZ3Bsb3QocmZtX2ZpbHRlcmVkLCBhZXMoeCA9IHJlY2VuY3ksIHkgPSBtb25ldGFyeSwgY29sb3IgPSBjbHVzdGVyKSkgKw0KICBnZW9tX3BvaW50KCkgKw0KICBsYWJzKHggPSAiUmVjZW5jeSIsIHkgPSAiTW9uZXRhcnkiLCBjb2xvciA9ICJDbHVzdGVyIikgKw0KICB0aGVtZV9taW5pbWFsKCkNCg0KZ2dwbG90KHJmbV9maWx0ZXJlZCwgYWVzKHggPSByZWNlbmN5LCB5ID0gZnJlcXVlbmN5LCBjb2xvciA9IGNsdXN0ZXIpKSArDQogIGdlb21fcG9pbnQoKSArDQogIGxhYnMoeCA9ICJSZWNlbmN5IiwgeSA9ICJGcmVxdWVuY3kiLCBjb2xvciA9ICJDbHVzdGVyIikgKw0KICB0aGVtZV9taW5pbWFsKCkNCg0KZ2dwbG90KHJmbV9maWx0ZXJlZCwgYWVzKHggPSBtb25ldGFyeSwgeSA9IGZyZXF1ZW5jeSwgY29sb3IgPSBjbHVzdGVyKSkgKw0KICBnZW9tX3BvaW50KCkgKw0KICBsYWJzKHggPSAiTW9uZXRhcnkiLCB5ID0gIkZyZXF1ZW5jeSIsIGNvbG9yID0gIkNsdXN0ZXIiKSArDQogIHRoZW1lX21pbmltYWwoKQ0KDQojIENsdXN0ZXIgYW5hbHlzaXMgb24gZmlsdGVyZWQgZGF0YQ0KY2x1c3Rlcl9hbmFseXNpc19maWx0ZXJlZCA8LSByZm1fZmlsdGVyZWQgJT4lDQogIGdyb3VwX2J5KGNsdXN0ZXIpICU+JQ0KICBzdW1tYXJpc2UoYXZlcmFnZV9yZWNlbmN5ID0gbWVhbihyZWNlbmN5KSwNCiAgICAgICAgICAgIGF2ZXJhZ2VfZnJlcXVlbmN5ID0gbWVhbihmcmVxdWVuY3kpLA0KICAgICAgICAgICAgYXZlcmFnZV9tb25ldGFyeSA9IG1lYW4obW9uZXRhcnkpLA0KICAgICAgICAgICAgY291bnRfY3VzdG9tZXJzID0gbigpKQ0KDQpwcmludChjbHVzdGVyX2FuYWx5c2lzX2ZpbHRlcmVkKQ0KDQojIFNpbGhvdWV0dGUgYW5hbHlzaXMgb24gZmlsdGVyZWQgZGF0YQ0Kc2lsX2ZpbHRlcmVkIDwtIHNpbGhvdWV0dGUoa21lYW5zX21vZGVsX2ZpbHRlcmVkJGNsdXN0ZXIsIGRpc3Qoa21lYW5zX2RhdGFfZmlsdGVyZWQpKQ0KYXZnX3NpbGhvdWV0dGVfZmlsdGVyZWQgPC0gbWVhbihzaWxfZmlsdGVyZWRbLCAic2lsX3dpZHRoIl0pDQoNCmNhdCgiQXZlcmFnZSBTaWxob3VldHRlIFdpZHRoIChmaWx0ZXJlZCBkYXRhKToiLCBhdmdfc2lsaG91ZXR0ZV9maWx0ZXJlZCwgIlxuIikNCg0KIyBDYWxjdWxhdGUgY2x1c3RlcmluZyBpbmRpY2VzIHVzaW5nIGNsdXN0ZXIuc3RhdHMgb24gZmlsdGVyZWQgZGF0YQ0KY2x1c3RlcmluZ19pbmRpY2VzX2ZpbHRlcmVkIDwtIGNsdXN0ZXIuc3RhdHMoZGlzdChrbWVhbnNfZGF0YV9maWx0ZXJlZCksIGttZWFuc19tb2RlbF9maWx0ZXJlZCRjbHVzdGVyKQ0KcHJpbnQoY2x1c3RlcmluZ19pbmRpY2VzX2ZpbHRlcmVkKQ0KDQojIEV4dHJhY3QgdGhlIER1bm4gaW5kZXggZnJvbSB0aGUgY2x1c3RlcmluZyBpbmRpY2VzIGxpc3QgZm9yIGZpbHRlcmVkIGRhdGENCmR1bm5faW5kZXhfZmlsdGVyZWQgPC0gY2x1c3RlcmluZ19pbmRpY2VzX2ZpbHRlcmVkJGR1bm4NCmNhdCgiRHVubiBJbmRleCAoZmlsdGVyZWQgZGF0YSk6IiwgZHVubl9pbmRleF9maWx0ZXJlZCwgIlxuIikNCg0KIyBDYWxjdWxhdGUgdGhlIERhdmllcy1Cb3VsZGluIEluZGV4IGZvciBmaWx0ZXJlZCBkYXRhDQpkYl9pbmRleF9maWx0ZXJlZCA8LSBjbHVzdGVyU2ltOjppbmRleC5EQihrbWVhbnNfZGF0YV9maWx0ZXJlZCwga21lYW5zX21vZGVsX2ZpbHRlcmVkJGNsdXN0ZXIpDQpwcmludChkYl9pbmRleF9maWx0ZXJlZCkNCg0KYGBgDQoNCg0KDQpIaWVyYXJjaGljYWwgQ2x1c3RlcmluZw0KYGBge3J9DQojIExvYWQgcmVxdWlyZWQgbGlicmFyaWVzDQpsaWJyYXJ5KGdncGxvdDIpDQppbnN0YWxsLnBhY2thZ2VzKCJkcGx5ciIpDQpsaWJyYXJ5KGRwbHlyKQ0KbGlicmFyeShmYWN0b2V4dHJhKQ0KbGlicmFyeShjbHVzdGVyKQ0KbGlicmFyeShmcGMpDQpsaWJyYXJ5KGZsZXhjbHVzdCkNCmxpYnJhcnkobWNsdXN0KQ0KbGlicmFyeShjbHVzdGVyU2ltKQ0KbGlicmFyeShob3BraW5zKQ0KDQojIExvYWQgdGhlIE9ubGluZSBSZXRhaWwgZGF0YXNldA0KZGF0YSA8LSBPbmxpbmVfUmV0YWlsDQoNCiMgRGF0YSBwcmVwcm9jZXNzaW5nDQpkYXRhIDwtIGRhdGEgJT4lDQogIGRwbHlyOjpmaWx0ZXIoIWlzLm5hKEN1c3RvbWVySUQpKSAlPiUNCiAgZHBseXI6OnNlbGVjdChDdXN0b21lcklELCBJbnZvaWNlTm8sIEludm9pY2VEYXRlLCBVbml0UHJpY2UpDQoNCiMgQ2FsY3VsYXRlIHRvdGFsIHNwZW5kaW5nIChtb25ldGFyeSB2YWx1ZSkgcGVyIGN1c3RvbWVyDQptb25ldGFyeSA8LSBkYXRhICU+JQ0KICBncm91cF9ieShDdXN0b21lcklEKSAlPiUNCiAgc3VtbWFyaXNlKG1vbmV0YXJ5ID0gc3VtKFVuaXRQcmljZSkpDQoNCiMgQ2FsY3VsYXRlIHRoZSByZWNlbmN5IGFuZCBmcmVxdWVuY3kgdmFyaWFibGVzDQojIFJlY2VuY3kgaXMgY2FsY3VsYXRlZCBieSB0aGUgdGltZSBlbGFwc2VkIHNpbmNlIHRoZSBsYXN0IGRheSBvZiB0aGUgZGF0YXNldA0KIyBGcmVxdWVuY3kgaXMgY2FsY3VsYXRlZCBieSBzdW1taW5nIHVwIHRoZSBkaXN0aW5jdCBpbnZvaWNlcyBvZiBhIGN1c3RvbWVyDQpyZWNlbmN5IDwtIGRhdGEgJT4lDQogIGdyb3VwX2J5KEN1c3RvbWVySUQpICU+JQ0KICBzdW1tYXJpc2UocmVjZW5jeSA9IGFzLm51bWVyaWMoZGlmZnRpbWUobWF4KGRhdGEkSW52b2ljZURhdGUpLCBtYXgoSW52b2ljZURhdGUpLCB1bml0cyA9ICJkYXlzIikpLA0KICAgICAgICAgICAgZnJlcXVlbmN5ID0gbl9kaXN0aW5jdChJbnZvaWNlTm8pKQ0KDQojIE1lcmdlIFJGTSB2YXJpYWJsZXMgd2l0aCBtb25ldGFyeSB2YWx1ZQ0KcmZtIDwtIGxlZnRfam9pbihyZWNlbmN5LCBtb25ldGFyeSwgYnkgPSAiQ3VzdG9tZXJJRCIpDQoNCiMgQ2FsY3VsYXRlIHRoZSBIb3BraW5zIHN0YXRpc3RpYw0KaG9wa2luc19zdGF0IDwtIGhvcGtpbnM6OmhvcGtpbnMoWCA9IGFzLm1hdHJpeChyZm0pLCBtID0gbnJvdyhyZm0pIC0gMSwgbWV0aG9kID0gInNpbXBsZSIpDQpwcmludChob3BraW5zX3N0YXQpDQoNCiMgQ2hlY2sgdGhlIHZhbHVlIG9mIHRoZSBIb3BraW5zIHN0YXRpc3RpYw0KY2F0KCJIb3BraW5zIFN0YXRpc3RpYzoiLCBob3BraW5zX3N0YXQsICJcbiIpDQoNCiMgRGF0YSBub3JtYWxpemF0aW9uDQpyZm0kcmVjZW5jeV9zY2FsZWQgPC0gc2NhbGUocmZtJHJlY2VuY3kpDQpyZm0kZnJlcXVlbmN5X3NjYWxlZCA8LSBzY2FsZShyZm0kZnJlcXVlbmN5KQ0KcmZtJG1vbmV0YXJ5X3NjYWxlZCA8LSBzY2FsZShyZm0kbW9uZXRhcnkpDQoNCiMgUGVyZm9ybSBoaWVyYXJjaGljYWwgY2x1c3RlcmluZw0KaGNsdXN0X2RhdGEgPC0gcmZtWywgYygicmVjZW5jeV9zY2FsZWQiLCAiZnJlcXVlbmN5X3NjYWxlZCIsICJtb25ldGFyeV9zY2FsZWQiKV0NCmhjbHVzdF9tb2RlbCA8LSBoY2x1c3QoZGlzdChoY2x1c3RfZGF0YSkpDQoNCiMgU3BlY2lmeSB0aGUgZGVzaXJlZCBudW1iZXIgb2YgY2x1c3RlcnMNCmRlc2lyZWRfY2x1c3RlcnMgPC0gNA0KDQojIERldGVybWluZSB0aGUgY3V0b2ZmIGhlaWdodCBmb3IgdGhlIGRlc2lyZWQgbnVtYmVyIG9mIGNsdXN0ZXJzDQpjdXRvZmZfaGVpZ2h0IDwtIGhjbHVzdF9tb2RlbCRoZWlnaHRbbGVuZ3RoKGhjbHVzdF9tb2RlbCRoZWlnaHQpIC0gKGRlc2lyZWRfY2x1c3RlcnMgLSAxKV0NCmNhdCgiQ3V0LW9mZiBoZWlnaHQgYXQgIiwgZGVzaXJlZF9jbHVzdGVycywgIiBjbHVzdGVyczoiLCBjdXRvZmZfaGVpZ2h0LCAiXG4iKQ0KDQojIFBsb3QgdGhlIGRlbmRvZ3JhbSB3aXRoIGFuIGluZGljYXRpb24gb2YgdGhlIGN1dC1vZmYNCnBsb3QoaGNsdXN0X21vZGVsLCBsYWJlbHMgPSBGQUxTRSkNCmFibGluZShoID0gY3V0b2ZmX2hlaWdodCwgY29sID0gInJlZCIsIGx0eSA9IDIpDQoNCiMgRGV0ZXJtaW5lIGFuZCB2aXN1YWxpc2UgdGhlIG9wdGltYWwgbnVtYmVyIG9mIGNsdXN0ZXJzIHVwIHRvIDEwIHdpdGggYm9vdHN0cmFwcGluZyB1cCB0byAxMA0KZnZpel9uYmNsdXN0KGhjbHVzdF9kYXRhLCBoY3V0LCBtZXRob2QgPSAid3NzIikNCmZ2aXpfbmJjbHVzdChoY2x1c3RfZGF0YSwgaGN1dCwgbWV0aG9kID0gInNpbGhvdWV0dGUiKQ0KZ2FwX3N0YXRfaGNsdXN0IDwtIGNsdXNHYXAoaGNsdXN0X2RhdGEsIGhjdXQsIEsubWF4ID0gMTAsIEIgPSAxMCkNCmZ2aXpfZ2FwX3N0YXQoZ2FwX3N0YXRfaGNsdXN0KQ0KDQojIERldGVybWluZSB0aGUgdHJlZSBjdXQgZm9yIGEgZGVzaXJlZCBudW1iZXIgb2YgY2x1c3RlcnMNCmN1dCA8LSBjdXRyZWUoaGNsdXN0X21vZGVsLCBrID0gZGVzaXJlZF9jbHVzdGVycykNCg0KIyBBZGQgY2x1c3RlciBsYWJlbHMgdG8gdGhlIG9yaWdpbmFsIGRhdGFzZXQNCnJmbSRjbHVzdGVyIDwtIGFzLmZhY3RvcihjdXQpDQoNCiMgVmlzdWFsaXplIGRhdGEgcG9pbnRzIHBsb3R0ZWQgYWdhaW5zdCByZWNlbmN5LCBtb25ldGFyeSwgYW5kIGZyZXF1ZW5jeQ0KZ2dwbG90KHJmbSwgYWVzKHggPSByZWNlbmN5LCB5ID0gbW9uZXRhcnksIGNvbG9yID0gY2x1c3RlcikpICsNCiAgZ2VvbV9wb2ludCgpICsNCiAgbGFicyh4ID0gIlJlY2VuY3kiLCB5ID0gIk1vbmV0YXJ5IiwgY29sb3IgPSAiQ2x1c3RlciIpICsNCiAgdGhlbWVfbWluaW1hbCgpDQoNCmdncGxvdChyZm0sIGFlcyh4ID0gcmVjZW5jeSwgeSA9IGZyZXF1ZW5jeSwgY29sb3IgPSBjbHVzdGVyKSkgKw0KICBnZW9tX3BvaW50KCkgKw0KICBsYWJzKHggPSAiUmVjZW5jeSIsIHkgPSAiRnJlcXVlbmN5IiwgY29sb3IgPSAiQ2x1c3RlciIpICsNCiAgdGhlbWVfbWluaW1hbCgpDQoNCmdncGxvdChyZm0sIGFlcyh4ID0gbW9uZXRhcnksIHkgPSBmcmVxdWVuY3ksIGNvbG9yID0gY2x1c3RlcikpICsNCiAgZ2VvbV9wb2ludCgpICsNCiAgbGFicyh4ID0gIk1vbmV0YXJ5IiwgeSA9ICJGcmVxdWVuY3kiLCBjb2xvciA9ICJDbHVzdGVyIikgKw0KICB0aGVtZV9taW5pbWFsKCkNCg0KIyBDbHVzdGVyIGFuYWx5c2lzDQpjbHVzdGVyX2FuYWx5c2lzIDwtIHJmbSAlPiUNCiAgZ3JvdXBfYnkoY2x1c3RlcikgJT4lDQogIHN1bW1hcmlzZShhdmVyYWdlX3JlY2VuY3kgPSBtZWFuKHJlY2VuY3kpLA0KICAgICAgICAgICAgYXZlcmFnZV9mcmVxdWVuY3kgPSBtZWFuKGZyZXF1ZW5jeSksDQogICAgICAgICAgICBhdmVyYWdlX21vbmV0YXJ5ID0gbWVhbihtb25ldGFyeSksDQogICAgICAgICAgICBjb3VudF9jdXN0b21lcnMgPSBuKCkpDQoNCnByaW50KGNsdXN0ZXJfYW5hbHlzaXMpDQoNCiMgU2lsaG91ZXR0ZSBhbmFseXNpcw0Kc2lsIDwtIHNpbGhvdWV0dGUoY3V0LCBkaXN0KGhjbHVzdF9kYXRhKSkNCmF2Z19zaWxob3VldHRlIDwtIG1lYW4oc2lsWywgInNpbF93aWR0aCJdKQ0KDQpjYXQoIkF2ZXJhZ2UgU2lsaG91ZXR0ZSBXaWR0aDoiLCBhdmdfc2lsaG91ZXR0ZSwgIlxuIikNCg0KIyBDYWxjdWxhdGUgY2x1c3RlcmluZyBpbmRpY2VzIHVzaW5nIGNsdXN0ZXIuc3RhdHMNCmNsdXN0ZXJpbmdfaW5kaWNlcyA8LSBjbHVzdGVyLnN0YXRzKGRpc3QoaGNsdXN0X2RhdGEpLCBjdXQpDQpwcmludChjbHVzdGVyaW5nX2luZGljZXMpDQoNCiMgRXh0cmFjdCB0aGUgRHVubiBpbmRleCBmcm9tIHRoZSBjbHVzdGVyaW5nIGluZGljZXMgbGlzdA0KZHVubl9pbmRleCA8LSBjbHVzdGVyaW5nX2luZGljZXMkZHVubg0KY2F0KCJEdW5uIEluZGV4OiIsIGR1bm5faW5kZXgsICJcbiIpDQoNCiMgQ2FsY3VsYXRlIHRoZSBEYXZpZXMtQm91bGRpbiBJbmRleA0KZGJfaW5kZXggPC0gY2x1c3RlclNpbTo6aW5kZXguREIoaGNsdXN0X2RhdGEsIGN1dCkNCnByaW50KGRiX2luZGV4KQ0KYGBgDQoNCkhpZXJhcmNoaWNhbCBDbHVzdGVyaW5nIFJlZG9uZQ0KYGBge3J9DQojIEZpbHRlciBvdXQgb2JzZXJ2YXRpb25zIGluIGNsdXN0ZXJzIG90aGVyIHRoYW4gY2x1c3RlciAxDQpyZm1fZmlsdGVyZWQgPC0gcmZtW3JmbSRjbHVzdGVyID09IDEsIF0NCg0KIyBQZXJmb3JtIGhpZXJhcmNoaWNhbCBjbHVzdGVyaW5nIG9uIHRoZSBmaWx0ZXJlZCBkYXRhc2V0DQpoY2x1c3RfZGF0YV9maWx0ZXJlZCA8LSByZm1fZmlsdGVyZWRbLCBjKCJyZWNlbmN5X3NjYWxlZCIsICJmcmVxdWVuY3lfc2NhbGVkIiwgIm1vbmV0YXJ5X3NjYWxlZCIpXQ0KaGNsdXN0X21vZGVsX2ZpbHRlcmVkIDwtIGhjbHVzdChkaXN0KGhjbHVzdF9kYXRhX2ZpbHRlcmVkKSkNCg0KIyBTcGVjaWZ5IHRoZSBkZXNpcmVkIG51bWJlciBvZiBjbHVzdGVycw0KZGVzaXJlZF9jbHVzdGVyc19maWx0ZXJlZCA8LSA0DQoNCiMgRGV0ZXJtaW5lIHRoZSBjdXRvZmYgaGVpZ2h0IGZvciB0aGUgZGVzaXJlZCBudW1iZXIgb2YgY2x1c3RlcnMNCmN1dG9mZl9oZWlnaHRfZmlsdGVyZWQgPC0gaGNsdXN0X21vZGVsX2ZpbHRlcmVkJGhlaWdodFtsZW5ndGgoaGNsdXN0X21vZGVsX2ZpbHRlcmVkJGhlaWdodCkgLSAoZGVzaXJlZF9jbHVzdGVyc19maWx0ZXJlZCAtIDEpXQ0KY2F0KCJDdXQtb2ZmIGhlaWdodCBhdCIsIGRlc2lyZWRfY2x1c3RlcnNfZmlsdGVyZWQsICJjbHVzdGVyKHMpOiIsIGN1dG9mZl9oZWlnaHRfZmlsdGVyZWQsICJcbiIpDQoNCiMgUGxvdCB0aGUgZGVuZHJvZ3JhbSB3aXRoIGFuIGluZGljYXRpb24gb2YgdGhlIGN1dC1vZmYNCnBsb3QoaGNsdXN0X21vZGVsX2ZpbHRlcmVkLCBsYWJlbHMgPSBGQUxTRSkNCmFibGluZShoID0gY3V0b2ZmX2hlaWdodF9maWx0ZXJlZCwgY29sID0gInJlZCIsIGx0eSA9IDIpDQoNCiMgRGV0ZXJtaW5lIGFuZCB2aXN1YWxpemUgdGhlIG9wdGltYWwgbnVtYmVyIG9mIGNsdXN0ZXJzIHVwIHRvIDEwIHdpdGggYm9vdHN0cmFwcGluZyB1cCB0byAxMA0KZnZpel9uYmNsdXN0KGhjbHVzdF9kYXRhX2ZpbHRlcmVkLCBoY3V0LCBtZXRob2QgPSAid3NzIikNCmZ2aXpfbmJjbHVzdChoY2x1c3RfZGF0YV9maWx0ZXJlZCwgaGN1dCwgbWV0aG9kID0gInNpbGhvdWV0dGUiKQ0KZ2FwX3N0YXRfaGNsdXN0X2ZpbHRlcmVkIDwtIGNsdXNHYXAoaGNsdXN0X2RhdGFfZmlsdGVyZWQsIGhjdXQsIEsubWF4ID0gMTAsIEIgPSAxMCkNCmZ2aXpfZ2FwX3N0YXQoZ2FwX3N0YXRfaGNsdXN0X2ZpbHRlcmVkKQ0KDQojIERldGVybWluZSB0aGUgdHJlZSBjdXQgZm9yIGEgZGVzaXJlZCBudW1iZXIgb2YgY2x1c3RlcnMNCmN1dF9maWx0ZXJlZCA8LSBjdXRyZWUoaGNsdXN0X21vZGVsX2ZpbHRlcmVkLCBrID0gZGVzaXJlZF9jbHVzdGVyc19maWx0ZXJlZCkNCg0KIyBBZGQgY2x1c3RlciBsYWJlbHMgdG8gdGhlIGZpbHRlcmVkIGRhdGFzZXQNCnJmbV9maWx0ZXJlZCRjbHVzdGVyIDwtIGFzLmZhY3RvcihjdXRfZmlsdGVyZWQpDQoNCiMgVmlzdWFsaXplIGRhdGEgcG9pbnRzIHBsb3R0ZWQgYWdhaW5zdCByZWNlbmN5LCBtb25ldGFyeSwgYW5kIGZyZXF1ZW5jeQ0KZ2dwbG90KHJmbV9maWx0ZXJlZCwgYWVzKHggPSByZWNlbmN5LCB5ID0gbW9uZXRhcnksIGNvbG9yID0gY2x1c3RlcikpICsNCiAgZ2VvbV9wb2ludCgpICsNCiAgbGFicyh4ID0gIlJlY2VuY3kiLCB5ID0gIk1vbmV0YXJ5IiwgY29sb3IgPSAiQ2x1c3RlciIpICsNCiAgdGhlbWVfbWluaW1hbCgpDQoNCmdncGxvdChyZm1fZmlsdGVyZWQsIGFlcyh4ID0gcmVjZW5jeSwgeSA9IGZyZXF1ZW5jeSwgY29sb3IgPSBjbHVzdGVyKSkgKw0KICBnZW9tX3BvaW50KCkgKw0KICBsYWJzKHggPSAiUmVjZW5jeSIsIHkgPSAiRnJlcXVlbmN5IiwgY29sb3IgPSAiQ2x1c3RlciIpICsNCiAgdGhlbWVfbWluaW1hbCgpDQoNCmdncGxvdChyZm1fZmlsdGVyZWQsIGFlcyh4ID0gbW9uZXRhcnksIHkgPSBmcmVxdWVuY3ksIGNvbG9yID0gY2x1c3RlcikpICsNCiAgZ2VvbV9wb2ludCgpICsNCiAgbGFicyh4ID0gIk1vbmV0YXJ5IiwgeSA9ICJGcmVxdWVuY3kiLCBjb2xvciA9ICJDbHVzdGVyIikgKw0KICB0aGVtZV9taW5pbWFsKCkNCg0KIyBDbHVzdGVyIGFuYWx5c2lzDQpjbHVzdGVyX2FuYWx5c2lzX2ZpbHRlcmVkIDwtIHJmbV9maWx0ZXJlZCAlPiUNCiAgZ3JvdXBfYnkoY2x1c3RlcikgJT4lDQogIHN1bW1hcmlzZShhdmVyYWdlX3JlY2VuY3kgPSBtZWFuKHJlY2VuY3kpLA0KICAgICAgICAgICAgYXZlcmFnZV9mcmVxdWVuY3kgPSBtZWFuKGZyZXF1ZW5jeSksDQogICAgICAgICAgICBhdmVyYWdlX21vbmV0YXJ5ID0gbWVhbihtb25ldGFyeSksDQogICAgICAgICAgICBjb3VudF9jdXN0b21lcnMgPSBuKCkpDQoNCnByaW50KGNsdXN0ZXJfYW5hbHlzaXNfZmlsdGVyZWQpDQoNCiMgU2lsaG91ZXR0ZSBhbmFseXNpcw0Kc2lsX2ZpbHRlcmVkIDwtIHNpbGhvdWV0dGUoY3V0X2ZpbHRlcmVkLCBkaXN0KGhjbHVzdF9kYXRhX2ZpbHRlcmVkKSkNCmF2Z19zaWxob3VldHRlX2ZpbHRlcmVkIDwtIG1lYW4oc2lsX2ZpbHRlcmVkWywgInNpbF93aWR0aCJdKQ0KDQpjYXQoIkF2ZXJhZ2UgU2lsaG91ZXR0ZSBXaWR0aDoiLCBhdmdfc2lsaG91ZXR0ZV9maWx0ZXJlZCwgIlxuIikNCg0KIyBDYWxjdWxhdGUgY2x1c3RlcmluZyBpbmRpY2VzIHVzaW5nIGNsdXN0ZXIuc3RhdHMNCmNsdXN0ZXJpbmdfaW5kaWNlc19maWx0ZXJlZCA8LSBjbHVzdGVyLnN0YXRzKGRpc3QoaGNsdXN0X2RhdGFfZmlsdGVyZWQpLCBjdXRfZmlsdGVyZWQpDQpwcmludChjbHVzdGVyaW5nX2luZGljZXNfZmlsdGVyZWQpDQoNCiMgRXh0cmFjdCB0aGUgRHVubiBpbmRleCBmcm9tIHRoZSBjbHVzdGVyaW5nIGluZGljZXMgbGlzdA0KZHVubl9pbmRleF9maWx0ZXJlZCA8LSBjbHVzdGVyaW5nX2luZGljZXNfZmlsdGVyZWQkZHVubg0KY2F0KCJEdW5uIEluZGV4OiIsIGR1bm5faW5kZXhfZmlsdGVyZWQsICJcbiIpDQoNCiMgQ2FsY3VsYXRlIHRoZSBEYXZpZXMtQm91bGRpbiBJbmRleA0KZGJfaW5kZXhfZmlsdGVyZWQgPC0gY2x1c3RlclNpbTo6aW5kZXguREIoaGNsdXN0X2RhdGFfZmlsdGVyZWQsIGN1dF9maWx0ZXJlZCkNCnByaW50KGRiX2luZGV4X2ZpbHRlcmVkKQ0KYGBgDQoNCg0KREJTQ0FODQpgYGB7cn0NCiMgTG9hZCByZXF1aXJlZCBsaWJyYXJpZXMNCmxpYnJhcnkoZ2dwbG90MikNCmxpYnJhcnkoZHBseXIpDQpsaWJyYXJ5KGZhY3RvZXh0cmEpDQpsaWJyYXJ5KGNsdXN0ZXIpDQpsaWJyYXJ5KGZwYykNCmxpYnJhcnkoZmxleGNsdXN0KQ0KbGlicmFyeShtY2x1c3QpDQoNCiMgTG9hZCB0aGUgT25saW5lIFJldGFpbCBkYXRhc2V0DQpkYXRhIDwtIE9ubGluZV9SZXRhaWwNCg0KIyBEYXRhIHByZXByb2Nlc3NpbmcNCmRhdGEgPC0gZGF0YSAlPiUNCiAgZHBseXI6OmZpbHRlcighaXMubmEoQ3VzdG9tZXJJRCkpICU+JQ0KICBkcGx5cjo6c2VsZWN0KEN1c3RvbWVySUQsIEludm9pY2VObywgSW52b2ljZURhdGUsIFVuaXRQcmljZSkNCg0KIyBDYWxjdWxhdGUgdG90YWwgc3BlbmRpbmcgKG1vbmV0YXJ5IHZhbHVlKSBwZXIgY3VzdG9tZXINCm1vbmV0YXJ5IDwtIGRhdGEgJT4lDQogIGdyb3VwX2J5KEN1c3RvbWVySUQpICU+JQ0KICBzdW1tYXJpc2UobW9uZXRhcnkgPSBzdW0oVW5pdFByaWNlKSkNCg0KIyBDYWxjdWxhdGUgdGhlIHJlY2VuY3kgYW5kIGZyZXF1ZW5jeSB2YXJpYWJsZXMNCiMgUmVjZW5jeSBpcyBjYWxjdWxhdGVkIGJ5IHRoZSB0aW1lIGVsYXBzZWQgc2luY2UgdGhlIGxhc3QgZGF5IG9mIHRoZSBkYXRhc2V0DQojIEZyZXF1ZW5jeSBpcyBjYWxjdWxhdGVkIGJ5IHN1bW1pbmcgdXAgdGhlIGRpc3RpbmN0IGludm9pY2VzIG9mIGEgY3VzdG9tZXINCnJlY2VuY3kgPC0gZGF0YSAlPiUNCiAgZ3JvdXBfYnkoQ3VzdG9tZXJJRCkgJT4lDQogIHN1bW1hcmlzZShyZWNlbmN5ID0gYXMubnVtZXJpYyhkaWZmdGltZShtYXgoZGF0YSRJbnZvaWNlRGF0ZSksIG1heChJbnZvaWNlRGF0ZSksIHVuaXRzID0gImRheXMiKSksDQogICAgICAgICAgICBmcmVxdWVuY3kgPSBuX2Rpc3RpbmN0KEludm9pY2VObykpDQoNCiMgTWVyZ2UgUkZNIHZhcmlhYmxlcyB3aXRoIG1vbmV0YXJ5IHZhbHVlDQpyZm0gPC0gbGVmdF9qb2luKHJlY2VuY3ksIG1vbmV0YXJ5LCBieSA9ICJDdXN0b21lcklEIikNCg0KIyBDcmVhdGUgZGlzdGFuY2UgbWF0cml4IG9mIFJGTSBkYXRhIGZyYW1lIA0KDQojIFBlcmZvcm0gREJTQ0FOIGNsdXN0ZXJpbmcNCmRic2Nhbl9tb2RlbCA8LSBkYnNjYW4oZGlzdChyZm0pLCBlcHMgPSAwLjUsIE1pblB0cyA9IDUsIHNjYWxlID0gVFJVRSwgbWV0aG9kID0gInJhdyIsIHNob3dwbG90ID0gMSkNCg0KIyBBZGQgY2x1c3RlciBsYWJlbHMgdG8gdGhlIG9yaWdpbmFsIGRhdGFzZXQNCnJmbSRjbHVzdGVyIDwtIGFzLmZhY3RvcihkYnNjYW5fbW9kZWwkY2x1c3RlcikNCg0KIyBWaXN1YWxpemUgdGhlIGNsdXN0ZXJzDQpmdml6X2NsdXN0ZXIoZGJzY2FuX21vZGVsLCBkYXRhID0gbm9ybWFsaXplZF9kYXRhKQ0KDQojIENsdXN0ZXIgYW5hbHlzaXMNCmNsdXN0ZXJfYW5hbHlzaXMgPC0gcmZtICU+JQ0KICBncm91cF9ieShjbHVzdGVyKSAlPiUNCiAgc3VtbWFyaXNlKGF2ZXJhZ2VfcmVjZW5jeSA9IG1lYW4ocmVjZW5jeSksDQogICAgICAgICAgICBhdmVyYWdlX2ZyZXF1ZW5jeSA9IG1lYW4oZnJlcXVlbmN5KSwNCiAgICAgICAgICAgIGF2ZXJhZ2VfbW9uZXRhcnkgPSBtZWFuKG1vbmV0YXJ5KSwNCiAgICAgICAgICAgIGNvdW50X2N1c3RvbWVycyA9IG4oKSkNCg0KcHJpbnQoY2x1c3Rlcl9hbmFseXNpcykNCg0KIyBTaWxob3VldHRlIGFuYWx5c2lzDQpzaWwgPC0gc2lsaG91ZXR0ZShkYnNjYW5fbW9kZWwkY2x1c3RlciwgZGlzdChub3JtYWxpemVkX2RhdGEpKQ0KYXZnX3NpbGhvdWV0dGUgPC0gbWVhbihzaWxbLCAic2lsX3dpZHRoIl0pDQpjYXQoIkF2ZXJhZ2UgU2lsaG91ZXR0ZSBXaWR0aDoiLCBhdmdfc2lsaG91ZXR0ZSwgIlxuIikNCg0KIyBFeHRyYWN0IGNsdXN0ZXIgbGFiZWxzIGZyb20gdGhlIERCU0NBTiBtb2RlbA0KZGJzY2FuX2xhYmVscyA8LSBkYnNjYW5fbW9kZWwkY2x1c3Rlcg0KDQojIENhbGN1bGF0ZSBjbHVzdGVyaW5nIGluZGljZXMgdXNpbmcgY2x1c3Rlci5zdGF0cw0KY2x1c3RlcmluZ19pbmRpY2VzIDwtIGNsdXN0ZXIuc3RhdHMoZGlzdChyZm0pLCBkYnNjYW5fbGFiZWxzKQ0KcHJpbnQoY2x1c3RlcmluZ19pbmRpY2VzKQ0KDQojIEV4dHJhY3QgdGhlIER1bm4gaW5kZXggZnJvbSB0aGUgY2x1c3RlcmluZyBpbmRpY2VzIGxpc3QNCmR1bm5faW5kZXggPC0gY2x1c3RlcmluZ19pbmRpY2VzJGR1bm4NCmNhdCgiRHVubiBJbmRleDoiLCBkdW5uX2luZGV4LCAiXG4iKQ0KDQojIENhbGN1bGF0ZSB0aGUgRGF2aWVzLUJvdWxkaW4gSW5kZXgNCmRiX2luZGV4IDwtIGNsdXN0ZXJTaW06OmluZGV4LkRCKHJmbSwgZGJzY2FuX2xhYmVscykNCnByaW50KGRiX2luZGV4KQ0KDQoNCg0KYGBgDQoNCg==