Check assumptions
——-
dat_LM %>%
group_by(task, proficiency) %>%
identify_outliers(wariai2)
## # A tibble: 3 × 37
## task proficiency id name trueid ld ld2 koto nobe asunit clause
## <ord> <ord> <fct> <chr> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 L middle 7 NiuXuerui 7 45.8 3.67 19 24 2 3
## 2 L middle 12 LiangShi… 12 47.1 3.2 23 34 4 5
## 3 M middle 18 HuangShi… 18 48.7 4.46 74 119 8 13
## # ℹ 26 more variables: jyuzokuclause <dbl>, jyuzokuclauseperasunit <dbl>,
## # clauseperasunit <dbl>, wariai <dbl>, wariai2 <dbl>, jyodoushi <dbl>,
## # heiritsu <dbl>, kakari <dbl>, fukujyoshi <dbl>, ka <dbl>,
## # setsuzokujyoshi <dbl>, kakujyoshi <dbl>, syujyoshi <dbl>, rentai <dbl>,
## # hijiritsu <dbl>, setubimeishi <dbl>, setsubidoushi <dbl>,
## # setsubikeiyoushi <dbl>, kotonarucontents <dbl>,
## # kotonarucontents_asunit <dbl>, kotonarucontents_clause <dbl>, …
dat_LM %>%
group_by(task, proficiency) %>%
shapiro_test(wariai2)
## # A tibble: 6 × 5
## task proficiency variable statistic p
## <ord> <ord> <chr> <dbl> <dbl>
## 1 L lower wariai2 0.960 0.771
## 2 L middle wariai2 0.896 0.141
## 3 L upper wariai2 0.877 0.0812
## 4 M lower wariai2 0.921 0.325
## 5 M middle wariai2 0.912 0.225
## 6 M upper wariai2 0.910 0.214
ggqqplot(dat_LM, "wariai2", ggtheme = theme_bw()) +
facet_grid(task ~ proficiency)

dat_LM %>%
group_by(task) %>%
levene_test(wariai2 ~ proficiency)
## # A tibble: 2 × 5
## task df1 df2 statistic p
## <ord> <int> <int> <dbl> <dbl>
## 1 L 2 32 0.788 0.463
## 2 M 2 32 0.203 0.817
Computation
——-
res.aov <- anova_test(
data = dat_LM, dv = wariai2, wid = trueid,
between = proficiency, within = task
)
get_anova_table(res.aov)
## ANOVA Table (type III tests)
##
## Effect DFn DFd F p p<.05 ges
## 1 proficiency 2 32 2.562 0.093 0.110
## 2 task 1 32 3.108 0.087 0.022
## 3 proficiency:task 2 32 0.271 0.765 0.004
interaction.plot(x.factor = dat_LM$task, trace.factor = dat_LM$proficiency,
response = dat_LM$wariai2, fun = mean,
type = "b", legend = TRUE, trace.label = "TASK")
