Semana del corazon

  1. Cintura de riesgo y su asociación con sexo y edad.
  2. Circunferencia de riesgo y su asociación con hipertensión arterial.
  3. Circunferencia de riesgo y su asociación con hipercolesterolemia.
  4. Circunferencia de riesgo y su asociación con hipertrigliceridemia.
  5. Circunferencia de riesgo y su asociación con fumadores.
  6. Hipertensión arterial según sexo y edad y si fuma.
  7. Hipocolesterolemia según sexo y edad y si fuma.
  8. Hipertrgliceridemia según sexo y edad y si fuma.

Lectura de datos y depuracion

load("~/Dropbox/especialidad_nutricion/trabajos/trabajo 2/corazon.RData")

# $corazon<-read.csv('corazon.csv',sep=';')
head(corazon)
##   N. SEXO EDAD edad.rec FUMA PAS PAS.rec PAD PAD.rec COLESTEROL
## 1  1    F   56       E4   NO 120       0  80       0        177
## 2  2    F   56       E4   NO 150       1  90       1        360
## 3  4    F   39       E2   NO 110       0  60       0        172
## 4  5    F   49       E3   NO 120       0  70       0        154
## 5  6    F   56       E4   NO 120       0  60       0        165
## 6  7    F   56       E4   NO 120       0  80       0        181
##   COLESTEROL.rec TRIG TRIG.rec CCINTURA CCINTURA.rec
## 1              0  211        1       79            0
## 2              1  127        0       84            0
## 3              0  111        0       77            0
## 4              0   78        0     72,5            0
## 5              0  151        1       78            0
## 6              0  106        0      110            1
str(corazon)
## 'data.frame':    83 obs. of  15 variables:
##  $ N.            : int  1 2 4 5 6 7 8 9 10 12 ...
##  $ SEXO          : Factor w/ 2 levels "F","M": 1 1 1 1 1 1 1 1 1 1 ...
##  $ EDAD          : int  56 56 39 49 56 56 60 57 40 39 ...
##  $ edad.rec      : Factor w/ 4 levels "E1","E2","E3",..: 4 4 2 3 4 4 4 4 2 2 ...
##  $ FUMA          : Factor w/ 2 levels "NO","SI": 1 1 1 1 1 1 1 2 1 1 ...
##  $ PAS           : int  120 150 110 120 120 120 140 130 100 100 ...
##  $ PAS.rec       : Factor w/ 2 levels "0","1": 1 2 1 1 1 1 2 2 1 1 ...
##  $ PAD           : int  80 90 60 70 60 80 90 70 70 60 ...
##  $ PAD.rec       : Factor w/ 2 levels "0","1": 1 2 1 1 1 1 2 1 1 1 ...
##  $ COLESTEROL    : int  177 360 172 154 165 181 206 282 212 210 ...
##  $ COLESTEROL.rec: Factor w/ 2 levels "0","1": 1 2 1 1 1 1 2 2 2 2 ...
##  $ TRIG          : Factor w/ 48 levels "101","103","106",..: 27 12 5 38 21 3 39 48 34 23 ...
##  $ TRIG.rec      : Factor w/ 2 levels "0","1": 2 1 1 1 2 1 1 2 2 2 ...
##  $ CCINTURA      : Factor w/ 53 levels "100","101","103",..: 26 33 24 20 25 8 31 52 18 27 ...
##  $ CCINTURA.rec  : Factor w/ 2 levels "0","1": 1 1 1 1 1 2 1 2 1 1 ...
names(corazon)
##  [1] "N."             "SEXO"           "EDAD"           "edad.rec"      
##  [5] "FUMA"           "PAS"            "PAS.rec"        "PAD"           
##  [9] "PAD.rec"        "COLESTEROL"     "COLESTEROL.rec" "TRIG"          
## [13] "TRIG.rec"       "CCINTURA"       "CCINTURA.rec"
colnames(corazon)[6] <- c("PAS")
colnames(corazon)[8] <- c("PAD")
colnames(corazon)[9] <- c("PAD.rec")
colnames(corazon)[12] <- c("TRIG")
colnames(corazon)[14] <- c("CCINTURA")
colnames(corazon)[15] <- c("CCINTURA.rec")

attach(corazon)
corazon$PAS.rec <- as.factor(corazon$PAS.rec)
corazon$PAD.rec <- as.factor(corazon$PAD.rec)
corazon$COLESTEROL.rec <- as.factor(corazon$COLESTEROL.rec)
corazon$TRIG.rec <- as.factor(corazon$TRIG.rec)
corazon$CCINTURA.rec <- as.factor(corazon$CCINTURA.rec)

DESCRIPCION

summary(corazon[, c(2, 4, 5, 7, 9, 11, 13, 15)])
##  SEXO   edad.rec FUMA    PAS.rec PAD.rec COLESTEROL.rec TRIG.rec
##  F:65   E1:13    NO:75   0:57    0:70    0:52           0:63    
##  M:18   E2:16    SI: 8   1:26    1:13    1:31           1:20    
##         E3:20                                                   
##         E4:34                                                   
##  CCINTURA.rec
##  0:52        
##  1:31        
##              
## 

1.CINTURA DE RIESGO Y SU ASOCIACIÓN CON SEXO Y EDAD.

addmargins(table(corazon$CCINTURA.rec, corazon$SEXO))
##      
##        F  M Sum
##   0   39 13  52
##   1   26  5  31
##   Sum 65 18  83
chisq.test(table(corazon$CCINTURA.rec, corazon$SEXO))
## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  table(corazon$CCINTURA.rec, corazon$SEXO) 
## X-squared = 0.4534, df = 1, p-value = 0.5007
fisher.test(table(corazon$CCINTURA.rec, corazon$SEXO))
## 
##  Fisher's Exact Test for Count Data
## 
## data:  table(corazon$CCINTURA.rec, corazon$SEXO) 
## p-value = 0.417
## alternative hypothesis: true odds ratio is not equal to 1 
## 95 percent confidence interval:
##  0.1443 2.0038 
## sample estimates:
## odds ratio 
##     0.5806

addmargins(table(corazon$edad.rec, corazon$CCINTURA.rec))
##      
##        0  1 Sum
##   E1  11  2  13
##   E2  13  3  16
##   E3  11  9  20
##   E4  17 17  34
##   Sum 52 31  83
chisq.test(table(corazon$edad.rec, corazon$CCINTURA.rec))
## Warning: Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  table(corazon$edad.rec, corazon$CCINTURA.rec) 
## X-squared = 7.871, df = 3, p-value = 0.04875

2.CIRCUNFERENCIA DE RIESGO Y SU ASOCIACIÓN CON HIPERTENSIÓN ARTERIAL.

addmargins(table(corazon$PAS.rec, corazon$CCINTURA.rec))
##      
##        0  1 Sum
##   0   38 19  57
##   1   14 12  26
##   Sum 52 31  83
chisq.test(table(corazon$PAS.rec, corazon$CCINTURA.rec))
## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  table(corazon$PAS.rec, corazon$CCINTURA.rec) 
## X-squared = 0.7662, df = 1, p-value = 0.3814
fisher.test(table(corazon$PAS.rec, corazon$CCINTURA.rec))
## 
##  Fisher's Exact Test for Count Data
## 
## data:  table(corazon$PAS.rec, corazon$CCINTURA.rec) 
## p-value = 0.3297
## alternative hypothesis: true odds ratio is not equal to 1 
## 95 percent confidence interval:
##  0.5931 4.8888 
## sample estimates:
## odds ratio 
##      1.703

addmargins(table(corazon$PAD.rec, corazon$CCINTURA.rec))
##      
##        0  1 Sum
##   0   43 27  70
##   1    9  4  13
##   Sum 52 31  83
chisq.test(table(corazon$PAD.rec, corazon$CCINTURA.rec))
## Warning: Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  table(corazon$PAD.rec, corazon$CCINTURA.rec) 
## X-squared = 0.0492, df = 1, p-value = 0.8244
fisher.test(table(corazon$PAD.rec, corazon$CCINTURA.rec))
## 
##  Fisher's Exact Test for Count Data
## 
## data:  table(corazon$PAD.rec, corazon$CCINTURA.rec) 
## p-value = 0.7583
## alternative hypothesis: true odds ratio is not equal to 1 
## 95 percent confidence interval:
##  0.1453 2.8655 
## sample estimates:
## odds ratio 
##     0.7107

3.CIRCUNFERENCIA DE RIESGO Y SU ASOCIACIÓN CON HIPERCOLESTEROLEMIA.

addmargins(table(corazon$COLESTEROL.rec, corazon$CCINTURA.rec))
##      
##        0  1 Sum
##   0   36 16  52
##   1   16 15  31
##   Sum 52 31  83
chisq.test(table(corazon$COLESTEROL.rec, corazon$CCINTURA.rec))
## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  table(corazon$COLESTEROL.rec, corazon$CCINTURA.rec) 
## X-squared = 1.878, df = 1, p-value = 0.1705
fisher.test(table(corazon$COLESTEROL.rec, corazon$CCINTURA.rec))
## 
##  Fisher's Exact Test for Count Data
## 
## data:  table(corazon$COLESTEROL.rec, corazon$CCINTURA.rec) 
## p-value = 0.1589
## alternative hypothesis: true odds ratio is not equal to 1 
## 95 percent confidence interval:
##  0.7613 5.8238 
## sample estimates:
## odds ratio 
##       2.09

4.CIRCUNFERENCIA DE RIESGO Y SU ASOCIACIÓN CON HIPERTRIGLICERIDEMIA.

addmargins(table(corazon$TRIG.rec, corazon$CCINTURA.rec))
##      
##        0  1 Sum
##   0   40 23  63
##   1   12  8  20
##   Sum 52 31  83
chisq.test(table(corazon$TRIG.rec, corazon$CCINTURA.rec))
## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  table(corazon$TRIG.rec, corazon$CCINTURA.rec) 
## X-squared = 3e-04, df = 1, p-value = 0.9872
fisher.test(table(corazon$TRIG.rec, corazon$CCINTURA.rec))
## 
##  Fisher's Exact Test for Count Data
## 
## data:  table(corazon$TRIG.rec, corazon$CCINTURA.rec) 
## p-value = 0.7959
## alternative hypothesis: true odds ratio is not equal to 1 
## 95 percent confidence interval:
##  0.3544 3.6258 
## sample estimates:
## odds ratio 
##      1.157

5.CIRCUNFERENCIA DE RIESGO Y SU ASOCIACIÓN CON FUMADORES.

addmargins(table(corazon$FUMA, corazon$CCINTURA.rec))
##      
##        0  1 Sum
##   NO  49 26  75
##   SI   3  5   8
##   Sum 52 31  83
chisq.test(table(corazon$FUMA, corazon$CCINTURA.rec))
## Warning: Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  table(corazon$FUMA, corazon$CCINTURA.rec) 
## X-squared = 1.352, df = 1, p-value = 0.245
fisher.test(table(corazon$FUMA, corazon$CCINTURA.rec))
## 
##  Fisher's Exact Test for Count Data
## 
## data:  table(corazon$FUMA, corazon$CCINTURA.rec) 
## p-value = 0.1427
## alternative hypothesis: true odds ratio is not equal to 1 
## 95 percent confidence interval:
##   0.5522 21.5169 
## sample estimates:
## odds ratio 
##      3.095

6.HIPERTENSIÓN ARTERIAL SEGÚN SEXO Y EDAD Y SI FUMA.

addmargins(table(corazon$SEXO, corazon$PAS.rec))
##      
##        0  1 Sum
##   F   47 18  65
##   M   10  8  18
##   Sum 57 26  83
chisq.test(table(corazon$SEXO, corazon$PAS.rec))
## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  table(corazon$SEXO, corazon$PAS.rec) 
## X-squared = 1.143, df = 1, p-value = 0.2851

addmargins(table(corazon$edad.rec, corazon$PAS.rec))
##      
##        0  1 Sum
##   E1  10  3  13
##   E2  14  2  16
##   E3  13  7  20
##   E4  20 14  34
##   Sum 57 26  83
chisq.test(table(corazon$edad.rec, corazon$PAS.rec))
## Warning: Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  table(corazon$edad.rec, corazon$PAS.rec) 
## X-squared = 4.706, df = 3, p-value = 0.1946

addmargins(table(corazon$SEXO, corazon$PAD.rec))
##      
##        0  1 Sum
##   F   56  9  65
##   M   14  4  18
##   Sum 70 13  83
chisq.test(table(corazon$SEXO, corazon$PAD.rec))
## Warning: Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  table(corazon$SEXO, corazon$PAD.rec) 
## X-squared = 0.2489, df = 1, p-value = 0.6179

addmargins(table(corazon$edad.rec, corazon$PAD.rec))
##      
##        0  1 Sum
##   E1  11  2  13
##   E2  14  2  16
##   E3  19  1  20
##   E4  26  8  34
##   Sum 70 13  83
chisq.test(table(corazon$edad.rec, corazon$PAD.rec))
## Warning: Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  table(corazon$edad.rec, corazon$PAD.rec) 
## X-squared = 3.436, df = 3, p-value = 0.3291

addmargins(table(corazon$FUMA, corazon$PAS.rec))
##      
##        0  1 Sum
##   NO  56 19  75
##   SI   1  7   8
##   Sum 57 26  83
chisq.test(table(corazon$FUMA, corazon$PAS.rec))
## Warning: Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  table(corazon$FUMA, corazon$PAS.rec) 
## X-squared = 10.26, df = 1, p-value = 0.001361

addmargins(table(corazon$FUMA, corazon$PAD.rec))
##      
##        0  1 Sum
##   NO  66  9  75
##   SI   4  4   8
##   Sum 70 13  83
chisq.test(table(corazon$FUMA, corazon$PAD.rec))
## Warning: Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  table(corazon$FUMA, corazon$PAD.rec) 
## X-squared = 5.287, df = 1, p-value = 0.02148

7.HIPOCOLESTEROLEMIA SEGÚN SEXO Y EDAD Y SI FUMA.

addmargins(table(corazon$SEXO, corazon$COLESTEROL.rec))
##      
##        0  1 Sum
##   F   40 25  65
##   M   12  6  18
##   Sum 52 31  83
chisq.test(table(corazon$SEXO, corazon$COLESTEROL.rec))
## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  table(corazon$SEXO, corazon$COLESTEROL.rec) 
## X-squared = 0.0151, df = 1, p-value = 0.9023

addmargins(table(corazon$edad.rec, corazon$COLESTEROL.rec))
##      
##        0  1 Sum
##   E1   9  4  13
##   E2   9  7  16
##   E3  12  8  20
##   E4  22 12  34
##   Sum 52 31  83
chisq.test(table(corazon$edad.rec, corazon$COLESTEROL.rec))
## Warning: Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  table(corazon$edad.rec, corazon$COLESTEROL.rec) 
## X-squared = 0.6421, df = 3, p-value = 0.8867

addmargins(table(corazon$FUMA, corazon$COLESTEROL.rec))
##      
##        0  1 Sum
##   NO  48 27  75
##   SI   4  4   8
##   Sum 52 31  83
chisq.test(table(corazon$FUMA, corazon$COLESTEROL.rec))
## Warning: Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  table(corazon$FUMA, corazon$COLESTEROL.rec) 
## X-squared = 0.155, df = 1, p-value = 0.6938

8.HIPERTRGLICERIDEMIA SEGÚN SEXO Y EDAD Y SI FUMA.

addmargins(table(corazon$SEXO, corazon$TRIG.rec))
##      
##        0  1 Sum
##   F   49 16  65
##   M   14  4  18
##   Sum 63 20  83
chisq.test(table(corazon$SEXO, corazon$TRIG.rec))
## Warning: Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  table(corazon$SEXO, corazon$TRIG.rec) 
## X-squared = 0, df = 1, p-value = 1

addmargins(table(corazon$edad.rec, corazon$TRIG.rec))
##      
##        0  1 Sum
##   E1  12  1  13
##   E2  11  5  16
##   E3  16  4  20
##   E4  24 10  34
##   Sum 63 20  83
chisq.test(table(corazon$edad.rec, corazon$TRIG.rec))
## Warning: Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  table(corazon$edad.rec, corazon$TRIG.rec) 
## X-squared = 3.069, df = 3, p-value = 0.3811

addmargins(table(corazon$FUMA, corazon$TRIG.rec))
##      
##        0  1 Sum
##   NO  59 16  75
##   SI   4  4   8
##   Sum 63 20  83
chisq.test(table(corazon$FUMA, corazon$TRIG.rec))
## Warning: Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  table(corazon$FUMA, corazon$TRIG.rec) 
## X-squared = 1.87, df = 1, p-value = 0.1715