target <- “https://movie.daum.net/ranking/boxoffice/yearly?date=2022” 다음영화랭킹 KOBIS
htm <- read_html(target)
제목2022 <- htm %>% html_elements(“#mainContent .link_txt”) %>% html_text()
관객2022 <- htm %>% html_elements(“.info_txt+ .info_txt”) %>% html_text() %>% str_extract(“[\d,]+”) %>% parse_number(locale = locale(grouping_mark = “,”))
apply(관객2022,2,sum)
<2019~2022년도의 영화, 관객, 관객합>
knitr::include_graphics("스크린샷_영화 201922.png")
knitr::include_graphics("스크린샷_년도별 관객수 .png")
국내외파이 <- tibble(class,year)
s1.국내외파이 %>% ggplot(aes(year,fill=factor(국내외))) + geom_bar() + labs(x=“년도”,y=“관객 수”,title=“국내외 관람객 비교”,fill=“국내외”)
s2.국내외파이 %>% ggplot(aes(year,fill=factor(국내외))) + geom_bar() +coord_polar() + labs(x=“년도”,y=“관객 수”,title=“국내외 관람객 비교”,fill=“국내외”)
knitr::include_graphics("스크린샷_국내외파이 .png")
knitr::include_graphics("스크린샷_국내외파이원.png")
과거
ott
현재
knitr::include_graphics("스크린샷_ott.png")
knitr::include_graphics("스크린샷_군집화1.png")
knitr::include_graphics("스크린샷_군집화2.png")
knitr::include_graphics("스크린샷_군집화3.png")
knitr::include_graphics("스크린샷_군집화4.png")
knitr::include_graphics("스크린샷_한국어감성사전.png")
knitr::include_graphics("스크린샷_ 과거score.png")
knitr::include_graphics("스크린샷_과거score시각화.png")
knitr::include_graphics("스크린샷_시각화1.png")
knitr::include_graphics("스크린샷_시각화2.png")
knitr::include_graphics("스크린샷_시각화3.png")
knitr::include_graphics("스크린샷_시각화군집.png")
knitr::include_graphics("스크린샷 _ aq1 head.png")
sum_현재 %>% filter(n>10) %>% count() # n>10인 단어의 수는 628개
knitr::include_graphics("스크린샷_aq.png")
knitr::include_graphics("스크린샷_추출단어aw.png")
test1 <- rbind(aq1,aq2,aq22,aq3,aq4,aq5,aq6,aq7,aq8) %>% count(name) # 퍼센트 합 test2 <- rbind(aw1,aw2,aw22,aw3,aw4,aw5,aw6,aw7,aw8) # 추출단어 순위
knitr::include_graphics("스크린샷_추출단어순위.png")
knitr::include_graphics("스크린샷_추출단어합 .png")