#paquetes
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.2.3
## Warning: package 'ggplot2' was built under R version 4.2.3
## Warning: package 'tibble' was built under R version 4.2.3
## Warning: package 'tidyr' was built under R version 4.2.3
## Warning: package 'readr' was built under R version 4.2.3
## Warning: package 'purrr' was built under R version 4.2.3
## Warning: package 'dplyr' was built under R version 4.2.3
## Warning: package 'forcats' was built under R version 4.2.3
## Warning: package 'lubridate' was built under R version 4.2.3
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.1 ✔ readr 2.1.4
## ✔ forcats 1.0.0 ✔ stringr 1.5.0
## ✔ ggplot2 3.4.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.2 ✔ tidyr 1.3.0
## ✔ purrr 1.0.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the ]8;;http://conflicted.r-lib.org/conflicted package]8;; to force all conflicts to become errors
library(gtsummary)
## Warning: package 'gtsummary' was built under R version 4.2.3
library(gt)
library(ggpubr)
## Warning: package 'ggpubr' was built under R version 4.2.3
library(readxl)
## Warning: package 'readxl' was built under R version 4.2.3
FIDEL_OSUNA_RAG_HIPOALBUMINEMIA_PREECLAMPSIA <- read_excel("C:/Users/fidel/OneDrive - UNIVERSIDAD AUTONOMA DE SINALOA/COLABS/DrMurillo HMujer/Precalmpsia/FIDEL OSUNA RAG HIPOALBUMINEMIA PREECLAMPSIA.xls")
dbhm<-FIDEL_OSUNA_RAG_HIPOALBUMINEMIA_PREECLAMPSIA
names(dbhm)
## [1] "nombre" "fecha22" "edad" "cesarea"
## [5] "sdg" "gestas" "compfet" "sana"
## [9] "htg" "pens" "pese" "imc"
## [13] "leucos" "neutro" "linfos" "plaq"
## [17] "pcr" "dhl" "creat" "urea"
## [21] "un" "prot24" "acu" "ca"
## [25] "mg" "album" "glog" "rag"
## [29] "observaciones" "HIPOALBUM" "HIPOGLOB" "hipalbglob"
## [33] "RAG127" "patologia" "agr1" "agr2"
## [37] "agr3" "Ptardia" "raghtg" "ragPtar"
## [41] "ragPns" "var45" "var44" "PEtmp"
## [45] "compMat" "PCO"
str(dbhm)
## tibble [223 × 46] (S3: tbl_df/tbl/data.frame)
## $ nombre : chr [1:223] "VALENUELA LOPEZ CLAUDIA YADIRA" "ANGULO MARTINEZ ROSINA NOHEMI" "CORONEL GUEVARA YAHAIRA GUADALUPE" "MEZA AMBROCIO LURDES" ...
## $ fecha22 : num [1:223] 1601 611 2310 901 701 ...
## $ edad : num [1:223] 31 22 32 31 33 29 36 28 18 20 ...
## $ cesarea : num [1:223] 1 1 1 0 NA 1 NA 1 1 0 ...
## $ sdg : num [1:223] 38.1 37.3 39.6 34 24.6 39.1 23.5 38.3 38.5 37.1 ...
## $ gestas : num [1:223] 2 2 3 4 2 3 3 3 1 1 ...
## $ compfet : num [1:223] 0 0 0 0 1 0 0 0 0 0 ...
## $ sana : num [1:223] 0 0 0 0 0 0 0 0 0 0 ...
## $ htg : num [1:223] 0 0 1 1 0 1 0 1 0 0 ...
## $ pens : num [1:223] 1 0 0 0 0 0 0 0 0 1 ...
## $ pese : num [1:223] 0 0 0 0 0 0 0 0 0 0 ...
## $ imc : num [1:223] 23.1 27.6 39.7 33 23.2 ...
## $ leucos : num [1:223] 7350 13330 13070 9980 11620 ...
## $ neutro : num [1:223] 67.2 70.6 65.9 59.9 74.4 77 82.6 75.5 66.1 78.4 ...
## $ linfos : num [1:223] 27.1 16.1 24.6 29.9 19.6 15.8 9.1 15.6 24.3 17 ...
## $ plaq : num [1:223] 143 356 278 298 295 242 303 205 175 297 ...
## $ pcr : num [1:223] NA 13 NA NA NA ...
## $ dhl : num [1:223] 194 121 215 184 165 241 167 170 182 198 ...
## $ creat : num [1:223] 0.62 0.51 0.62 0.52 0.69 0.86 0.42 0.54 0.52 0.55 ...
## $ urea : num [1:223] 19.2 11.8 17.9 16.6 13.4 20.4 11.5 19.7 14.5 12.6 ...
## $ un : num [1:223] 9 NA 8.4 7.8 6.3 7.5 5.4 9.2 6.8 5.9 ...
## $ prot24 : num [1:223] 329 NA NA 204 NA ...
## $ acu : num [1:223] 5.5 3.3 7.3 4.2 3.7 5.6 3.5 3.5 3.6 4.1 ...
## $ ca : num [1:223] 8.52 9.22 9.61 9.86 9.74 ...
## $ mg : num [1:223] 1.93 1.74 1.95 1.88 1.99 NA 1.87 1.73 1.51 1.78 ...
## $ album : num [1:223] 3.5 3.25 3.86 3.66 4.28 2.92 4.08 3.21 3.6 4.1 ...
## $ glog : num [1:223] 3.04 2.78 2.87 2.88 2.83 2.38 3.02 2.85 3 2.81 ...
## $ rag : num [1:223] 1.15 1.17 1.14 1.27 1.51 1.23 1.35 1.13 1.2 1.46 ...
## $ observaciones: chr [1:223] "IVU" "OLIGODR" "HTG" NA ...
## $ HIPOALBUM : num [1:223] 0 1 0 0 0 1 0 1 0 0 ...
## $ HIPOGLOB : num [1:223] 1 1 1 1 1 1 1 1 1 1 ...
## $ hipalbglob : num [1:223] 0 1 0 0 0 1 0 1 0 0 ...
## $ RAG127 : num [1:223] 1 1 1 1 0 1 0 1 1 0 ...
## $ patologia : chr [1:223] "PENS" "Sin resultado" "HTG" "HTG" ...
## $ agr1 : num [1:223] 0 0 0 0 0 0 0 0 0 0 ...
## $ agr2 : num [1:223] 1 1 1 1 0 1 0 1 1 0 ...
## $ agr3 : num [1:223] 0 0 0 0 1 0 1 0 0 1 ...
## $ Ptardia : num [1:223] 1 0 0 0 0 0 0 0 0 1 ...
## $ raghtg : num [1:223] NA NA 1.14 1.27 NA NA NA 1.13 NA NA ...
## $ ragPtar : num [1:223] 1.15 1.17 1.14 1.27 NA 1.23 NA 1.13 1.2 1.46 ...
## $ ragPns : num [1:223] 1.15 NA NA NA NA NA NA NA NA 1.46 ...
## $ var45 : num [1:223] NA NA NA NA 183 NA 43 NA NA NA ...
## $ var44 : num [1:223] NA NA NA NA NA NA NA NA NA NA ...
## $ PEtmp : num [1:223] 0 0 0 0 0 0 0 0 0 0 ...
## $ compMat : num [1:223] 1 1 1 0 1 0 0 1 1 1 ...
## $ PCO : num [1:223] 23.6 22 25.5 22.7 27.8 ...
#dbhm <- dbhm %>% filter(patologia != "Sin resultado")
dbhm %>% select(sana, pens, pese) %>% tbl_summary()
| Characteristic | N = 2231 |
|---|---|
| sana | 35 (16%) |
| pens | 42 (19%) |
| pese | 43 (19%) |
| 1 n (%) | |
#hacer una tabla por patologia
pensgtsumm<-dbhm %>% select(edad,cesarea,sdg,gestas,compfet,imc,leucos,neutro,linfos,plaq,pcr,dhl,creat, urea, un, prot24, acu,ca,mg,album, glog, rag,PCO,HIPOALBUM,HIPOGLOB, hipalbglob, RAG127,pens) %>% tbl_summary(by=pens) %>% add_p() %>% add_overall()
## Warning for variable 'pcr':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
pensgtsumm
| Characteristic | Overall, N = 2231 | 0, N = 1811 | 1, N = 421 | p-value2 |
|---|---|---|---|---|
| edad | 25 (20, 30) | 25 (21, 31) | 24 (18, 29) | 0.2 |
| cesarea | 119 (63%) | 100 (64%) | 19 (58%) | 0.5 |
| Â Â Â Â Unknown | 34 | 25 | 9 | |
| sdg | 37.9 (35.0, 39.0) | 38.0 (34.9, 39.0) | 37.5 (35.1, 39.0) | 0.9 |
| Â Â Â Â Unknown | 1 | 1 | 0 | |
| gestas | >0.9 | |||
| Â Â Â Â 1 | 72 (32%) | 55 (30%) | 17 (40%) | |
| Â Â Â Â 2 | 66 (30%) | 53 (29%) | 13 (31%) | |
| Â Â Â Â 3 | 40 (18%) | 34 (19%) | 6 (14%) | |
| Â Â Â Â 4 | 29 (13%) | 24 (13%) | 5 (12%) | |
| Â Â Â Â 5 | 5 (2.2%) | 5 (2.8%) | 0 (0%) | |
| Â Â Â Â 6 | 6 (2.7%) | 5 (2.8%) | 1 (2.4%) | |
| Â Â Â Â 7 | 3 (1.3%) | 3 (1.7%) | 0 (0%) | |
| Â Â Â Â 8 | 2 (0.9%) | 2 (1.1%) | 0 (0%) | |
| compfet | 8 (3.7%) | 7 (3.9%) | 1 (2.5%) | >0.9 |
| Â Â Â Â Unknown | 5 | 3 | 2 | |
| imc | 29.8 (25.6, 34.5) | 29.2 (25.5, 34.4) | 33.0 (28.2, 35.5) | 0.14 |
| Â Â Â Â Unknown | 23 | 18 | 5 | |
| leucos | 10,365 (8,600, 12,958) | 10,210 (8,490, 12,975) | 11,015 (9,372, 12,832) | 0.3 |
| Â Â Â Â Unknown | 1 | 1 | 0 | |
| neutro | 74 (67, 79) | 74 (67, 79) | 73 (68, 78) | >0.9 |
| Â Â Â Â Unknown | 3 | 1 | 2 | |
| linfos | 18 (14, 24) | 18 (13, 23) | 18 (15, 24) | 0.9 |
| Â Â Â Â Unknown | 3 | 1 | 2 | |
| plaq | 219 (146, 278) | 210 (142, 279) | 240 (208, 275) | 0.060 |
| Â Â Â Â Unknown | 1 | 1 | 0 | |
| pcr | 41 (20, 86) | 40 (19, 86) | 79 (50, 80) | 0.4 |
| Â Â Â Â Unknown | 171 | 134 | 37 | |
| dhl | 186 (162, 226) | 188 (166, 228) | 182 (149, 208) | 0.083 |
| Â Â Â Â Unknown | 7 | 7 | 0 | |
| creat | 0.55 (0.49, 0.62) | 0.55 (0.49, 0.63) | 0.54 (0.49, 0.58) | 0.2 |
| urea | 16 (13, 20) | 16 (13, 20) | 14 (11, 16) | 0.009 |
| un | 7.40 (5.90, 9.20) | 7.50 (6.10, 9.35) | 6.30 (5.25, 7.70) | 0.013 |
| Â Â Â Â Unknown | 17 | 14 | 3 | |
| prot24 | 348 (257, 557) | 282 (208, 502) | 384 (343, 560) | 0.003 |
| Â Â Â Â Unknown | 119 | 116 | 3 | |
| acu | 4.60 (3.70, 5.60) | 4.60 (3.70, 5.70) | 4.40 (3.53, 5.50) | 0.3 |
| Â Â Â Â Unknown | 7 | 7 | 0 | |
| ca | 9.21 (8.89, 9.48) | 9.18 (8.80, 9.44) | 9.40 (9.13, 9.65) | 0.005 |
| Â Â Â Â Unknown | 14 | 12 | 2 | |
| mg | 1.85 (1.74, 1.95) | 1.86 (1.74, 1.97) | 1.83 (1.76, 1.93) | 0.3 |
| Â Â Â Â Unknown | 17 | 16 | 1 | |
| album | 3.66 (3.36, 3.91) | 3.66 (3.30, 3.88) | 3.72 (3.46, 3.94) | 0.2 |
| Â Â Â Â Unknown | 4 | 4 | 0 | |
| glog | 2.71 (2.49, 2.95) | 2.71 (2.44, 2.97) | 2.75 (2.59, 2.94) | 0.6 |
| Â Â Â Â Unknown | 5 | 5 | 0 | |
| rag | 1.34 (1.21, 1.47) | 1.34 (1.20, 1.47) | 1.37 (1.28, 1.44) | 0.6 |
| Â Â Â Â Unknown | 5 | 5 | 0 | |
| PCO | 23.40 (21.76, 25.10) | 23.40 (21.74, 25.10) | 23.52 (22.11, 25.67) | 0.5 |
| Â Â Â Â Unknown | 152 | 122 | 30 | |
| HIPOALBUM | 80 (37%) | 68 (39%) | 12 (29%) | 0.2 |
| Â Â Â Â Unknown | 5 | 5 | 0 | |
| HIPOGLOB | 197 (90%) | 159 (90%) | 38 (90%) | >0.9 |
| Â Â Â Â Unknown | 5 | 5 | 0 | |
| hipalbglob | 77 (35%) | 65 (37%) | 12 (29%) | 0.3 |
| Â Â Â Â Unknown | 6 | 6 | 0 | |
| RAG127 | 78 (36%) | 67 (38%) | 11 (26%) | 0.15 |
| Â Â Â Â Unknown | 5 | 5 | 0 | |
| 1 Median (IQR); n (%) | ||||
| 2 Wilcoxon rank sum test; Pearson's Chi-squared test; Fisher's exact test | ||||
pesegtsumm<-dbhm %>% select(edad,cesarea,sdg,gestas,compfet,imc,leucos,neutro,linfos,plaq,pcr,dhl,creat, urea, un, prot24, acu,ca,mg,album, glog, rag,PCO,HIPOALBUM,HIPOGLOB, hipalbglob, RAG127,pese) %>% tbl_summary(by=pese) %>% add_p()
## Warning for variable 'pcr':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'PCO':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
pesegtsumm
| Characteristic | 0, N = 1801 | 1, N = 431 | p-value2 |
|---|---|---|---|
| edad | 25 (21, 30) | 25 (19, 31) | 0.8 |
| cesarea | 88 (59%) | 31 (78%) | 0.032 |
| Â Â Â Â Unknown | 31 | 3 | |
| sdg | 38.0 (34.9, 39.1) | 37.4 (35.6, 38.3) | 0.4 |
| Â Â Â Â Unknown | 0 | 1 | |
| gestas | 0.018 | ||
| Â Â Â Â 1 | 59 (33%) | 13 (30%) | |
| Â Â Â Â 2 | 51 (28%) | 15 (35%) | |
| Â Â Â Â 3 | 37 (21%) | 3 (7.0%) | |
| Â Â Â Â 4 | 24 (13%) | 5 (12%) | |
| Â Â Â Â 5 | 4 (2.2%) | 1 (2.3%) | |
| Â Â Â Â 6 | 4 (2.2%) | 2 (4.7%) | |
| Â Â Â Â 7 | 1 (0.6%) | 2 (4.7%) | |
| Â Â Â Â 8 | 0 (0%) | 2 (4.7%) | |
| compfet | 6 (3.4%) | 2 (4.7%) | 0.7 |
| Â Â Â Â Unknown | 5 | 0 | |
| imc | 29.8 (25.7, 34.2) | 29.7 (24.5, 36.4) | 0.7 |
| Â Â Â Â Unknown | 20 | 3 | |
| leucos | 10,430 (8,570, 13,045) | 9,910 (8,660, 12,030) | 0.3 |
| Â Â Â Â Unknown | 1 | 0 | |
| neutro | 74 (68, 79) | 73 (64, 78) | 0.2 |
| Â Â Â Â Unknown | 3 | 0 | |
| linfos | 18 (14, 23) | 20 (16, 27) | 0.042 |
| Â Â Â Â Unknown | 3 | 0 | |
| plaq | 220 (149, 276) | 191 (120, 304) | 0.3 |
| Â Â Â Â Unknown | 1 | 0 | |
| pcr | 50 (24, 91) | 28 (15, 32) | 0.042 |
| Â Â Â Â Unknown | 141 | 30 | |
| dhl | 183 (159, 218) | 224 (178, 270) | <0.001 |
| Â Â Â Â Unknown | 7 | 0 | |
| creat | 0.54 (0.49, 0.59) | 0.61 (0.50, 0.69) | 0.014 |
| urea | 15 (12, 19) | 18 (14, 22) | 0.006 |
| un | 7.20 (5.77, 8.75) | 8.65 (6.82, 10.55) | 0.005 |
| Â Â Â Â Unknown | 16 | 1 | |
| prot24 | 332 (242, 412) | 441 (286, 1,289) | 0.024 |
| Â Â Â Â Unknown | 116 | 3 | |
| acu | 4.40 (3.60, 5.30) | 5.70 (4.30, 6.95) | <0.001 |
| Â Â Â Â Unknown | 7 | 0 | |
| ca | 9.25 (8.96, 9.53) | 8.90 (8.66, 9.35) | <0.001 |
| Â Â Â Â Unknown | 13 | 1 | |
| mg | 1.84 (1.74, 1.94) | 1.92 (1.75, 2.02) | 0.052 |
| Â Â Â Â Unknown | 16 | 1 | |
| album | 3.70 (3.41, 3.97) | 3.42 (3.14, 3.75) | <0.001 |
| Â Â Â Â Unknown | 4 | 0 | |
| glog | 2.72 (2.50, 2.95) | 2.68 (2.42, 2.97) | 0.6 |
| Â Â Â Â Unknown | 4 | 1 | |
| rag | 1.35 (1.23, 1.47) | 1.27 (1.14, 1.45) | 0.040 |
| Â Â Â Â Unknown | 4 | 1 | |
| PCO | 24.87 (21.97, 26.15) | 23.28 (21.65, 24.86) | 0.054 |
| Â Â Â Â Unknown | 151 | 1 | |
| HIPOALBUM | 54 (31%) | 26 (60%) | <0.001 |
| Â Â Â Â Unknown | 5 | 0 | |
| HIPOGLOB | 159 (90%) | 38 (90%) | >0.9 |
| Â Â Â Â Unknown | 4 | 1 | |
| hipalbglob | 53 (30%) | 24 (57%) | 0.001 |
| Â Â Â Â Unknown | 5 | 1 | |
| RAG127 | 56 (32%) | 22 (52%) | 0.012 |
| Â Â Â Â Unknown | 4 | 1 | |
| 1 Median (IQR); n (%) | |||
| 2 Wilcoxon rank sum test; Pearson's Chi-squared test; Fisher's exact test | |||
tbl_merge(
tbls = list(pensgtsumm,pesegtsumm), # combine
tab_spanner = c("**PENS**", "**PESE**"))
| Characteristic | PENS | PESE | |||||
|---|---|---|---|---|---|---|---|
| Overall, N = 2231 | 0, N = 1811 | 1, N = 421 | p-value2 | 0, N = 1801 | 1, N = 431 | p-value2 | |
| edad | 25 (20, 30) | 25 (21, 31) | 24 (18, 29) | 0.2 | 25 (21, 30) | 25 (19, 31) | 0.8 |
| cesarea | 119 (63%) | 100 (64%) | 19 (58%) | 0.5 | 88 (59%) | 31 (78%) | 0.032 |
| Â Â Â Â Unknown | 34 | 25 | 9 | 31 | 3 | ||
| sdg | 37.9 (35.0, 39.0) | 38.0 (34.9, 39.0) | 37.5 (35.1, 39.0) | 0.9 | 38.0 (34.9, 39.1) | 37.4 (35.6, 38.3) | 0.4 |
| Â Â Â Â Unknown | 1 | 1 | 0 | 0 | 1 | ||
| gestas | >0.9 | 0.018 | |||||
| Â Â Â Â 1 | 72 (32%) | 55 (30%) | 17 (40%) | 59 (33%) | 13 (30%) | ||
| Â Â Â Â 2 | 66 (30%) | 53 (29%) | 13 (31%) | 51 (28%) | 15 (35%) | ||
| Â Â Â Â 3 | 40 (18%) | 34 (19%) | 6 (14%) | 37 (21%) | 3 (7.0%) | ||
| Â Â Â Â 4 | 29 (13%) | 24 (13%) | 5 (12%) | 24 (13%) | 5 (12%) | ||
| Â Â Â Â 5 | 5 (2.2%) | 5 (2.8%) | 0 (0%) | 4 (2.2%) | 1 (2.3%) | ||
| Â Â Â Â 6 | 6 (2.7%) | 5 (2.8%) | 1 (2.4%) | 4 (2.2%) | 2 (4.7%) | ||
| Â Â Â Â 7 | 3 (1.3%) | 3 (1.7%) | 0 (0%) | 1 (0.6%) | 2 (4.7%) | ||
| Â Â Â Â 8 | 2 (0.9%) | 2 (1.1%) | 0 (0%) | 0 (0%) | 2 (4.7%) | ||
| compfet | 8 (3.7%) | 7 (3.9%) | 1 (2.5%) | >0.9 | 6 (3.4%) | 2 (4.7%) | 0.7 |
| Â Â Â Â Unknown | 5 | 3 | 2 | 5 | 0 | ||
| imc | 29.8 (25.6, 34.5) | 29.2 (25.5, 34.4) | 33.0 (28.2, 35.5) | 0.14 | 29.8 (25.7, 34.2) | 29.7 (24.5, 36.4) | 0.7 |
| Â Â Â Â Unknown | 23 | 18 | 5 | 20 | 3 | ||
| leucos | 10,365 (8,600, 12,958) | 10,210 (8,490, 12,975) | 11,015 (9,372, 12,832) | 0.3 | 10,430 (8,570, 13,045) | 9,910 (8,660, 12,030) | 0.3 |
| Â Â Â Â Unknown | 1 | 1 | 0 | 1 | 0 | ||
| neutro | 74 (67, 79) | 74 (67, 79) | 73 (68, 78) | >0.9 | 74 (68, 79) | 73 (64, 78) | 0.2 |
| Â Â Â Â Unknown | 3 | 1 | 2 | 3 | 0 | ||
| linfos | 18 (14, 24) | 18 (13, 23) | 18 (15, 24) | 0.9 | 18 (14, 23) | 20 (16, 27) | 0.042 |
| Â Â Â Â Unknown | 3 | 1 | 2 | 3 | 0 | ||
| plaq | 219 (146, 278) | 210 (142, 279) | 240 (208, 275) | 0.060 | 220 (149, 276) | 191 (120, 304) | 0.3 |
| Â Â Â Â Unknown | 1 | 1 | 0 | 1 | 0 | ||
| pcr | 41 (20, 86) | 40 (19, 86) | 79 (50, 80) | 0.4 | 50 (24, 91) | 28 (15, 32) | 0.042 |
| Â Â Â Â Unknown | 171 | 134 | 37 | 141 | 30 | ||
| dhl | 186 (162, 226) | 188 (166, 228) | 182 (149, 208) | 0.083 | 183 (159, 218) | 224 (178, 270) | <0.001 |
| Â Â Â Â Unknown | 7 | 7 | 0 | 7 | 0 | ||
| creat | 0.55 (0.49, 0.62) | 0.55 (0.49, 0.63) | 0.54 (0.49, 0.58) | 0.2 | 0.54 (0.49, 0.59) | 0.61 (0.50, 0.69) | 0.014 |
| urea | 16 (13, 20) | 16 (13, 20) | 14 (11, 16) | 0.009 | 15 (12, 19) | 18 (14, 22) | 0.006 |
| un | 7.40 (5.90, 9.20) | 7.50 (6.10, 9.35) | 6.30 (5.25, 7.70) | 0.013 | 7.20 (5.77, 8.75) | 8.65 (6.82, 10.55) | 0.005 |
| Â Â Â Â Unknown | 17 | 14 | 3 | 16 | 1 | ||
| prot24 | 348 (257, 557) | 282 (208, 502) | 384 (343, 560) | 0.003 | 332 (242, 412) | 441 (286, 1,289) | 0.024 |
| Â Â Â Â Unknown | 119 | 116 | 3 | 116 | 3 | ||
| acu | 4.60 (3.70, 5.60) | 4.60 (3.70, 5.70) | 4.40 (3.53, 5.50) | 0.3 | 4.40 (3.60, 5.30) | 5.70 (4.30, 6.95) | <0.001 |
| Â Â Â Â Unknown | 7 | 7 | 0 | 7 | 0 | ||
| ca | 9.21 (8.89, 9.48) | 9.18 (8.80, 9.44) | 9.40 (9.13, 9.65) | 0.005 | 9.25 (8.96, 9.53) | 8.90 (8.66, 9.35) | <0.001 |
| Â Â Â Â Unknown | 14 | 12 | 2 | 13 | 1 | ||
| mg | 1.85 (1.74, 1.95) | 1.86 (1.74, 1.97) | 1.83 (1.76, 1.93) | 0.3 | 1.84 (1.74, 1.94) | 1.92 (1.75, 2.02) | 0.052 |
| Â Â Â Â Unknown | 17 | 16 | 1 | 16 | 1 | ||
| album | 3.66 (3.36, 3.91) | 3.66 (3.30, 3.88) | 3.72 (3.46, 3.94) | 0.2 | 3.70 (3.41, 3.97) | 3.42 (3.14, 3.75) | <0.001 |
| Â Â Â Â Unknown | 4 | 4 | 0 | 4 | 0 | ||
| glog | 2.71 (2.49, 2.95) | 2.71 (2.44, 2.97) | 2.75 (2.59, 2.94) | 0.6 | 2.72 (2.50, 2.95) | 2.68 (2.42, 2.97) | 0.6 |
| Â Â Â Â Unknown | 5 | 5 | 0 | 4 | 1 | ||
| rag | 1.34 (1.21, 1.47) | 1.34 (1.20, 1.47) | 1.37 (1.28, 1.44) | 0.6 | 1.35 (1.23, 1.47) | 1.27 (1.14, 1.45) | 0.040 |
| Â Â Â Â Unknown | 5 | 5 | 0 | 4 | 1 | ||
| PCO | 23.40 (21.76, 25.10) | 23.40 (21.74, 25.10) | 23.52 (22.11, 25.67) | 0.5 | 24.87 (21.97, 26.15) | 23.28 (21.65, 24.86) | 0.054 |
| Â Â Â Â Unknown | 152 | 122 | 30 | 151 | 1 | ||
| HIPOALBUM | 80 (37%) | 68 (39%) | 12 (29%) | 0.2 | 54 (31%) | 26 (60%) | <0.001 |
| Â Â Â Â Unknown | 5 | 5 | 0 | 5 | 0 | ||
| HIPOGLOB | 197 (90%) | 159 (90%) | 38 (90%) | >0.9 | 159 (90%) | 38 (90%) | >0.9 |
| Â Â Â Â Unknown | 5 | 5 | 0 | 4 | 1 | ||
| hipalbglob | 77 (35%) | 65 (37%) | 12 (29%) | 0.3 | 53 (30%) | 24 (57%) | 0.001 |
| Â Â Â Â Unknown | 6 | 6 | 0 | 5 | 1 | ||
| RAG127 | 78 (36%) | 67 (38%) | 11 (26%) | 0.15 | 56 (32%) | 22 (52%) | 0.012 |
| Â Â Â Â Unknown | 5 | 5 | 0 | 4 | 1 | ||
| 1 Median (IQR); n (%) | |||||||
| 2 Wilcoxon rank sum test; Pearson's Chi-squared test; Fisher's exact test | |||||||
#Asumiendo que las columnas "Ptardia" y "PEtmp" ya existen en tu dataframe "dbhm"
dbhm <- dbhm %>%
mutate(preclamp = case_when(
Ptardia == 1 & PEtmp == 1 ~ 1, # Cuando ambos Ptardia y PEtmp son igual a 1
TRUE ~ 0 # En cualquier otro caso
))
# Reorder the levels of 'patologia'
dbhm$patologia <- factor(dbhm$patologia, levels = c("Sana", "HTG", "PENS", "PESE"))
# Filter only for rows with desired categories in the 'patologia' column
dbhm <- dbhm[dbhm$patologia %in% c("Sana", "HTG", "PENS", "PESE"), ]
my_comparisons <- list(c("Sana", "HTG"), c("Sana", "PENS"), c("Sana", "PESE"))
# Create boxplots and add the p-value comparisons
albplt<-ggboxplot(dbhm, x = "patologia", y = "album",
color = "patologia", palette = c("#00AFBB", "#E7B800", "#FC4E07", "#0073C2")) +
labs(title = "",
x = "Pathology",
y = "Albumin (??)",
color = "") +
theme(legend.position='none')+
stat_compare_means(comparisons = my_comparisons, method = NULL,
aes(label = paste0("p = ", after_stat(p.signif)))) + # Add pairwise comparisons p-value
stat_compare_means(label.x = 2.5, label.y = 0.5, method = "kruskal.test") # Add overall p-value at lower left corner
albplt
## Warning: Removed 4 rows containing non-finite values (`stat_boxplot()`).
## Warning: Removed 4 rows containing non-finite values (`stat_signif()`).
## Warning: Removed 4 rows containing non-finite values (`stat_compare_means()`).
# Reorder the levels of 'patologia'
dbhm$patologia <- factor(dbhm$patologia, levels = c("Sana", "HTG", "PENS", "PESE"))
# Filter only for rows with desired categories in the 'patologia' column
dbhm <- dbhm[dbhm$patologia %in% c("Sana", "HTG", "PENS", "PESE"), ]
my_comparisons <- list(c("Sana", "HTG"), c("Sana", "PENS"), c("Sana", "PESE"))
# Create boxplots and add the p-value comparisons
ragplt<-ggboxplot(dbhm, x = "patologia", y = "rag",
color = "patologia", palette = c("#00AFBB", "#E7B800", "#FC4E07", "#0073C2")) +
labs(title = "",
x = "Pathology",
y = "RAG (??)",
color = "") +
theme(legend.position='none')+
stat_compare_means(comparisons = my_comparisons, method = NULL,
aes(label = paste0("p = ", after_stat(p.signif)))) + # Add pairwise comparisons p-value
stat_compare_means(label.x = 2.5, label.y = 0.5, method = "kruskal.test") # Add overall p-value at lower left corner
ragplt
## Warning: Removed 5 rows containing non-finite values (`stat_boxplot()`).
## Warning: Removed 5 rows containing non-finite values (`stat_signif()`).
## Warning: Removed 5 rows containing non-finite values (`stat_compare_means()`).
ggarrange(albplt,ragplt ,
labels = c("A", "B"),align = "hv",
ncol = 2, nrow = 1,font.label = list(size = 16,
color = "black", face = "bold", family = NULL))
## Warning: Removed 4 rows containing non-finite values (`stat_boxplot()`).
## Warning: Removed 4 rows containing non-finite values (`stat_signif()`).
## Warning: Removed 4 rows containing non-finite values (`stat_compare_means()`).
## Warning: Removed 5 rows containing non-finite values (`stat_boxplot()`).
## Warning: Removed 5 rows containing non-finite values (`stat_signif()`).
## Warning: Removed 5 rows containing non-finite values (`stat_compare_means()`).
# Reorder the levels of 'patologia'
dbhm$patologia <- factor(dbhm$patologia, levels = c("Sana", "HTG", "PENS", "PESE"))
# Filter only for rows with desired categories in the 'patologia' column
dbhm <- dbhm[dbhm$patologia %in% c("Sana", "HTG", "PENS", "PESE"), ]
my_comparisons <- list(c("Sana", "HTG"), c("Sana", "PENS"), c("Sana", "PESE"))
# Create boxplots and add the p-value comparisons
ggboxplot(dbhm, x = "patologia", y = "glog",
color = "patologia", palette = c("#00AFBB", "#E7B800", "#FC4E07", "#0073C2")) +
labs(title = "",
x = "Pathology",
y = "Globulin (??) ",
color = "") +
theme(legend.position='none')+
stat_compare_means(comparisons = my_comparisons, method = NULL,
aes(label = paste0("p = ", after_stat(p.signif)))) + # Add pairwise comparisons p-value
stat_compare_means(label.x = 3, label.y = 1.8, method = "kruskal.test") # Add overall p-value at lower left corner
## Warning: Removed 5 rows containing non-finite values (`stat_boxplot()`).
## Warning: Removed 5 rows containing non-finite values (`stat_signif()`).
## Warning: Removed 5 rows containing non-finite values (`stat_compare_means()`).
# Reorder the levels of 'patologia'
dbhm$patologia <- factor(dbhm$patologia, levels = c("Sana", "HTG", "PENS", "PESE"))
# Filter only for rows with desired categories in the 'patologia' column
dbhm <- dbhm[dbhm$patologia %in% c("Sana", "HTG", "PENS", "PESE"), ]
my_comparisons <- list(c("Sana", "HTG"), c("Sana", "PENS"), c("Sana", "PESE"))
# Create boxplots and add the p-value comparisons
ggboxplot(dbhm, x = "patologia", y = "plaq",
color = "patologia", palette = c("#00AFBB", "#E7B800", "#FC4E07", "#0073C2")) +
labs(title = "",
x = "Pathology",
y = "platelets (??)",
color = "") +
theme(legend.position='none')+
stat_compare_means(comparisons = my_comparisons, method = NULL,
aes(label = paste0("p = ", after_stat(p.signif)))) + # Add pairwise comparisons p-value
stat_compare_means(label.x = 3, label.y = 1.8, method = "kruskal.test") # Add overall p-value at lower left corner
## Warning: Removed 1 rows containing non-finite values (`stat_boxplot()`).
## Warning: Removed 1 rows containing non-finite values (`stat_signif()`).
## Warning: Removed 1 rows containing non-finite values (`stat_compare_means()`).
# Reorder the levels of 'patologia'
dbhm$patologia <- factor(dbhm$patologia, levels = c("Sana", "HTG", "PENS", "PESE"))
# Filter only for rows with desired categories in the 'patologia' column
dbhm <- dbhm[dbhm$patologia %in% c("Sana", "HTG", "PENS", "PESE"), ]
my_comparisons <- list(c("Sana", "HTG"), c("Sana", "PENS"), c("Sana", "PESE"))
# Create boxplots and add the p-value comparisons
ggboxplot(dbhm, x = "patologia", y = "dhl",
color = "patologia", palette = c("#00AFBB", "#E7B800", "#FC4E07", "#0073C2")) +
labs(title = "",
x = "Pathology",
y = "LDH (??)",
color = "") +
theme(legend.position='none')+
stat_compare_means(comparisons = my_comparisons, method = NULL,
aes(label = paste0("p = ", after_stat(p.signif)))) + # Add pairwise comparisons p-value
stat_compare_means(label.x = 3, label.y = 1.8, method = "kruskal.test") # Add overall p-value at lower left corner
## Warning: Removed 4 rows containing non-finite values (`stat_boxplot()`).
## Warning: Removed 4 rows containing non-finite values (`stat_signif()`).
## Warning: Removed 4 rows containing non-finite values (`stat_compare_means()`).
###A
#library(pROC)
library(dplyr)
library(ggplot2)
library(cutpointr)
library(pROC)
## Type 'citation("pROC")' for a citation.
##
## Attaching package: 'pROC'
## The following objects are masked from 'package:cutpointr':
##
## auc, roc
## The following objects are masked from 'package:stats':
##
## cov, smooth, var
#curva roc para pens
pens_roc <- roc(pens ~ album +glog + rag, data = dbhm)
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
# Genera la curva ROC pese
pese_roc <- roc(pese ~ album +glog + rag, data = dbhm)
## Setting levels: control = 0, case = 1
## Setting direction: controls > cases
## Setting levels: control = 0, case = 1
## Setting direction: controls > cases
## Setting levels: control = 0, case = 1
## Setting direction: controls > cases
###curva pens
pensroc<-ggroc(pens_roc,linetype = 1, size = 1) + theme_bw()+
theme(legend.title = element_blank(),text = element_text(size = 18)) +
theme(legend.text = element_text(size = 18, color = "black", face = "bold"))+ theme_bw()+geom_abline(slope = 1, intercept = 1, lty = 2, colour = 'black',size=.5)+ theme(
title =element_text(size=20, face='bold'),
axis.title.x = element_text(size =18, face = 'bold'),
axis.title.y = element_text(size =18, face = 'bold'),
panel.border = element_rect(size = 1, fill = NA),
axis.text.x = element_text(size = 18, face ='bold'),
axis.text.y = element_text(size = 18, face ='bold'))+ theme(legend.title = element_blank())+
theme(legend.text = element_text(size=18,face ='bold'))
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## Warning: The `size` argument of `element_rect()` is deprecated as of ggplot2 3.4.0.
## ℹ Please use the `linewidth` argument instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
pensroc
###curva pese
peseroc<-ggroc(pese_roc,linetype = 1, size = 1) + theme_bw()+
theme(legend.title = element_blank(),text = element_text(size = 18)) +
theme(legend.text = element_text(size = 18, color = "black", face = "bold"))+ theme_bw()+geom_abline(slope = 1, intercept = 1, lty = 2, colour = 'black',size=.5)+ theme(
title =element_text(size=20, face='bold'),
axis.title.x = element_text(size =18, face = 'bold'),
axis.title.y = element_text(size =18, face = 'bold'),
panel.border = element_rect(size = 1, fill = NA),
axis.text.x = element_text(size = 18, face ='bold'),
axis.text.y = element_text(size = 18, face ='bold'))+ theme(legend.title = element_blank())+
theme(legend.text = element_text(size=18,face ='bold'))
peseroc
ggarrange(pensroc, peseroc, ncol = 2, labels = c("A", "B"),
font.label = list(size = 22))
library(gtsummary)
# Genera los modelos ROC
pens_roc_album <- roc(pens ~ album, data = dbhm)
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
pens_roc_glog <- roc(pens ~ glog, data = dbhm)
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
pens_roc_rag <- roc(pens ~ rag, data = dbhm)
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
pese_roc_album <- roc(pese ~ album, data = dbhm)
## Setting levels: control = 0, case = 1
## Setting direction: controls > cases
pese_roc_glog <- roc(pens ~ glog, data = dbhm)
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
pese_roc_rag <- roc(pese ~ rag, data = dbhm)
## Setting levels: control = 0, case = 1
## Setting direction: controls > cases
# Calcula los AUC
pens_auc_album <- auc(pens_roc_album)
pens_auc_glog<- auc(pens_roc_glog)
pens_auc_rag <- auc(pens_roc_rag)
pese_auc_album <- auc(pese_roc_album)
pese_auc_glog<- auc(pese_roc_glog)
pese_auc_rag <- auc(pese_roc_rag)
# Calcula los puntos de corte óptimos y las estadÃsticas asociadas
pens_opt_album <- coords(pens_roc_album, "best")
pens_opt_glog<-coords(pens_roc_glog, "best")
pens_opt_rag <- coords(pens_roc_rag, "best")
pese_opt_album <- coords(pese_roc_album, "best")
pese_opt_glog<-coords(pese_roc_glog, "best")
pese_opt_rag <- coords(pese_roc_rag, "best")
# Crea una tabla con los resultados
results <- data.frame(
Model = c("pens_album", "pens_glog", "pens_rag", "pese_album", "pese_glog", "pese_rag"),
AUC = c(pens_auc_album,pens_auc_glog, pens_auc_rag, pese_auc_album, pese_auc_glog, pese_auc_rag),
Optimal_Cutoff = c(pens_opt_album$threshold,pens_opt_glog$threshold, pens_opt_rag$threshold, pese_opt_album$threshold, pese_opt_glog$threshold, pese_opt_rag$threshold),
Sensitivity = c(pens_opt_album$sensitivity,pens_opt_glog$sensitivity, pens_opt_rag$sensitivity, pese_opt_album$sensitivity, pese_opt_glog$sensitivity, pese_opt_rag$sensitivity),
Specificity = c(pens_opt_album$specificity, pens_opt_glog$specificity, pens_opt_rag$specificity, pese_opt_album$specificity,pese_opt_glog$specificity, pese_opt_rag$specificity)
)
# Utiliza gtsummary para crear una tabla para publicación
aucmodels<-results %>% gt()
aucmodels
| Model | AUC | Optimal_Cutoff | Sensitivity | Specificity |
|---|---|---|---|---|
| pens_album | 0.5754698 | 3.395 | 0.8292683 | 0.3196721 |
| pens_glog | 0.5587583 | 2.555 | 0.8048780 | 0.3719008 |
| pens_rag | 0.5089700 | 1.095 | 1.0000000 | 0.1322314 |
| pese_album | 0.6861434 | 3.495 | 0.6046512 | 0.6916667 |
| pese_glog | 0.5587583 | 2.555 | 0.8048780 | 0.3719008 |
| pese_rag | 0.6229167 | 1.225 | 0.4523810 | 0.8083333 |
#Explorar otras variables no solo casarnos con RAG y PENS
#curva roc para pens
pensotras_roc <- roc(pens ~ album + rag + plaq + dhl + creat + urea + un + prot24 + acu + ca , data = dbhm)
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
## Setting levels: control = 0, case = 1
## Setting direction: controls > cases
## Setting levels: control = 0, case = 1
## Setting direction: controls > cases
## Setting levels: control = 0, case = 1
## Setting direction: controls > cases
## Setting levels: control = 0, case = 1
## Setting direction: controls > cases
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
## Setting levels: control = 0, case = 1
## Setting direction: controls > cases
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
ggroc(pensotras_roc,linetype = 1, size = 1) + theme_bw()+
theme(legend.title = element_blank(),text = element_text(size = 18)) +
theme(legend.text = element_text(size = 18, color = "black", face = "bold"))+ theme_bw()+geom_abline(slope = 1, intercept = 1, lty = 2, colour = 'black',size=.5)+ theme(
title =element_text(size=20, face='bold'),
axis.title.x = element_text(size =18, face = 'bold'),
axis.title.y = element_text(size =18, face = 'bold'),
panel.border = element_rect(size = 1, fill = NA),
axis.text.x = element_text(size = 18, face ='bold'),
axis.text.y = element_text(size = 18, face ='bold'))+ theme(legend.title = element_blank())+
theme(legend.text = element_text(size=18,face ='bold'))
pensotras_roc
## $album
##
## Call:
## roc.formula(formula = pens ~ album, data = dbhm)
##
## Data: album in 122 controls (pens 0) < 41 cases (pens 1).
## Area under the curve: 0.5755
##
## $rag
##
## Call:
## roc.formula(formula = pens ~ rag, data = dbhm)
##
## Data: rag in 121 controls (pens 0) < 41 cases (pens 1).
## Area under the curve: 0.509
##
## $plaq
##
## Call:
## roc.formula(formula = pens ~ plaq, data = dbhm)
##
## Data: plaq in 125 controls (pens 0) < 41 cases (pens 1).
## Area under the curve: 0.5956
##
## $dhl
##
## Call:
## roc.formula(formula = pens ~ dhl, data = dbhm)
##
## Data: dhl in 122 controls (pens 0) > 41 cases (pens 1).
## Area under the curve: 0.6374
##
## $creat
##
## Call:
## roc.formula(formula = pens ~ creat, data = dbhm)
##
## Data: creat in 126 controls (pens 0) > 41 cases (pens 1).
## Area under the curve: 0.598
##
## $urea
##
## Call:
## roc.formula(formula = pens ~ urea, data = dbhm)
##
## Data: urea in 126 controls (pens 0) > 41 cases (pens 1).
## Area under the curve: 0.6561
##
## $un
##
## Call:
## roc.formula(formula = pens ~ un, data = dbhm)
##
## Data: un in 119 controls (pens 0) > 38 cases (pens 1).
## Area under the curve: 0.6504
##
## $prot24
##
## Call:
## roc.formula(formula = pens ~ prot24, data = dbhm)
##
## Data: prot24 in 65 controls (pens 0) < 38 cases (pens 1).
## Area under the curve: 0.6727
##
## $acu
##
## Call:
## roc.formula(formula = pens ~ acu, data = dbhm)
##
## Data: acu in 122 controls (pens 0) > 41 cases (pens 1).
## Area under the curve: 0.6003
##
## $ca
##
## Call:
## roc.formula(formula = pens ~ ca, data = dbhm)
##
## Data: ca in 114 controls (pens 0) < 39 cases (pens 1).
## Area under the curve: 0.6614
pensaltaauc_roc <- roc(pens ~ album + rag + urea + un + prot24 + acu + ca, data = dbhm)
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
## Setting levels: control = 0, case = 1
## Setting direction: controls > cases
## Setting levels: control = 0, case = 1
## Setting direction: controls > cases
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
## Setting levels: control = 0, case = 1
## Setting direction: controls > cases
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
ggroc(pensaltaauc_roc,linetype = 1, size = 1) + theme_bw()+
theme(legend.title = element_blank(),text = element_text(size = 18)) +
theme(legend.text = element_text(size = 18, color = "black", face = "bold"))+ theme_bw()+geom_abline(slope = 1, intercept = 1, lty = 2, colour = 'black',size=.5)+ theme(
title =element_text(size=20, face='bold'),
axis.title.x = element_text(size =18, face = 'bold'),
axis.title.y = element_text(size =18, face = 'bold'),
panel.border = element_rect(size = 1, fill = NA),
axis.text.x = element_text(size = 18, face ='bold'),
axis.text.y = element_text(size = 18, face ='bold'))+ theme(legend.title = element_blank())+
theme(legend.text = element_text(size=18,face ='bold'))
#AHORA PARA PESE
#curva roc para pens
peseotras_roc <- roc(pese ~ album + rag + plaq + dhl + creat + urea + un + prot24 + acu + ca , data = dbhm)
## Setting levels: control = 0, case = 1
## Setting direction: controls > cases
## Setting levels: control = 0, case = 1
## Setting direction: controls > cases
## Setting levels: control = 0, case = 1
## Setting direction: controls > cases
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
## Setting levels: control = 0, case = 1
## Setting direction: controls > cases
ggroc(peseotras_roc,linetype = 1, size = 1) + theme_bw()+
theme(legend.title = element_blank(),text = element_text(size = 18)) +
theme(legend.text = element_text(size = 18, color = "black", face = "bold"))+ theme_bw()+geom_abline(slope = 1, intercept = 1, lty = 2, colour = 'black',size=.5)+ theme(
title =element_text(size=20, face='bold'),
axis.title.x = element_text(size =18, face = 'bold'),
axis.title.y = element_text(size =18, face = 'bold'),
panel.border = element_rect(size = 1, fill = NA),
axis.text.x = element_text(size = 18, face ='bold'),
axis.text.y = element_text(size = 18, face ='bold'))+ theme(legend.title = element_blank())+
theme(legend.text = element_text(size=18,face ='bold'))
peseotras_roc
## $album
##
## Call:
## roc.formula(formula = pese ~ album, data = dbhm)
##
## Data: album in 120 controls (pese 0) > 43 cases (pese 1).
## Area under the curve: 0.6861
##
## $rag
##
## Call:
## roc.formula(formula = pese ~ rag, data = dbhm)
##
## Data: rag in 120 controls (pese 0) > 42 cases (pese 1).
## Area under the curve: 0.6229
##
## $plaq
##
## Call:
## roc.formula(formula = pese ~ plaq, data = dbhm)
##
## Data: plaq in 123 controls (pese 0) > 43 cases (pese 1).
## Area under the curve: 0.567
##
## $dhl
##
## Call:
## roc.formula(formula = pese ~ dhl, data = dbhm)
##
## Data: dhl in 120 controls (pese 0) < 43 cases (pese 1).
## Area under the curve: 0.6617
##
## $creat
##
## Call:
## roc.formula(formula = pese ~ creat, data = dbhm)
##
## Data: creat in 124 controls (pese 0) < 43 cases (pese 1).
## Area under the curve: 0.6127
##
## $urea
##
## Call:
## roc.formula(formula = pese ~ urea, data = dbhm)
##
## Data: urea in 124 controls (pese 0) < 43 cases (pese 1).
## Area under the curve: 0.6213
##
## $un
##
## Call:
## roc.formula(formula = pese ~ un, data = dbhm)
##
## Data: un in 115 controls (pese 0) < 42 cases (pese 1).
## Area under the curve: 0.6297
##
## $prot24
##
## Call:
## roc.formula(formula = pese ~ prot24, data = dbhm)
##
## Data: prot24 in 63 controls (pese 0) < 40 cases (pese 1).
## Area under the curve: 0.6383
##
## $acu
##
## Call:
## roc.formula(formula = pese ~ acu, data = dbhm)
##
## Data: acu in 120 controls (pese 0) < 43 cases (pese 1).
## Area under the curve: 0.6762
##
## $ca
##
## Call:
## roc.formula(formula = pese ~ ca, data = dbhm)
##
## Data: ca in 111 controls (pese 0) > 42 cases (pese 1).
## Area under the curve: 0.6961
pesealtaauc_roc <- roc(pese ~ album + rag + urea + un + prot24 + acu + ca, data = dbhm)
## Setting levels: control = 0, case = 1
## Setting direction: controls > cases
## Setting levels: control = 0, case = 1
## Setting direction: controls > cases
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
## Setting levels: control = 0, case = 1
## Setting direction: controls > cases
ggroc(pesealtaauc_roc,linetype = 1, size = 1) + theme_bw()+
theme(legend.title = element_blank(),text = element_text(size = 18)) +
theme(legend.text = element_text(size = 18, color = "black", face = "bold"))+ theme_bw()+geom_abline(slope = 1, intercept = 1, lty = 2, colour = 'black',size=.5)+ theme(
title =element_text(size=20, face='bold'),
axis.title.x = element_text(size =18, face = 'bold'),
axis.title.y = element_text(size =18, face = 'bold'),
panel.border = element_rect(size = 1, fill = NA),
axis.text.x = element_text(size = 18, face ='bold'),
axis.text.y = element_text(size = 18, face ='bold'))+ theme(legend.title = element_blank())+
theme(legend.text = element_text(size=18,face ='bold'))