library(rstatix)
##
## Attaching package: 'rstatix'
## The following object is masked from 'package:stats':
##
## filter
library(datarium)
library(tidyr)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
set.seed(123)
data("weightloss", package = "datarium")
datos3 = weightloss %>%
rename(FQ = diet,
FO = exercises) %>%
pivot_longer(c(t1,t2,t3),
names_to = 'tiempo',
values_to = 'rto')
datos3
## # A tibble: 144 × 5
## id FQ FO tiempo rto
## <fct> <fct> <fct> <chr> <dbl>
## 1 1 no no t1 10.4
## 2 1 no no t2 13.2
## 3 1 no no t3 11.6
## 4 2 no no t1 11.6
## 5 2 no no t2 10.7
## 6 2 no no t3 13.2
## 7 3 no no t1 11.4
## 8 3 no no t2 11.1
## 9 3 no no t3 11.4
## 10 4 no no t1 11.1
## # ℹ 134 more rows
Descriptivo Tabular
datos3 %>%
group_by(FQ, FO, tiempo) %>%
get_summary_stats(rto, type = "mean_sd")
## # A tibble: 12 × 7
## FQ FO tiempo variable n mean sd
## <fct> <fct> <chr> <fct> <dbl> <dbl> <dbl>
## 1 no no t1 rto 12 10.9 0.868
## 2 no no t2 rto 12 11.6 1.30
## 3 no no t3 rto 12 11.4 0.935
## 4 no yes t1 rto 12 10.8 1.27
## 5 no yes t2 rto 12 13.4 1.01
## 6 no yes t3 rto 12 16.8 1.53
## 7 yes no t1 rto 12 11.7 0.938
## 8 yes no t2 rto 12 12.4 1.42
## 9 yes no t3 rto 12 13.8 1.43
## 10 yes yes t1 rto 12 11.4 1.09
## 11 yes yes t2 rto 12 13.2 1.22
## 12 yes yes t3 rto 12 14.7 0.625
Descriptivo Visual
library(ggpubr)
## Loading required package: ggplot2
ggboxplot(
datos3, x = "FQ", y = "rto",
color = "tiempo", palette = "jco",
facet.by = "FO", short.panel.labs = FALSE
)
ggplot(datos3)+
aes(rto)+
geom_density()
ggplot(datos3)+
aes(rto, fill=tiempo)+
geom_density(alpha=0.5)
library(nortest)
shapiro.test(datos3$rto)
##
## Shapiro-Wilk normality test
##
## data: datos3$rto
## W = 0.96377, p-value = 0.0007474
lillie.test(datos3$rto)
##
## Lilliefors (Kolmogorov-Smirnov) normality test
##
## data: datos3$rto
## D = 0.10013, p-value = 0.001229
cvm.test(datos3$rto)
##
## Cramer-von Mises normality test
##
## data: datos3$rto
## W = 0.23031, p-value = 0.002205
sf.test(datos3$rto)
##
## Shapiro-Francia normality test
##
## data: datos3$rto
## W = 0.96406, p-value = 0.001295
ad.test(datos3$rto)
##
## Anderson-Darling normality test
##
## data: datos3$rto
## A = 1.432, p-value = 0.001021
Test de simetria
# install.packages("lawstat")
library(lawstat)
symmetry.test(datos3$rto)
##
## m-out-of-n bootstrap symmetry test by Miao, Gel, and Gastwirth (2006)
##
## data: datos3$rto
## Test statistic = 2.2399, p-value = 0.032
## alternative hypothesis: the distribution is asymmetric.
## sample estimates:
## bootstrap optimal m
## 19
res.aov <- anova_test(
data = datos3, dv = rto, wid = id,
within = c(FQ, FO, tiempo)
)
get_anova_table(res.aov)
## ANOVA Table (type III tests)
##
## Effect DFn DFd F p p<.05 ges
## 1 FQ 1.00 11.00 6.021 3.20e-02 * 0.028
## 2 FO 1.00 11.00 58.928 9.65e-06 * 0.284
## 3 tiempo 2.00 22.00 110.942 3.22e-12 * 0.541
## 4 FQ:FO 1.00 11.00 75.356 2.98e-06 * 0.157
## 5 FQ:tiempo 1.38 15.17 0.603 5.01e-01 0.013
## 6 FO:tiempo 2.00 22.00 20.826 8.41e-06 * 0.274
## 7 FQ:FO:tiempo 2.00 22.00 14.246 1.07e-04 * 0.147
interaction.plot(datos3$tiempo,
datos3$FQ,
datos3$rto)
interaction.plot(datos3$tiempo,
datos3$FO,
datos3$rto)
tapply(datos3$rto,
list(datos3$FQ,
datos3$FO,
datos3$tiempo),
mean)
## , , t1
##
## no yes
## no 10.90917 10.79417
## yes 11.74250 11.39333
##
## , , t2
##
## no yes
## no 11.56583 13.42083
## yes 12.41583 13.22500
##
## , , t3
##
## no yes
## no 11.45000 16.8175
## yes 13.78667 14.6550