library(rio)
library(dplyr)
##
## Присоединяю пакет: 'dplyr'
## Следующие объекты скрыты от 'package:stats':
##
## filter, lag
## Следующие объекты скрыты от 'package:base':
##
## intersect, setdiff, setequal, union
library(ggplot2)
library(PerformanceAnalytics)
## Загрузка требуемого пакета: xts
## Загрузка требуемого пакета: zoo
##
## Присоединяю пакет: 'zoo'
## Следующие объекты скрыты от 'package:base':
##
## as.Date, as.Date.numeric
##
## ######################### Warning from 'xts' package ##########################
## # #
## # The dplyr lag() function breaks how base R's lag() function is supposed to #
## # work, which breaks lag(my_xts). Calls to lag(my_xts) that you type or #
## # source() into this session won't work correctly. #
## # #
## # Use stats::lag() to make sure you're not using dplyr::lag(), or you can add #
## # conflictRules('dplyr', exclude = 'lag') to your .Rprofile to stop #
## # dplyr from breaking base R's lag() function. #
## # #
## # Code in packages is not affected. It's protected by R's namespace mechanism #
## # Set `options(xts.warn_dplyr_breaks_lag = FALSE)` to suppress this warning. #
## # #
## ###############################################################################
##
## Присоединяю пакет: 'xts'
## Следующие объекты скрыты от 'package:dplyr':
##
## first, last
##
## Присоединяю пакет: 'PerformanceAnalytics'
## Следующий объект скрыт от 'package:graphics':
##
## legend
library(Hmisc)
##
## Присоединяю пакет: 'Hmisc'
## Следующие объекты скрыты от 'package:dplyr':
##
## src, summarize
## Следующие объекты скрыты от 'package:base':
##
## format.pval, units
library(corrplot)
## corrplot 0.92 loaded
library(RColorBrewer)
library(heatmaply)
## Загрузка требуемого пакета: plotly
##
## Присоединяю пакет: 'plotly'
## Следующий объект скрыт от 'package:Hmisc':
##
## subplot
## Следующий объект скрыт от 'package:ggplot2':
##
## last_plot
## Следующий объект скрыт от 'package:rio':
##
## export
## Следующий объект скрыт от 'package:stats':
##
## filter
## Следующий объект скрыт от 'package:graphics':
##
## layout
## Загрузка требуемого пакета: viridis
## Загрузка требуемого пакета: viridisLite
##
## ======================
## Welcome to heatmaply version 1.4.2
##
## Type citation('heatmaply') for how to cite the package.
## Type ?heatmaply for the main documentation.
##
## The github page is: https://github.com/talgalili/heatmaply/
## Please submit your suggestions and bug-reports at: https://github.com/talgalili/heatmaply/issues
## You may ask questions at stackoverflow, use the r and heatmaply tags:
## https://stackoverflow.com/questions/tagged/heatmaply
## ======================
library(psych)
##
## Присоединяю пакет: 'psych'
## Следующий объект скрыт от 'package:Hmisc':
##
## describe
## Следующие объекты скрыты от 'package:ggplot2':
##
## %+%, alpha
library(lmtest)
library(skimr)
library(broom)
library(tidyr)
library(apaTables)
library(stargazer)
##
## Please cite as:
## Hlavac, Marek (2022). stargazer: Well-Formatted Regression and Summary Statistics Tables.
## R package version 5.2.3. https://CRAN.R-project.org/package=stargazer
library(ggfortify)
library (car)
## Загрузка требуемого пакета: carData
##
## Присоединяю пакет: 'car'
## Следующий объект скрыт от 'package:psych':
##
## logit
## Следующий объект скрыт от 'package:dplyr':
##
## recode
library (sjPlot)
library(kableExtra)
##
## Присоединяю пакет: 'kableExtra'
## Следующий объект скрыт от 'package:dplyr':
##
## group_rows
library(ggthemes)
library(foreign)
library(gmodels)
library(moments)
##
## Присоединяю пакет: 'moments'
## Следующие объекты скрыты от 'package:PerformanceAnalytics':
##
## kurtosis, skewness
Our team is Biba and Boba (Diana Piskareva and Daria Rukosueva). Our team wants to explore: The relationship between trust in state institutions and the amount of time spent on media resources.
We are interested in this topic because a large number of studies are devoted to the relationship between media and political participation. According to the Dimensions results, about 50 articles on this topic were published in 2018. Further research on this issue was on the decline, so research analysis of this aspect now seems necessary and important.
Also we were interested in this one because we see how the amount of time in absolutely different media resources increases from generation to generation, so for example, based on Zenith data, in 2021 Americans spent 252 minutes a day on my mobile Internet, and in 2012 60 minutes, this can be assumed to have happened due to the availability of devices with access to the Internet and a reduction in the cost of the Internet itself.
(https://www.vox.com/recode/2020/1/6/21048116/tech-companies-time-well-spent-mobile-phone-usage-data)
We chose Ukraine because these are the states of the post-Soviet space within which we are located, and therefore it would be interesting to observe the relationships that will appear within this state of the near abroad, since this may be applied (or vice versa not) in relation to Russia.
Our research question: how does the amount of time spent in the media space affect political trust?
Thus, in order to perform the necessary manipulations with the data, we downloaded the date ESS 2012
ESS6 <-
read.spss("/Users/DP/Downloads/ESS6.sav",
use.value.labels = T,
to.data.frame = T)
Next, we directly selected the relevant data for our study
ESS6 <- dplyr:: select(ESS6, c("cntry", "tvtot", "tvpol", "polintr", "trstlgl", "trstplc", "trstplt"))
ESSn <- filter(ESS6, cntry=="Ukraine")
Next, we came across the fact that some of the data we need is presented in a categorical format, so we converted them to numerical
ESSn = ESSn %>% mutate(trstlgl = case_when(trstlgl=="No trust at all" ~ "0",trstlgl=="1" ~ "1",trstlgl=="2" ~ "2", trstlgl=="3" ~ "3", trstlgl=="4" ~ "4", trstlgl=="5" ~ "5", trstlgl=="6" ~ "6",trstlgl=="7" ~ "7",trstlgl=="8" ~ "8", trstlgl=="9" ~ "9", trstlgl=="Complete trust" ~ "10"))
ESSn = ESSn %>% mutate(polintr = case_when(polintr=="Very interested" ~ "4",polintr=="Quite interested" ~ "3",polintr=="Hardly interested" ~ "2", polintr=="Not at all interested" ~ "1"))
ESSn = ESSn %>% mutate(trstplc = case_when(trstplc=="No trust at all" ~ "0",trstplc=="Complete trust" ~ "10",trstplc=="1" ~ "1",trstplc=="2" ~ "2", trstplc=="3" ~ "3", trstplc=="4" ~ "4", trstplc=="5" ~ "5", trstplc=="6" ~ "6",trstplc=="7" ~ "7",trstplc=="8" ~ "8", trstplc=="9" ~ "9"))
ESSn = ESSn %>% mutate(trstplt = case_when(trstplt=="No trust at all" ~ "0",trstplt=="Complete trust" ~ "10",trstplt=="1" ~ "1",trstplt=="2" ~ "2", trstplt=="3" ~ "3", trstplt=="4" ~ "4", trstplt=="5" ~ "5", trstplt=="6" ~ "6",trstplt=="7" ~ "7",trstplt=="8" ~ "8", trstplt=="9" ~ "9"))
ESSn$trstlgl <- as.numeric(as.character(ESSn$trstlgl))
ESSn$polintr <- as.numeric(as.character(ESSn$polintr))
ESSn$trstplc <- as.numeric(as.character(ESSn$trstplc))
ESSn$trstplt <- as.numeric(as.character(ESSn$trstplt))
The following table describes the categories of the variables we have selected
Variable = c("tvpol","tvtot","polintr","trstlgl","trstplc","trstplt")
Meaning = c("TV watching, news/politics/current, affairs on average weekday", "TV watching, total time on average weekday", "How interested in politics", "Trust in the legal system", "Trust in policy", "Trust in politicans")
Type = c("Ordinal", "Ordinal","Numeric","Numeric","Numeric","Numeric")
df <- data.frame(Variable, Meaning, Type, stringsAsFactors = FALSE)
df %>% kbl() %>% kable_minimal()
| Variable | Meaning | Type |
|---|---|---|
| tvpol | TV watching, news/politics/current, affairs on average weekday | Ordinal |
| tvtot | TV watching, total time on average weekday | Ordinal |
| polintr | How interested in politics | Numeric |
| trstlgl | Trust in the legal system | Numeric |
| trstplc | Trust in policy | Numeric |
| trstplt | Trust in politicans | Numeric |
Next, we calculate the mean, mode and median indicators for our variables
Mode <- function(x) {
ux <- unique(x)
ux[which.max(tabulate(match(x, ux)))]
}
ESSn$polintr = as.numeric(as.character(ESSn$polintr))
polintr <- c(mean(ESSn$polintr, na.rm = TRUE), Mode(ESSn$polintr), median(ESSn$polintr, na.rm = TRUE))
names(polintr) <- c("mean", "mode", "median")
ESSn$trstlgl = as.numeric(as.character(ESSn$trstlgl))
trstlgl <- c(mean(ESSn$trstlgl, na.rm = TRUE), Mode(ESSn$trstlgl), median(ESSn$trstlgl, na.rm = TRUE))
names(trstlgl) <- c("mean", "mode", "median")
ESSn$trstplc = as.numeric(as.character(ESSn$trstplc))
trstplc <- c(mean(ESSn$trstplc, na.rm = TRUE), Mode(ESSn$trstplc), median(ESSn$trstplc, na.rm = TRUE))
names(trstplc) <- c("mean", "mode", "median")
ESSn$trstplt = as.numeric(as.character(ESSn$trstplt))
trstplt <- c(mean(ESSn$trstplt, na.rm = TRUE), Mode(ESSn$trstplt), median(ESSn$trstplt, na.rm = TRUE))
names(trstplt) <- c("mean", "mode", "median")
measure = data.frame(polintr, trstlgl, trstplc, trstplt, stringsAsFactors = FALSE)
kable(measure) %>%
kable_styling(bootstrap_options=c("bordered", "responsive","striped"), full_width = FALSE)
| polintr | trstlgl | trstplc | trstplt | |
|---|---|---|---|---|
| mean | 2.161049 | 1.866176 | 2.045823 | 1.722329 |
| mode | 2.000000 | 0.000000 | 0.000000 | 0.000000 |
| median | 2.000000 | 1.000000 | 1.000000 | 1.000000 |
Next, we want to find out how much time people spend consuming content in general, how many people consume content for more than a few hours a day and how many people in general practically do not watch TV, do not read newspapers, etc.
ggplot(ESSn, aes(x = tvtot)) +
geom_bar(color = "white", fill = "white") +
coord_flip() +
scale_x_discrete(limits = rev(levels(ESSn$tvtot))) +
theme(panel.background = element_rect(fill = "pink", colour = "white"))
As we can see on this histogram, the largest indicator is from 1.5 hours
to 2, the next largest is more than three hours, and what is even more
significant for us is the fact that the number of people who said that
they do not consume this kind of content at all is extremely small in
relation to other indicators
Next, we want to consider whether these indicators differ in the context of not just media content consumption, but content directly related to politics and news
ggplot(ESSn, aes(x = tvpol)) +
geom_bar(color = "white", fill = "white") +
coord_flip() +
scale_x_discrete(limits = rev(levels(ESSn$tvpol))) +
theme(panel.background = element_rect(fill = "pink", colour = "white"))
And in this case, we see that political content is consumed much less
than TV viewing in general. The largest indicator in this case will be
less than 0.5 hours, which again is strikingly different from the
consumption of content in general, the smallest indicator will be from 2
hours to 2.5
Our next step is the question of how much people in this state as a whole are interested in politics
ggplot(ESSn, aes(x = polintr)) +
geom_histogram(binwidth = 1, colour = "pink", fill = "white") +
theme(panel.background = element_rect(fill = "pink", colour = "black"))
According to these data, the majority of people are barely interested in politics, while the smallest group will be people who are actively interested in politics At this stage, we can see a certain correlation between the fact that people do not consume a large amount of political content and, in general, when asked about interest in political processes, they say more about a small interest
Our next aspect is trust in the legal system
ESSn %>%
ggplot() +
geom_bar(aes(y = trstlgl), fill="pink") +
labs (x="Amount of people", y="Trust in the legal system")
In this case, we see that trust in the legal system is almost completely
absent, the greatest indicator is a sneaky distrust of the legal
system
further, in more detail, we also want to consider the relationship of trust in the legal system with viewing political content
box_plot <- ggplot(ESSn, aes(x = trstlgl, y = tvpol))
box_plot +
geom_boxplot(fill="pink")
In this case, we can see that the average indicators of trust in
political systems for almost all groups will be similar, at a not very
high level, the only critical exceptions here will be people who do not
consume this content at all, their average value is zero, as well as
people who consume from 1 to 1.5 hours of political content, their the
average value is much higher than the others and their response range is
also much wider. While all other groups have approximately the same
range of responses regardless of the number of hours viewed. The only
small exception in this case for gas can be a group consuming from 2 to
2.5 hours, while those who consume only 0.5 more already have much more
standard indicators
Also in this context, it would be logical to consider whether there are serious differences in the range between trust in politicians and trust in police
ggplot(ESSn, aes(x=trstplc, y=trstplt))+
geom_point(color="pink", position = "jitter")+
labs( x = "Trust in the police", y = "Trust in the politicans")
Here we see that there is a correlation between a lack of trust in
politicians and a lack of trust in the police, it is quite obvious that
most people, not trusting politicians, also adhere to a position of
distrust in relation to other state institutions
ggplot(ESSn, aes(fill=tvpol, y=tvtot, x=polintr)) +
geom_bar(position='stack', stat='identity') +
theme_wsj()
And the last graph we reviewed brings us back to the issue of viewing
ordinary content and political content, here we see that almost all
groups consuming TV content are characterized by a small amount of
consumed political content. In this case, it is important to note and
pay attention that people consume it for less than an hour or up to an
hour, but the number of people who answered that they do not watch it is
quite small
In this case, returning to our research question, we can say that the amount of content conducted does not critically affect the credibility of politics, the only exception here will be only people who do not consume political content at all, only in their case we see a correlation between the absence of this content and also the lack of trust in politics. We can assume that trust in political institutions will be more influenced by trust in individual political institutions than viewing political content
ESS10 <- import("/Users/DP/OneDrive/Рабочий стол/ESS10.sav")
str(df)
## 'data.frame': 6 obs. of 3 variables:
## $ Variable: chr "tvpol" "tvtot" "polintr" "trstlgl" ...
## $ Meaning : chr "TV watching, news/politics/current, affairs on average weekday" "TV watching, total time on average weekday" "How interested in politics" "Trust in the legal system" ...
## $ Type : chr "Ordinal" "Ordinal" "Numeric" "Numeric" ...
View(head(df))
Step 0 - clear the dataset, leave only important things
greece <- filter(ESS10, ESS10$cntry == "GR")
Let’s describe relationships between the following pairs of variables:
polintr and voteI expect to find out if there is a relationship between the level of political interest (polintr) and whether individuals voted during last national elections (vote).
greece_2 <- greece %>% dplyr:: select(polintr, vote)
greece_2 <- na.omit(greece_2)
greece_2
## polintr vote
## 1 3 1
## 2 3 1
## 3 2 1
## 4 3 3
## 5 3 1
## 6 4 1
## 7 3 1
## 8 4 1
## 9 3 1
## 10 4 1
## 11 1 1
## 12 2 1
## 13 3 1
## 14 3 2
## 15 2 1
## 16 2 1
## 17 1 1
## 18 4 1
## 19 2 1
## 20 4 1
## 22 4 1
## 23 2 1
## 24 3 1
## 25 3 1
## 26 1 1
## 27 3 1
## 28 2 1
## 29 2 1
## 30 4 2
## 31 2 1
## 32 2 1
## 33 4 1
## 34 3 2
## 35 2 1
## 36 4 1
## 37 4 1
## 38 4 1
## 39 2 1
## 40 4 2
## 41 3 3
## 42 4 1
## 43 3 1
## 44 2 1
## 45 2 1
## 46 1 1
## 47 1 1
## 48 4 1
## 49 4 1
## 50 3 1
## 51 1 1
## 52 4 1
## 53 4 2
## 54 2 1
## 55 1 2
## 56 4 1
## 57 3 1
## 58 3 1
## 59 4 1
## 60 4 1
## 61 2 1
## 62 2 1
## 63 3 1
## 64 2 1
## 65 3 1
## 66 3 1
## 67 3 1
## 68 4 1
## 69 4 1
## 70 2 1
## 71 2 1
## 72 4 2
## 73 3 1
## 74 2 1
## 75 2 1
## 76 2 1
## 77 4 1
## 78 4 1
## 80 2 1
## 81 1 1
## 82 3 1
## 83 2 1
## 84 2 1
## 85 3 1
## 86 4 1
## 87 4 1
## 88 4 1
## 89 3 1
## 90 1 1
## 91 2 1
## 93 3 1
## 95 3 1
## 96 4 1
## 97 1 1
## 98 1 1
## 99 2 1
## 100 1 1
## 101 3 1
## 102 4 3
## 103 3 1
## 104 2 1
## 105 2 1
## 106 4 1
## 107 4 1
## 108 2 1
## 109 4 2
## 110 4 2
## 111 4 1
## 112 4 1
## 113 3 1
## 114 2 1
## 115 3 1
## 116 3 2
## 117 4 1
## 118 4 1
## 119 2 1
## 120 4 1
## 121 4 1
## 122 3 1
## 123 2 1
## 124 3 1
## 125 2 1
## 126 3 1
## 127 3 1
## 128 2 1
## 129 1 1
## 130 2 2
## 131 3 1
## 132 1 1
## 133 1 1
## 134 4 1
## 135 1 1
## 136 4 1
## 137 4 1
## 138 2 1
## 139 3 1
## 141 2 2
## 142 3 2
## 143 3 1
## 144 3 1
## 145 4 1
## 146 3 2
## 147 2 2
## 148 4 1
## 149 2 1
## 150 3 1
## 151 3 1
## 152 4 1
## 153 2 1
## 154 4 1
## 155 3 1
## 156 2 2
## 157 3 2
## 158 1 1
## 159 2 1
## 160 3 1
## 161 3 1
## 162 3 2
## 163 4 1
## 164 3 1
## 165 2 1
## 166 4 1
## 167 1 1
## 168 3 1
## 169 1 1
## 170 3 1
## 171 4 1
## 172 4 1
## 174 2 1
## 175 2 1
## 176 3 2
## 177 2 1
## 178 3 1
## 179 1 1
## 180 4 1
## 181 4 1
## 182 4 1
## 183 3 1
## 184 3 2
## 185 2 2
## 186 3 1
## 187 3 1
## 188 4 1
## 189 3 1
## 190 3 1
## 191 4 1
## 192 3 1
## 193 4 3
## 194 3 1
## 195 3 1
## 196 4 1
## 197 4 1
## 198 4 1
## 200 3 1
## 201 4 3
## 202 3 1
## 203 3 1
## 204 4 1
## 205 2 1
## 206 4 2
## 207 4 1
## 208 4 2
## 209 3 1
## 210 1 1
## 211 4 1
## 212 4 1
## 213 4 1
## 214 4 1
## 215 3 1
## 216 3 1
## 217 4 1
## 218 4 1
## 219 4 2
## 220 4 1
## 221 2 1
## 222 3 1
## 223 2 1
## 224 3 1
## 225 3 1
## 226 2 1
## 227 2 1
## 228 2 1
## 229 1 1
## 230 2 1
## 231 4 1
## 232 3 1
## 233 4 1
## 234 3 1
## 235 3 2
## 236 3 1
## 237 3 1
## 239 2 1
## 240 3 1
## 241 3 1
## 242 2 1
## 243 2 1
## 244 3 1
## 245 3 1
## 246 3 1
## 248 4 2
## 250 2 1
## 251 3 1
## 252 2 1
## 253 4 1
## 254 2 1
## 255 3 2
## 256 3 1
## 257 3 1
## 258 4 2
## 259 3 1
## 260 4 1
## 261 4 1
## 262 4 3
## 263 2 1
## 264 1 1
## 265 3 2
## 266 4 1
## 267 4 1
## 268 3 1
## 269 2 1
## 270 3 1
## 271 3 1
## 272 2 2
## 273 3 1
## 274 3 1
## 275 2 2
## 276 3 1
## 277 2 1
## 278 3 1
## 279 2 1
## 280 2 1
## 281 4 1
## 282 2 1
## 283 2 1
## 284 4 2
## 285 4 1
## 286 4 1
## 287 4 1
## 288 2 1
## 289 3 2
## 290 3 1
## 292 4 1
## 293 4 1
## 294 3 1
## 295 4 1
## 296 4 1
## 297 4 1
## 298 3 2
## 299 4 1
## 300 2 1
## 301 2 1
## 302 4 1
## 303 4 1
## 304 2 2
## 305 3 1
## 307 2 1
## 308 4 2
## 309 2 2
## 310 3 2
## 311 3 1
## 312 4 2
## 313 1 1
## 314 2 1
## 315 4 1
## 316 4 1
## 317 2 1
## 318 3 2
## 319 4 1
## 320 4 1
## 321 4 2
## 322 2 1
## 323 3 1
## 324 2 1
## 325 2 1
## 326 2 1
## 327 4 1
## 328 2 1
## 329 2 1
## 330 4 1
## 331 4 1
## 332 1 1
## 333 4 1
## 334 3 1
## 335 3 1
## 336 4 1
## 337 3 1
## 338 2 1
## 339 1 1
## 340 4 2
## 341 4 1
## 342 2 1
## 343 3 1
## 344 4 1
## 345 3 1
## 346 4 2
## 347 2 1
## 348 2 1
## 349 4 1
## 350 2 1
## 351 3 1
## 352 3 1
## 353 4 1
## 354 2 1
## 355 3 1
## 356 4 1
## 357 2 1
## 358 2 1
## 359 3 1
## 360 3 1
## 361 2 2
## 362 4 1
## 363 3 1
## 364 4 1
## 365 2 1
## 366 3 1
## 367 3 1
## 368 3 1
## 370 4 1
## 371 4 1
## 372 4 1
## 373 3 1
## 374 2 1
## 375 4 1
## 376 4 2
## 377 2 1
## 378 4 2
## 379 3 2
## 380 4 2
## 381 2 1
## 382 2 1
## 383 2 1
## 384 4 1
## 385 4 1
## 386 2 1
## 387 4 1
## 388 2 1
## 389 4 2
## 390 4 3
## 391 4 1
## 392 2 1
## 393 4 2
## 394 2 2
## 395 3 1
## 396 4 1
## 397 4 1
## 398 4 1
## 399 4 1
## 400 3 1
## 401 2 1
## 402 2 1
## 403 1 1
## 404 2 1
## 405 2 1
## 406 4 2
## 407 4 2
## 408 3 3
## 409 4 1
## 410 3 1
## 411 4 1
## 412 3 1
## 413 4 1
## 414 2 1
## 415 4 1
## 416 3 1
## 417 2 1
## 418 2 1
## 419 2 1
## 420 2 1
## 421 4 1
## 422 4 1
## 423 3 1
## 424 1 1
## 425 3 1
## 426 4 1
## 427 4 1
## 428 4 1
## 429 4 1
## 430 2 1
## 431 4 2
## 432 4 1
## 433 3 1
## 434 3 2
## 435 2 1
## 436 4 1
## 437 4 1
## 438 2 1
## 439 2 1
## 440 2 2
## 441 2 1
## 442 2 1
## 443 3 1
## 444 2 2
## 445 3 1
## 446 2 1
## 447 3 2
## 448 3 2
## 449 2 1
## 450 3 1
## 451 4 1
## 452 3 2
## 453 3 1
## 454 3 1
## 455 4 1
## 456 4 1
## 457 4 1
## 458 4 1
## 459 4 1
## 460 3 1
## 461 4 1
## 462 4 1
## 463 3 2
## 464 1 1
## 465 3 1
## 466 3 1
## 467 3 1
## 468 3 1
## 469 4 1
## 470 4 1
## 471 4 1
## 472 4 2
## 473 3 1
## 474 2 1
## 475 4 1
## 476 3 1
## 477 4 2
## 479 3 1
## 480 2 1
## 481 2 2
## 482 1 1
## 483 3 1
## 484 4 1
## 485 3 2
## 486 4 2
## 487 4 1
## 488 4 1
## 489 4 1
## 490 3 1
## 491 4 1
## 492 2 1
## 493 2 2
## 494 4 2
## 495 4 1
## 496 3 1
## 497 4 1
## 498 4 1
## 499 2 1
## 500 3 1
## 501 3 1
## 502 2 1
## 503 4 1
## 504 4 1
## 505 3 1
## 506 3 1
## 507 2 2
## 508 3 1
## 509 1 1
## 510 2 1
## 511 4 1
## 512 2 1
## 513 2 1
## 514 4 2
## 515 4 2
## 516 4 1
## 517 2 1
## 518 3 1
## 519 3 1
## 520 3 1
## 521 2 1
## 522 4 1
## 523 4 2
## 524 3 1
## 525 2 1
## 526 4 1
## 527 2 2
## 528 4 1
## 529 4 2
## 530 2 1
## 531 3 1
## 532 4 1
## 533 2 1
## 534 3 1
## 535 4 1
## 536 4 2
## 537 3 1
## 538 2 1
## 539 4 1
## 540 4 1
## 541 4 1
## 543 4 1
## 544 3 1
## 545 3 3
## 546 1 1
## 547 4 1
## 548 2 2
## 549 2 1
## 550 4 1
## 551 3 1
## 552 4 1
## 553 3 1
## 554 3 1
## 555 4 1
## 556 2 1
## 557 3 1
## 559 4 1
## 560 2 1
## 561 4 2
## 562 2 1
## 563 4 1
## 564 2 1
## 565 4 1
## 566 4 3
## 567 4 1
## 568 4 2
## 569 3 1
## 570 1 1
## 571 3 1
## 572 3 1
## 573 2 1
## 574 4 1
## 575 4 1
## 576 2 1
## 578 2 1
## 579 4 1
## 580 3 1
## 581 3 1
## 582 2 1
## 583 3 1
## 584 4 3
## 585 2 1
## 586 4 1
## 587 2 1
## 588 4 1
## 589 2 1
## 590 4 1
## 591 3 1
## 592 3 3
## 593 4 3
## 594 2 1
## 595 3 1
## 596 3 2
## 597 3 1
## 598 4 1
## 599 2 1
## 600 2 1
## 601 2 1
## 602 2 1
## 603 3 1
## 604 3 1
## 605 2 1
## 606 4 1
## 607 2 1
## 608 3 3
## 609 3 1
## 610 1 1
## 611 3 2
## 612 3 1
## 613 4 1
## 614 3 1
## 615 2 1
## 616 4 1
## 617 4 2
## 618 3 1
## 619 2 1
## 620 4 1
## 621 4 2
## 622 3 1
## 623 4 1
## 625 3 1
## 626 3 1
## 627 4 1
## 628 3 1
## 629 3 1
## 630 2 1
## 631 4 2
## 632 4 1
## 633 4 1
## 634 3 1
## 635 3 2
## 636 2 1
## 637 4 3
## 638 3 1
## 639 2 1
## 640 4 1
## 641 3 1
## 642 4 2
## 643 3 1
## 644 4 1
## 645 3 1
## 646 1 1
## 647 4 2
## 648 4 1
## 649 2 1
## 650 2 1
## 651 2 1
## 652 4 1
## 653 3 2
## 654 4 1
## 655 4 2
## 656 3 1
## 657 3 1
## 658 3 1
## 659 2 1
## 660 4 1
## 661 4 1
## 662 3 1
## 663 4 1
## 664 3 1
## 665 2 1
## 666 4 1
## 667 2 1
## 668 2 1
## 669 4 2
## 670 2 1
## 671 1 1
## 672 4 1
## 674 3 1
## 675 3 1
## 676 3 1
## 677 3 2
## 678 4 1
## 679 3 1
## 680 4 1
## 681 4 3
## 682 2 1
## 683 3 1
## 684 3 1
## 685 3 2
## 686 3 1
## 687 3 1
## 688 3 1
## 689 4 1
## 690 3 1
## 691 4 1
## 692 3 1
## 693 3 1
## 694 2 1
## 695 2 1
## 696 4 1
## 697 2 1
## 698 4 3
## 699 4 1
## 700 4 1
## 701 1 1
## 702 4 1
## 703 2 1
## 704 4 1
## 705 4 1
## 706 4 1
## 707 4 1
## 708 4 1
## 709 2 1
## 710 4 1
## 711 2 1
## 712 2 1
## 713 3 1
## 714 2 1
## 715 2 1
## 716 1 1
## 717 4 1
## 718 2 1
## 719 4 1
## 720 2 1
## 721 3 1
## 722 2 1
## 723 2 1
## 724 3 2
## 725 3 1
## 726 3 1
## 727 2 1
## 728 2 1
## 729 4 1
## 730 3 1
## 731 4 1
## 733 2 1
## 734 4 1
## 735 2 1
## 736 4 1
## 737 2 1
## 738 2 2
## 739 2 1
## 740 4 1
## 741 3 1
## 742 4 2
## 743 4 1
## 744 4 2
## 745 3 1
## 746 2 2
## 747 4 2
## 748 4 2
## 749 3 1
## 750 2 1
## 751 4 1
## 752 2 1
## 753 4 1
## 754 2 1
## 755 4 2
## 756 2 1
## 757 2 1
## 758 3 1
## 759 4 2
## 760 3 1
## 761 2 1
## 762 3 1
## 763 4 1
## 764 4 2
## 765 4 1
## 766 3 1
## 767 4 2
## 768 3 1
## 769 2 1
## 770 4 1
## 771 4 3
## 772 2 1
## 773 2 1
## 774 3 1
## 775 2 1
## 776 4 1
## 777 3 1
## 778 3 1
## 779 4 1
## 780 1 1
## 781 4 1
## 782 4 1
## 783 4 1
## 784 2 1
## 785 4 1
## 786 3 1
## 787 3 1
## 788 3 1
## 789 2 1
## 790 3 1
## 791 4 1
## 792 2 1
## 793 2 1
## 794 3 2
## 795 3 1
## 796 4 1
## 797 2 1
## 798 2 1
## 800 4 1
## 801 2 1
## 802 4 1
## 803 2 1
## 804 2 1
## 805 4 1
## 806 2 1
## 807 2 1
## 808 2 2
## 809 1 1
## 810 3 1
## 811 3 1
## 812 2 1
## 813 2 1
## 814 2 1
## 815 3 1
## 816 3 1
## 817 3 1
## 818 2 1
## 819 4 1
## 820 4 1
## 821 4 1
## 822 4 1
## 823 2 1
## 824 4 1
## 825 1 1
## 826 3 2
## 828 3 2
## 829 1 2
## 830 3 1
## 831 3 1
## 832 4 1
## 833 3 1
## 834 2 1
## 835 3 1
## 836 3 1
## 837 3 2
## 838 2 1
## 839 1 1
## 840 3 2
## 841 4 1
## 842 2 1
## 843 4 1
## 844 3 1
## 845 4 1
## 846 4 1
## 847 3 1
## 848 4 1
## 849 4 1
## 850 4 1
## 851 3 1
## 852 2 1
## 853 3 1
## 854 4 2
## 855 4 2
## 856 2 1
## 857 2 1
## 858 3 1
## 859 4 1
## 860 4 1
## 861 2 1
## 862 4 1
## 863 3 1
## 864 2 2
## 865 3 1
## 866 4 1
## 867 4 1
## 868 2 1
## 869 4 1
## 870 2 1
## 871 2 3
## 872 3 1
## 873 4 1
## 874 2 1
## 875 4 1
## 876 4 1
## 877 4 1
## 878 2 1
## 879 4 1
## 880 4 1
## 881 3 1
## 882 2 1
## 883 4 1
## 884 2 1
## 885 4 1
## 886 4 1
## 887 4 1
## 888 4 1
## 889 3 1
## 890 4 2
## 891 2 1
## 892 4 1
## 893 2 1
## 894 2 1
## 895 3 1
## 896 4 1
## 897 4 1
## 898 4 1
## 899 3 1
## 900 3 1
## 901 4 2
## 902 1 1
## 903 4 2
## 904 2 1
## 905 4 1
## 906 4 1
## 907 1 1
## 908 2 1
## 909 3 2
## 910 4 2
## 911 2 1
## 912 3 2
## 913 3 1
## 914 2 1
## 915 3 1
## 916 4 1
## 917 4 2
## 918 4 1
## 919 4 3
## 920 3 1
## 921 4 1
## 922 2 1
## 923 2 1
## 924 2 2
## 925 2 1
## 926 4 2
## 927 4 1
## 928 2 1
## 929 3 2
## 930 2 1
## 931 2 1
## 932 3 1
## 933 3 2
## 934 3 1
## 935 2 1
## 936 3 1
## 937 4 1
## 938 2 1
## 939 1 1
## 940 3 1
## 941 3 1
## 942 2 2
## 943 3 1
## 944 3 1
## 945 4 1
## 946 3 1
## 947 3 1
## 948 1 1
## 949 1 1
## 950 4 1
## 951 1 1
## 952 1 1
## 953 2 1
## 954 4 1
## 955 3 1
## 956 4 1
## 957 3 3
## 958 1 1
## 959 2 1
## 960 3 1
## 961 3 1
## 962 1 1
## 963 2 1
## 964 4 1
## 965 3 3
## 967 4 1
## 968 1 1
## 969 4 1
## 970 4 1
## 971 3 1
## 972 2 1
## 973 2 1
## 974 2 1
## 975 1 1
## 976 4 2
## 977 2 1
## 978 4 1
## 979 2 1
## 980 1 1
## 981 4 2
## 982 2 1
## 983 3 1
## 984 4 1
## 985 4 2
## 986 2 1
## 987 4 1
## 988 4 1
## 989 3 1
## 990 2 1
## 991 2 1
## 992 4 1
## 993 2 1
## 994 4 1
## 995 4 1
## 996 2 1
## 997 4 1
## 998 3 1
## 999 2 1
## 1000 4 1
## 1001 3 1
## 1002 4 1
## 1003 3 1
## 1004 3 1
## 1005 3 1
## 1006 4 2
## 1007 4 1
## 1008 3 1
## 1009 4 1
## 1010 4 1
## 1011 4 2
## 1012 3 1
## 1013 2 1
## 1014 4 1
## 1015 3 1
## 1016 3 1
## 1017 3 1
## 1018 2 1
## 1019 2 1
## 1020 2 1
## 1021 2 1
## 1022 3 1
## 1023 2 1
## 1024 2 1
## 1025 3 1
## 1026 4 1
## 1027 2 1
## 1028 4 1
## 1030 2 1
## 1031 4 2
## 1032 2 1
## 1034 2 1
## 1035 3 1
## 1036 4 1
## 1037 2 1
## 1038 4 1
## 1039 4 1
## 1040 4 1
## 1041 3 1
## 1042 2 1
## 1043 3 3
## 1044 3 1
## 1045 2 1
## 1046 4 1
## 1047 4 1
## 1048 3 1
## 1049 4 1
## 1050 4 2
## 1051 3 1
## 1052 4 1
## 1053 3 3
## 1054 1 1
## 1055 3 1
## 1056 4 1
## 1057 4 1
## 1058 2 1
## 1059 4 1
## 1060 2 1
## 1061 3 2
## 1062 2 1
## 1063 3 1
## 1064 3 1
## 1065 4 1
## 1066 4 1
## 1067 2 1
## 1068 3 1
## 1069 3 2
## 1070 3 1
## 1071 2 1
## 1072 4 1
## 1073 3 1
## 1074 4 1
## 1075 3 1
## 1076 1 1
## 1077 2 1
## 1078 4 1
## 1079 4 1
## 1080 3 1
## 1081 3 1
## 1082 4 1
## 1083 2 1
## 1084 4 1
## 1085 4 1
## 1086 3 2
## 1087 3 1
## 1088 2 1
## 1089 4 1
## 1090 4 1
## 1091 4 1
## 1092 4 1
## 1093 4 1
## 1094 4 1
## 1095 4 2
## 1096 4 1
## 1097 4 1
## 1098 2 1
## 1099 4 2
## 1100 4 2
## 1101 3 1
## 1102 3 1
## 1103 4 1
## 1104 3 1
## 1105 3 1
## 1106 4 1
## 1107 3 1
## 1108 4 1
## 1109 4 1
## 1110 4 3
## 1111 3 1
## 1112 2 1
## 1113 2 1
## 1114 3 1
## 1115 3 1
## 1116 3 1
## 1117 3 1
## 1118 3 1
## 1119 3 2
## 1120 3 2
## 1121 4 1
## 1122 3 1
## 1123 4 1
## 1124 2 2
## 1125 2 1
## 1126 3 1
## 1127 2 1
## 1128 2 1
## 1129 4 1
## 1130 2 1
## 1131 3 2
## 1132 4 2
## 1133 3 1
## 1134 2 1
## 1135 4 1
## 1136 4 1
## 1137 4 2
## 1138 4 1
## 1139 1 1
## 1140 1 3
## 1141 3 1
## 1142 1 1
## 1143 4 2
## 1144 3 1
## 1145 2 1
## 1146 4 1
## 1147 2 2
## 1148 3 1
## 1149 3 2
## 1150 3 1
## 1151 2 1
## 1152 4 1
## 1153 3 1
## 1154 1 1
## 1155 4 1
## 1156 4 2
## 1158 4 1
## 1159 3 1
## 1160 3 1
## 1161 3 1
## 1162 4 1
## 1163 3 2
## 1164 3 1
## 1165 4 1
## 1166 2 1
## 1167 4 1
## 1168 2 1
## 1169 2 1
## 1170 3 1
## 1171 1 1
## 1172 4 1
## 1173 3 1
## 1174 4 1
## 1175 2 1
## 1176 3 1
## 1177 4 1
## 1178 2 1
## 1179 3 3
## 1180 3 1
## 1181 3 1
## 1182 4 1
## 1183 2 1
## 1184 2 1
## 1185 2 1
## 1186 2 1
## 1187 3 1
## 1188 3 1
## 1189 3 1
## 1190 3 1
## 1191 3 1
## 1192 4 2
## 1193 2 1
## 1194 4 1
## 1195 4 2
## 1196 2 2
## 1197 1 1
## 1199 3 1
## 1200 2 1
## 1201 3 1
## 1202 2 1
## 1203 4 2
## 1204 4 1
## 1205 3 1
## 1206 3 1
## 1207 3 1
## 1208 3 3
## 1209 1 1
## 1210 3 3
## 1211 4 1
## 1212 1 1
## 1213 3 2
## 1214 4 1
## 1215 4 1
## 1216 2 1
## 1217 4 1
## 1218 3 1
## 1219 4 1
## 1220 4 1
## 1222 4 1
## 1223 1 1
## 1224 4 1
## 1225 3 1
## 1226 3 1
## 1227 2 3
## 1228 2 1
## 1229 3 1
## 1230 4 1
## 1231 4 1
## 1232 4 1
## 1233 4 1
## 1234 2 1
## 1235 4 1
## 1236 3 1
## 1237 3 1
## 1238 1 1
## 1239 2 1
## 1240 2 1
## 1241 3 1
## 1242 2 1
## 1243 3 1
## 1244 4 2
## 1245 3 1
## 1246 2 1
## 1247 4 1
## 1248 2 1
## 1249 3 1
## 1250 2 1
## 1251 4 2
## 1252 4 1
## 1253 4 1
## 1254 4 1
## 1255 4 1
## 1256 3 2
## 1257 4 1
## 1258 4 1
## 1259 4 1
## 1260 2 1
## 1261 2 1
## 1262 3 1
## 1263 3 1
## 1264 1 1
## 1265 4 2
## 1266 2 1
## 1267 3 1
## 1268 3 1
## 1269 4 2
## 1270 4 1
## 1271 4 2
## 1272 4 2
## 1273 4 3
## 1274 4 1
## 1275 4 1
## 1276 4 2
## 1277 2 2
## 1278 4 1
## 1279 1 1
## 1280 3 1
## 1281 2 1
## 1282 4 1
## 1283 3 1
## 1284 1 1
## 1285 1 1
## 1286 2 1
## 1287 3 1
## 1288 3 1
## 1289 4 1
## 1290 3 1
## 1291 4 1
## 1292 2 1
## 1293 3 1
## 1294 4 1
## 1295 4 2
## 1296 4 1
## 1297 1 2
## 1298 3 2
## 1299 2 1
## 1300 4 1
## 1301 3 1
## 1302 3 1
## 1303 4 3
## 1304 2 2
## 1305 3 1
## 1306 4 1
## 1307 1 1
## 1308 4 1
## 1309 3 1
## 1310 3 2
## 1311 4 1
## 1312 2 1
## 1313 2 1
## 1314 4 1
## 1315 3 2
## 1316 4 2
## 1317 4 1
## 1318 4 1
## 1319 4 1
## 1320 2 1
## 1321 4 1
## 1322 3 1
## 1323 4 2
## 1324 4 1
## 1325 3 1
## 1326 2 1
## 1327 3 1
## 1328 3 2
## 1329 2 1
## 1330 4 1
## 1331 3 1
## 1332 2 1
## 1333 2 1
## 1334 4 1
## 1335 4 1
## 1336 4 1
## 1337 4 1
## 1338 3 1
## 1339 3 1
## 1340 4 1
## 1341 4 1
## 1342 4 1
## 1343 2 1
## 1344 3 1
## 1345 4 1
## 1346 3 1
## 1347 2 1
## 1348 4 2
## 1349 2 1
## 1350 3 1
## 1351 2 1
## 1352 2 1
## 1353 2 2
## 1354 3 1
## 1355 1 1
## 1356 4 1
## 1357 4 1
## 1358 4 1
## 1359 1 1
## 1360 2 2
## 1362 3 1
## 1363 3 1
## 1364 2 1
## 1365 2 1
## 1366 4 1
## 1367 2 1
## 1368 4 2
## 1369 4 2
## 1370 2 1
## 1371 3 1
## 1372 3 1
## 1373 3 3
## 1374 3 1
## 1375 3 1
## 1376 4 1
## 1377 2 1
## 1378 4 2
## 1379 4 1
## 1380 2 1
## 1381 3 1
## 1382 4 1
## 1383 4 1
## 1384 3 1
## 1385 3 1
## 1386 3 1
## 1387 3 1
## 1388 3 1
## 1389 3 1
## 1390 2 1
## 1391 3 1
## 1392 4 2
## 1393 2 1
## 1394 4 2
## 1395 4 1
## 1396 2 1
## 1397 3 2
## 1398 4 2
## 1399 3 1
## 1400 2 1
## 1401 3 1
## 1402 1 1
## 1403 3 1
## 1404 2 1
## 1405 3 1
## 1406 4 1
## 1407 3 1
## 1408 4 1
## 1409 2 1
## 1410 4 2
## 1411 2 2
## 1412 4 2
## 1413 1 1
## 1414 2 1
## 1415 1 1
## 1416 4 1
## 1417 3 1
## 1418 4 1
## 1419 2 1
## 1420 3 1
## 1421 3 1
## 1422 2 1
## 1423 4 1
## 1424 2 1
## 1425 2 1
## 1426 2 1
## 1427 2 1
## 1428 4 1
## 1429 4 1
## 1430 4 1
## 1431 3 2
## 1432 4 1
## 1433 2 1
## 1434 4 1
## 1435 4 3
## 1436 1 1
## 1437 2 1
## 1438 4 1
## 1439 2 1
## 1440 3 2
## 1441 2 2
## 1442 2 1
## 1443 3 1
## 1444 4 1
## 1445 3 1
## 1446 4 1
## 1447 4 1
## 1448 2 1
## 1449 4 2
## 1450 4 2
## 1451 3 1
## 1452 2 1
## 1453 2 1
## 1454 2 2
## 1455 4 1
## 1456 3 1
## 1457 2 2
## 1458 3 1
## 1459 4 1
## 1460 2 1
## 1461 3 1
## 1462 4 1
## 1463 4 1
## 1464 2 1
## 1465 2 1
## 1466 4 2
## 1467 3 1
## 1468 4 1
## 1469 4 1
## 1470 2 1
## 1471 3 1
## 1472 3 1
## 1473 3 1
## 1474 3 2
## 1475 3 1
## 1476 2 1
## 1477 2 1
## 1478 2 1
## 1479 3 2
## 1480 3 1
## 1481 2 1
## 1482 3 1
## 1484 4 1
## 1485 2 1
## 1486 4 1
## 1487 3 1
## 1488 2 1
## 1489 2 1
## 1490 2 1
## 1491 4 1
## 1492 1 1
## 1493 2 1
## 1494 3 1
## 1495 4 1
## 1496 4 1
## 1497 4 1
## 1498 4 1
## 1499 3 1
## 1500 2 1
## 1501 4 1
## 1502 4 1
## 1503 4 2
## 1504 4 2
## 1505 1 1
## 1506 4 1
## 1507 3 1
## 1508 1 1
## 1509 4 1
## 1510 2 1
## 1511 4 1
## 1512 4 1
## 1513 4 1
## 1514 2 1
## 1515 4 1
## 1516 3 1
## 1517 2 1
## 1518 3 1
## 1519 4 1
## 1520 3 1
## 1521 4 1
## 1522 2 1
## 1523 3 1
## 1524 3 1
## 1525 4 2
## 1526 2 1
## 1527 1 1
## 1528 3 1
## 1529 2 1
## 1530 3 1
## 1531 3 2
## 1532 3 1
## 1533 4 2
## 1534 4 1
## 1535 4 1
## 1536 2 1
## 1537 2 1
## 1538 1 1
## 1539 3 1
## 1540 3 1
## 1541 4 1
## 1542 4 1
## 1543 3 1
## 1544 2 1
## 1546 3 1
## 1547 4 1
## 1548 3 1
## 1549 4 1
## 1550 3 1
## 1551 2 2
## 1552 4 1
## 1553 2 1
## 1554 3 1
## 1555 3 1
## 1556 4 1
## 1557 3 3
## 1558 4 1
## 1559 4 1
## 1560 2 1
## 1561 2 1
## 1562 4 1
## 1563 3 1
## 1564 4 1
## 1565 2 1
## 1566 3 1
## 1567 1 1
## 1568 4 1
## 1569 2 1
## 1570 2 2
## 1571 2 1
## 1572 2 1
## 1573 4 1
## 1574 4 2
## 1575 2 1
## 1576 2 1
## 1577 3 1
## 1578 4 1
## 1579 3 2
## 1580 3 1
## 1581 2 1
## 1582 4 1
## 1583 3 1
## 1584 2 1
## 1585 2 2
## 1586 4 1
## 1587 2 1
## 1588 2 1
## 1589 3 1
## 1590 2 1
## 1591 4 1
## 1592 4 1
## 1593 2 1
## 1594 2 1
## 1595 3 1
## 1596 2 1
## 1597 2 1
## 1598 2 1
## 1599 2 1
## 1600 4 1
## 1601 2 1
## 1602 4 1
## 1603 3 1
## 1604 3 1
## 1605 3 1
## 1606 3 1
## 1607 1 1
## 1608 4 1
## 1609 3 1
## 1610 4 1
## 1611 3 1
## 1612 4 1
## 1613 1 1
## 1614 2 1
## 1615 4 2
## 1616 3 1
## 1617 2 1
## 1618 2 1
## 1619 2 1
## 1620 3 2
## 1621 3 1
## 1622 4 3
## 1623 4 3
## 1624 3 1
## 1625 3 1
## 1626 4 1
## 1627 3 1
## 1628 4 1
## 1629 2 1
## 1630 2 1
## 1631 3 1
## 1632 4 1
## 1633 2 1
## 1634 3 2
## 1635 4 1
## 1636 3 2
## 1637 4 1
## 1638 2 1
## 1639 3 1
## 1640 2 1
## 1641 2 1
## 1642 3 1
## 1643 3 2
## 1644 2 1
## 1645 4 1
## 1646 3 1
## 1647 4 1
## 1648 4 1
## 1649 4 1
## 1650 2 1
## 1651 3 1
## 1652 4 2
## 1653 3 2
## 1654 3 1
## 1655 4 2
## 1656 1 1
## 1657 3 1
## 1658 4 1
## 1659 4 1
## 1660 4 1
## 1661 3 1
## 1662 4 1
## 1663 3 2
## 1664 3 1
## 1665 4 1
## 1666 4 1
## 1667 2 1
## 1668 3 2
## 1669 3 1
## 1670 2 1
## 1671 4 1
## 1672 4 1
## 1673 2 1
## 1674 4 1
## 1675 4 1
## 1676 2 1
## 1677 4 2
## 1678 3 1
## 1679 3 3
## 1680 3 1
## 1681 3 1
## 1682 2 1
## 1684 2 1
## 1685 3 2
## 1686 3 1
## 1687 3 1
## 1688 4 1
## 1689 3 1
## 1690 4 1
## 1691 3 1
## 1692 4 1
## 1693 3 1
## 1694 4 1
## 1695 2 1
## 1696 4 1
## 1697 4 1
## 1698 2 1
## 1699 3 1
## 1700 4 1
## 1701 3 1
## 1702 3 1
## 1703 2 1
## 1704 4 2
## 1705 2 1
## 1706 4 1
## 1707 4 1
## 1708 4 1
## 1709 3 2
## 1710 3 1
## 1711 3 1
## 1712 4 1
## 1713 3 1
## 1714 2 3
## 1715 2 1
## 1716 2 2
## 1717 4 2
## 1718 4 1
## 1719 2 1
## 1720 2 1
## 1721 4 1
## 1722 4 1
## 1723 2 2
## 1724 2 1
## 1725 4 2
## 1726 4 1
## 1727 4 1
## 1728 2 1
## 1729 4 1
## 1730 3 1
## 1731 3 1
## 1732 2 1
## 1733 2 1
## 1734 4 1
## 1735 2 1
## 1736 4 2
## 1737 2 1
## 1738 2 1
## 1739 2 1
## 1740 4 1
## 1741 1 1
## 1742 4 1
## 1743 2 2
## 1744 1 1
## 1745 4 1
## 1746 4 1
## 1747 3 1
## 1748 3 1
## 1749 3 1
## 1750 3 1
## 1751 4 3
## 1752 4 1
## 1753 2 1
## 1754 2 1
## 1755 2 1
## 1756 3 1
## 1757 4 1
## 1758 2 1
## 1759 3 1
## 1760 4 2
## 1761 4 3
## 1762 2 1
## 1763 3 1
## 1764 2 2
## 1765 1 1
## 1766 4 1
## 1767 4 2
## 1768 3 1
## 1769 4 2
## 1770 4 1
## 1771 2 1
## 1772 4 2
## 1773 4 1
## 1774 4 1
## 1775 4 1
## 1776 2 1
## 1777 3 1
## 1778 2 1
## 1779 4 1
## 1780 4 1
## 1781 4 2
## 1782 2 1
## 1783 4 1
## 1784 4 1
## 1785 3 1
## 1786 4 2
## 1787 4 1
## 1788 2 1
## 1789 3 1
## 1790 2 1
## 1791 3 1
## 1792 4 2
## 1793 2 1
## 1794 2 1
## 1795 3 1
## 1796 4 1
## 1797 2 1
## 1798 3 1
## 1799 2 1
## 1800 1 1
## 1801 2 1
## 1802 3 1
## 1803 3 1
## 1804 3 1
## 1805 4 1
## 1806 4 1
## 1807 3 1
## 1808 4 1
## 1809 3 1
## 1810 2 1
## 1811 3 1
## 1812 4 1
## 1813 3 1
## 1814 2 1
## 1815 3 1
## 1816 3 1
## 1817 3 1
## 1818 3 1
## 1819 3 1
## 1820 2 2
## 1821 3 2
## 1822 3 1
## 1823 4 1
## 1824 4 1
## 1825 2 1
## 1826 3 1
## 1828 2 1
## 1829 2 1
## 1830 1 1
## 1831 3 1
## 1832 2 1
## 1833 1 1
## 1834 4 1
## 1835 3 1
## 1836 4 2
## 1837 4 2
## 1838 2 1
## 1839 4 1
## 1841 4 1
## 1842 3 1
## 1843 4 1
## 1844 4 1
## 1845 2 1
## 1846 2 1
## 1847 4 1
## 1849 3 1
## 1850 2 1
## 1851 3 1
## 1852 3 1
## 1853 3 1
## 1854 3 1
## 1855 4 1
## 1856 3 1
## 1857 4 1
## 1858 3 1
## 1859 2 1
## 1860 3 1
## 1861 2 1
## 1862 4 2
## 1863 4 1
## 1864 4 3
## 1865 1 1
## 1866 3 1
## 1867 4 1
## 1868 4 1
## 1869 3 1
## 1870 3 1
## 1871 1 1
## 1872 2 1
## 1873 4 1
## 1874 2 1
## 1875 1 1
## 1876 3 1
## 1877 2 1
## 1878 2 1
## 1879 4 1
## 1880 4 1
## 1881 4 1
## 1882 4 1
## 1883 4 1
## 1884 4 1
## 1885 3 1
## 1886 4 1
## 1887 3 1
## 1888 3 1
## 1889 3 1
## 1890 4 1
## 1891 4 1
## 1892 3 1
## 1893 2 1
## 1894 4 3
## 1895 3 1
## 1896 2 1
## 1897 4 2
## 1898 4 1
## 1899 3 1
## 1900 4 1
## 1901 3 1
## 1902 3 1
## 1903 2 1
## 1904 3 2
## 1905 4 2
## 1906 1 1
## 1907 4 1
## 1908 4 1
## 1909 1 1
## 1911 4 1
## 1912 4 1
## 1913 3 2
## 1914 3 1
## 1915 3 1
## 1916 4 1
## 1917 4 1
## 1918 3 1
## 1919 3 1
## 1920 2 1
## 1922 4 1
## 1923 2 1
## 1924 4 1
## 1925 2 1
## 1926 4 2
## 1927 3 1
## 1929 3 1
## 1930 4 1
## 1931 2 2
## 1932 4 1
## 1933 4 1
## 1934 4 1
## 1935 2 1
## 1936 4 1
## 1937 2 1
## 1938 3 1
## 1939 4 2
## 1940 1 1
## 1941 4 2
## 1942 2 1
## 1943 3 2
## 1944 3 1
## 1945 4 1
## 1946 3 1
## 1947 4 1
## 1948 4 1
## 1949 4 1
## 1950 4 2
## 1951 3 1
## 1952 3 2
## 1953 2 1
## 1954 2 1
## 1955 4 1
## 1956 4 2
## 1957 2 1
## 1958 4 1
## 1959 2 1
## 1960 4 1
## 1961 4 1
## 1962 4 1
## 1963 2 2
## 1964 2 2
## 1965 3 1
## 1966 2 3
## 1967 2 1
## 1968 3 1
## 1969 4 2
## 1970 1 1
## 1972 3 1
## 1973 3 1
## 1974 4 1
## 1975 3 1
## 1976 2 1
## 1977 3 1
## 1978 2 1
## 1979 4 1
## 1980 4 1
## 1981 3 1
## 1982 3 1
## 1983 3 1
## 1984 4 1
## 1985 4 1
## 1986 3 1
## 1987 1 1
## 1988 3 1
## 1989 3 1
## 1990 2 1
## 1991 4 1
## 1992 3 1
## 1993 3 1
## 1994 3 1
## 1995 3 2
## 1996 4 1
## 1997 1 1
## 1998 2 1
## 1999 4 1
## 2000 4 1
## 2001 4 2
## 2002 4 2
## 2003 2 1
## 2004 2 1
## 2005 4 1
## 2006 3 2
## 2007 3 1
## 2008 3 1
## 2009 3 1
## 2010 4 1
## 2011 4 3
## 2012 3 1
## 2013 2 1
## 2014 3 2
## 2015 2 1
## 2016 2 1
## 2017 4 1
## 2018 3 3
## 2019 4 1
## 2020 3 1
## 2021 2 1
## 2022 4 2
## 2023 4 1
## 2024 3 1
## 2025 4 1
## 2026 2 1
## 2027 3 1
## 2028 4 1
## 2029 4 1
## 2030 3 1
## 2031 2 1
## 2032 3 2
## 2033 3 1
## 2034 3 1
## 2035 4 2
## 2036 3 1
## 2037 3 1
## 2038 3 1
## 2039 2 1
## 2040 4 1
## 2041 3 1
## 2042 3 1
## 2043 2 1
## 2044 3 1
## 2045 3 1
## 2046 2 1
## 2047 3 1
## 2048 3 1
## 2049 3 1
## 2050 3 1
## 2051 1 1
## 2053 3 1
## 2054 3 1
## 2055 2 1
## 2056 4 1
## 2057 4 1
## 2058 4 1
## 2059 3 1
## 2060 2 1
## 2061 2 1
## 2062 4 2
## 2063 1 1
## 2064 4 1
## 2065 3 1
## 2066 2 1
## 2067 3 1
## 2068 3 1
## 2069 2 1
## 2070 2 1
## 2071 2 1
## 2072 3 1
## 2073 4 1
## 2074 2 1
## 2075 2 1
## 2076 4 2
## 2077 3 1
## 2078 4 1
## 2079 3 1
## 2080 3 1
## 2081 3 1
## 2082 4 1
## 2083 3 1
## 2084 4 2
## 2085 2 1
## 2086 2 1
## 2087 3 1
## 2088 2 1
## 2089 4 1
## 2090 4 1
## 2091 3 1
## 2092 3 1
## 2093 4 3
## 2094 4 1
## 2095 2 1
## 2096 2 1
## 2097 2 1
## 2098 4 1
## 2099 2 1
## 2100 3 1
## 2101 4 1
## 2102 3 3
## 2103 3 1
## 2104 2 1
## 2105 3 2
## 2106 3 1
## 2107 3 2
## 2108 1 1
## 2109 3 1
## 2110 4 1
## 2111 3 1
## 2112 3 1
## 2113 4 1
## 2114 3 1
## 2115 3 1
## 2116 3 1
## 2117 4 1
## 2118 4 2
## 2119 3 1
## 2120 4 1
## 2121 2 1
## 2122 2 1
## 2123 2 1
## 2124 3 1
## 2125 4 3
## 2126 4 2
## 2127 4 1
## 2128 4 1
## 2129 3 1
## 2130 3 1
## 2131 4 1
## 2132 3 1
## 2133 3 1
## 2134 3 1
## 2135 3 1
## 2136 3 1
## 2137 4 1
## 2138 2 1
## 2139 4 1
## 2140 3 1
## 2141 4 1
## 2142 3 1
## 2143 3 1
## 2144 3 1
## 2145 3 1
## 2146 3 1
## 2147 3 1
## 2148 2 1
## 2149 2 1
## 2150 2 1
## 2151 4 1
## 2152 4 2
## 2153 4 1
## 2154 2 1
## 2155 4 1
## 2156 2 1
## 2157 4 1
## 2158 4 2
## 2159 2 1
## 2160 4 1
## 2161 4 1
## 2162 4 1
## 2163 2 1
## 2164 2 1
## 2165 4 1
## 2166 4 2
## 2167 3 1
## 2168 2 1
## 2169 3 1
## 2170 4 1
## 2171 3 1
## 2172 4 1
## 2173 4 1
## 2174 2 1
## 2175 2 1
## 2176 2 1
## 2177 2 1
## 2178 4 1
## 2179 2 1
## 2180 1 1
## 2181 4 3
## 2182 4 2
## 2183 2 1
## 2184 3 1
## 2185 2 1
## 2186 2 1
## 2187 3 1
## 2188 4 1
## 2189 2 1
## 2190 4 3
## 2191 2 1
## 2192 2 1
## 2193 3 1
## 2194 4 1
## 2195 4 1
## 2196 4 1
## 2197 3 1
## 2198 3 1
## 2199 1 1
## 2200 3 1
## 2201 3 1
## 2202 2 1
## 2203 4 1
## 2204 2 1
## 2205 4 1
## 2206 4 1
## 2207 4 1
## 2208 3 1
## 2209 2 1
## 2210 4 1
## 2211 3 1
## 2212 3 1
## 2213 3 3
## 2214 3 2
## 2215 3 2
## 2216 3 1
## 2217 4 1
## 2218 3 1
## 2219 2 1
## 2220 3 1
## 2221 4 3
## 2222 3 1
## 2223 4 2
## 2224 3 1
## 2225 3 1
## 2226 4 1
## 2227 4 2
## 2228 4 1
## 2229 4 1
## 2230 2 1
## 2231 2 1
## 2232 3 1
## 2233 4 2
## 2234 4 1
## 2235 3 1
## 2236 4 1
## 2237 4 1
## 2238 2 2
## 2239 1 1
## 2240 4 1
## 2241 4 1
## 2242 3 1
## 2243 3 3
## 2244 3 1
## 2245 2 1
## 2246 4 1
## 2247 3 1
## 2248 3 1
## 2249 4 2
## 2250 4 1
## 2251 4 1
## 2252 3 1
## 2253 3 1
## 2254 3 1
## 2256 4 1
## 2257 4 2
## 2258 4 2
## 2259 2 1
## 2260 4 1
## 2261 3 1
## 2262 3 1
## 2263 2 1
## 2264 3 1
## 2265 4 2
## 2266 4 1
## 2267 3 1
## 2268 3 1
## 2269 4 1
## 2270 3 2
## 2271 4 1
## 2272 2 1
## 2273 1 1
## 2274 2 1
## 2275 4 1
## 2276 4 1
## 2277 3 1
## 2278 3 1
## 2279 4 1
## 2280 3 2
## 2281 3 1
## 2282 4 1
## 2283 2 1
## 2284 3 1
## 2285 4 1
## 2286 4 1
## 2287 1 1
## 2288 3 1
## 2289 1 1
## 2290 3 1
## 2291 2 1
## 2292 4 1
## 2293 4 1
## 2294 2 1
## 2295 1 1
## 2296 4 1
## 2297 1 1
## 2298 4 1
## 2299 3 1
## 2300 4 1
## 2301 1 1
## 2302 2 1
## 2303 4 1
## 2304 4 1
## 2305 2 1
## 2306 4 1
## 2307 4 1
## 2308 3 1
## 2309 4 1
## 2310 2 1
## 2311 3 1
## 2312 3 3
## 2313 4 2
## 2314 3 1
## 2315 4 1
## 2316 4 1
## 2317 3 1
## 2318 3 2
## 2319 2 1
## 2320 4 1
## 2321 4 1
## 2322 3 1
## 2323 3 1
## 2324 4 2
## 2325 4 1
## 2326 4 1
## 2327 4 1
## 2328 3 1
## 2329 2 1
## 2330 2 1
## 2331 2 1
## 2332 3 1
## 2333 2 1
## 2334 3 1
## 2335 3 1
## 2336 2 1
## 2337 2 1
## 2338 4 1
## 2339 3 1
## 2340 4 1
## 2341 4 2
## 2342 1 2
## 2343 2 2
## 2344 3 1
## 2345 4 1
## 2346 4 1
## 2347 3 1
## 2348 4 1
## 2349 4 1
## 2350 4 1
## 2351 2 1
## 2352 3 1
## 2353 2 1
## 2354 4 1
## 2355 4 1
## 2356 2 1
## 2357 4 1
## 2358 2 1
## 2359 2 1
## 2360 1 1
## 2361 4 2
## 2362 2 2
## 2363 4 1
## 2364 4 3
## 2365 4 1
## 2366 2 1
## 2367 2 1
## 2368 3 1
## 2369 4 3
## 2370 1 1
## 2371 2 1
## 2372 4 2
## 2373 3 2
## 2374 4 1
## 2375 4 1
## 2376 4 1
## 2377 3 2
## 2378 2 1
## 2379 4 1
## 2380 4 1
## 2381 4 1
## 2382 3 1
## 2383 4 1
## 2384 4 1
## 2385 4 1
## 2386 4 1
## 2387 3 1
## 2388 4 1
## 2389 3 1
## 2390 2 1
## 2391 4 2
## 2392 4 2
## 2393 3 1
## 2394 4 1
## 2395 3 1
## 2396 3 1
## 2397 4 2
## 2398 4 2
## 2399 4 2
## 2400 2 1
## 2403 4 1
## 2404 4 3
## 2405 4 1
## 2406 4 1
## 2407 2 2
## 2408 2 1
## 2409 2 1
## 2410 4 1
## 2411 2 1
## 2412 3 1
## 2413 2 1
## 2414 2 1
## 2415 4 3
## 2416 2 1
## 2417 4 1
## 2418 4 1
## 2419 2 1
## 2420 3 1
## 2421 4 2
## 2422 3 1
## 2423 3 1
## 2424 4 1
## 2425 4 2
## 2426 2 1
## 2427 3 1
## 2428 4 1
## 2429 3 1
## 2430 3 1
## 2431 2 1
## 2432 2 1
## 2433 3 1
## 2434 3 1
## 2435 2 1
## 2436 4 1
## 2437 3 1
## 2438 3 2
## 2439 4 2
## 2440 3 1
## 2441 3 1
## 2442 4 1
## 2443 3 1
## 2444 4 1
## 2445 4 1
## 2446 4 1
## 2447 1 1
## 2448 4 3
## 2449 4 1
## 2450 2 1
## 2451 3 2
## 2452 2 2
## 2453 1 1
## 2454 2 1
## 2455 2 1
## 2456 3 2
## 2457 2 1
## 2458 2 2
## 2459 2 1
## 2460 2 1
## 2461 4 2
## 2462 3 1
## 2463 3 1
## 2464 4 1
## 2465 4 1
## 2466 3 1
## 2467 3 1
## 2468 3 1
## 2469 2 1
## 2470 4 1
## 2471 4 1
## 2472 4 1
## 2473 4 1
## 2474 3 2
## 2475 2 1
## 2476 4 1
## 2477 4 1
## 2478 3 1
## 2480 4 1
## 2481 4 1
## 2482 4 1
## 2483 2 2
## 2484 3 1
## 2485 1 1
## 2486 1 1
## 2487 2 1
## 2488 2 1
## 2489 3 1
## 2490 4 2
## 2491 3 2
## 2492 4 1
## 2493 3 1
## 2494 4 2
## 2495 2 1
## 2496 1 1
## 2497 4 1
## 2498 4 1
## 2499 4 1
## 2501 3 1
## 2502 4 1
## 2503 4 2
## 2504 2 1
## 2505 3 2
## 2506 4 1
## 2507 4 1
## 2508 3 1
## 2509 4 1
## 2510 3 1
## 2511 4 1
## 2512 4 1
## 2513 3 1
## 2514 2 1
## 2515 3 2
## 2516 4 1
## 2517 4 1
## 2518 4 1
## 2519 4 1
## 2520 2 1
## 2521 2 2
## 2522 2 1
## 2523 2 1
## 2524 2 1
## 2525 4 2
## 2526 2 1
## 2527 2 1
## 2528 4 2
## 2529 2 1
## 2530 4 1
## 2531 3 1
## 2532 2 1
## 2533 4 1
## 2534 3 1
## 2535 3 1
## 2536 4 1
## 2537 3 2
## 2538 4 1
## 2539 3 1
## 2540 3 1
## 2541 3 1
## 2542 2 1
## 2543 3 1
## 2544 4 1
## 2545 3 1
## 2546 3 1
## 2547 2 1
## 2548 2 1
## 2549 4 1
## 2550 4 1
## 2551 3 1
## 2552 4 1
## 2553 4 1
## 2554 4 1
## 2555 4 2
## 2556 3 1
## 2557 2 1
## 2558 2 1
## 2559 3 1
## 2560 1 1
## 2561 2 2
## 2562 2 1
## 2563 3 1
## 2564 3 1
## 2565 2 1
## 2566 3 1
## 2567 3 1
## 2568 4 1
## 2569 4 1
## 2570 3 1
## 2571 4 1
## 2572 3 2
## 2573 3 1
## 2574 4 1
## 2575 4 2
## 2576 2 1
## 2577 4 1
## 2578 4 1
## 2579 3 1
## 2580 4 2
## 2581 4 2
## 2582 3 2
## 2583 2 1
## 2584 3 2
## 2585 4 1
## 2586 4 1
## 2587 3 1
## 2588 2 1
## 2589 3 1
## 2590 3 1
## 2591 4 1
## 2592 3 1
## 2593 4 2
## 2594 3 1
## 2595 4 1
## 2596 4 1
## 2597 2 1
## 2598 4 1
## 2599 4 2
## 2600 2 1
## 2601 3 1
## 2602 2 1
## 2603 2 2
## 2604 4 1
## 2605 3 1
## 2606 4 1
## 2607 2 1
## 2608 4 1
## 2609 3 1
## 2610 3 1
## 2611 3 1
## 2612 4 1
## 2613 2 1
## 2614 2 1
## 2615 4 1
## 2616 4 2
## 2617 3 1
## 2618 3 1
## 2619 4 1
## 2620 2 1
## 2621 2 1
## 2622 3 1
## 2623 3 1
## 2624 3 1
## 2625 3 1
## 2626 2 1
## 2627 3 1
## 2628 4 2
## 2629 4 2
## 2630 4 1
## 2631 4 1
## 2632 3 1
## 2633 3 1
## 2634 4 1
## 2635 4 1
## 2636 4 2
## 2637 3 1
## 2638 3 1
## 2639 3 1
## 2640 3 1
## 2641 4 2
## 2642 3 1
## 2643 2 1
## 2644 4 1
## 2645 3 1
## 2646 2 2
## 2647 3 1
## 2648 3 1
## 2649 2 1
## 2650 2 1
## 2651 3 2
## 2652 3 1
## 2653 2 1
## 2654 4 1
## 2655 2 2
## 2656 2 1
## 2657 4 2
## 2658 4 1
## 2659 4 1
## 2660 4 1
## 2661 3 2
## 2662 2 1
## 2663 2 1
## 2664 4 1
## 2665 2 1
## 2666 4 1
## 2667 4 1
## 2668 4 1
## 2669 4 1
## 2670 4 2
## 2671 2 1
## 2672 2 1
## 2673 3 1
## 2674 4 2
## 2675 4 1
## 2676 2 1
## 2677 1 2
## 2678 4 1
## 2679 1 1
## 2680 4 1
## 2681 3 1
## 2682 2 1
## 2683 4 1
## 2684 4 1
## 2685 3 1
## 2686 4 3
## 2687 4 1
## 2688 3 1
## 2689 2 1
## 2690 3 1
## 2691 3 1
## 2692 3 1
## 2693 4 1
## 2694 2 1
## 2695 4 1
## 2696 2 1
## 2697 3 1
## 2698 1 1
## 2699 4 1
## 2700 3 1
## 2701 4 1
## 2702 4 1
## 2703 3 1
## 2704 2 1
## 2705 2 1
## 2706 3 1
## 2707 3 1
## 2708 4 1
## 2710 3 2
## 2711 3 1
## 2712 4 1
## 2713 3 1
## 2714 4 3
## 2715 2 1
## 2716 3 1
## 2717 3 1
## 2718 3 1
## 2719 2 1
## 2720 2 1
## 2721 1 1
## 2722 4 2
## 2723 2 1
## 2724 4 1
## 2725 1 1
## 2726 2 1
## 2727 3 1
## 2728 3 1
## 2729 4 2
## 2730 2 1
## 2731 2 1
## 2732 4 1
## 2733 3 1
## 2734 3 1
## 2735 2 1
## 2736 3 1
## 2737 2 1
## 2738 4 1
## 2739 2 1
## 2740 4 2
## 2741 1 1
## 2742 4 1
## 2744 3 3
## 2745 3 1
## 2746 2 1
## 2747 2 1
## 2748 4 1
## 2749 4 1
## 2750 3 1
## 2751 3 1
## 2752 3 1
## 2753 2 2
## 2754 4 1
## 2755 2 1
## 2756 3 2
## 2757 4 1
## 2758 2 1
## 2759 4 1
## 2760 4 1
## 2761 4 1
## 2762 4 1
## 2763 4 2
## 2764 4 1
## 2765 4 1
## 2766 2 1
## 2767 4 1
## 2768 2 1
## 2769 2 1
## 2770 4 2
## 2771 4 2
## 2772 3 1
## 2773 4 2
## 2774 4 3
## 2775 3 1
## 2776 4 2
## 2777 4 2
## 2778 4 1
## 2779 2 1
## 2780 1 1
## 2781 3 1
## 2782 2 1
## 2783 2 1
## 2784 2 1
## 2785 2 1
## 2786 3 1
## 2787 2 1
## 2788 2 1
## 2789 2 1
## 2790 1 1
## 2791 3 1
## 2792 2 1
## 2793 3 1
## 2794 2 1
## 2795 2 1
## 2796 4 1
## 2797 2 1
## 2798 1 1
## 2799 3 3
greece_2$polintr <- as.numeric(greece_2$polintr)
greece_2$vote <- as.numeric(greece_2$vote)
greece_2
## polintr vote
## 1 3 1
## 2 3 1
## 3 2 1
## 4 3 3
## 5 3 1
## 6 4 1
## 7 3 1
## 8 4 1
## 9 3 1
## 10 4 1
## 11 1 1
## 12 2 1
## 13 3 1
## 14 3 2
## 15 2 1
## 16 2 1
## 17 1 1
## 18 4 1
## 19 2 1
## 20 4 1
## 22 4 1
## 23 2 1
## 24 3 1
## 25 3 1
## 26 1 1
## 27 3 1
## 28 2 1
## 29 2 1
## 30 4 2
## 31 2 1
## 32 2 1
## 33 4 1
## 34 3 2
## 35 2 1
## 36 4 1
## 37 4 1
## 38 4 1
## 39 2 1
## 40 4 2
## 41 3 3
## 42 4 1
## 43 3 1
## 44 2 1
## 45 2 1
## 46 1 1
## 47 1 1
## 48 4 1
## 49 4 1
## 50 3 1
## 51 1 1
## 52 4 1
## 53 4 2
## 54 2 1
## 55 1 2
## 56 4 1
## 57 3 1
## 58 3 1
## 59 4 1
## 60 4 1
## 61 2 1
## 62 2 1
## 63 3 1
## 64 2 1
## 65 3 1
## 66 3 1
## 67 3 1
## 68 4 1
## 69 4 1
## 70 2 1
## 71 2 1
## 72 4 2
## 73 3 1
## 74 2 1
## 75 2 1
## 76 2 1
## 77 4 1
## 78 4 1
## 80 2 1
## 81 1 1
## 82 3 1
## 83 2 1
## 84 2 1
## 85 3 1
## 86 4 1
## 87 4 1
## 88 4 1
## 89 3 1
## 90 1 1
## 91 2 1
## 93 3 1
## 95 3 1
## 96 4 1
## 97 1 1
## 98 1 1
## 99 2 1
## 100 1 1
## 101 3 1
## 102 4 3
## 103 3 1
## 104 2 1
## 105 2 1
## 106 4 1
## 107 4 1
## 108 2 1
## 109 4 2
## 110 4 2
## 111 4 1
## 112 4 1
## 113 3 1
## 114 2 1
## 115 3 1
## 116 3 2
## 117 4 1
## 118 4 1
## 119 2 1
## 120 4 1
## 121 4 1
## 122 3 1
## 123 2 1
## 124 3 1
## 125 2 1
## 126 3 1
## 127 3 1
## 128 2 1
## 129 1 1
## 130 2 2
## 131 3 1
## 132 1 1
## 133 1 1
## 134 4 1
## 135 1 1
## 136 4 1
## 137 4 1
## 138 2 1
## 139 3 1
## 141 2 2
## 142 3 2
## 143 3 1
## 144 3 1
## 145 4 1
## 146 3 2
## 147 2 2
## 148 4 1
## 149 2 1
## 150 3 1
## 151 3 1
## 152 4 1
## 153 2 1
## 154 4 1
## 155 3 1
## 156 2 2
## 157 3 2
## 158 1 1
## 159 2 1
## 160 3 1
## 161 3 1
## 162 3 2
## 163 4 1
## 164 3 1
## 165 2 1
## 166 4 1
## 167 1 1
## 168 3 1
## 169 1 1
## 170 3 1
## 171 4 1
## 172 4 1
## 174 2 1
## 175 2 1
## 176 3 2
## 177 2 1
## 178 3 1
## 179 1 1
## 180 4 1
## 181 4 1
## 182 4 1
## 183 3 1
## 184 3 2
## 185 2 2
## 186 3 1
## 187 3 1
## 188 4 1
## 189 3 1
## 190 3 1
## 191 4 1
## 192 3 1
## 193 4 3
## 194 3 1
## 195 3 1
## 196 4 1
## 197 4 1
## 198 4 1
## 200 3 1
## 201 4 3
## 202 3 1
## 203 3 1
## 204 4 1
## 205 2 1
## 206 4 2
## 207 4 1
## 208 4 2
## 209 3 1
## 210 1 1
## 211 4 1
## 212 4 1
## 213 4 1
## 214 4 1
## 215 3 1
## 216 3 1
## 217 4 1
## 218 4 1
## 219 4 2
## 220 4 1
## 221 2 1
## 222 3 1
## 223 2 1
## 224 3 1
## 225 3 1
## 226 2 1
## 227 2 1
## 228 2 1
## 229 1 1
## 230 2 1
## 231 4 1
## 232 3 1
## 233 4 1
## 234 3 1
## 235 3 2
## 236 3 1
## 237 3 1
## 239 2 1
## 240 3 1
## 241 3 1
## 242 2 1
## 243 2 1
## 244 3 1
## 245 3 1
## 246 3 1
## 248 4 2
## 250 2 1
## 251 3 1
## 252 2 1
## 253 4 1
## 254 2 1
## 255 3 2
## 256 3 1
## 257 3 1
## 258 4 2
## 259 3 1
## 260 4 1
## 261 4 1
## 262 4 3
## 263 2 1
## 264 1 1
## 265 3 2
## 266 4 1
## 267 4 1
## 268 3 1
## 269 2 1
## 270 3 1
## 271 3 1
## 272 2 2
## 273 3 1
## 274 3 1
## 275 2 2
## 276 3 1
## 277 2 1
## 278 3 1
## 279 2 1
## 280 2 1
## 281 4 1
## 282 2 1
## 283 2 1
## 284 4 2
## 285 4 1
## 286 4 1
## 287 4 1
## 288 2 1
## 289 3 2
## 290 3 1
## 292 4 1
## 293 4 1
## 294 3 1
## 295 4 1
## 296 4 1
## 297 4 1
## 298 3 2
## 299 4 1
## 300 2 1
## 301 2 1
## 302 4 1
## 303 4 1
## 304 2 2
## 305 3 1
## 307 2 1
## 308 4 2
## 309 2 2
## 310 3 2
## 311 3 1
## 312 4 2
## 313 1 1
## 314 2 1
## 315 4 1
## 316 4 1
## 317 2 1
## 318 3 2
## 319 4 1
## 320 4 1
## 321 4 2
## 322 2 1
## 323 3 1
## 324 2 1
## 325 2 1
## 326 2 1
## 327 4 1
## 328 2 1
## 329 2 1
## 330 4 1
## 331 4 1
## 332 1 1
## 333 4 1
## 334 3 1
## 335 3 1
## 336 4 1
## 337 3 1
## 338 2 1
## 339 1 1
## 340 4 2
## 341 4 1
## 342 2 1
## 343 3 1
## 344 4 1
## 345 3 1
## 346 4 2
## 347 2 1
## 348 2 1
## 349 4 1
## 350 2 1
## 351 3 1
## 352 3 1
## 353 4 1
## 354 2 1
## 355 3 1
## 356 4 1
## 357 2 1
## 358 2 1
## 359 3 1
## 360 3 1
## 361 2 2
## 362 4 1
## 363 3 1
## 364 4 1
## 365 2 1
## 366 3 1
## 367 3 1
## 368 3 1
## 370 4 1
## 371 4 1
## 372 4 1
## 373 3 1
## 374 2 1
## 375 4 1
## 376 4 2
## 377 2 1
## 378 4 2
## 379 3 2
## 380 4 2
## 381 2 1
## 382 2 1
## 383 2 1
## 384 4 1
## 385 4 1
## 386 2 1
## 387 4 1
## 388 2 1
## 389 4 2
## 390 4 3
## 391 4 1
## 392 2 1
## 393 4 2
## 394 2 2
## 395 3 1
## 396 4 1
## 397 4 1
## 398 4 1
## 399 4 1
## 400 3 1
## 401 2 1
## 402 2 1
## 403 1 1
## 404 2 1
## 405 2 1
## 406 4 2
## 407 4 2
## 408 3 3
## 409 4 1
## 410 3 1
## 411 4 1
## 412 3 1
## 413 4 1
## 414 2 1
## 415 4 1
## 416 3 1
## 417 2 1
## 418 2 1
## 419 2 1
## 420 2 1
## 421 4 1
## 422 4 1
## 423 3 1
## 424 1 1
## 425 3 1
## 426 4 1
## 427 4 1
## 428 4 1
## 429 4 1
## 430 2 1
## 431 4 2
## 432 4 1
## 433 3 1
## 434 3 2
## 435 2 1
## 436 4 1
## 437 4 1
## 438 2 1
## 439 2 1
## 440 2 2
## 441 2 1
## 442 2 1
## 443 3 1
## 444 2 2
## 445 3 1
## 446 2 1
## 447 3 2
## 448 3 2
## 449 2 1
## 450 3 1
## 451 4 1
## 452 3 2
## 453 3 1
## 454 3 1
## 455 4 1
## 456 4 1
## 457 4 1
## 458 4 1
## 459 4 1
## 460 3 1
## 461 4 1
## 462 4 1
## 463 3 2
## 464 1 1
## 465 3 1
## 466 3 1
## 467 3 1
## 468 3 1
## 469 4 1
## 470 4 1
## 471 4 1
## 472 4 2
## 473 3 1
## 474 2 1
## 475 4 1
## 476 3 1
## 477 4 2
## 479 3 1
## 480 2 1
## 481 2 2
## 482 1 1
## 483 3 1
## 484 4 1
## 485 3 2
## 486 4 2
## 487 4 1
## 488 4 1
## 489 4 1
## 490 3 1
## 491 4 1
## 492 2 1
## 493 2 2
## 494 4 2
## 495 4 1
## 496 3 1
## 497 4 1
## 498 4 1
## 499 2 1
## 500 3 1
## 501 3 1
## 502 2 1
## 503 4 1
## 504 4 1
## 505 3 1
## 506 3 1
## 507 2 2
## 508 3 1
## 509 1 1
## 510 2 1
## 511 4 1
## 512 2 1
## 513 2 1
## 514 4 2
## 515 4 2
## 516 4 1
## 517 2 1
## 518 3 1
## 519 3 1
## 520 3 1
## 521 2 1
## 522 4 1
## 523 4 2
## 524 3 1
## 525 2 1
## 526 4 1
## 527 2 2
## 528 4 1
## 529 4 2
## 530 2 1
## 531 3 1
## 532 4 1
## 533 2 1
## 534 3 1
## 535 4 1
## 536 4 2
## 537 3 1
## 538 2 1
## 539 4 1
## 540 4 1
## 541 4 1
## 543 4 1
## 544 3 1
## 545 3 3
## 546 1 1
## 547 4 1
## 548 2 2
## 549 2 1
## 550 4 1
## 551 3 1
## 552 4 1
## 553 3 1
## 554 3 1
## 555 4 1
## 556 2 1
## 557 3 1
## 559 4 1
## 560 2 1
## 561 4 2
## 562 2 1
## 563 4 1
## 564 2 1
## 565 4 1
## 566 4 3
## 567 4 1
## 568 4 2
## 569 3 1
## 570 1 1
## 571 3 1
## 572 3 1
## 573 2 1
## 574 4 1
## 575 4 1
## 576 2 1
## 578 2 1
## 579 4 1
## 580 3 1
## 581 3 1
## 582 2 1
## 583 3 1
## 584 4 3
## 585 2 1
## 586 4 1
## 587 2 1
## 588 4 1
## 589 2 1
## 590 4 1
## 591 3 1
## 592 3 3
## 593 4 3
## 594 2 1
## 595 3 1
## 596 3 2
## 597 3 1
## 598 4 1
## 599 2 1
## 600 2 1
## 601 2 1
## 602 2 1
## 603 3 1
## 604 3 1
## 605 2 1
## 606 4 1
## 607 2 1
## 608 3 3
## 609 3 1
## 610 1 1
## 611 3 2
## 612 3 1
## 613 4 1
## 614 3 1
## 615 2 1
## 616 4 1
## 617 4 2
## 618 3 1
## 619 2 1
## 620 4 1
## 621 4 2
## 622 3 1
## 623 4 1
## 625 3 1
## 626 3 1
## 627 4 1
## 628 3 1
## 629 3 1
## 630 2 1
## 631 4 2
## 632 4 1
## 633 4 1
## 634 3 1
## 635 3 2
## 636 2 1
## 637 4 3
## 638 3 1
## 639 2 1
## 640 4 1
## 641 3 1
## 642 4 2
## 643 3 1
## 644 4 1
## 645 3 1
## 646 1 1
## 647 4 2
## 648 4 1
## 649 2 1
## 650 2 1
## 651 2 1
## 652 4 1
## 653 3 2
## 654 4 1
## 655 4 2
## 656 3 1
## 657 3 1
## 658 3 1
## 659 2 1
## 660 4 1
## 661 4 1
## 662 3 1
## 663 4 1
## 664 3 1
## 665 2 1
## 666 4 1
## 667 2 1
## 668 2 1
## 669 4 2
## 670 2 1
## 671 1 1
## 672 4 1
## 674 3 1
## 675 3 1
## 676 3 1
## 677 3 2
## 678 4 1
## 679 3 1
## 680 4 1
## 681 4 3
## 682 2 1
## 683 3 1
## 684 3 1
## 685 3 2
## 686 3 1
## 687 3 1
## 688 3 1
## 689 4 1
## 690 3 1
## 691 4 1
## 692 3 1
## 693 3 1
## 694 2 1
## 695 2 1
## 696 4 1
## 697 2 1
## 698 4 3
## 699 4 1
## 700 4 1
## 701 1 1
## 702 4 1
## 703 2 1
## 704 4 1
## 705 4 1
## 706 4 1
## 707 4 1
## 708 4 1
## 709 2 1
## 710 4 1
## 711 2 1
## 712 2 1
## 713 3 1
## 714 2 1
## 715 2 1
## 716 1 1
## 717 4 1
## 718 2 1
## 719 4 1
## 720 2 1
## 721 3 1
## 722 2 1
## 723 2 1
## 724 3 2
## 725 3 1
## 726 3 1
## 727 2 1
## 728 2 1
## 729 4 1
## 730 3 1
## 731 4 1
## 733 2 1
## 734 4 1
## 735 2 1
## 736 4 1
## 737 2 1
## 738 2 2
## 739 2 1
## 740 4 1
## 741 3 1
## 742 4 2
## 743 4 1
## 744 4 2
## 745 3 1
## 746 2 2
## 747 4 2
## 748 4 2
## 749 3 1
## 750 2 1
## 751 4 1
## 752 2 1
## 753 4 1
## 754 2 1
## 755 4 2
## 756 2 1
## 757 2 1
## 758 3 1
## 759 4 2
## 760 3 1
## 761 2 1
## 762 3 1
## 763 4 1
## 764 4 2
## 765 4 1
## 766 3 1
## 767 4 2
## 768 3 1
## 769 2 1
## 770 4 1
## 771 4 3
## 772 2 1
## 773 2 1
## 774 3 1
## 775 2 1
## 776 4 1
## 777 3 1
## 778 3 1
## 779 4 1
## 780 1 1
## 781 4 1
## 782 4 1
## 783 4 1
## 784 2 1
## 785 4 1
## 786 3 1
## 787 3 1
## 788 3 1
## 789 2 1
## 790 3 1
## 791 4 1
## 792 2 1
## 793 2 1
## 794 3 2
## 795 3 1
## 796 4 1
## 797 2 1
## 798 2 1
## 800 4 1
## 801 2 1
## 802 4 1
## 803 2 1
## 804 2 1
## 805 4 1
## 806 2 1
## 807 2 1
## 808 2 2
## 809 1 1
## 810 3 1
## 811 3 1
## 812 2 1
## 813 2 1
## 814 2 1
## 815 3 1
## 816 3 1
## 817 3 1
## 818 2 1
## 819 4 1
## 820 4 1
## 821 4 1
## 822 4 1
## 823 2 1
## 824 4 1
## 825 1 1
## 826 3 2
## 828 3 2
## 829 1 2
## 830 3 1
## 831 3 1
## 832 4 1
## 833 3 1
## 834 2 1
## 835 3 1
## 836 3 1
## 837 3 2
## 838 2 1
## 839 1 1
## 840 3 2
## 841 4 1
## 842 2 1
## 843 4 1
## 844 3 1
## 845 4 1
## 846 4 1
## 847 3 1
## 848 4 1
## 849 4 1
## 850 4 1
## 851 3 1
## 852 2 1
## 853 3 1
## 854 4 2
## 855 4 2
## 856 2 1
## 857 2 1
## 858 3 1
## 859 4 1
## 860 4 1
## 861 2 1
## 862 4 1
## 863 3 1
## 864 2 2
## 865 3 1
## 866 4 1
## 867 4 1
## 868 2 1
## 869 4 1
## 870 2 1
## 871 2 3
## 872 3 1
## 873 4 1
## 874 2 1
## 875 4 1
## 876 4 1
## 877 4 1
## 878 2 1
## 879 4 1
## 880 4 1
## 881 3 1
## 882 2 1
## 883 4 1
## 884 2 1
## 885 4 1
## 886 4 1
## 887 4 1
## 888 4 1
## 889 3 1
## 890 4 2
## 891 2 1
## 892 4 1
## 893 2 1
## 894 2 1
## 895 3 1
## 896 4 1
## 897 4 1
## 898 4 1
## 899 3 1
## 900 3 1
## 901 4 2
## 902 1 1
## 903 4 2
## 904 2 1
## 905 4 1
## 906 4 1
## 907 1 1
## 908 2 1
## 909 3 2
## 910 4 2
## 911 2 1
## 912 3 2
## 913 3 1
## 914 2 1
## 915 3 1
## 916 4 1
## 917 4 2
## 918 4 1
## 919 4 3
## 920 3 1
## 921 4 1
## 922 2 1
## 923 2 1
## 924 2 2
## 925 2 1
## 926 4 2
## 927 4 1
## 928 2 1
## 929 3 2
## 930 2 1
## 931 2 1
## 932 3 1
## 933 3 2
## 934 3 1
## 935 2 1
## 936 3 1
## 937 4 1
## 938 2 1
## 939 1 1
## 940 3 1
## 941 3 1
## 942 2 2
## 943 3 1
## 944 3 1
## 945 4 1
## 946 3 1
## 947 3 1
## 948 1 1
## 949 1 1
## 950 4 1
## 951 1 1
## 952 1 1
## 953 2 1
## 954 4 1
## 955 3 1
## 956 4 1
## 957 3 3
## 958 1 1
## 959 2 1
## 960 3 1
## 961 3 1
## 962 1 1
## 963 2 1
## 964 4 1
## 965 3 3
## 967 4 1
## 968 1 1
## 969 4 1
## 970 4 1
## 971 3 1
## 972 2 1
## 973 2 1
## 974 2 1
## 975 1 1
## 976 4 2
## 977 2 1
## 978 4 1
## 979 2 1
## 980 1 1
## 981 4 2
## 982 2 1
## 983 3 1
## 984 4 1
## 985 4 2
## 986 2 1
## 987 4 1
## 988 4 1
## 989 3 1
## 990 2 1
## 991 2 1
## 992 4 1
## 993 2 1
## 994 4 1
## 995 4 1
## 996 2 1
## 997 4 1
## 998 3 1
## 999 2 1
## 1000 4 1
## 1001 3 1
## 1002 4 1
## 1003 3 1
## 1004 3 1
## 1005 3 1
## 1006 4 2
## 1007 4 1
## 1008 3 1
## 1009 4 1
## 1010 4 1
## 1011 4 2
## 1012 3 1
## 1013 2 1
## 1014 4 1
## 1015 3 1
## 1016 3 1
## 1017 3 1
## 1018 2 1
## 1019 2 1
## 1020 2 1
## 1021 2 1
## 1022 3 1
## 1023 2 1
## 1024 2 1
## 1025 3 1
## 1026 4 1
## 1027 2 1
## 1028 4 1
## 1030 2 1
## 1031 4 2
## 1032 2 1
## 1034 2 1
## 1035 3 1
## 1036 4 1
## 1037 2 1
## 1038 4 1
## 1039 4 1
## 1040 4 1
## 1041 3 1
## 1042 2 1
## 1043 3 3
## 1044 3 1
## 1045 2 1
## 1046 4 1
## 1047 4 1
## 1048 3 1
## 1049 4 1
## 1050 4 2
## 1051 3 1
## 1052 4 1
## 1053 3 3
## 1054 1 1
## 1055 3 1
## 1056 4 1
## 1057 4 1
## 1058 2 1
## 1059 4 1
## 1060 2 1
## 1061 3 2
## 1062 2 1
## 1063 3 1
## 1064 3 1
## 1065 4 1
## 1066 4 1
## 1067 2 1
## 1068 3 1
## 1069 3 2
## 1070 3 1
## 1071 2 1
## 1072 4 1
## 1073 3 1
## 1074 4 1
## 1075 3 1
## 1076 1 1
## 1077 2 1
## 1078 4 1
## 1079 4 1
## 1080 3 1
## 1081 3 1
## 1082 4 1
## 1083 2 1
## 1084 4 1
## 1085 4 1
## 1086 3 2
## 1087 3 1
## 1088 2 1
## 1089 4 1
## 1090 4 1
## 1091 4 1
## 1092 4 1
## 1093 4 1
## 1094 4 1
## 1095 4 2
## 1096 4 1
## 1097 4 1
## 1098 2 1
## 1099 4 2
## 1100 4 2
## 1101 3 1
## 1102 3 1
## 1103 4 1
## 1104 3 1
## 1105 3 1
## 1106 4 1
## 1107 3 1
## 1108 4 1
## 1109 4 1
## 1110 4 3
## 1111 3 1
## 1112 2 1
## 1113 2 1
## 1114 3 1
## 1115 3 1
## 1116 3 1
## 1117 3 1
## 1118 3 1
## 1119 3 2
## 1120 3 2
## 1121 4 1
## 1122 3 1
## 1123 4 1
## 1124 2 2
## 1125 2 1
## 1126 3 1
## 1127 2 1
## 1128 2 1
## 1129 4 1
## 1130 2 1
## 1131 3 2
## 1132 4 2
## 1133 3 1
## 1134 2 1
## 1135 4 1
## 1136 4 1
## 1137 4 2
## 1138 4 1
## 1139 1 1
## 1140 1 3
## 1141 3 1
## 1142 1 1
## 1143 4 2
## 1144 3 1
## 1145 2 1
## 1146 4 1
## 1147 2 2
## 1148 3 1
## 1149 3 2
## 1150 3 1
## 1151 2 1
## 1152 4 1
## 1153 3 1
## 1154 1 1
## 1155 4 1
## 1156 4 2
## 1158 4 1
## 1159 3 1
## 1160 3 1
## 1161 3 1
## 1162 4 1
## 1163 3 2
## 1164 3 1
## 1165 4 1
## 1166 2 1
## 1167 4 1
## 1168 2 1
## 1169 2 1
## 1170 3 1
## 1171 1 1
## 1172 4 1
## 1173 3 1
## 1174 4 1
## 1175 2 1
## 1176 3 1
## 1177 4 1
## 1178 2 1
## 1179 3 3
## 1180 3 1
## 1181 3 1
## 1182 4 1
## 1183 2 1
## 1184 2 1
## 1185 2 1
## 1186 2 1
## 1187 3 1
## 1188 3 1
## 1189 3 1
## 1190 3 1
## 1191 3 1
## 1192 4 2
## 1193 2 1
## 1194 4 1
## 1195 4 2
## 1196 2 2
## 1197 1 1
## 1199 3 1
## 1200 2 1
## 1201 3 1
## 1202 2 1
## 1203 4 2
## 1204 4 1
## 1205 3 1
## 1206 3 1
## 1207 3 1
## 1208 3 3
## 1209 1 1
## 1210 3 3
## 1211 4 1
## 1212 1 1
## 1213 3 2
## 1214 4 1
## 1215 4 1
## 1216 2 1
## 1217 4 1
## 1218 3 1
## 1219 4 1
## 1220 4 1
## 1222 4 1
## 1223 1 1
## 1224 4 1
## 1225 3 1
## 1226 3 1
## 1227 2 3
## 1228 2 1
## 1229 3 1
## 1230 4 1
## 1231 4 1
## 1232 4 1
## 1233 4 1
## 1234 2 1
## 1235 4 1
## 1236 3 1
## 1237 3 1
## 1238 1 1
## 1239 2 1
## 1240 2 1
## 1241 3 1
## 1242 2 1
## 1243 3 1
## 1244 4 2
## 1245 3 1
## 1246 2 1
## 1247 4 1
## 1248 2 1
## 1249 3 1
## 1250 2 1
## 1251 4 2
## 1252 4 1
## 1253 4 1
## 1254 4 1
## 1255 4 1
## 1256 3 2
## 1257 4 1
## 1258 4 1
## 1259 4 1
## 1260 2 1
## 1261 2 1
## 1262 3 1
## 1263 3 1
## 1264 1 1
## 1265 4 2
## 1266 2 1
## 1267 3 1
## 1268 3 1
## 1269 4 2
## 1270 4 1
## 1271 4 2
## 1272 4 2
## 1273 4 3
## 1274 4 1
## 1275 4 1
## 1276 4 2
## 1277 2 2
## 1278 4 1
## 1279 1 1
## 1280 3 1
## 1281 2 1
## 1282 4 1
## 1283 3 1
## 1284 1 1
## 1285 1 1
## 1286 2 1
## 1287 3 1
## 1288 3 1
## 1289 4 1
## 1290 3 1
## 1291 4 1
## 1292 2 1
## 1293 3 1
## 1294 4 1
## 1295 4 2
## 1296 4 1
## 1297 1 2
## 1298 3 2
## 1299 2 1
## 1300 4 1
## 1301 3 1
## 1302 3 1
## 1303 4 3
## 1304 2 2
## 1305 3 1
## 1306 4 1
## 1307 1 1
## 1308 4 1
## 1309 3 1
## 1310 3 2
## 1311 4 1
## 1312 2 1
## 1313 2 1
## 1314 4 1
## 1315 3 2
## 1316 4 2
## 1317 4 1
## 1318 4 1
## 1319 4 1
## 1320 2 1
## 1321 4 1
## 1322 3 1
## 1323 4 2
## 1324 4 1
## 1325 3 1
## 1326 2 1
## 1327 3 1
## 1328 3 2
## 1329 2 1
## 1330 4 1
## 1331 3 1
## 1332 2 1
## 1333 2 1
## 1334 4 1
## 1335 4 1
## 1336 4 1
## 1337 4 1
## 1338 3 1
## 1339 3 1
## 1340 4 1
## 1341 4 1
## 1342 4 1
## 1343 2 1
## 1344 3 1
## 1345 4 1
## 1346 3 1
## 1347 2 1
## 1348 4 2
## 1349 2 1
## 1350 3 1
## 1351 2 1
## 1352 2 1
## 1353 2 2
## 1354 3 1
## 1355 1 1
## 1356 4 1
## 1357 4 1
## 1358 4 1
## 1359 1 1
## 1360 2 2
## 1362 3 1
## 1363 3 1
## 1364 2 1
## 1365 2 1
## 1366 4 1
## 1367 2 1
## 1368 4 2
## 1369 4 2
## 1370 2 1
## 1371 3 1
## 1372 3 1
## 1373 3 3
## 1374 3 1
## 1375 3 1
## 1376 4 1
## 1377 2 1
## 1378 4 2
## 1379 4 1
## 1380 2 1
## 1381 3 1
## 1382 4 1
## 1383 4 1
## 1384 3 1
## 1385 3 1
## 1386 3 1
## 1387 3 1
## 1388 3 1
## 1389 3 1
## 1390 2 1
## 1391 3 1
## 1392 4 2
## 1393 2 1
## 1394 4 2
## 1395 4 1
## 1396 2 1
## 1397 3 2
## 1398 4 2
## 1399 3 1
## 1400 2 1
## 1401 3 1
## 1402 1 1
## 1403 3 1
## 1404 2 1
## 1405 3 1
## 1406 4 1
## 1407 3 1
## 1408 4 1
## 1409 2 1
## 1410 4 2
## 1411 2 2
## 1412 4 2
## 1413 1 1
## 1414 2 1
## 1415 1 1
## 1416 4 1
## 1417 3 1
## 1418 4 1
## 1419 2 1
## 1420 3 1
## 1421 3 1
## 1422 2 1
## 1423 4 1
## 1424 2 1
## 1425 2 1
## 1426 2 1
## 1427 2 1
## 1428 4 1
## 1429 4 1
## 1430 4 1
## 1431 3 2
## 1432 4 1
## 1433 2 1
## 1434 4 1
## 1435 4 3
## 1436 1 1
## 1437 2 1
## 1438 4 1
## 1439 2 1
## 1440 3 2
## 1441 2 2
## 1442 2 1
## 1443 3 1
## 1444 4 1
## 1445 3 1
## 1446 4 1
## 1447 4 1
## 1448 2 1
## 1449 4 2
## 1450 4 2
## 1451 3 1
## 1452 2 1
## 1453 2 1
## 1454 2 2
## 1455 4 1
## 1456 3 1
## 1457 2 2
## 1458 3 1
## 1459 4 1
## 1460 2 1
## 1461 3 1
## 1462 4 1
## 1463 4 1
## 1464 2 1
## 1465 2 1
## 1466 4 2
## 1467 3 1
## 1468 4 1
## 1469 4 1
## 1470 2 1
## 1471 3 1
## 1472 3 1
## 1473 3 1
## 1474 3 2
## 1475 3 1
## 1476 2 1
## 1477 2 1
## 1478 2 1
## 1479 3 2
## 1480 3 1
## 1481 2 1
## 1482 3 1
## 1484 4 1
## 1485 2 1
## 1486 4 1
## 1487 3 1
## 1488 2 1
## 1489 2 1
## 1490 2 1
## 1491 4 1
## 1492 1 1
## 1493 2 1
## 1494 3 1
## 1495 4 1
## 1496 4 1
## 1497 4 1
## 1498 4 1
## 1499 3 1
## 1500 2 1
## 1501 4 1
## 1502 4 1
## 1503 4 2
## 1504 4 2
## 1505 1 1
## 1506 4 1
## 1507 3 1
## 1508 1 1
## 1509 4 1
## 1510 2 1
## 1511 4 1
## 1512 4 1
## 1513 4 1
## 1514 2 1
## 1515 4 1
## 1516 3 1
## 1517 2 1
## 1518 3 1
## 1519 4 1
## 1520 3 1
## 1521 4 1
## 1522 2 1
## 1523 3 1
## 1524 3 1
## 1525 4 2
## 1526 2 1
## 1527 1 1
## 1528 3 1
## 1529 2 1
## 1530 3 1
## 1531 3 2
## 1532 3 1
## 1533 4 2
## 1534 4 1
## 1535 4 1
## 1536 2 1
## 1537 2 1
## 1538 1 1
## 1539 3 1
## 1540 3 1
## 1541 4 1
## 1542 4 1
## 1543 3 1
## 1544 2 1
## 1546 3 1
## 1547 4 1
## 1548 3 1
## 1549 4 1
## 1550 3 1
## 1551 2 2
## 1552 4 1
## 1553 2 1
## 1554 3 1
## 1555 3 1
## 1556 4 1
## 1557 3 3
## 1558 4 1
## 1559 4 1
## 1560 2 1
## 1561 2 1
## 1562 4 1
## 1563 3 1
## 1564 4 1
## 1565 2 1
## 1566 3 1
## 1567 1 1
## 1568 4 1
## 1569 2 1
## 1570 2 2
## 1571 2 1
## 1572 2 1
## 1573 4 1
## 1574 4 2
## 1575 2 1
## 1576 2 1
## 1577 3 1
## 1578 4 1
## 1579 3 2
## 1580 3 1
## 1581 2 1
## 1582 4 1
## 1583 3 1
## 1584 2 1
## 1585 2 2
## 1586 4 1
## 1587 2 1
## 1588 2 1
## 1589 3 1
## 1590 2 1
## 1591 4 1
## 1592 4 1
## 1593 2 1
## 1594 2 1
## 1595 3 1
## 1596 2 1
## 1597 2 1
## 1598 2 1
## 1599 2 1
## 1600 4 1
## 1601 2 1
## 1602 4 1
## 1603 3 1
## 1604 3 1
## 1605 3 1
## 1606 3 1
## 1607 1 1
## 1608 4 1
## 1609 3 1
## 1610 4 1
## 1611 3 1
## 1612 4 1
## 1613 1 1
## 1614 2 1
## 1615 4 2
## 1616 3 1
## 1617 2 1
## 1618 2 1
## 1619 2 1
## 1620 3 2
## 1621 3 1
## 1622 4 3
## 1623 4 3
## 1624 3 1
## 1625 3 1
## 1626 4 1
## 1627 3 1
## 1628 4 1
## 1629 2 1
## 1630 2 1
## 1631 3 1
## 1632 4 1
## 1633 2 1
## 1634 3 2
## 1635 4 1
## 1636 3 2
## 1637 4 1
## 1638 2 1
## 1639 3 1
## 1640 2 1
## 1641 2 1
## 1642 3 1
## 1643 3 2
## 1644 2 1
## 1645 4 1
## 1646 3 1
## 1647 4 1
## 1648 4 1
## 1649 4 1
## 1650 2 1
## 1651 3 1
## 1652 4 2
## 1653 3 2
## 1654 3 1
## 1655 4 2
## 1656 1 1
## 1657 3 1
## 1658 4 1
## 1659 4 1
## 1660 4 1
## 1661 3 1
## 1662 4 1
## 1663 3 2
## 1664 3 1
## 1665 4 1
## 1666 4 1
## 1667 2 1
## 1668 3 2
## 1669 3 1
## 1670 2 1
## 1671 4 1
## 1672 4 1
## 1673 2 1
## 1674 4 1
## 1675 4 1
## 1676 2 1
## 1677 4 2
## 1678 3 1
## 1679 3 3
## 1680 3 1
## 1681 3 1
## 1682 2 1
## 1684 2 1
## 1685 3 2
## 1686 3 1
## 1687 3 1
## 1688 4 1
## 1689 3 1
## 1690 4 1
## 1691 3 1
## 1692 4 1
## 1693 3 1
## 1694 4 1
## 1695 2 1
## 1696 4 1
## 1697 4 1
## 1698 2 1
## 1699 3 1
## 1700 4 1
## 1701 3 1
## 1702 3 1
## 1703 2 1
## 1704 4 2
## 1705 2 1
## 1706 4 1
## 1707 4 1
## 1708 4 1
## 1709 3 2
## 1710 3 1
## 1711 3 1
## 1712 4 1
## 1713 3 1
## 1714 2 3
## 1715 2 1
## 1716 2 2
## 1717 4 2
## 1718 4 1
## 1719 2 1
## 1720 2 1
## 1721 4 1
## 1722 4 1
## 1723 2 2
## 1724 2 1
## 1725 4 2
## 1726 4 1
## 1727 4 1
## 1728 2 1
## 1729 4 1
## 1730 3 1
## 1731 3 1
## 1732 2 1
## 1733 2 1
## 1734 4 1
## 1735 2 1
## 1736 4 2
## 1737 2 1
## 1738 2 1
## 1739 2 1
## 1740 4 1
## 1741 1 1
## 1742 4 1
## 1743 2 2
## 1744 1 1
## 1745 4 1
## 1746 4 1
## 1747 3 1
## 1748 3 1
## 1749 3 1
## 1750 3 1
## 1751 4 3
## 1752 4 1
## 1753 2 1
## 1754 2 1
## 1755 2 1
## 1756 3 1
## 1757 4 1
## 1758 2 1
## 1759 3 1
## 1760 4 2
## 1761 4 3
## 1762 2 1
## 1763 3 1
## 1764 2 2
## 1765 1 1
## 1766 4 1
## 1767 4 2
## 1768 3 1
## 1769 4 2
## 1770 4 1
## 1771 2 1
## 1772 4 2
## 1773 4 1
## 1774 4 1
## 1775 4 1
## 1776 2 1
## 1777 3 1
## 1778 2 1
## 1779 4 1
## 1780 4 1
## 1781 4 2
## 1782 2 1
## 1783 4 1
## 1784 4 1
## 1785 3 1
## 1786 4 2
## 1787 4 1
## 1788 2 1
## 1789 3 1
## 1790 2 1
## 1791 3 1
## 1792 4 2
## 1793 2 1
## 1794 2 1
## 1795 3 1
## 1796 4 1
## 1797 2 1
## 1798 3 1
## 1799 2 1
## 1800 1 1
## 1801 2 1
## 1802 3 1
## 1803 3 1
## 1804 3 1
## 1805 4 1
## 1806 4 1
## 1807 3 1
## 1808 4 1
## 1809 3 1
## 1810 2 1
## 1811 3 1
## 1812 4 1
## 1813 3 1
## 1814 2 1
## 1815 3 1
## 1816 3 1
## 1817 3 1
## 1818 3 1
## 1819 3 1
## 1820 2 2
## 1821 3 2
## 1822 3 1
## 1823 4 1
## 1824 4 1
## 1825 2 1
## 1826 3 1
## 1828 2 1
## 1829 2 1
## 1830 1 1
## 1831 3 1
## 1832 2 1
## 1833 1 1
## 1834 4 1
## 1835 3 1
## 1836 4 2
## 1837 4 2
## 1838 2 1
## 1839 4 1
## 1841 4 1
## 1842 3 1
## 1843 4 1
## 1844 4 1
## 1845 2 1
## 1846 2 1
## 1847 4 1
## 1849 3 1
## 1850 2 1
## 1851 3 1
## 1852 3 1
## 1853 3 1
## 1854 3 1
## 1855 4 1
## 1856 3 1
## 1857 4 1
## 1858 3 1
## 1859 2 1
## 1860 3 1
## 1861 2 1
## 1862 4 2
## 1863 4 1
## 1864 4 3
## 1865 1 1
## 1866 3 1
## 1867 4 1
## 1868 4 1
## 1869 3 1
## 1870 3 1
## 1871 1 1
## 1872 2 1
## 1873 4 1
## 1874 2 1
## 1875 1 1
## 1876 3 1
## 1877 2 1
## 1878 2 1
## 1879 4 1
## 1880 4 1
## 1881 4 1
## 1882 4 1
## 1883 4 1
## 1884 4 1
## 1885 3 1
## 1886 4 1
## 1887 3 1
## 1888 3 1
## 1889 3 1
## 1890 4 1
## 1891 4 1
## 1892 3 1
## 1893 2 1
## 1894 4 3
## 1895 3 1
## 1896 2 1
## 1897 4 2
## 1898 4 1
## 1899 3 1
## 1900 4 1
## 1901 3 1
## 1902 3 1
## 1903 2 1
## 1904 3 2
## 1905 4 2
## 1906 1 1
## 1907 4 1
## 1908 4 1
## 1909 1 1
## 1911 4 1
## 1912 4 1
## 1913 3 2
## 1914 3 1
## 1915 3 1
## 1916 4 1
## 1917 4 1
## 1918 3 1
## 1919 3 1
## 1920 2 1
## 1922 4 1
## 1923 2 1
## 1924 4 1
## 1925 2 1
## 1926 4 2
## 1927 3 1
## 1929 3 1
## 1930 4 1
## 1931 2 2
## 1932 4 1
## 1933 4 1
## 1934 4 1
## 1935 2 1
## 1936 4 1
## 1937 2 1
## 1938 3 1
## 1939 4 2
## 1940 1 1
## 1941 4 2
## 1942 2 1
## 1943 3 2
## 1944 3 1
## 1945 4 1
## 1946 3 1
## 1947 4 1
## 1948 4 1
## 1949 4 1
## 1950 4 2
## 1951 3 1
## 1952 3 2
## 1953 2 1
## 1954 2 1
## 1955 4 1
## 1956 4 2
## 1957 2 1
## 1958 4 1
## 1959 2 1
## 1960 4 1
## 1961 4 1
## 1962 4 1
## 1963 2 2
## 1964 2 2
## 1965 3 1
## 1966 2 3
## 1967 2 1
## 1968 3 1
## 1969 4 2
## 1970 1 1
## 1972 3 1
## 1973 3 1
## 1974 4 1
## 1975 3 1
## 1976 2 1
## 1977 3 1
## 1978 2 1
## 1979 4 1
## 1980 4 1
## 1981 3 1
## 1982 3 1
## 1983 3 1
## 1984 4 1
## 1985 4 1
## 1986 3 1
## 1987 1 1
## 1988 3 1
## 1989 3 1
## 1990 2 1
## 1991 4 1
## 1992 3 1
## 1993 3 1
## 1994 3 1
## 1995 3 2
## 1996 4 1
## 1997 1 1
## 1998 2 1
## 1999 4 1
## 2000 4 1
## 2001 4 2
## 2002 4 2
## 2003 2 1
## 2004 2 1
## 2005 4 1
## 2006 3 2
## 2007 3 1
## 2008 3 1
## 2009 3 1
## 2010 4 1
## 2011 4 3
## 2012 3 1
## 2013 2 1
## 2014 3 2
## 2015 2 1
## 2016 2 1
## 2017 4 1
## 2018 3 3
## 2019 4 1
## 2020 3 1
## 2021 2 1
## 2022 4 2
## 2023 4 1
## 2024 3 1
## 2025 4 1
## 2026 2 1
## 2027 3 1
## 2028 4 1
## 2029 4 1
## 2030 3 1
## 2031 2 1
## 2032 3 2
## 2033 3 1
## 2034 3 1
## 2035 4 2
## 2036 3 1
## 2037 3 1
## 2038 3 1
## 2039 2 1
## 2040 4 1
## 2041 3 1
## 2042 3 1
## 2043 2 1
## 2044 3 1
## 2045 3 1
## 2046 2 1
## 2047 3 1
## 2048 3 1
## 2049 3 1
## 2050 3 1
## 2051 1 1
## 2053 3 1
## 2054 3 1
## 2055 2 1
## 2056 4 1
## 2057 4 1
## 2058 4 1
## 2059 3 1
## 2060 2 1
## 2061 2 1
## 2062 4 2
## 2063 1 1
## 2064 4 1
## 2065 3 1
## 2066 2 1
## 2067 3 1
## 2068 3 1
## 2069 2 1
## 2070 2 1
## 2071 2 1
## 2072 3 1
## 2073 4 1
## 2074 2 1
## 2075 2 1
## 2076 4 2
## 2077 3 1
## 2078 4 1
## 2079 3 1
## 2080 3 1
## 2081 3 1
## 2082 4 1
## 2083 3 1
## 2084 4 2
## 2085 2 1
## 2086 2 1
## 2087 3 1
## 2088 2 1
## 2089 4 1
## 2090 4 1
## 2091 3 1
## 2092 3 1
## 2093 4 3
## 2094 4 1
## 2095 2 1
## 2096 2 1
## 2097 2 1
## 2098 4 1
## 2099 2 1
## 2100 3 1
## 2101 4 1
## 2102 3 3
## 2103 3 1
## 2104 2 1
## 2105 3 2
## 2106 3 1
## 2107 3 2
## 2108 1 1
## 2109 3 1
## 2110 4 1
## 2111 3 1
## 2112 3 1
## 2113 4 1
## 2114 3 1
## 2115 3 1
## 2116 3 1
## 2117 4 1
## 2118 4 2
## 2119 3 1
## 2120 4 1
## 2121 2 1
## 2122 2 1
## 2123 2 1
## 2124 3 1
## 2125 4 3
## 2126 4 2
## 2127 4 1
## 2128 4 1
## 2129 3 1
## 2130 3 1
## 2131 4 1
## 2132 3 1
## 2133 3 1
## 2134 3 1
## 2135 3 1
## 2136 3 1
## 2137 4 1
## 2138 2 1
## 2139 4 1
## 2140 3 1
## 2141 4 1
## 2142 3 1
## 2143 3 1
## 2144 3 1
## 2145 3 1
## 2146 3 1
## 2147 3 1
## 2148 2 1
## 2149 2 1
## 2150 2 1
## 2151 4 1
## 2152 4 2
## 2153 4 1
## 2154 2 1
## 2155 4 1
## 2156 2 1
## 2157 4 1
## 2158 4 2
## 2159 2 1
## 2160 4 1
## 2161 4 1
## 2162 4 1
## 2163 2 1
## 2164 2 1
## 2165 4 1
## 2166 4 2
## 2167 3 1
## 2168 2 1
## 2169 3 1
## 2170 4 1
## 2171 3 1
## 2172 4 1
## 2173 4 1
## 2174 2 1
## 2175 2 1
## 2176 2 1
## 2177 2 1
## 2178 4 1
## 2179 2 1
## 2180 1 1
## 2181 4 3
## 2182 4 2
## 2183 2 1
## 2184 3 1
## 2185 2 1
## 2186 2 1
## 2187 3 1
## 2188 4 1
## 2189 2 1
## 2190 4 3
## 2191 2 1
## 2192 2 1
## 2193 3 1
## 2194 4 1
## 2195 4 1
## 2196 4 1
## 2197 3 1
## 2198 3 1
## 2199 1 1
## 2200 3 1
## 2201 3 1
## 2202 2 1
## 2203 4 1
## 2204 2 1
## 2205 4 1
## 2206 4 1
## 2207 4 1
## 2208 3 1
## 2209 2 1
## 2210 4 1
## 2211 3 1
## 2212 3 1
## 2213 3 3
## 2214 3 2
## 2215 3 2
## 2216 3 1
## 2217 4 1
## 2218 3 1
## 2219 2 1
## 2220 3 1
## 2221 4 3
## 2222 3 1
## 2223 4 2
## 2224 3 1
## 2225 3 1
## 2226 4 1
## 2227 4 2
## 2228 4 1
## 2229 4 1
## 2230 2 1
## 2231 2 1
## 2232 3 1
## 2233 4 2
## 2234 4 1
## 2235 3 1
## 2236 4 1
## 2237 4 1
## 2238 2 2
## 2239 1 1
## 2240 4 1
## 2241 4 1
## 2242 3 1
## 2243 3 3
## 2244 3 1
## 2245 2 1
## 2246 4 1
## 2247 3 1
## 2248 3 1
## 2249 4 2
## 2250 4 1
## 2251 4 1
## 2252 3 1
## 2253 3 1
## 2254 3 1
## 2256 4 1
## 2257 4 2
## 2258 4 2
## 2259 2 1
## 2260 4 1
## 2261 3 1
## 2262 3 1
## 2263 2 1
## 2264 3 1
## 2265 4 2
## 2266 4 1
## 2267 3 1
## 2268 3 1
## 2269 4 1
## 2270 3 2
## 2271 4 1
## 2272 2 1
## 2273 1 1
## 2274 2 1
## 2275 4 1
## 2276 4 1
## 2277 3 1
## 2278 3 1
## 2279 4 1
## 2280 3 2
## 2281 3 1
## 2282 4 1
## 2283 2 1
## 2284 3 1
## 2285 4 1
## 2286 4 1
## 2287 1 1
## 2288 3 1
## 2289 1 1
## 2290 3 1
## 2291 2 1
## 2292 4 1
## 2293 4 1
## 2294 2 1
## 2295 1 1
## 2296 4 1
## 2297 1 1
## 2298 4 1
## 2299 3 1
## 2300 4 1
## 2301 1 1
## 2302 2 1
## 2303 4 1
## 2304 4 1
## 2305 2 1
## 2306 4 1
## 2307 4 1
## 2308 3 1
## 2309 4 1
## 2310 2 1
## 2311 3 1
## 2312 3 3
## 2313 4 2
## 2314 3 1
## 2315 4 1
## 2316 4 1
## 2317 3 1
## 2318 3 2
## 2319 2 1
## 2320 4 1
## 2321 4 1
## 2322 3 1
## 2323 3 1
## 2324 4 2
## 2325 4 1
## 2326 4 1
## 2327 4 1
## 2328 3 1
## 2329 2 1
## 2330 2 1
## 2331 2 1
## 2332 3 1
## 2333 2 1
## 2334 3 1
## 2335 3 1
## 2336 2 1
## 2337 2 1
## 2338 4 1
## 2339 3 1
## 2340 4 1
## 2341 4 2
## 2342 1 2
## 2343 2 2
## 2344 3 1
## 2345 4 1
## 2346 4 1
## 2347 3 1
## 2348 4 1
## 2349 4 1
## 2350 4 1
## 2351 2 1
## 2352 3 1
## 2353 2 1
## 2354 4 1
## 2355 4 1
## 2356 2 1
## 2357 4 1
## 2358 2 1
## 2359 2 1
## 2360 1 1
## 2361 4 2
## 2362 2 2
## 2363 4 1
## 2364 4 3
## 2365 4 1
## 2366 2 1
## 2367 2 1
## 2368 3 1
## 2369 4 3
## 2370 1 1
## 2371 2 1
## 2372 4 2
## 2373 3 2
## 2374 4 1
## 2375 4 1
## 2376 4 1
## 2377 3 2
## 2378 2 1
## 2379 4 1
## 2380 4 1
## 2381 4 1
## 2382 3 1
## 2383 4 1
## 2384 4 1
## 2385 4 1
## 2386 4 1
## 2387 3 1
## 2388 4 1
## 2389 3 1
## 2390 2 1
## 2391 4 2
## 2392 4 2
## 2393 3 1
## 2394 4 1
## 2395 3 1
## 2396 3 1
## 2397 4 2
## 2398 4 2
## 2399 4 2
## 2400 2 1
## 2403 4 1
## 2404 4 3
## 2405 4 1
## 2406 4 1
## 2407 2 2
## 2408 2 1
## 2409 2 1
## 2410 4 1
## 2411 2 1
## 2412 3 1
## 2413 2 1
## 2414 2 1
## 2415 4 3
## 2416 2 1
## 2417 4 1
## 2418 4 1
## 2419 2 1
## 2420 3 1
## 2421 4 2
## 2422 3 1
## 2423 3 1
## 2424 4 1
## 2425 4 2
## 2426 2 1
## 2427 3 1
## 2428 4 1
## 2429 3 1
## 2430 3 1
## 2431 2 1
## 2432 2 1
## 2433 3 1
## 2434 3 1
## 2435 2 1
## 2436 4 1
## 2437 3 1
## 2438 3 2
## 2439 4 2
## 2440 3 1
## 2441 3 1
## 2442 4 1
## 2443 3 1
## 2444 4 1
## 2445 4 1
## 2446 4 1
## 2447 1 1
## 2448 4 3
## 2449 4 1
## 2450 2 1
## 2451 3 2
## 2452 2 2
## 2453 1 1
## 2454 2 1
## 2455 2 1
## 2456 3 2
## 2457 2 1
## 2458 2 2
## 2459 2 1
## 2460 2 1
## 2461 4 2
## 2462 3 1
## 2463 3 1
## 2464 4 1
## 2465 4 1
## 2466 3 1
## 2467 3 1
## 2468 3 1
## 2469 2 1
## 2470 4 1
## 2471 4 1
## 2472 4 1
## 2473 4 1
## 2474 3 2
## 2475 2 1
## 2476 4 1
## 2477 4 1
## 2478 3 1
## 2480 4 1
## 2481 4 1
## 2482 4 1
## 2483 2 2
## 2484 3 1
## 2485 1 1
## 2486 1 1
## 2487 2 1
## 2488 2 1
## 2489 3 1
## 2490 4 2
## 2491 3 2
## 2492 4 1
## 2493 3 1
## 2494 4 2
## 2495 2 1
## 2496 1 1
## 2497 4 1
## 2498 4 1
## 2499 4 1
## 2501 3 1
## 2502 4 1
## 2503 4 2
## 2504 2 1
## 2505 3 2
## 2506 4 1
## 2507 4 1
## 2508 3 1
## 2509 4 1
## 2510 3 1
## 2511 4 1
## 2512 4 1
## 2513 3 1
## 2514 2 1
## 2515 3 2
## 2516 4 1
## 2517 4 1
## 2518 4 1
## 2519 4 1
## 2520 2 1
## 2521 2 2
## 2522 2 1
## 2523 2 1
## 2524 2 1
## 2525 4 2
## 2526 2 1
## 2527 2 1
## 2528 4 2
## 2529 2 1
## 2530 4 1
## 2531 3 1
## 2532 2 1
## 2533 4 1
## 2534 3 1
## 2535 3 1
## 2536 4 1
## 2537 3 2
## 2538 4 1
## 2539 3 1
## 2540 3 1
## 2541 3 1
## 2542 2 1
## 2543 3 1
## 2544 4 1
## 2545 3 1
## 2546 3 1
## 2547 2 1
## 2548 2 1
## 2549 4 1
## 2550 4 1
## 2551 3 1
## 2552 4 1
## 2553 4 1
## 2554 4 1
## 2555 4 2
## 2556 3 1
## 2557 2 1
## 2558 2 1
## 2559 3 1
## 2560 1 1
## 2561 2 2
## 2562 2 1
## 2563 3 1
## 2564 3 1
## 2565 2 1
## 2566 3 1
## 2567 3 1
## 2568 4 1
## 2569 4 1
## 2570 3 1
## 2571 4 1
## 2572 3 2
## 2573 3 1
## 2574 4 1
## 2575 4 2
## 2576 2 1
## 2577 4 1
## 2578 4 1
## 2579 3 1
## 2580 4 2
## 2581 4 2
## 2582 3 2
## 2583 2 1
## 2584 3 2
## 2585 4 1
## 2586 4 1
## 2587 3 1
## 2588 2 1
## 2589 3 1
## 2590 3 1
## 2591 4 1
## 2592 3 1
## 2593 4 2
## 2594 3 1
## 2595 4 1
## 2596 4 1
## 2597 2 1
## 2598 4 1
## 2599 4 2
## 2600 2 1
## 2601 3 1
## 2602 2 1
## 2603 2 2
## 2604 4 1
## 2605 3 1
## 2606 4 1
## 2607 2 1
## 2608 4 1
## 2609 3 1
## 2610 3 1
## 2611 3 1
## 2612 4 1
## 2613 2 1
## 2614 2 1
## 2615 4 1
## 2616 4 2
## 2617 3 1
## 2618 3 1
## 2619 4 1
## 2620 2 1
## 2621 2 1
## 2622 3 1
## 2623 3 1
## 2624 3 1
## 2625 3 1
## 2626 2 1
## 2627 3 1
## 2628 4 2
## 2629 4 2
## 2630 4 1
## 2631 4 1
## 2632 3 1
## 2633 3 1
## 2634 4 1
## 2635 4 1
## 2636 4 2
## 2637 3 1
## 2638 3 1
## 2639 3 1
## 2640 3 1
## 2641 4 2
## 2642 3 1
## 2643 2 1
## 2644 4 1
## 2645 3 1
## 2646 2 2
## 2647 3 1
## 2648 3 1
## 2649 2 1
## 2650 2 1
## 2651 3 2
## 2652 3 1
## 2653 2 1
## 2654 4 1
## 2655 2 2
## 2656 2 1
## 2657 4 2
## 2658 4 1
## 2659 4 1
## 2660 4 1
## 2661 3 2
## 2662 2 1
## 2663 2 1
## 2664 4 1
## 2665 2 1
## 2666 4 1
## 2667 4 1
## 2668 4 1
## 2669 4 1
## 2670 4 2
## 2671 2 1
## 2672 2 1
## 2673 3 1
## 2674 4 2
## 2675 4 1
## 2676 2 1
## 2677 1 2
## 2678 4 1
## 2679 1 1
## 2680 4 1
## 2681 3 1
## 2682 2 1
## 2683 4 1
## 2684 4 1
## 2685 3 1
## 2686 4 3
## 2687 4 1
## 2688 3 1
## 2689 2 1
## 2690 3 1
## 2691 3 1
## 2692 3 1
## 2693 4 1
## 2694 2 1
## 2695 4 1
## 2696 2 1
## 2697 3 1
## 2698 1 1
## 2699 4 1
## 2700 3 1
## 2701 4 1
## 2702 4 1
## 2703 3 1
## 2704 2 1
## 2705 2 1
## 2706 3 1
## 2707 3 1
## 2708 4 1
## 2710 3 2
## 2711 3 1
## 2712 4 1
## 2713 3 1
## 2714 4 3
## 2715 2 1
## 2716 3 1
## 2717 3 1
## 2718 3 1
## 2719 2 1
## 2720 2 1
## 2721 1 1
## 2722 4 2
## 2723 2 1
## 2724 4 1
## 2725 1 1
## 2726 2 1
## 2727 3 1
## 2728 3 1
## 2729 4 2
## 2730 2 1
## 2731 2 1
## 2732 4 1
## 2733 3 1
## 2734 3 1
## 2735 2 1
## 2736 3 1
## 2737 2 1
## 2738 4 1
## 2739 2 1
## 2740 4 2
## 2741 1 1
## 2742 4 1
## 2744 3 3
## 2745 3 1
## 2746 2 1
## 2747 2 1
## 2748 4 1
## 2749 4 1
## 2750 3 1
## 2751 3 1
## 2752 3 1
## 2753 2 2
## 2754 4 1
## 2755 2 1
## 2756 3 2
## 2757 4 1
## 2758 2 1
## 2759 4 1
## 2760 4 1
## 2761 4 1
## 2762 4 1
## 2763 4 2
## 2764 4 1
## 2765 4 1
## 2766 2 1
## 2767 4 1
## 2768 2 1
## 2769 2 1
## 2770 4 2
## 2771 4 2
## 2772 3 1
## 2773 4 2
## 2774 4 3
## 2775 3 1
## 2776 4 2
## 2777 4 2
## 2778 4 1
## 2779 2 1
## 2780 1 1
## 2781 3 1
## 2782 2 1
## 2783 2 1
## 2784 2 1
## 2785 2 1
## 2786 3 1
## 2787 2 1
## 2788 2 1
## 2789 2 1
## 2790 1 1
## 2791 3 1
## 2792 2 1
## 2793 3 1
## 2794 2 1
## 2795 2 1
## 2796 4 1
## 2797 2 1
## 2798 1 1
## 2799 3 3
Part I. Chi-squared Test (2 points) 1) The correct choice of variables. A plot with the two variables involved (0.5 points)
# Convert the variables to factors
greece_2$polintr <- factor(greece_2$polintr)
greece_2$vote <- factor(greece_2$vote)
# Create a table with the counts for each combination of polintr and vote
table_data <- table(greece_2$polintr, greece_2$vote)
# Convert the table to a data frame
table_df <- as.data.frame.matrix(table_data)
# Add row names as a variable
table_df$polintr <- rownames(table_df)
# Reshape the data from wide to long format
table_long <- reshape2::melt(table_df, id.vars = "polintr")
# Create the stacked bar chart
ggplot(table_long, aes(x = polintr, y = value, fill = variable)) +
geom_bar(stat = "identity") +
labs(x = "Political Interest", y = "Count", fill = "Vote")
2) The null hypothesis is spelled out, and you make conclusions as
table(flowers) to how the results relate to it (0.5)
Vote Categories 1 Yes 2 No 3 Not eligible to vote
polintr Category 1 Very interested 2 Quite interested 3
Hardly interested 4 Not at all interested
We are interested in examining the association between political interest (polintr) and voting behavior (vote) among Greek citizens. Specifically, we want to test whether there is a significant difference in the distribution of votes among individuals with different levels of political interest. We can formulate the following null and alternative hypotheses:
Null hypothesis (H0): The distribution of votes is the same across all levels of political interest. Alternative hypothesis (HA): The distribution of votes is different across at least one pair of levels of political interest.
# Perform chi-squared test of independence
chisq_res <- chisq.test(table_data)
## Warning in chisq.test(table_data): аппроксимация на основе хи-квадрат может
## быть неправильной
# Print the test result
chisq_res
##
## Pearson's Chi-squared test
##
## data: table_data
## X-squared = 76.519, df = 6, p-value = 1.867e-14
We can reject the null hypothesis (p-value = 1.867e-14 < 0,05) and conclude that there is a significant difference in the distribution of votes across at least one pair of levels of political interest.
CrossTable(table_data, expected=T)
## Warning in chisq.test(t, correct = FALSE, ...): аппроксимация на основе
## хи-квадрат может быть неправильной
##
##
## Cell Contents
## |-------------------------|
## | N |
## | Expected N |
## | Chi-square contribution |
## | N / Row Total |
## | N / Col Total |
## | N / Table Total |
## |-------------------------|
##
##
## Total Observations in Table: 2752
##
##
## |
## | 1 | 2 | 3 | Row Total |
## -------------|-----------|-----------|-----------|-----------|
## 1 | 127 | 5 | 1 | 133 |
## | 112.605 | 17.253 | 3.141 | |
## | 1.840 | 8.702 | 1.460 | |
## | 0.955 | 0.038 | 0.008 | 0.048 |
## | 0.055 | 0.014 | 0.015 | |
## | 0.046 | 0.002 | 0.000 | |
## -------------|-----------|-----------|-----------|-----------|
## 2 | 654 | 59 | 4 | 717 |
## | 607.053 | 93.012 | 16.935 | |
## | 3.631 | 12.437 | 9.880 | |
## | 0.912 | 0.082 | 0.006 | 0.261 |
## | 0.281 | 0.165 | 0.062 | |
## | 0.238 | 0.021 | 0.001 | |
## -------------|-----------|-----------|-----------|-----------|
## 3 | 748 | 102 | 23 | 873 |
## | 739.132 | 113.249 | 20.620 | |
## | 0.106 | 1.117 | 0.275 | |
## | 0.857 | 0.117 | 0.026 | 0.317 |
## | 0.321 | 0.286 | 0.354 | |
## | 0.272 | 0.037 | 0.008 | |
## -------------|-----------|-----------|-----------|-----------|
## 4 | 801 | 191 | 37 | 1029 |
## | 871.210 | 133.486 | 24.304 | |
## | 5.658 | 24.781 | 6.632 | |
## | 0.778 | 0.186 | 0.036 | 0.374 |
## | 0.344 | 0.535 | 0.569 | |
## | 0.291 | 0.069 | 0.013 | |
## -------------|-----------|-----------|-----------|-----------|
## Column Total | 2330 | 357 | 65 | 2752 |
## | 0.847 | 0.130 | 0.024 | |
## -------------|-----------|-----------|-----------|-----------|
##
##
## Statistics for All Table Factors
##
##
## Pearson's Chi-squared test
## ------------------------------------------------------------
## Chi^2 = 76.51923 d.f. = 6 p = 1.867254e-14
##
##
##
The result of the chi-square test is a p-value of 1.867254e-14, which is less than the standard significance level of 0.05. Therefore, we reject the null hypothesis and conclude that there is a significant association between political interest and vote.
In this case, we can see that the cells with the largest standardized residuals are in the fourth second column (vote = 2). Specifically, the observed counts for those cells where political interest = 1 and political interest = 2 we overpredict, while when political interest = 4 we underpredict. Basically, people who are interested in politics do not vote less than we predict, on the other hand people who are not intereste din politics do not vote more often than we predict.
Part II. The t-test (2.5 points) 4) The correct choice of variables, a plot with these variables (0.5)
greece_3 <- greece %>% dplyr:: select(netustm, vote)
greece_3 <- na.omit(greece_3)
greece_3$netustm <- as.numeric(greece_3$netustm)
greece_3$vote <- as.numeric(greece_3$vote)
greece_3
## netustm vote
## 1 60 1
## 3 240 1
## 4 120 3
## 5 60 1
## 7 120 1
## 9 120 1
## 11 120 1
## 12 480 1
## 13 190 1
## 14 300 2
## 16 360 1
## 18 200 1
## 19 360 1
## 20 240 1
## 22 300 1
## 23 75 1
## 24 120 1
## 25 75 1
## 26 420 1
## 27 180 1
## 32 210 1
## 33 300 1
## 36 45 1
## 37 60 1
## 38 60 1
## 40 120 2
## 41 240 3
## 42 600 1
## 43 180 1
## 44 300 1
## 45 300 1
## 48 60 1
## 50 240 1
## 51 360 1
## 53 300 2
## 54 120 1
## 55 60 2
## 56 180 1
## 59 90 1
## 61 240 1
## 62 128 1
## 63 120 1
## 65 60 1
## 67 240 1
## 68 90 1
## 70 40 1
## 71 150 1
## 72 60 2
## 73 210 1
## 75 190 1
## 76 120 1
## 77 300 1
## 78 120 1
## 80 180 1
## 81 140 1
## 82 60 1
## 83 60 1
## 85 120 1
## 86 180 1
## 87 90 1
## 88 150 1
## 89 210 1
## 90 180 1
## 91 120 1
## 93 300 1
## 96 360 1
## 97 180 1
## 98 300 1
## 100 150 1
## 101 120 1
## 102 60 3
## 103 120 1
## 104 480 1
## 105 600 1
## 106 180 1
## 107 120 1
## 109 150 2
## 110 120 2
## 111 60 1
## 112 0 1
## 113 90 1
## 115 120 1
## 116 240 2
## 117 90 1
## 118 240 1
## 119 30 1
## 120 180 1
## 121 180 1
## 122 600 1
## 123 240 1
## 124 60 1
## 125 120 1
## 127 600 1
## 128 120 1
## 130 90 2
## 133 150 1
## 135 180 1
## 136 300 1
## 138 360 1
## 139 120 1
## 142 180 2
## 144 300 1
## 145 300 1
## 146 120 2
## 147 120 2
## 148 90 1
## 149 180 1
## 150 30 1
## 152 210 1
## 153 90 1
## 154 240 1
## 155 240 1
## 156 120 2
## 157 120 2
## 158 120 1
## 159 240 1
## 160 150 1
## 161 60 1
## 162 180 2
## 163 60 1
## 165 480 1
## 166 180 1
## 167 600 1
## 168 45 1
## 169 240 1
## 172 150 1
## 175 120 1
## 176 90 2
## 181 60 1
## 184 360 2
## 185 120 2
## 186 60 1
## 188 30 1
## 190 360 1
## 192 1 1
## 194 120 1
## 195 360 1
## 196 300 1
## 197 120 1
## 198 300 1
## 200 60 1
## 201 150 3
## 202 300 1
## 204 60 1
## 207 120 1
## 208 720 2
## 210 120 1
## 211 180 1
## 214 60 1
## 215 240 1
## 216 180 1
## 218 180 1
## 219 60 2
## 220 180 1
## 221 60 1
## 222 240 1
## 223 600 1
## 224 120 1
## 225 300 1
## 226 540 1
## 228 120 1
## 229 300 1
## 230 270 1
## 231 150 1
## 232 30 1
## 233 120 1
## 234 120 1
## 236 120 1
## 237 150 1
## 240 180 1
## 241 120 1
## 243 120 1
## 244 120 1
## 245 90 1
## 248 210 2
## 250 30 1
## 251 60 1
## 252 60 1
## 253 600 1
## 256 300 1
## 259 180 1
## 260 60 1
## 261 150 1
## 262 300 3
## 263 240 1
## 264 90 1
## 265 210 2
## 267 90 1
## 268 30 1
## 270 120 1
## 272 90 2
## 273 60 1
## 275 120 2
## 276 30 1
## 277 240 1
## 278 120 1
## 281 300 1
## 283 210 1
## 284 360 2
## 285 240 1
## 288 120 1
## 289 120 2
## 293 120 1
## 295 180 1
## 296 300 1
## 297 120 1
## 298 240 2
## 301 360 1
## 302 150 1
## 305 120 1
## 307 60 1
## 310 120 2
## 311 240 1
## 312 90 2
## 313 180 1
## 314 240 1
## 316 360 1
## 317 90 1
## 323 120 1
## 324 60 1
## 325 480 1
## 327 120 1
## 328 120 1
## 329 150 1
## 330 600 1
## 331 60 1
## 332 120 1
## 333 120 1
## 334 480 1
## 336 120 1
## 338 210 1
## 339 480 1
## 340 120 2
## 341 240 1
## 342 30 1
## 344 240 1
## 345 180 1
## 346 120 2
## 347 120 1
## 349 180 1
## 350 210 1
## 351 180 1
## 352 120 1
## 353 60 1
## 354 60 1
## 355 120 1
## 356 180 1
## 357 120 1
## 358 180 1
## 360 60 1
## 361 120 2
## 362 90 1
## 363 60 1
## 364 120 1
## 365 360 1
## 367 150 1
## 370 60 1
## 371 60 1
## 372 150 1
## 373 300 1
## 375 90 1
## 376 240 2
## 377 60 1
## 378 480 2
## 379 120 2
## 380 60 2
## 381 90 1
## 382 270 1
## 385 120 1
## 389 150 2
## 391 180 1
## 392 600 1
## 393 180 2
## 394 600 2
## 396 150 1
## 397 180 1
## 399 120 1
## 400 60 1
## 401 540 1
## 402 120 1
## 403 240 1
## 406 420 2
## 407 260 2
## 408 30 3
## 409 240 1
## 410 360 1
## 411 15 1
## 412 600 1
## 413 120 1
## 414 183 1
## 415 60 1
## 416 180 1
## 417 120 1
## 418 90 1
## 419 120 1
## 420 330 1
## 421 180 1
## 422 180 1
## 423 180 1
## 425 120 1
## 427 180 1
## 430 60 1
## 431 600 2
## 432 300 1
## 433 60 1
## 434 180 2
## 436 120 1
## 437 300 1
## 439 120 1
## 440 120 2
## 442 120 1
## 443 75 1
## 445 180 1
## 446 600 1
## 447 180 2
## 448 360 2
## 449 240 1
## 450 90 1
## 451 120 1
## 452 300 2
## 454 240 1
## 456 120 1
## 458 180 1
## 460 180 1
## 463 150 2
## 464 240 1
## 466 120 1
## 467 180 1
## 468 120 1
## 469 120 1
## 470 360 1
## 471 240 1
## 472 270 2
## 473 30 1
## 474 600 1
## 475 120 1
## 477 240 2
## 480 120 1
## 481 90 2
## 482 180 1
## 483 120 1
## 485 180 2
## 486 390 2
## 487 360 1
## 488 60 1
## 489 60 1
## 491 480 1
## 492 120 1
## 493 240 2
## 497 120 1
## 499 60 1
## 500 120 1
## 503 120 1
## 506 300 1
## 507 60 2
## 508 240 1
## 510 60 1
## 511 120 1
## 513 270 1
## 514 240 2
## 515 120 2
## 516 150 1
## 517 180 1
## 518 120 1
## 520 180 1
## 521 120 1
## 522 180 1
## 524 180 1
## 525 180 1
## 526 120 1
## 527 270 2
## 529 120 2
## 530 60 1
## 531 170 1
## 532 120 1
## 533 150 1
## 534 180 1
## 535 600 1
## 536 180 2
## 540 120 1
## 543 90 1
## 544 120 1
## 545 180 3
## 546 210 1
## 547 180 1
## 549 60 1
## 550 120 1
## 552 60 1
## 553 180 1
## 555 600 1
## 556 120 1
## 559 300 1
## 560 120 1
## 561 180 2
## 565 120 1
## 566 300 3
## 570 360 1
## 571 210 1
## 573 120 1
## 576 180 1
## 578 30 1
## 579 480 1
## 580 300 1
## 584 120 3
## 585 450 1
## 586 90 1
## 587 180 1
## 589 180 1
## 591 330 1
## 592 60 3
## 593 60 3
## 594 240 1
## 596 120 2
## 598 120 1
## 599 240 1
## 601 180 1
## 602 240 1
## 603 150 1
## 608 120 3
## 609 180 1
## 610 270 1
## 611 180 2
## 612 180 1
## 614 60 1
## 616 180 1
## 617 300 2
## 618 180 1
## 620 120 1
## 621 120 2
## 622 60 1
## 626 180 1
## 627 180 1
## 629 170 1
## 630 150 1
## 631 120 2
## 632 120 1
## 633 60 1
## 634 90 1
## 635 120 2
## 636 300 1
## 637 300 3
## 638 120 1
## 640 120 1
## 642 300 2
## 643 120 1
## 645 150 1
## 646 120 1
## 647 120 2
## 648 90 1
## 649 120 1
## 650 120 1
## 651 150 1
## 652 300 1
## 653 180 2
## 654 600 1
## 655 120 2
## 656 240 1
## 657 60 1
## 658 240 1
## 659 240 1
## 660 180 1
## 661 120 1
## 662 120 1
## 663 420 1
## 664 180 1
## 666 150 1
## 668 60 1
## 670 240 1
## 671 150 1
## 672 180 1
## 676 60 1
## 677 60 2
## 681 120 3
## 684 150 1
## 685 240 2
## 686 60 1
## 687 120 1
## 688 120 1
## 690 210 1
## 691 720 1
## 692 480 1
## 695 240 1
## 698 180 3
## 700 480 1
## 701 600 1
## 703 300 1
## 704 120 1
## 705 360 1
## 707 300 1
## 708 60 1
## 709 180 1
## 711 60 1
## 712 600 1
## 713 450 1
## 715 240 1
## 716 180 1
## 717 180 1
## 718 300 1
## 719 330 1
## 720 120 1
## 721 120 1
## 724 420 2
## 727 120 1
## 728 300 1
## 729 420 1
## 731 60 1
## 733 120 1
## 734 120 1
## 735 150 1
## 736 900 1
## 737 123 1
## 738 120 2
## 739 300 1
## 740 300 1
## 741 150 1
## 742 90 2
## 744 120 2
## 746 180 2
## 747 360 2
## 748 60 2
## 749 60 1
## 750 180 1
## 752 300 1
## 755 120 2
## 756 90 1
## 757 210 1
## 758 60 1
## 759 120 2
## 760 180 1
## 762 60 1
## 763 240 1
## 765 60 1
## 766 120 1
## 767 600 2
## 769 120 1
## 770 300 1
## 771 90 3
## 772 360 1
## 773 300 1
## 775 90 1
## 776 120 1
## 778 180 1
## 781 120 1
## 783 120 1
## 785 180 1
## 786 120 1
## 788 300 1
## 790 60 1
## 792 120 1
## 793 60 1
## 794 210 2
## 795 210 1
## 796 90 1
## 797 60 1
## 798 180 1
## 800 180 1
## 801 300 1
## 802 180 1
## 803 60 1
## 804 60 1
## 808 300 2
## 810 180 1
## 811 180 1
## 814 330 1
## 815 300 1
## 816 300 1
## 817 300 1
## 818 300 1
## 819 180 1
## 820 300 1
## 821 90 1
## 822 330 1
## 826 90 2
## 829 360 2
## 830 180 1
## 831 180 1
## 832 300 1
## 834 330 1
## 835 180 1
## 836 150 1
## 837 600 2
## 838 60 1
## 840 480 2
## 842 120 1
## 843 720 1
## 844 180 1
## 845 120 1
## 846 305 1
## 847 60 1
## 848 240 1
## 850 60 1
## 851 240 1
## 852 90 1
## 853 60 1
## 854 120 2
## 855 420 2
## 856 150 1
## 857 120 1
## 858 120 1
## 862 180 1
## 863 180 1
## 864 260 2
## 865 90 1
## 866 120 1
## 868 300 1
## 870 180 1
## 871 150 3
## 872 600 1
## 873 2 1
## 874 180 1
## 880 180 1
## 883 240 1
## 884 20 1
## 886 150 1
## 887 150 1
## 888 120 1
## 890 360 2
## 891 600 1
## 893 300 1
## 894 300 1
## 896 120 1
## 897 180 1
## 898 360 1
## 901 300 2
## 902 120 1
## 903 180 2
## 904 180 1
## 905 120 1
## 907 240 1
## 908 90 1
## 909 60 2
## 910 240 2
## 911 270 1
## 912 180 2
## 913 240 1
## 915 120 1
## 916 180 1
## 918 90 1
## 919 300 3
## 920 300 1
## 921 180 1
## 925 480 1
## 928 120 1
## 929 150 2
## 930 120 1
## 933 240 2
## 934 120 1
## 935 330 1
## 936 240 1
## 937 270 1
## 938 180 1
## 939 420 1
## 941 90 1
## 942 120 2
## 943 90 1
## 944 390 1
## 945 120 1
## 946 240 1
## 947 150 1
## 948 120 1
## 949 300 1
## 951 120 1
## 952 90 1
## 953 300 1
## 954 600 1
## 955 240 1
## 957 60 3
## 959 180 1
## 960 240 1
## 961 120 1
## 962 120 1
## 963 150 1
## 964 300 1
## 965 240 3
## 968 120 1
## 969 300 1
## 970 120 1
## 971 90 1
## 973 150 1
## 974 330 1
## 975 120 1
## 979 120 1
## 980 300 1
## 981 300 2
## 984 120 1
## 985 120 2
## 987 330 1
## 988 120 1
## 989 90 1
## 991 90 1
## 992 90 1
## 993 120 1
## 994 90 1
## 995 60 1
## 997 90 1
## 1002 150 1
## 1004 60 1
## 1006 120 2
## 1007 480 1
## 1008 120 1
## 1009 120 1
## 1010 180 1
## 1011 600 2
## 1012 240 1
## 1014 120 1
## 1016 120 1
## 1017 600 1
## 1018 120 1
## 1019 180 1
## 1020 210 1
## 1021 480 1
## 1022 180 1
## 1023 225 1
## 1025 60 1
## 1026 300 1
## 1027 480 1
## 1028 600 1
## 1030 90 1
## 1034 60 1
## 1035 300 1
## 1036 300 1
## 1037 120 1
## 1038 900 1
## 1041 240 1
## 1042 150 1
## 1044 330 1
## 1045 60 1
## 1048 300 1
## 1049 60 1
## 1050 120 2
## 1051 90 1
## 1053 360 3
## 1054 180 1
## 1056 90 1
## 1057 480 1
## 1059 480 1
## 1060 120 1
## 1062 30 1
## 1063 90 1
## 1064 120 1
## 1065 180 1
## 1066 480 1
## 1067 60 1
## 1068 120 1
## 1070 210 1
## 1072 60 1
## 1073 240 1
## 1074 180 1
## 1076 240 1
## 1080 120 1
## 1082 60 1
## 1083 90 1
## 1084 240 1
## 1085 180 1
## 1086 150 2
## 1087 150 1
## 1088 330 1
## 1089 240 1
## 1090 60 1
## 1092 240 1
## 1093 180 1
## 1096 480 1
## 1097 240 1
## 1099 150 2
## 1100 150 2
## 1102 120 1
## 1104 90 1
## 1106 120 1
## 1107 180 1
## 1109 180 1
## 1110 300 3
## 1111 120 1
## 1114 90 1
## 1115 190 1
## 1116 120 1
## 1117 120 1
## 1119 300 2
## 1120 20 2
## 1121 240 1
## 1124 270 2
## 1125 120 1
## 1126 240 1
## 1127 180 1
## 1129 120 1
## 1130 180 1
## 1132 300 2
## 1134 120 1
## 1135 180 1
## 1136 120 1
## 1137 600 2
## 1138 120 1
## 1140 300 3
## 1141 120 1
## 1143 180 2
## 1144 600 1
## 1145 240 1
## 1149 150 2
## 1150 120 1
## 1151 180 1
## 1152 250 1
## 1153 60 1
## 1154 180 1
## 1155 240 1
## 1156 120 2
## 1157 120 1
## 1159 60 1
## 1162 300 1
## 1163 120 2
## 1164 120 1
## 1165 300 1
## 1166 480 1
## 1167 600 1
## 1168 120 1
## 1169 135 1
## 1172 350 1
## 1173 120 1
## 1174 60 1
## 1175 510 1
## 1176 90 1
## 1179 60 3
## 1180 240 1
## 1181 390 1
## 1182 180 1
## 1183 420 1
## 1184 180 1
## 1185 240 1
## 1187 120 1
## 1188 60 1
## 1190 60 1
## 1191 210 1
## 1193 120 1
## 1194 360 1
## 1195 360 2
## 1196 120 2
## 1197 60 1
## 1200 120 1
## 1203 480 2
## 1204 90 1
## 1205 180 1
## 1206 180 1
## 1208 180 3
## 1210 480 3
## 1211 300 1
## 1212 90 1
## 1213 183 2
## 1214 120 1
## 1217 120 1
## 1218 60 1
## 1219 480 1
## 1220 120 1
## 1224 420 1
## 1225 420 1
## 1226 300 1
## 1227 240 3
## 1228 180 1
## 1229 60 1
## 1230 150 1
## 1231 240 1
## 1232 180 1
## 1233 120 1
## 1234 30 1
## 1235 90 1
## 1236 180 1
## 1238 240 1
## 1239 300 1
## 1240 60 1
## 1244 180 2
## 1245 60 1
## 1246 300 1
## 1247 180 1
## 1249 120 1
## 1250 150 1
## 1255 180 1
## 1256 180 2
## 1257 360 1
## 1258 360 1
## 1260 510 1
## 1262 60 1
## 1263 60 1
## 1264 60 1
## 1268 120 1
## 1270 60 1
## 1271 180 2
## 1273 180 3
## 1275 120 1
## 1277 120 2
## 1278 180 1
## 1279 150 1
## 1280 240 1
## 1281 120 1
## 1282 480 1
## 1283 60 1
## 1284 360 1
## 1287 60 1
## 1288 180 1
## 1289 660 1
## 1291 120 1
## 1292 300 1
## 1293 180 1
## 1296 90 1
## 1297 240 2
## 1299 180 1
## 1300 120 1
## 1301 90 1
## 1303 90 3
## 1304 240 2
## 1306 600 1
## 1307 120 1
## 1308 180 1
## 1309 120 1
## 1310 300 2
## 1311 240 1
## 1312 30 1
## 1313 270 1
## 1314 30 1
## 1317 60 1
## 1318 10 1
## 1319 180 1
## 1320 180 1
## 1322 90 1
## 1323 360 2
## 1324 90 1
## 1328 150 2
## 1329 330 1
## 1330 60 1
## 1332 60 1
## 1333 120 1
## 1334 120 1
## 1335 120 1
## 1336 170 1
## 1337 120 1
## 1338 540 1
## 1339 90 1
## 1341 90 1
## 1342 240 1
## 1343 240 1
## 1344 180 1
## 1345 120 1
## 1347 120 1
## 1348 480 2
## 1349 300 1
## 1350 60 1
## 1351 180 1
## 1353 180 2
## 1354 20 1
## 1355 150 1
## 1356 300 1
## 1357 240 1
## 1358 60 1
## 1360 360 2
## 1362 90 1
## 1363 210 1
## 1364 180 1
## 1365 240 1
## 1367 120 1
## 1368 360 2
## 1371 300 1
## 1372 180 1
## 1373 180 3
## 1376 600 1
## 1379 180 1
## 1380 300 1
## 1381 60 1
## 1382 30 1
## 1383 180 1
## 1384 60 1
## 1385 180 1
## 1386 60 1
## 1387 150 1
## 1388 600 1
## 1389 150 1
## 1391 60 1
## 1392 120 2
## 1393 120 1
## 1395 180 1
## 1396 360 1
## 1397 240 2
## 1398 210 2
## 1399 180 1
## 1400 150 1
## 1402 120 1
## 1403 180 1
## 1404 180 1
## 1405 300 1
## 1407 90 1
## 1408 300 1
## 1412 600 2
## 1413 210 1
## 1414 120 1
## 1415 60 1
## 1416 150 1
## 1417 90 1
## 1418 60 1
## 1419 120 1
## 1420 60 1
## 1421 240 1
## 1422 90 1
## 1423 30 1
## 1426 180 1
## 1427 120 1
## 1428 240 1
## 1431 120 2
## 1432 150 1
## 1434 120 1
## 1435 45 3
## 1436 90 1
## 1438 30 1
## 1439 120 1
## 1440 330 2
## 1441 300 2
## 1443 60 1
## 1446 120 1
## 1447 90 1
## 1448 270 1
## 1450 300 2
## 1451 150 1
## 1453 120 1
## 1454 120 2
## 1455 180 1
## 1456 180 1
## 1457 210 2
## 1458 240 1
## 1459 180 1
## 1460 150 1
## 1461 90 1
## 1462 60 1
## 1463 90 1
## 1464 180 1
## 1465 60 1
## 1466 30 2
## 1467 480 1
## 1469 60 1
## 1470 120 1
## 1471 120 1
## 1472 240 1
## 1473 120 1
## 1474 240 2
## 1475 120 1
## 1476 120 1
## 1478 240 1
## 1480 240 1
## 1481 180 1
## 1482 120 1
## 1486 240 1
## 1487 120 1
## 1488 210 1
## 1489 300 1
## 1490 120 1
## 1491 180 1
## 1494 60 1
## 1495 480 1
## 1496 240 1
## 1497 120 1
## 1498 240 1
## 1499 120 1
## 1500 120 1
## 1502 120 1
## 1503 420 2
## 1504 480 2
## 1505 240 1
## 1506 240 1
## 1507 120 1
## 1510 330 1
## 1511 120 1
## 1512 120 1
## 1514 135 1
## 1515 230 1
## 1516 240 1
## 1517 240 1
## 1518 120 1
## 1519 120 1
## 1520 480 1
## 1521 180 1
## 1522 60 1
## 1523 240 1
## 1524 60 1
## 1525 300 2
## 1527 180 1
## 1528 180 1
## 1529 60 1
## 1530 60 1
## 1533 60 2
## 1535 240 1
## 1538 183 1
## 1539 180 1
## 1540 60 1
## 1541 90 1
## 1542 60 1
## 1544 60 1
## 1546 180 1
## 1547 180 1
## 1549 90 1
## 1550 300 1
## 1551 120 2
## 1552 488 1
## 1555 180 1
## 1556 0 1
## 1557 60 3
## 1558 170 1
## 1559 600 1
## 1561 45 1
## 1562 90 1
## 1563 30 1
## 1564 120 1
## 1565 60 1
## 1566 300 1
## 1567 300 1
## 1568 180 1
## 1569 300 1
## 1571 90 1
## 1572 60 1
## 1573 240 1
## 1574 600 2
## 1575 120 1
## 1576 180 1
## 1577 180 1
## 1579 300 2
## 1582 60 1
## 1583 60 1
## 1584 270 1
## 1585 180 2
## 1586 300 1
## 1587 600 1
## 1588 600 1
## 1589 300 1
## 1591 210 1
## 1592 150 1
## 1593 120 1
## 1596 30 1
## 1598 360 1
## 1600 180 1
## 1601 120 1
## 1603 120 1
## 1605 60 1
## 1606 120 1
## 1607 180 1
## 1608 180 1
## 1609 180 1
## 1610 120 1
## 1611 90 1
## 1614 300 1
## 1616 90 1
## 1617 60 1
## 1619 180 1
## 1620 300 2
## 1621 60 1
## 1623 120 3
## 1624 120 1
## 1625 720 1
## 1626 120 1
## 1627 180 1
## 1629 300 1
## 1631 180 1
## 1632 90 1
## 1634 240 2
## 1635 120 1
## 1636 120 2
## 1638 320 1
## 1641 180 1
## 1642 150 1
## 1644 120 1
## 1645 360 1
## 1647 150 1
## 1648 210 1
## 1649 720 1
## 1650 70 1
## 1651 180 1
## 1653 60 2
## 1654 90 1
## 1655 180 2
## 1656 180 1
## 1657 120 1
## 1659 300 1
## 1660 120 1
## 1661 240 1
## 1662 120 1
## 1663 150 2
## 1665 30 1
## 1666 480 1
## 1668 90 2
## 1670 90 1
## 1671 180 1
## 1672 180 1
## 1674 120 1
## 1676 60 1
## 1677 180 2
## 1678 410 1
## 1679 360 3
## 1681 300 1
## 1682 600 1
## 1684 120 1
## 1685 240 2
## 1688 150 1
## 1689 150 1
## 1691 480 1
## 1692 210 1
## 1693 300 1
## 1695 120 1
## 1696 120 1
## 1697 30 1
## 1698 30 1
## 1701 350 1
## 1704 240 2
## 1705 80 1
## 1706 600 1
## 1707 180 1
## 1708 480 1
## 1709 120 2
## 1711 240 1
## 1712 90 1
## 1714 120 3
## 1716 150 2
## 1717 180 2
## 1718 60 1
## 1719 120 1
## 1720 60 1
## 1721 120 1
## 1722 360 1
## 1723 120 2
## 1724 120 1
## 1726 480 1
## 1727 60 1
## 1730 120 1
## 1731 240 1
## 1732 120 1
## 1733 45 1
## 1734 150 1
## 1735 180 1
## 1736 480 2
## 1737 150 1
## 1738 180 1
## 1739 240 1
## 1740 120 1
## 1745 60 1
## 1747 90 1
## 1749 120 1
## 1750 600 1
## 1751 60 3
## 1752 120 1
## 1753 150 1
## 1754 300 1
## 1756 120 1
## 1757 120 1
## 1758 120 1
## 1759 420 1
## 1761 180 3
## 1762 360 1
## 1763 90 1
## 1764 210 2
## 1765 90 1
## 1766 180 1
## 1769 240 2
## 1770 240 1
## 1771 120 1
## 1773 120 1
## 1774 180 1
## 1775 60 1
## 1776 240 1
## 1777 300 1
## 1778 150 1
## 1779 120 1
## 1780 180 1
## 1781 600 2
## 1782 90 1
## 1784 180 1
## 1785 60 1
## 1787 60 1
## 1788 120 1
## 1789 120 1
## 1790 120 1
## 1791 180 1
## 1792 600 2
## 1793 240 1
## 1796 120 1
## 1798 120 1
## 1799 120 1
## 1800 420 1
## 1801 330 1
## 1802 45 1
## 1803 90 1
## 1804 90 1
## 1806 80 1
## 1807 300 1
## 1808 30 1
## 1809 180 1
## 1810 270 1
## 1813 60 1
## 1815 300 1
## 1817 600 1
## 1818 90 1
## 1819 180 1
## 1821 30 2
## 1822 120 1
## 1824 60 1
## 1826 120 1
## 1828 210 1
## 1830 180 1
## 1831 60 1
## 1832 180 1
## 1833 150 1
## 1834 480 1
## 1835 270 1
## 1836 60 2
## 1837 180 2
## 1838 120 1
## 1839 150 1
## 1841 60 1
## 1843 600 1
## 1844 120 1
## 1846 120 1
## 1847 30 1
## 1850 290 1
## 1851 300 1
## 1852 180 1
## 1855 60 1
## 1857 180 1
## 1858 240 1
## 1859 90 1
## 1860 120 1
## 1862 240 2
## 1864 180 3
## 1865 360 1
## 1867 180 1
## 1868 180 1
## 1869 150 1
## 1870 120 1
## 1872 120 1
## 1877 390 1
## 1878 60 1
## 1879 60 1
## 1881 120 1
## 1882 185 1
## 1883 150 1
## 1884 120 1
## 1885 350 1
## 1886 300 1
## 1888 240 1
## 1889 90 1
## 1890 120 1
## 1892 60 1
## 1893 240 1
## 1894 600 3
## 1896 120 1
## 1897 180 2
## 1898 120 1
## 1899 180 1
## 1900 300 1
## 1901 240 1
## 1902 150 1
## 1903 180 1
## 1904 180 2
## 1905 240 2
## 1907 60 1
## 1908 60 1
## 1909 300 1
## 1911 600 1
## 1912 340 1
## 1913 40 2
## 1915 120 1
## 1917 180 1
## 1918 60 1
## 1919 300 1
## 1920 210 1
## 1923 300 1
## 1924 120 1
## 1925 60 1
## 1926 360 2
## 1927 120 1
## 1930 60 1
## 1931 210 2
## 1932 60 1
## 1933 90 1
## 1934 120 1
## 1935 300 1
## 1936 90 1
## 1937 180 1
## 1938 180 1
## 1939 120 2
## 1941 160 2
## 1942 120 1
## 1943 300 2
## 1944 120 1
## 1946 120 1
## 1947 90 1
## 1948 60 1
## 1949 180 1
## 1950 240 2
## 1951 120 1
## 1954 180 1
## 1955 180 1
## 1956 300 2
## 1957 150 1
## 1958 63 1
## 1959 300 1
## 1960 150 1
## 1961 60 1
## 1963 155 2
## 1964 180 2
## 1966 180 3
## 1967 60 1
## 1972 180 1
## 1973 60 1
## 1974 600 1
## 1976 90 1
## 1977 180 1
## 1979 60 1
## 1980 90 1
## 1983 210 1
## 1984 300 1
## 1985 120 1
## 1986 120 1
## 1987 180 1
## 1988 240 1
## 1990 150 1
## 1993 150 1
## 1994 120 1
## 1995 180 2
## 1996 600 1
## 1997 120 1
## 1999 660 1
## 2003 480 1
## 2004 120 1
## 2005 60 1
## 2006 120 2
## 2007 90 1
## 2008 300 1
## 2009 300 1
## 2010 600 1
## 2011 180 3
## 2012 240 1
## 2014 360 2
## 2015 180 1
## 2017 600 1
## 2018 90 3
## 2020 120 1
## 2021 480 1
## 2023 20 1
## 2024 120 1
## 2026 120 1
## 2028 120 1
## 2030 30 1
## 2033 180 1
## 2035 60 2
## 2036 60 1
## 2037 120 1
## 2038 270 1
## 2039 90 1
## 2040 150 1
## 2041 180 1
## 2042 240 1
## 2043 120 1
## 2045 60 1
## 2047 240 1
## 2049 270 1
## 2050 158 1
## 2051 300 1
## 2053 60 1
## 2054 30 1
## 2057 150 1
## 2059 300 1
## 2060 120 1
## 2061 240 1
## 2062 180 2
## 2063 120 1
## 2064 120 1
## 2065 90 1
## 2066 90 1
## 2067 180 1
## 2068 360 1
## 2071 270 1
## 2073 60 1
## 2075 120 1
## 2076 120 2
## 2077 240 1
## 2078 180 1
## 2079 360 1
## 2080 60 1
## 2081 960 1
## 2082 180 1
## 2083 60 1
## 2085 60 1
## 2086 120 1
## 2089 240 1
## 2091 60 1
## 2092 180 1
## 2093 270 3
## 2094 120 1
## 2095 270 1
## 2096 60 1
## 2098 60 1
## 2099 60 1
## 2100 120 1
## 2102 180 3
## 2103 300 1
## 2104 120 1
## 2105 600 2
## 2106 210 1
## 2107 180 2
## 2108 180 1
## 2109 120 1
## 2110 360 1
## 2111 180 1
## 2112 60 1
## 2113 180 1
## 2114 240 1
## 2115 90 1
## 2116 120 1
## 2117 180 1
## 2118 240 2
## 2119 120 1
## 2120 120 1
## 2121 120 1
## 2122 150 1
## 2123 60 1
## 2124 300 1
## 2125 240 3
## 2126 20 2
## 2127 120 1
## 2128 120 1
## 2129 150 1
## 2130 420 1
## 2131 180 1
## 2132 1 1
## 2133 60 1
## 2135 120 1
## 2136 120 1
## 2138 270 1
## 2139 60 1
## 2140 480 1
## 2141 60 1
## 2142 120 1
## 2143 120 1
## 2144 60 1
## 2145 60 1
## 2146 30 1
## 2147 60 1
## 2152 240 2
## 2154 30 1
## 2157 360 1
## 2158 60 2
## 2161 90 1
## 2163 480 1
## 2164 300 1
## 2165 150 1
## 2168 60 1
## 2169 120 1
## 2171 45 1
## 2172 60 1
## 2175 180 1
## 2178 240 1
## 2180 30 1
## 2181 120 3
## 2182 120 2
## 2183 120 1
## 2184 270 1
## 2185 120 1
## 2190 180 3
## 2191 120 1
## 2193 180 1
## 2197 180 1
## 2198 300 1
## 2199 300 1
## 2200 270 1
## 2201 150 1
## 2203 120 1
## 2204 480 1
## 2205 120 1
## 2207 150 1
## 2208 450 1
## 2209 90 1
## 2210 240 1
## 2211 60 1
## 2212 240 1
## 2213 150 3
## 2214 360 2
## 2215 240 2
## 2216 150 1
## 2217 120 1
## 2218 300 1
## 2221 120 3
## 2222 90 1
## 2223 120 2
## 2224 600 1
## 2225 90 1
## 2226 300 1
## 2227 180 2
## 2228 120 1
## 2229 180 1
## 2230 240 1
## 2231 30 1
## 2232 210 1
## 2233 300 2
## 2234 480 1
## 2235 150 1
## 2236 140 1
## 2240 90 1
## 2241 90 1
## 2242 120 1
## 2243 60 3
## 2244 720 1
## 2245 90 1
## 2247 240 1
## 2248 120 1
## 2249 420 2
## 2250 240 1
## 2251 120 1
## 2252 120 1
## 2253 120 1
## 2256 300 1
## 2259 90 1
## 2260 60 1
## 2263 300 1
## 2264 60 1
## 2265 240 2
## 2266 180 1
## 2267 600 1
## 2269 300 1
## 2270 180 2
## 2272 540 1
## 2273 240 1
## 2274 30 1
## 2275 180 1
## 2278 180 1
## 2280 300 2
## 2281 300 1
## 2282 60 1
## 2283 300 1
## 2284 300 1
## 2286 240 1
## 2287 420 1
## 2288 90 1
## 2289 350 1
## 2292 240 1
## 2293 420 1
## 2294 180 1
## 2295 60 1
## 2296 150 1
## 2297 120 1
## 2298 240 1
## 2299 60 1
## 2300 180 1
## 2301 240 1
## 2302 120 1
## 2304 540 1
## 2305 120 1
## 2306 240 1
## 2307 300 1
## 2310 150 1
## 2311 240 1
## 2312 300 3
## 2313 120 2
## 2314 180 1
## 2315 180 1
## 2316 180 1
## 2317 480 1
## 2318 60 2
## 2319 20 1
## 2321 90 1
## 2322 120 1
## 2323 60 1
## 2324 180 2
## 2325 180 1
## 2326 120 1
## 2327 480 1
## 2328 240 1
## 2329 310 1
## 2331 120 1
## 2333 120 1
## 2334 120 1
## 2335 60 1
## 2336 270 1
## 2339 180 1
## 2340 300 1
## 2341 210 2
## 2343 210 2
## 2344 180 1
## 2346 240 1
## 2348 150 1
## 2349 180 1
## 2350 150 1
## 2351 45 1
## 2352 180 1
## 2354 150 1
## 2355 210 1
## 2356 120 1
## 2357 300 1
## 2359 150 1
## 2361 240 2
## 2362 300 2
## 2363 120 1
## 2364 300 3
## 2365 420 1
## 2366 30 1
## 2367 120 1
## 2369 300 3
## 2371 300 1
## 2374 150 1
## 2375 180 1
## 2376 300 1
## 2377 360 2
## 2378 180 1
## 2379 90 1
## 2380 120 1
## 2381 240 1
## 2382 150 1
## 2383 240 1
## 2384 60 1
## 2385 60 1
## 2386 480 1
## 2387 150 1
## 2390 120 1
## 2393 180 1
## 2394 120 1
## 2395 300 1
## 2396 60 1
## 2399 360 2
## 2403 720 1
## 2404 60 3
## 2405 10 1
## 2407 240 2
## 2408 190 1
## 2410 60 1
## 2411 120 1
## 2413 60 1
## 2414 270 1
## 2416 180 1
## 2417 480 1
## 2418 240 1
## 2419 270 1
## 2422 150 1
## 2423 120 1
## 2424 240 1
## 2425 60 2
## 2426 120 1
## 2427 60 1
## 2428 90 1
## 2429 270 1
## 2430 240 1
## 2431 1200 1
## 2432 40 1
## 2433 120 1
## 2434 150 1
## 2435 240 1
## 2436 180 1
## 2438 150 2
## 2440 180 1
## 2443 300 1
## 2444 60 1
## 2445 180 1
## 2446 180 1
## 2447 60 1
## 2448 300 3
## 2449 30 1
## 2452 300 2
## 2453 90 1
## 2456 90 2
## 2458 300 2
## 2460 60 1
## 2461 300 2
## 2462 150 1
## 2463 240 1
## 2464 720 1
## 2467 240 1
## 2468 120 1
## 2469 240 1
## 2470 300 1
## 2471 360 1
## 2472 120 1
## 2473 90 1
## 2474 40 2
## 2475 240 1
## 2481 300 1
## 2482 90 1
## 2483 60 2
## 2484 120 1
## 2486 240 1
## 2487 240 1
## 2489 120 1
## 2491 120 2
## 2492 180 1
## 2493 60 1
## 2494 180 2
## 2495 300 1
## 2496 450 1
## 2498 180 1
## 2499 120 1
## 2501 120 1
## 2504 120 1
## 2505 280 2
## 2506 90 1
## 2507 600 1
## 2508 300 1
## 2509 240 1
## 2511 90 1
## 2512 240 1
## 2513 60 1
## 2514 180 1
## 2515 240 2
## 2516 90 1
## 2518 120 1
## 2519 120 1
## 2520 360 1
## 2521 60 2
## 2524 180 1
## 2526 300 1
## 2527 300 1
## 2531 360 1
## 2532 240 1
## 2533 180 1
## 2534 240 1
## 2535 180 1
## 2536 68 1
## 2537 180 2
## 2538 60 1
## 2539 120 1
## 2541 180 1
## 2543 600 1
## 2544 90 1
## 2545 150 1
## 2546 60 1
## 2548 98 1
## 2551 120 1
## 2553 540 1
## 2554 30 1
## 2555 150 2
## 2556 180 1
## 2557 120 1
## 2558 150 1
## 2559 120 1
## 2560 120 1
## 2561 300 2
## 2562 300 1
## 2563 120 1
## 2564 180 1
## 2565 420 1
## 2566 60 1
## 2567 120 1
## 2568 90 1
## 2569 180 1
## 2570 300 1
## 2571 480 1
## 2572 480 2
## 2574 240 1
## 2576 240 1
## 2577 120 1
## 2581 360 2
## 2583 120 1
## 2584 210 2
## 2585 120 1
## 2586 120 1
## 2587 180 1
## 2588 300 1
## 2589 120 1
## 2590 360 1
## 2591 60 1
## 2592 600 1
## 2593 120 2
## 2595 240 1
## 2596 300 1
## 2597 360 1
## 2598 180 1
## 2599 180 2
## 2600 300 1
## 2601 120 1
## 2603 300 2
## 2605 150 1
## 2606 330 1
## 2609 60 1
## 2610 240 1
## 2611 360 1
## 2612 360 1
## 2614 480 1
## 2616 360 2
## 2617 120 1
## 2619 180 1
## 2620 120 1
## 2621 120 1
## 2622 60 1
## 2623 15 1
## 2628 360 2
## 2630 300 1
## 2632 900 1
## 2633 30 1
## 2634 180 1
## 2635 30 1
## 2636 120 2
## 2637 60 1
## 2638 120 1
## 2639 90 1
## 2640 180 1
## 2641 60 2
## 2642 240 1
## 2644 180 1
## 2646 540 2
## 2647 60 1
## 2649 60 1
## 2650 180 1
## 2651 120 2
## 2654 120 1
## 2655 180 2
## 2656 180 1
## 2657 120 2
## 2658 150 1
## 2659 60 1
## 2660 120 1
## 2661 60 2
## 2662 180 1
## 2663 150 1
## 2664 120 1
## 2666 360 1
## 2667 430 1
## 2672 180 1
## 2673 120 1
## 2675 90 1
## 2677 120 2
## 2678 180 1
## 2679 300 1
## 2680 120 1
## 2681 360 1
## 2683 360 1
## 2685 480 1
## 2686 180 3
## 2688 150 1
## 2689 90 1
## 2690 90 1
## 2691 90 1
## 2692 300 1
## 2693 180 1
## 2694 90 1
## 2695 180 1
## 2696 270 1
## 2699 180 1
## 2700 120 1
## 2701 240 1
## 2702 180 1
## 2704 330 1
## 2705 180 1
## 2709 150 1
## 2715 120 1
## 2716 120 1
## 2717 120 1
## 2718 300 1
## 2720 60 1
## 2721 300 1
## 2722 210 2
## 2723 150 1
## 2725 300 1
## 2729 180 2
## 2730 120 1
## 2731 60 1
## 2732 240 1
## 2734 180 1
## 2735 180 1
## 2736 60 1
## 2737 60 1
## 2738 300 1
## 2739 240 1
## 2740 90 2
## 2741 120 1
## 2744 180 3
## 2745 120 1
## 2746 90 1
## 2747 330 1
## 2752 345 1
## 2754 90 1
## 2757 60 1
## 2759 300 1
## 2760 180 1
## 2762 60 1
## 2763 90 2
## 2764 120 1
## 2765 360 1
## 2766 330 1
## 2769 300 1
## 2770 150 2
## 2772 70 1
## 2773 360 2
## 2774 600 3
## 2776 480 2
## 2778 420 1
## 2781 120 1
## 2782 120 1
## 2786 180 1
## 2789 120 1
## 2790 180 1
## 2791 120 1
## 2792 60 1
## 2793 90 1
## 2794 120 1
## 2797 120 1
## 2798 300 1
netustm - internet use in minutes vote - national elections
# Create a vector for each vote category (1, 2, 3)
vote_1 <- subset(greece_3, vote == 1)$netustm
vote_2 <- subset(greece_3, vote == 2)$netustm
vote_3 <- subset(greece_3, vote == 3)$netustm #We will not use it
ggplot() + labs (title = "Internet use in minutes vs Voting", x="Did people vote on last national elections?", y="") +
geom_boxplot(aes(x='Yes', y=vote_1), fill="tomato1") +
geom_boxplot(aes(x='No', y=vote_2), fill="purple4") +
theme_bw()
5) You have checked the normality assumption for the t-test in 2
different ways (QQ plots / histogram / skew and kurtosis) (0.5)
shapiro.test(vote_1)
##
## Shapiro-Wilk normality test
##
## data: vote_1
## W = 0.83022, p-value < 2.2e-16
shapiro.test(vote_2)
##
## Shapiro-Wilk normality test
##
## data: vote_2
## W = 0.8899, p-value = 7.288e-13
var.test(vote_1, vote_2)
##
## F test to compare two variances
##
## data: vote_1 and vote_2
## F = 1.0064, num df = 1670, denom df = 261, p-value = 0.9645
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.8312979 1.2030520
## sample estimates:
## ratio of variances
## 1.006375
# QQ plot for vote_1
qqnorm(vote_1)
qqline(vote_1)
# Histogram for vote_1
hist(vote_1)
# QQ plot for vote_2
qqnorm(vote_2)
qqline(vote_2)
# Histogram for vote_2
hist(vote_2)
# Calculate skewness and kurtosis for vote_1
skewness(vote_1)
## [1] 1.87265
kurtosis(vote_1)
## [1] 8.054205
# Calculate skewness and kurtosis for vote_2
skewness(vote_2)
## [1] 1.2126
kurtosis(vote_2)
## [1] 4.260232
For vote_1, the skewness value is 1.87265 which is greater than zero, indicating a positively skewed distribution. The kurtosis value of 8.054205 indicates that the distribution is highly leptokurtic, meaning it has a sharp peak and heavy tails. These results suggest that the distribution of vote_1 may not be normal.
For vote_2, the skewness value is 1.2126 which is also greater than zero, indicating a positively skewed distribution. The kurtosis value of 4.260232 indicates that the distribution is moderately leptokurtic, meaning it has a relatively sharp peak and moderately heavy tails. These results also suggest that the distribution of vote_2 may not be normal.
Overall, neither vote_1 nor vote_2 appears to have a normal distribution based on their skewness and kurtosis values.
Null hypothesis: There is no significant difference in the mean time spent on the internet between people who voted and those who didn’t vote in the last national elections.
Alternative hypothesis: There is a significant difference in the mean time spent on the internet between people who voted and those who didn’t vote in the last national elections.
t.test(vote_1, vote_2, var.equal = TRUE)
##
## Two Sample t-test
##
## data: vote_1 and vote_2
## t = -3.2426, df = 1931, p-value = 0.001204
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -47.33311 -11.65582
## sample estimates:
## mean of x mean of y
## 190.8414 220.3359
The t-test results show that there is a statistically significant difference between the mean number of minutes spent on the internet by people who voted in the last national elections (vote_1) and those who did not vote (vote_2). The t-statistic value is -3.2426 with a p-value of 0.001204, which is less than the typical threshold of 0.05, indicating strong evidence against the null hypothesis.
The 95% confidence interval for the difference in means is between -47.33311 and -11.65582, which does not include zero, indicating that the difference between the two means is statistically significant. The negative sign of the confidence interval suggests that people who did not vote tend to spend more minutes on the internet compared to those who did vote.
Therefore, we can reject the null hypothesis and conclude that there is a significant difference in the mean number of minutes spent on the internet between people who voted and those who did not vote.
wilcox.test(vote_1, vote_2, alternative = "two.sided")
##
## Wilcoxon rank sum test with continuity correction
##
## data: vote_1 and vote_2
## W = 183930, p-value = 2.664e-05
## alternative hypothesis: true location shift is not equal to 0
The test resulted in a W value of 183930 and a p-value of 2.664e-05. The p-value is less than the significance level of 0.05, indicating that we can reject the null hypothesis of no difference between the two groups. Therefore, we can conclude that there is a significant difference in the internet use in minutes between people who voted on the last national election and those who did not vote.
We can conclude that people who do not vote spend more time in the internet on average then those who do vote.
Part III. ANOVA (3.5 points) 8) The correct choice of variables, a boxplot with these variables (0.5)
greece_4 <- greece %>% dplyr:: select(polintr, netustm)
greece_4 <- na.omit(greece_4)
greece_4$polintr <- as.factor(greece_4$polintr)
greece_4$netustm <- as.numeric(as.character(greece_4$netustm))
greece_4
## polintr netustm
## 1 3 60
## 3 2 240
## 4 3 120
## 5 3 60
## 7 3 120
## 9 3 120
## 11 1 120
## 12 2 480
## 13 3 190
## 14 3 300
## 16 2 360
## 18 4 200
## 19 2 360
## 20 4 240
## 21 4 480
## 22 4 300
## 23 2 75
## 24 3 120
## 25 3 75
## 26 1 420
## 27 3 180
## 32 2 210
## 33 4 300
## 36 4 45
## 37 4 60
## 38 4 60
## 40 4 120
## 41 3 240
## 42 4 600
## 43 3 180
## 44 2 300
## 45 2 300
## 48 4 60
## 50 3 240
## 51 1 360
## 53 4 300
## 54 2 120
## 55 1 60
## 56 4 180
## 59 4 90
## 61 2 240
## 62 2 128
## 63 3 120
## 65 3 60
## 67 3 240
## 68 4 90
## 70 2 40
## 71 2 150
## 72 4 60
## 73 3 210
## 75 2 190
## 76 2 120
## 77 4 300
## 78 4 120
## 80 2 180
## 81 1 140
## 82 3 60
## 83 2 60
## 85 3 120
## 86 4 180
## 87 4 90
## 88 4 150
## 89 3 210
## 90 1 180
## 91 2 120
## 93 3 300
## 94 3 180
## 96 4 360
## 97 1 180
## 98 1 300
## 100 1 150
## 101 3 120
## 102 4 60
## 103 3 120
## 104 2 480
## 105 2 600
## 106 4 180
## 107 4 120
## 109 4 150
## 110 4 120
## 111 4 60
## 112 4 0
## 113 3 90
## 115 3 120
## 116 3 240
## 117 4 90
## 118 4 240
## 119 2 30
## 120 4 180
## 121 4 180
## 122 3 600
## 123 2 240
## 124 3 60
## 125 2 120
## 127 3 600
## 128 2 120
## 130 2 90
## 133 1 150
## 135 1 180
## 136 4 300
## 138 2 360
## 139 3 120
## 142 3 180
## 144 3 300
## 145 4 300
## 146 3 120
## 147 2 120
## 148 4 90
## 149 2 180
## 150 3 30
## 152 4 210
## 153 2 90
## 154 4 240
## 155 3 240
## 156 2 120
## 157 3 120
## 158 1 120
## 159 2 240
## 160 3 150
## 161 3 60
## 162 3 180
## 163 4 60
## 165 2 480
## 166 4 180
## 167 1 600
## 168 3 45
## 169 1 240
## 172 4 150
## 173 4 240
## 175 2 120
## 176 3 90
## 181 4 60
## 184 3 360
## 185 2 120
## 186 3 60
## 188 4 30
## 190 3 360
## 192 3 1
## 194 3 120
## 195 3 360
## 196 4 300
## 197 4 120
## 198 4 300
## 199 4 300
## 200 3 60
## 201 4 150
## 202 3 300
## 204 4 60
## 207 4 120
## 208 4 720
## 210 1 120
## 211 4 180
## 214 4 60
## 215 3 240
## 216 3 180
## 218 4 180
## 219 4 60
## 220 4 180
## 221 2 60
## 222 3 240
## 223 2 600
## 224 3 120
## 225 3 300
## 226 2 540
## 228 2 120
## 229 1 300
## 230 2 270
## 231 4 150
## 232 3 30
## 233 4 120
## 234 3 120
## 236 3 120
## 237 3 150
## 240 3 180
## 241 3 120
## 243 2 120
## 244 3 120
## 245 3 90
## 247 3 135
## 248 4 210
## 249 4 300
## 250 2 30
## 251 3 60
## 252 2 60
## 253 4 600
## 256 3 300
## 259 3 180
## 260 4 60
## 261 4 150
## 262 4 300
## 263 2 240
## 264 1 90
## 265 3 210
## 267 4 90
## 268 3 30
## 270 3 120
## 272 2 90
## 273 3 60
## 275 2 120
## 276 3 30
## 277 2 240
## 278 3 120
## 281 4 300
## 283 2 210
## 284 4 360
## 285 4 240
## 288 2 120
## 289 3 120
## 291 3 60
## 293 4 120
## 295 4 180
## 296 4 300
## 297 4 120
## 298 3 240
## 301 2 360
## 302 4 150
## 305 3 120
## 307 2 60
## 310 3 120
## 311 3 240
## 312 4 90
## 313 1 180
## 314 2 240
## 316 4 360
## 317 2 90
## 323 3 120
## 324 2 60
## 325 2 480
## 327 4 120
## 328 2 120
## 329 2 150
## 330 4 600
## 331 4 60
## 332 1 120
## 333 4 120
## 334 3 480
## 336 4 120
## 338 2 210
## 339 1 480
## 340 4 120
## 341 4 240
## 342 2 30
## 344 4 240
## 345 3 180
## 346 4 120
## 347 2 120
## 349 4 180
## 350 2 210
## 351 3 180
## 352 3 120
## 353 4 60
## 354 2 60
## 355 3 120
## 356 4 180
## 357 2 120
## 358 2 180
## 360 3 60
## 361 2 120
## 362 4 90
## 363 3 60
## 364 4 120
## 365 2 360
## 367 3 150
## 369 2 180
## 370 4 60
## 371 4 60
## 372 4 150
## 373 3 300
## 375 4 90
## 376 4 240
## 377 2 60
## 378 4 480
## 379 3 120
## 380 4 60
## 381 2 90
## 382 2 270
## 385 4 120
## 389 4 150
## 391 4 180
## 392 2 600
## 393 4 180
## 394 2 600
## 396 4 150
## 397 4 180
## 399 4 120
## 400 3 60
## 401 2 540
## 402 2 120
## 403 1 240
## 406 4 420
## 407 4 260
## 408 3 30
## 409 4 240
## 410 3 360
## 411 4 15
## 412 3 600
## 413 4 120
## 414 2 183
## 415 4 60
## 416 3 180
## 417 2 120
## 418 2 90
## 419 2 120
## 420 2 330
## 421 4 180
## 422 4 180
## 423 3 180
## 425 3 120
## 427 4 180
## 430 2 60
## 431 4 600
## 432 4 300
## 433 3 60
## 434 3 180
## 436 4 120
## 437 4 300
## 439 2 120
## 440 2 120
## 442 2 120
## 443 3 75
## 445 3 180
## 446 2 600
## 447 3 180
## 448 3 360
## 449 2 240
## 450 3 90
## 451 4 120
## 452 3 300
## 454 3 240
## 456 4 120
## 458 4 180
## 460 3 180
## 463 3 150
## 464 1 240
## 466 3 120
## 467 3 180
## 468 3 120
## 469 4 120
## 470 4 360
## 471 4 240
## 472 4 270
## 473 3 30
## 474 2 600
## 475 4 120
## 477 4 240
## 480 2 120
## 481 2 90
## 482 1 180
## 483 3 120
## 485 3 180
## 486 4 390
## 487 4 360
## 488 4 60
## 489 4 60
## 491 4 480
## 492 2 120
## 493 2 240
## 497 4 120
## 499 2 60
## 500 3 120
## 503 4 120
## 506 3 300
## 507 2 60
## 508 3 240
## 510 2 60
## 511 4 120
## 513 2 270
## 514 4 240
## 515 4 120
## 516 4 150
## 517 2 180
## 518 3 120
## 520 3 180
## 521 2 120
## 522 4 180
## 524 3 180
## 525 2 180
## 526 4 120
## 527 2 270
## 529 4 120
## 530 2 60
## 531 3 170
## 532 4 120
## 533 2 150
## 534 3 180
## 535 4 600
## 536 4 180
## 540 4 120
## 543 4 90
## 544 3 120
## 545 3 180
## 546 1 210
## 547 4 180
## 549 2 60
## 550 4 120
## 552 4 60
## 553 3 180
## 555 4 600
## 556 2 120
## 558 3 120
## 559 4 300
## 560 2 120
## 561 4 180
## 565 4 120
## 566 4 300
## 570 1 360
## 571 3 210
## 573 2 120
## 576 2 180
## 577 2 240
## 578 2 30
## 579 4 480
## 580 3 300
## 584 4 120
## 585 2 450
## 586 4 90
## 587 2 180
## 589 2 180
## 591 3 330
## 592 3 60
## 593 4 60
## 594 2 240
## 596 3 120
## 598 4 120
## 599 2 240
## 601 2 180
## 602 2 240
## 603 3 150
## 608 3 120
## 609 3 180
## 610 1 270
## 611 3 180
## 612 3 180
## 614 3 60
## 616 4 180
## 617 4 300
## 618 3 180
## 620 4 120
## 621 4 120
## 622 3 60
## 626 3 180
## 627 4 180
## 629 3 170
## 630 2 150
## 631 4 120
## 632 4 120
## 633 4 60
## 634 3 90
## 635 3 120
## 636 2 300
## 637 4 300
## 638 3 120
## 640 4 120
## 642 4 300
## 643 3 120
## 645 3 150
## 646 1 120
## 647 4 120
## 648 4 90
## 649 2 120
## 650 2 120
## 651 2 150
## 652 4 300
## 653 3 180
## 654 4 600
## 655 4 120
## 656 3 240
## 657 3 60
## 658 3 240
## 659 2 240
## 660 4 180
## 661 4 120
## 662 3 120
## 663 4 420
## 664 3 180
## 666 4 150
## 668 2 60
## 670 2 240
## 671 1 150
## 672 4 180
## 673 4 180
## 676 3 60
## 677 3 60
## 681 4 120
## 684 3 150
## 685 3 240
## 686 3 60
## 687 3 120
## 688 3 120
## 690 3 210
## 691 4 720
## 692 3 480
## 695 2 240
## 698 4 180
## 700 4 480
## 701 1 600
## 703 2 300
## 704 4 120
## 705 4 360
## 707 4 300
## 708 4 60
## 709 2 180
## 711 2 60
## 712 2 600
## 713 3 450
## 715 2 240
## 716 1 180
## 717 4 180
## 718 2 300
## 719 4 330
## 720 2 120
## 721 3 120
## 724 3 420
## 727 2 120
## 728 2 300
## 729 4 420
## 731 4 60
## 732 3 300
## 733 2 120
## 734 4 120
## 735 2 150
## 736 4 900
## 737 2 123
## 738 2 120
## 739 2 300
## 740 4 300
## 741 3 150
## 742 4 90
## 744 4 120
## 746 2 180
## 747 4 360
## 748 4 60
## 749 3 60
## 750 2 180
## 752 2 300
## 755 4 120
## 756 2 90
## 757 2 210
## 758 3 60
## 759 4 120
## 760 3 180
## 762 3 60
## 763 4 240
## 765 4 60
## 766 3 120
## 767 4 600
## 769 2 120
## 770 4 300
## 771 4 90
## 772 2 360
## 773 2 300
## 775 2 90
## 776 4 120
## 778 3 180
## 781 4 120
## 783 4 120
## 785 4 180
## 786 3 120
## 788 3 300
## 790 3 60
## 792 2 120
## 793 2 60
## 794 3 210
## 795 3 210
## 796 4 90
## 797 2 60
## 798 2 180
## 800 4 180
## 801 2 300
## 802 4 180
## 803 2 60
## 804 2 60
## 808 2 300
## 810 3 180
## 811 3 180
## 814 2 330
## 815 3 300
## 816 3 300
## 817 3 300
## 818 2 300
## 819 4 180
## 820 4 300
## 821 4 90
## 822 4 330
## 826 3 90
## 827 3 60
## 829 1 360
## 830 3 180
## 831 3 180
## 832 4 300
## 834 2 330
## 835 3 180
## 836 3 150
## 837 3 600
## 838 2 60
## 840 3 480
## 842 2 120
## 843 4 720
## 844 3 180
## 845 4 120
## 846 4 305
## 847 3 60
## 848 4 240
## 850 4 60
## 851 3 240
## 852 2 90
## 853 3 60
## 854 4 120
## 855 4 420
## 856 2 150
## 857 2 120
## 858 3 120
## 862 4 180
## 863 3 180
## 864 2 260
## 865 3 90
## 866 4 120
## 868 2 300
## 870 2 180
## 871 2 150
## 872 3 600
## 873 4 2
## 874 2 180
## 880 4 180
## 883 4 240
## 884 2 20
## 886 4 150
## 887 4 150
## 888 4 120
## 890 4 360
## 891 2 600
## 893 2 300
## 894 2 300
## 896 4 120
## 897 4 180
## 898 4 360
## 901 4 300
## 902 1 120
## 903 4 180
## 904 2 180
## 905 4 120
## 907 1 240
## 908 2 90
## 909 3 60
## 910 4 240
## 911 2 270
## 912 3 180
## 913 3 240
## 915 3 120
## 916 4 180
## 918 4 90
## 919 4 300
## 920 3 300
## 921 4 180
## 925 2 480
## 928 2 120
## 929 3 150
## 930 2 120
## 933 3 240
## 934 3 120
## 935 2 330
## 936 3 240
## 937 4 270
## 938 2 180
## 939 1 420
## 941 3 90
## 942 2 120
## 943 3 90
## 944 3 390
## 945 4 120
## 946 3 240
## 947 3 150
## 948 1 120
## 949 1 300
## 951 1 120
## 952 1 90
## 953 2 300
## 954 4 600
## 955 3 240
## 957 3 60
## 959 2 180
## 960 3 240
## 961 3 120
## 962 1 120
## 963 2 150
## 964 4 300
## 965 3 240
## 966 3 420
## 968 1 120
## 969 4 300
## 970 4 120
## 971 3 90
## 973 2 150
## 974 2 330
## 975 1 120
## 979 2 120
## 980 1 300
## 981 4 300
## 984 4 120
## 985 4 120
## 987 4 330
## 988 4 120
## 989 3 90
## 991 2 90
## 992 4 90
## 993 2 120
## 994 4 90
## 995 4 60
## 997 4 90
## 1002 4 150
## 1004 3 60
## 1006 4 120
## 1007 4 480
## 1008 3 120
## 1009 4 120
## 1010 4 180
## 1011 4 600
## 1012 3 240
## 1014 4 120
## 1016 3 120
## 1017 3 600
## 1018 2 120
## 1019 2 180
## 1020 2 210
## 1021 2 480
## 1022 3 180
## 1023 2 225
## 1025 3 60
## 1026 4 300
## 1027 2 480
## 1028 4 600
## 1030 2 90
## 1033 3 240
## 1034 2 60
## 1035 3 300
## 1036 4 300
## 1037 2 120
## 1038 4 900
## 1041 3 240
## 1042 2 150
## 1044 3 330
## 1045 2 60
## 1048 3 300
## 1049 4 60
## 1050 4 120
## 1051 3 90
## 1053 3 360
## 1054 1 180
## 1056 4 90
## 1057 4 480
## 1059 4 480
## 1060 2 120
## 1062 2 30
## 1063 3 90
## 1064 3 120
## 1065 4 180
## 1066 4 480
## 1067 2 60
## 1068 3 120
## 1070 3 210
## 1072 4 60
## 1073 3 240
## 1074 4 180
## 1076 1 240
## 1080 3 120
## 1082 4 60
## 1083 2 90
## 1084 4 240
## 1085 4 180
## 1086 3 150
## 1087 3 150
## 1088 2 330
## 1089 4 240
## 1090 4 60
## 1092 4 240
## 1093 4 180
## 1096 4 480
## 1097 4 240
## 1099 4 150
## 1100 4 150
## 1102 3 120
## 1104 3 90
## 1106 4 120
## 1107 3 180
## 1109 4 180
## 1110 4 300
## 1111 3 120
## 1114 3 90
## 1115 3 190
## 1116 3 120
## 1117 3 120
## 1119 3 300
## 1120 3 20
## 1121 4 240
## 1124 2 270
## 1125 2 120
## 1126 3 240
## 1127 2 180
## 1129 4 120
## 1130 2 180
## 1132 4 300
## 1134 2 120
## 1135 4 180
## 1136 4 120
## 1137 4 600
## 1138 4 120
## 1140 1 300
## 1141 3 120
## 1143 4 180
## 1144 3 600
## 1145 2 240
## 1149 3 150
## 1150 3 120
## 1151 2 180
## 1152 4 250
## 1153 3 60
## 1154 1 180
## 1155 4 240
## 1156 4 120
## 1159 3 60
## 1162 4 300
## 1163 3 120
## 1164 3 120
## 1165 4 300
## 1166 2 480
## 1167 4 600
## 1168 2 120
## 1169 2 135
## 1172 4 350
## 1173 3 120
## 1174 4 60
## 1175 2 510
## 1176 3 90
## 1179 3 60
## 1180 3 240
## 1181 3 390
## 1182 4 180
## 1183 2 420
## 1184 2 180
## 1185 2 240
## 1187 3 120
## 1188 3 60
## 1190 3 60
## 1191 3 210
## 1193 2 120
## 1194 4 360
## 1195 4 360
## 1196 2 120
## 1197 1 60
## 1198 3 180
## 1200 2 120
## 1203 4 480
## 1204 4 90
## 1205 3 180
## 1206 3 180
## 1208 3 180
## 1210 3 480
## 1211 4 300
## 1212 1 90
## 1213 3 183
## 1214 4 120
## 1217 4 120
## 1218 3 60
## 1219 4 480
## 1220 4 120
## 1224 4 420
## 1225 3 420
## 1226 3 300
## 1227 2 240
## 1228 2 180
## 1229 3 60
## 1230 4 150
## 1231 4 240
## 1232 4 180
## 1233 4 120
## 1234 2 30
## 1235 4 90
## 1236 3 180
## 1238 1 240
## 1239 2 300
## 1240 2 60
## 1244 4 180
## 1245 3 60
## 1246 2 300
## 1247 4 180
## 1249 3 120
## 1250 2 150
## 1255 4 180
## 1256 3 180
## 1257 4 360
## 1258 4 360
## 1260 2 510
## 1262 3 60
## 1263 3 60
## 1264 1 60
## 1268 3 120
## 1270 4 60
## 1271 4 180
## 1273 4 180
## 1275 4 120
## 1277 2 120
## 1278 4 180
## 1279 1 150
## 1280 3 240
## 1281 2 120
## 1282 4 480
## 1283 3 60
## 1284 1 360
## 1287 3 60
## 1288 3 180
## 1289 4 660
## 1291 4 120
## 1292 2 300
## 1293 3 180
## 1296 4 90
## 1297 1 240
## 1299 2 180
## 1300 4 120
## 1301 3 90
## 1303 4 90
## 1304 2 240
## 1306 4 600
## 1307 1 120
## 1308 4 180
## 1309 3 120
## 1310 3 300
## 1311 4 240
## 1312 2 30
## 1313 2 270
## 1314 4 30
## 1317 4 60
## 1318 4 10
## 1319 4 180
## 1320 2 180
## 1322 3 90
## 1323 4 360
## 1324 4 90
## 1328 3 150
## 1329 2 330
## 1330 4 60
## 1332 2 60
## 1333 2 120
## 1334 4 120
## 1335 4 120
## 1336 4 170
## 1337 4 120
## 1338 3 540
## 1339 3 90
## 1341 4 90
## 1342 4 240
## 1343 2 240
## 1344 3 180
## 1345 4 120
## 1347 2 120
## 1348 4 480
## 1349 2 300
## 1350 3 60
## 1351 2 180
## 1353 2 180
## 1354 3 20
## 1355 1 150
## 1356 4 300
## 1357 4 240
## 1358 4 60
## 1360 2 360
## 1361 3 120
## 1362 3 90
## 1363 3 210
## 1364 2 180
## 1365 2 240
## 1367 2 120
## 1368 4 360
## 1371 3 300
## 1372 3 180
## 1373 3 180
## 1376 4 600
## 1379 4 180
## 1380 2 300
## 1381 3 60
## 1382 4 30
## 1383 4 180
## 1384 3 60
## 1385 3 180
## 1386 3 60
## 1387 3 150
## 1388 3 600
## 1389 3 150
## 1391 3 60
## 1392 4 120
## 1393 2 120
## 1395 4 180
## 1396 2 360
## 1397 3 240
## 1398 4 210
## 1399 3 180
## 1400 2 150
## 1402 1 120
## 1403 3 180
## 1404 2 180
## 1405 3 300
## 1407 3 90
## 1408 4 300
## 1412 4 600
## 1413 1 210
## 1414 2 120
## 1415 1 60
## 1416 4 150
## 1417 3 90
## 1418 4 60
## 1419 2 120
## 1420 3 60
## 1421 3 240
## 1422 2 90
## 1423 4 30
## 1426 2 180
## 1427 2 120
## 1428 4 240
## 1431 3 120
## 1432 4 150
## 1434 4 120
## 1435 4 45
## 1436 1 90
## 1438 4 30
## 1439 2 120
## 1440 3 330
## 1441 2 300
## 1443 3 60
## 1446 4 120
## 1447 4 90
## 1448 2 270
## 1450 4 300
## 1451 3 150
## 1453 2 120
## 1454 2 120
## 1455 4 180
## 1456 3 180
## 1457 2 210
## 1458 3 240
## 1459 4 180
## 1460 2 150
## 1461 3 90
## 1462 4 60
## 1463 4 90
## 1464 2 180
## 1465 2 60
## 1466 4 30
## 1467 3 480
## 1469 4 60
## 1470 2 120
## 1471 3 120
## 1472 3 240
## 1473 3 120
## 1474 3 240
## 1475 3 120
## 1476 2 120
## 1478 2 240
## 1480 3 240
## 1481 2 180
## 1482 3 120
## 1486 4 240
## 1487 3 120
## 1488 2 210
## 1489 2 300
## 1490 2 120
## 1491 4 180
## 1494 3 60
## 1495 4 480
## 1496 4 240
## 1497 4 120
## 1498 4 240
## 1499 3 120
## 1500 2 120
## 1502 4 120
## 1503 4 420
## 1504 4 480
## 1505 1 240
## 1506 4 240
## 1507 3 120
## 1510 2 330
## 1511 4 120
## 1512 4 120
## 1514 2 135
## 1515 4 230
## 1516 3 240
## 1517 2 240
## 1518 3 120
## 1519 4 120
## 1520 3 480
## 1521 4 180
## 1522 2 60
## 1523 3 240
## 1524 3 60
## 1525 4 300
## 1527 1 180
## 1528 3 180
## 1529 2 60
## 1530 3 60
## 1533 4 60
## 1535 4 240
## 1538 1 183
## 1539 3 180
## 1540 3 60
## 1541 4 90
## 1542 4 60
## 1544 2 60
## 1545 4 240
## 1546 3 180
## 1547 4 180
## 1549 4 90
## 1550 3 300
## 1551 2 120
## 1552 4 488
## 1555 3 180
## 1556 4 0
## 1557 3 60
## 1558 4 170
## 1559 4 600
## 1561 2 45
## 1562 4 90
## 1563 3 30
## 1564 4 120
## 1565 2 60
## 1566 3 300
## 1567 1 300
## 1568 4 180
## 1569 2 300
## 1571 2 90
## 1572 2 60
## 1573 4 240
## 1574 4 600
## 1575 2 120
## 1576 2 180
## 1577 3 180
## 1579 3 300
## 1582 4 60
## 1583 3 60
## 1584 2 270
## 1585 2 180
## 1586 4 300
## 1587 2 600
## 1588 2 600
## 1589 3 300
## 1591 4 210
## 1592 4 150
## 1593 2 120
## 1596 2 30
## 1598 2 360
## 1600 4 180
## 1601 2 120
## 1603 3 120
## 1605 3 60
## 1606 3 120
## 1607 1 180
## 1608 4 180
## 1609 3 180
## 1610 4 120
## 1611 3 90
## 1614 2 300
## 1616 3 90
## 1617 2 60
## 1619 2 180
## 1620 3 300
## 1621 3 60
## 1623 4 120
## 1624 3 120
## 1625 3 720
## 1626 4 120
## 1627 3 180
## 1629 2 300
## 1631 3 180
## 1632 4 90
## 1634 3 240
## 1635 4 120
## 1636 3 120
## 1638 2 320
## 1641 2 180
## 1642 3 150
## 1644 2 120
## 1645 4 360
## 1647 4 150
## 1648 4 210
## 1649 4 720
## 1650 2 70
## 1651 3 180
## 1653 3 60
## 1654 3 90
## 1655 4 180
## 1656 1 180
## 1657 3 120
## 1659 4 300
## 1660 4 120
## 1661 3 240
## 1662 4 120
## 1663 3 150
## 1665 4 30
## 1666 4 480
## 1668 3 90
## 1670 2 90
## 1671 4 180
## 1672 4 180
## 1674 4 120
## 1676 2 60
## 1677 4 180
## 1678 3 410
## 1679 3 360
## 1681 3 300
## 1682 2 600
## 1683 2 150
## 1684 2 120
## 1685 3 240
## 1688 4 150
## 1689 3 150
## 1691 3 480
## 1692 4 210
## 1693 3 300
## 1695 2 120
## 1696 4 120
## 1697 4 30
## 1698 2 30
## 1701 3 350
## 1704 4 240
## 1705 2 80
## 1706 4 600
## 1707 4 180
## 1708 4 480
## 1709 3 120
## 1711 3 240
## 1712 4 90
## 1714 2 120
## 1716 2 150
## 1717 4 180
## 1718 4 60
## 1719 2 120
## 1720 2 60
## 1721 4 120
## 1722 4 360
## 1723 2 120
## 1724 2 120
## 1726 4 480
## 1727 4 60
## 1730 3 120
## 1731 3 240
## 1732 2 120
## 1733 2 45
## 1734 4 150
## 1735 2 180
## 1736 4 480
## 1737 2 150
## 1738 2 180
## 1739 2 240
## 1740 4 120
## 1745 4 60
## 1747 3 90
## 1749 3 120
## 1750 3 600
## 1751 4 60
## 1752 4 120
## 1753 2 150
## 1754 2 300
## 1756 3 120
## 1757 4 120
## 1758 2 120
## 1759 3 420
## 1761 4 180
## 1762 2 360
## 1763 3 90
## 1764 2 210
## 1765 1 90
## 1766 4 180
## 1769 4 240
## 1770 4 240
## 1771 2 120
## 1773 4 120
## 1774 4 180
## 1775 4 60
## 1776 2 240
## 1777 3 300
## 1778 2 150
## 1779 4 120
## 1780 4 180
## 1781 4 600
## 1782 2 90
## 1784 4 180
## 1785 3 60
## 1787 4 60
## 1788 2 120
## 1789 3 120
## 1790 2 120
## 1791 3 180
## 1792 4 600
## 1793 2 240
## 1796 4 120
## 1798 3 120
## 1799 2 120
## 1800 1 420
## 1801 2 330
## 1802 3 45
## 1803 3 90
## 1804 3 90
## 1806 4 80
## 1807 3 300
## 1808 4 30
## 1809 3 180
## 1810 2 270
## 1813 3 60
## 1815 3 300
## 1817 3 600
## 1818 3 90
## 1819 3 180
## 1821 3 30
## 1822 3 120
## 1824 4 60
## 1826 3 120
## 1827 4 180
## 1828 2 210
## 1830 1 180
## 1831 3 60
## 1832 2 180
## 1833 1 150
## 1834 4 480
## 1835 3 270
## 1836 4 60
## 1837 4 180
## 1838 2 120
## 1839 4 150
## 1840 3 80
## 1841 4 60
## 1843 4 600
## 1844 4 120
## 1846 2 120
## 1847 4 30
## 1850 2 290
## 1851 3 300
## 1852 3 180
## 1855 4 60
## 1857 4 180
## 1858 3 240
## 1859 2 90
## 1860 3 120
## 1862 4 240
## 1864 4 180
## 1865 1 360
## 1867 4 180
## 1868 4 180
## 1869 3 150
## 1870 3 120
## 1872 2 120
## 1877 2 390
## 1878 2 60
## 1879 4 60
## 1881 4 120
## 1882 4 185
## 1883 4 150
## 1884 4 120
## 1885 3 350
## 1886 4 300
## 1888 3 240
## 1889 3 90
## 1890 4 120
## 1892 3 60
## 1893 2 240
## 1894 4 600
## 1896 2 120
## 1897 4 180
## 1898 4 120
## 1899 3 180
## 1900 4 300
## 1901 3 240
## 1902 3 150
## 1903 2 180
## 1904 3 180
## 1905 4 240
## 1907 4 60
## 1908 4 60
## 1909 1 300
## 1910 4 300
## 1911 4 600
## 1912 4 340
## 1913 3 40
## 1915 3 120
## 1917 4 180
## 1918 3 60
## 1919 3 300
## 1920 2 210
## 1921 4 120
## 1923 2 300
## 1924 4 120
## 1925 2 60
## 1926 4 360
## 1927 3 120
## 1928 4 600
## 1930 4 60
## 1931 2 210
## 1932 4 60
## 1933 4 90
## 1934 4 120
## 1935 2 300
## 1936 4 90
## 1937 2 180
## 1938 3 180
## 1939 4 120
## 1941 4 160
## 1942 2 120
## 1943 3 300
## 1944 3 120
## 1946 3 120
## 1947 4 90
## 1948 4 60
## 1949 4 180
## 1950 4 240
## 1951 3 120
## 1954 2 180
## 1955 4 180
## 1956 4 300
## 1957 2 150
## 1958 4 63
## 1959 2 300
## 1960 4 150
## 1961 4 60
## 1963 2 155
## 1964 2 180
## 1966 2 180
## 1967 2 60
## 1971 2 360
## 1972 3 180
## 1973 3 60
## 1974 4 600
## 1976 2 90
## 1977 3 180
## 1979 4 60
## 1980 4 90
## 1983 3 210
## 1984 4 300
## 1985 4 120
## 1986 3 120
## 1987 1 180
## 1988 3 240
## 1990 2 150
## 1993 3 150
## 1994 3 120
## 1995 3 180
## 1996 4 600
## 1997 1 120
## 1999 4 660
## 2003 2 480
## 2004 2 120
## 2005 4 60
## 2006 3 120
## 2007 3 90
## 2008 3 300
## 2009 3 300
## 2010 4 600
## 2011 4 180
## 2012 3 240
## 2014 3 360
## 2015 2 180
## 2017 4 600
## 2018 3 90
## 2020 3 120
## 2021 2 480
## 2023 4 20
## 2024 3 120
## 2026 2 120
## 2028 4 120
## 2030 3 30
## 2033 3 180
## 2035 4 60
## 2036 3 60
## 2037 3 120
## 2038 3 270
## 2039 2 90
## 2040 4 150
## 2041 3 180
## 2042 3 240
## 2043 2 120
## 2045 3 60
## 2047 3 240
## 2049 3 270
## 2050 3 158
## 2051 1 300
## 2053 3 60
## 2054 3 30
## 2057 4 150
## 2059 3 300
## 2060 2 120
## 2061 2 240
## 2062 4 180
## 2063 1 120
## 2064 4 120
## 2065 3 90
## 2066 2 90
## 2067 3 180
## 2068 3 360
## 2071 2 270
## 2073 4 60
## 2075 2 120
## 2076 4 120
## 2077 3 240
## 2078 4 180
## 2079 3 360
## 2080 3 60
## 2081 3 960
## 2082 4 180
## 2083 3 60
## 2085 2 60
## 2086 2 120
## 2089 4 240
## 2091 3 60
## 2092 3 180
## 2093 4 270
## 2094 4 120
## 2095 2 270
## 2096 2 60
## 2098 4 60
## 2099 2 60
## 2100 3 120
## 2102 3 180
## 2103 3 300
## 2104 2 120
## 2105 3 600
## 2106 3 210
## 2107 3 180
## 2108 1 180
## 2109 3 120
## 2110 4 360
## 2111 3 180
## 2112 3 60
## 2113 4 180
## 2114 3 240
## 2115 3 90
## 2116 3 120
## 2117 4 180
## 2118 4 240
## 2119 3 120
## 2120 4 120
## 2121 2 120
## 2122 2 150
## 2123 2 60
## 2124 3 300
## 2125 4 240
## 2126 4 20
## 2127 4 120
## 2128 4 120
## 2129 3 150
## 2130 3 420
## 2131 4 180
## 2132 3 1
## 2133 3 60
## 2135 3 120
## 2136 3 120
## 2138 2 270
## 2139 4 60
## 2140 3 480
## 2141 4 60
## 2142 3 120
## 2143 3 120
## 2144 3 60
## 2145 3 60
## 2146 3 30
## 2147 3 60
## 2152 4 240
## 2154 2 30
## 2157 4 360
## 2158 4 60
## 2161 4 90
## 2163 2 480
## 2164 2 300
## 2165 4 150
## 2168 2 60
## 2169 3 120
## 2171 3 45
## 2172 4 60
## 2175 2 180
## 2178 4 240
## 2180 1 30
## 2181 4 120
## 2182 4 120
## 2183 2 120
## 2184 3 270
## 2185 2 120
## 2190 4 180
## 2191 2 120
## 2193 3 180
## 2197 3 180
## 2198 3 300
## 2199 1 300
## 2200 3 270
## 2201 3 150
## 2203 4 120
## 2204 2 480
## 2205 4 120
## 2207 4 150
## 2208 3 450
## 2209 2 90
## 2210 4 240
## 2211 3 60
## 2212 3 240
## 2213 3 150
## 2214 3 360
## 2215 3 240
## 2216 3 150
## 2217 4 120
## 2218 3 300
## 2221 4 120
## 2222 3 90
## 2223 4 120
## 2224 3 600
## 2225 3 90
## 2226 4 300
## 2227 4 180
## 2228 4 120
## 2229 4 180
## 2230 2 240
## 2231 2 30
## 2232 3 210
## 2233 4 300
## 2234 4 480
## 2235 3 150
## 2236 4 140
## 2240 4 90
## 2241 4 90
## 2242 3 120
## 2243 3 60
## 2244 3 720
## 2245 2 90
## 2247 3 240
## 2248 3 120
## 2249 4 420
## 2250 4 240
## 2251 4 120
## 2252 3 120
## 2253 3 120
## 2255 2 300
## 2256 4 300
## 2259 2 90
## 2260 4 60
## 2263 2 300
## 2264 3 60
## 2265 4 240
## 2266 4 180
## 2267 3 600
## 2269 4 300
## 2270 3 180
## 2272 2 540
## 2273 1 240
## 2274 2 30
## 2275 4 180
## 2278 3 180
## 2280 3 300
## 2281 3 300
## 2282 4 60
## 2283 2 300
## 2284 3 300
## 2286 4 240
## 2287 1 420
## 2288 3 90
## 2289 1 350
## 2292 4 240
## 2293 4 420
## 2294 2 180
## 2295 1 60
## 2296 4 150
## 2297 1 120
## 2298 4 240
## 2299 3 60
## 2300 4 180
## 2301 1 240
## 2302 2 120
## 2304 4 540
## 2305 2 120
## 2306 4 240
## 2307 4 300
## 2310 2 150
## 2311 3 240
## 2312 3 300
## 2313 4 120
## 2314 3 180
## 2315 4 180
## 2316 4 180
## 2317 3 480
## 2318 3 60
## 2319 2 20
## 2321 4 90
## 2322 3 120
## 2323 3 60
## 2324 4 180
## 2325 4 180
## 2326 4 120
## 2327 4 480
## 2328 3 240
## 2329 2 310
## 2331 2 120
## 2333 2 120
## 2334 3 120
## 2335 3 60
## 2336 2 270
## 2339 3 180
## 2340 4 300
## 2341 4 210
## 2343 2 210
## 2344 3 180
## 2346 4 240
## 2348 4 150
## 2349 4 180
## 2350 4 150
## 2351 2 45
## 2352 3 180
## 2354 4 150
## 2355 4 210
## 2356 2 120
## 2357 4 300
## 2359 2 150
## 2361 4 240
## 2362 2 300
## 2363 4 120
## 2364 4 300
## 2365 4 420
## 2366 2 30
## 2367 2 120
## 2369 4 300
## 2371 2 300
## 2374 4 150
## 2375 4 180
## 2376 4 300
## 2377 3 360
## 2378 2 180
## 2379 4 90
## 2380 4 120
## 2381 4 240
## 2382 3 150
## 2383 4 240
## 2384 4 60
## 2385 4 60
## 2386 4 480
## 2387 3 150
## 2390 2 120
## 2393 3 180
## 2394 4 120
## 2395 3 300
## 2396 3 60
## 2399 4 360
## 2401 4 600
## 2402 4 180
## 2403 4 720
## 2404 4 60
## 2405 4 10
## 2407 2 240
## 2408 2 190
## 2410 4 60
## 2411 2 120
## 2413 2 60
## 2414 2 270
## 2416 2 180
## 2417 4 480
## 2418 4 240
## 2419 2 270
## 2422 3 150
## 2423 3 120
## 2424 4 240
## 2425 4 60
## 2426 2 120
## 2427 3 60
## 2428 4 90
## 2429 3 270
## 2430 3 240
## 2431 2 1200
## 2432 2 40
## 2433 3 120
## 2434 3 150
## 2435 2 240
## 2436 4 180
## 2438 3 150
## 2440 3 180
## 2443 3 300
## 2444 4 60
## 2445 4 180
## 2446 4 180
## 2447 1 60
## 2448 4 300
## 2449 4 30
## 2452 2 300
## 2453 1 90
## 2456 3 90
## 2458 2 300
## 2460 2 60
## 2461 4 300
## 2462 3 150
## 2463 3 240
## 2464 4 720
## 2467 3 240
## 2468 3 120
## 2469 2 240
## 2470 4 300
## 2471 4 360
## 2472 4 120
## 2473 4 90
## 2474 3 40
## 2475 2 240
## 2479 3 240
## 2481 4 300
## 2482 4 90
## 2483 2 60
## 2484 3 120
## 2486 1 240
## 2487 2 240
## 2489 3 120
## 2491 3 120
## 2492 4 180
## 2493 3 60
## 2494 4 180
## 2495 2 300
## 2496 1 450
## 2498 4 180
## 2499 4 120
## 2501 3 120
## 2504 2 120
## 2505 3 280
## 2506 4 90
## 2507 4 600
## 2508 3 300
## 2509 4 240
## 2511 4 90
## 2512 4 240
## 2513 3 60
## 2514 2 180
## 2515 3 240
## 2516 4 90
## 2518 4 120
## 2519 4 120
## 2520 2 360
## 2521 2 60
## 2524 2 180
## 2526 2 300
## 2527 2 300
## 2531 3 360
## 2532 2 240
## 2533 4 180
## 2534 3 240
## 2535 3 180
## 2536 4 68
## 2537 3 180
## 2538 4 60
## 2539 3 120
## 2541 3 180
## 2543 3 600
## 2544 4 90
## 2545 3 150
## 2546 3 60
## 2548 2 98
## 2551 3 120
## 2553 4 540
## 2554 4 30
## 2555 4 150
## 2556 3 180
## 2557 2 120
## 2558 2 150
## 2559 3 120
## 2560 1 120
## 2561 2 300
## 2562 2 300
## 2563 3 120
## 2564 3 180
## 2565 2 420
## 2566 3 60
## 2567 3 120
## 2568 4 90
## 2569 4 180
## 2570 3 300
## 2571 4 480
## 2572 3 480
## 2574 4 240
## 2576 2 240
## 2577 4 120
## 2581 4 360
## 2583 2 120
## 2584 3 210
## 2585 4 120
## 2586 4 120
## 2587 3 180
## 2588 2 300
## 2589 3 120
## 2590 3 360
## 2591 4 60
## 2592 3 600
## 2593 4 120
## 2595 4 240
## 2596 4 300
## 2597 2 360
## 2598 4 180
## 2599 4 180
## 2600 2 300
## 2601 3 120
## 2603 2 300
## 2605 3 150
## 2606 4 330
## 2609 3 60
## 2610 3 240
## 2611 3 360
## 2612 4 360
## 2614 2 480
## 2616 4 360
## 2617 3 120
## 2619 4 180
## 2620 2 120
## 2621 2 120
## 2622 3 60
## 2623 3 15
## 2628 4 360
## 2630 4 300
## 2632 3 900
## 2633 3 30
## 2634 4 180
## 2635 4 30
## 2636 4 120
## 2637 3 60
## 2638 3 120
## 2639 3 90
## 2640 3 180
## 2641 4 60
## 2642 3 240
## 2644 4 180
## 2646 2 540
## 2647 3 60
## 2649 2 60
## 2650 2 180
## 2651 3 120
## 2654 4 120
## 2655 2 180
## 2656 2 180
## 2657 4 120
## 2658 4 150
## 2659 4 60
## 2660 4 120
## 2661 3 60
## 2662 2 180
## 2663 2 150
## 2664 4 120
## 2666 4 360
## 2667 4 430
## 2672 2 180
## 2673 3 120
## 2675 4 90
## 2677 1 120
## 2678 4 180
## 2679 1 300
## 2680 4 120
## 2681 3 360
## 2683 4 360
## 2685 3 480
## 2686 4 180
## 2688 3 150
## 2689 2 90
## 2690 3 90
## 2691 3 90
## 2692 3 300
## 2693 4 180
## 2694 2 90
## 2695 4 180
## 2696 2 270
## 2699 4 180
## 2700 3 120
## 2701 4 240
## 2702 4 180
## 2704 2 330
## 2705 2 180
## 2715 2 120
## 2716 3 120
## 2717 3 120
## 2718 3 300
## 2720 2 60
## 2721 1 300
## 2722 4 210
## 2723 2 150
## 2725 1 300
## 2729 4 180
## 2730 2 120
## 2731 2 60
## 2732 4 240
## 2734 3 180
## 2735 2 180
## 2736 3 60
## 2737 2 60
## 2738 4 300
## 2739 2 240
## 2740 4 90
## 2741 1 120
## 2743 2 60
## 2744 3 180
## 2745 3 120
## 2746 2 90
## 2747 2 330
## 2752 3 345
## 2754 4 90
## 2757 4 60
## 2759 4 300
## 2760 4 180
## 2762 4 60
## 2763 4 90
## 2764 4 120
## 2765 4 360
## 2766 2 330
## 2769 2 300
## 2770 4 150
## 2772 3 70
## 2773 4 360
## 2774 4 600
## 2776 4 480
## 2778 4 420
## 2781 3 120
## 2782 2 120
## 2786 3 180
## 2789 2 120
## 2790 1 180
## 2791 3 120
## 2792 2 60
## 2793 3 90
## 2794 2 120
## 2797 2 120
## 2798 1 300
polintr - interests in politics 1 - Very interested 2 - Quite interested 3 - Hardly interested 4 - Not at all interested
netustm - internet use in minutes
# Create a vector for each polit. interest category (1, 2, 3,4)
pol_1 <- subset(greece_4, polintr == 1)$netustm
pol_2 <- subset(greece_4, polintr == 2)$netustm
pol_3 <- subset(greece_4, polintr == 3)$netustm
pol_4 <- subset(greece_4, polintr == 4)$netustm
ggplot()+
geom_boxplot(data = greece_4, aes(x = polintr, y = netustm), fill="green3", col="purple", alpha = 0.5) +
ylim(c(0,1000)) +
xlab("How interested are people in politics?") +
ylab("Internet use in minutes ") +
ggtitle("Internet use in minutes vs Political interest")
## Warning: Removed 1 rows containing non-finite values (`stat_boxplot()`).
Hypothesis: the mean amount of time spent on the Internet is the same for people with different levels of political interests
library(kableExtra)
library(psych)
describeBy(greece_4$netustm, greece_4$polintr, mat = TRUE) %>% #create dataframe
dplyr:: select(polintr = group1, N=n, Mean=mean, SD=sd, Median=median, Min=min, Max=max,
Skew=skew, Kurtosis=kurtosis, st.error = se) %>%
kable(align=c("lrrrrrrrr"), digits=2, row.names = FALSE,
caption="Political interests") %>%
kable_styling(bootstrap_options=c("bordered", "responsive","striped"), full_width = FALSE)
| polintr | N | Mean | SD | Median | Min | Max | Skew | Kurtosis | st.error |
|---|---|---|---|---|---|---|---|---|---|
| 1 | 96 | 211.70 | 117.44 | 180 | 30 | 600 | 1.03 | 0.95 | 11.99 |
| 2 | 502 | 193.35 | 131.56 | 150 | 20 | 1200 | 1.94 | 7.40 | 5.87 |
| 3 | 660 | 181.22 | 127.12 | 150 | 1 | 960 | 1.94 | 5.55 | 4.95 |
| 4 | 761 | 207.33 | 149.58 | 180 | 0 | 900 | 1.53 | 2.34 | 5.42 |
par(mar = c(3,10,0,3))
barplot(table(greece_4$polintr)/nrow(greece_4)*100, horiz = T, xlim = c(0,60), las = 2)
it can be concluded from these data that the samples can be compared
leveneTest(greece_4$netustm ~ greece_4$polintr)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 3 3.3025 0.01956 *
## 2015
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
The variances are not equal, since Pr < 0.05 , so we can reject the null hypothesis of equality of variances
oneway.test(greece_4$netustm ~ greece_4$polintr, var.equal = F)
##
## One-way analysis of means (not assuming equal variances)
##
## data: greece_4$netustm and greece_4$polintr
## F = 4.9501, num df = 3.00, denom df = 432.13, p-value = 0.002174
pairwise.t.test(greece_4$netustm, greece_4$polintr,
adjust = "bonferroni")
##
## Pairwise comparisons using t tests with pooled SD
##
## data: greece_4$netustm and greece_4$polintr
##
## 1 2 3
## 2 0.457 - -
## 3 0.207 0.402 -
## 4 0.768 0.302 0.002
##
## P value adjustment method: holm
plot_grpfrq(greece_4$netustm, greece_4$polintr, type = "box")
## Warning: The `fun.y` argument of `stat_summary()` is deprecated as of ggplot2 3.3.0.
## ℹ Please use the `fun` argument instead.
## ℹ The deprecated feature was likely used in the sjPlot package.
## Please report the issue at <]8;;https://github.com/strengejacke/sjPlot/issueshttps://github.com/strengejacke/sjPlot/issues]8;;>.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## Warning in rq.fit.br(wx, wy, tau = tau, ...): Solution may be nonunique
## Warning in rq.fit.br(wx, wy, tau = tau, ...): Solution may be nonunique
## Warning in rq.fit.br(wx, wy, tau = tau, ...): Solution may be nonunique
## Warning in rq.fit.br(wx, wy, tau = tau, ...): Solution may be nonunique
## Warning in rq.fit.br(wx, wy, tau = tau, ...): Solution may be nonunique
## Warning in rq.fit.br(wx, wy, tau = tau, ...): Solution may be nonunique
## Warning in rq.fit.br(wx, wy, tau = tau, ...): Solution may be nonunique
it can be concluded that those who are Very interested, Quite interesting and Not at all interested spend the most time on the Internet, unlike those who are Hardly interested in politics
RQ: Are related persons satisfied with the national government, happy and trust the legal system with the ability of the population to influence on politics in Greek government?
df <- import("/Users/DP/OneDrive/Рабочий стол/ESS10.sav")
in order to make it easier to work with data, we will create a separate dataset with Greek data
attributes(df$cntry)
## $label
## [1] "Country"
##
## $format.spss
## [1] "A2"
##
## $labels
## Albania Austria Belgium Bulgaria
## "AL" "AT" "BE" "BG"
## Switzerland Cyprus Czechia Germany
## "CH" "CY" "CZ" "DE"
## Denmark Estonia Spain Finland
## "DK" "EE" "ES" "FI"
## France United Kingdom Georgia Greece
## "FR" "GB" "GE" "GR"
## Croatia Hungary Ireland Iceland
## "HR" "HU" "IE" "IS"
## Israel Italy Lithuania Luxembourg
## "IL" "IT" "LT" "LU"
## Latvia Montenegro North Macedonia Netherlands
## "LV" "ME" "MK" "NL"
## Norway Poland Portugal Romania
## "NO" "PL" "PT" "RO"
## Serbia Russian Federation Sweden Slovenia
## "RS" "RU" "SE" "SI"
## Slovakia Turkey Ukraine Kosovo
## "SK" "TR" "UA" "XK"
greece <- filter(df, cntry=="GR")
dim(greece)
## [1] 2799 586
Let’s choose 3 continuous and 1 categorical variables
continuous
happy - How happy are you. C1 Taking all things together, how happy would you say you are?
stfgov - How satisfied with the national government
trstlgl - Trust in the legal system B6-12a Using this card, please tell me on a score of 0-10 how much you personally trust each of the institutions I read out. 0 means you do not trust an institution at all, and 10 means you have complete trust. Firstly… …the legal system?
categorical psppipla - Political system allows people to have influence on politics. And how much would you say that the political system in [country] allows people like you to have an influence on politics?
greece <- select(greece, c("stfgov", "happy", "trstlgl", "psppipla"))
skim(greece)
| Name | greece |
| Number of rows | 2799 |
| Number of columns | 4 |
| _______________________ | |
| Column type frequency: | |
| numeric | 4 |
| ________________________ | |
| Group variables | None |
Variable type: numeric
| skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
|---|---|---|---|---|---|---|---|---|---|---|
| stfgov | 21 | 0.99 | 4.12 | 2.27 | 0 | 2 | 4 | 6 | 10 | ▇▇▇▅▁ |
| happy | 5 | 1.00 | 6.58 | 1.54 | 0 | 6 | 7 | 8 | 10 | ▁▁▅▇▁ |
| trstlgl | 13 | 1.00 | 6.43 | 2.26 | 0 | 5 | 7 | 8 | 10 | ▂▃▆▇▅ |
| psppipla | 78 | 0.97 | 1.90 | 0.96 | 1 | 1 | 2 | 3 | 5 | ▇▅▅▁▁ |
summary(greece)
## stfgov happy trstlgl psppipla
## Min. : 0.000 Min. : 0.000 Min. : 0.00 Min. :1.000
## 1st Qu.: 2.000 1st Qu.: 6.000 1st Qu.: 5.00 1st Qu.:1.000
## Median : 4.000 Median : 7.000 Median : 7.00 Median :2.000
## Mean : 4.116 Mean : 6.579 Mean : 6.43 Mean :1.897
## 3rd Qu.: 6.000 3rd Qu.: 8.000 3rd Qu.: 8.00 3rd Qu.:3.000
## Max. :10.000 Max. :10.000 Max. :10.00 Max. :5.000
## NA's :21 NA's :5 NA's :13 NA's :78
using the summary function, we saw that the missing values are encoded correctly and are reflected as NA, so we can remove them from the dataset so that they do not distort the results.
greece <- greece[complete.cases(greece),]
summary(greece)
## stfgov happy trstlgl psppipla
## Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. :1.0
## 1st Qu.: 2.000 1st Qu.: 6.000 1st Qu.: 5.000 1st Qu.:1.0
## Median : 4.000 Median : 7.000 Median : 7.000 Median :2.0
## Mean : 4.105 Mean : 6.593 Mean : 6.426 Mean :1.9
## 3rd Qu.: 6.000 3rd Qu.: 8.000 3rd Qu.: 8.000 3rd Qu.:3.0
## Max. :10.000 Max. :10.000 Max. :10.000 Max. :5.0
We get general information about variables using the describe function
greece %>%
dplyr::select(-4) %>%
describe()
## vars n mean sd median trimmed mad min max range skew kurtosis
## stfgov 1 2685 4.11 2.28 4 4.08 2.97 0 10 10 0.10 -0.75
## happy 2 2685 6.59 1.53 7 6.70 1.48 0 10 10 -0.73 0.96
## trstlgl 3 2685 6.43 2.26 7 6.65 1.48 0 10 10 -0.72 -0.13
## se
## stfgov 0.04
## happy 0.03
## trstlgl 0.04
greece %>%
dplyr::select(-4) %>%
sjmisc::descr(show = c('n', "mean","sd", "md", "range")) %>%
rename("variable" = "var",
"Number of obs." = "n",
"Mean" = "mean",
"SD" = "sd",
"Median" = "md",
"Range" = "range")
##
## ## Basic descriptive statistics
##
## variable Number of obs. Mean SD Median Range
## stfgov 2685 4.105400 2.278420 4 10 (0-10)
## happy 2685 6.593296 1.527917 7 10 (0-10)
## trstlgl 2685 6.426071 2.259652 7 10 (0-10)
greece %>%
pivot_longer(c(stfgov, happy, trstlgl),
names_to = 'Var', values_to = 'Score') %>%
ggplot(aes(y=Score)) +
geom_boxplot() +
ggtitle("Distribution of scores") +
xlab("Variable") +
ylab("Score") +
theme_bw()+
theme(legend.position="none") +
facet_wrap(~Var)
In boxplot we see several outliers in the values of happy and trust
greece %>%
pivot_longer(c(stfgov, happy, trstlgl),
names_to = 'Var', values_to = 'Score') %>%
ggplot(aes(x=Score, fill=Var)) +
geom_histogram(aes(y=..density.., fill = Var), bins = 10) +
geom_density(alpha = .5, color="blue")+
ggtitle("Distribution of scores") +
xlab("Variable") +
ylab("Score") +
theme_bw()+
theme(legend.position="none") +
facet_wrap(~Var)
## Warning: The dot-dot notation (`..density..`) was deprecated in ggplot2 3.4.0.
## ℹ Please use `after_stat(density)` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
As it can be seen from the histograms, satisfaction with government,
happy close to normal distribution. As for the trust in the legal system
the histogram is not normally distributed.
categorical Let’s look at the categorical variable
table(greece$psppipla)
##
## 1 2 3 4 5
## 1205 710 614 146 10
Category 5 (`A great deal’) contains only 5 observations. This may affect the evaluation of the coefficients. Therefore, let’s combine categories 4 and 5
greece$psppipla <- car::recode(greece$psppipla, "1 = 1;
2 = 2;
3 = 3;
4 = 4;
5 = 4")
greece %>%
group_by(psppipla) %>%
count()
## # A tibble: 4 × 2
## # Groups: psppipla [4]
## psppipla n
## <dbl> <int>
## 1 1 1205
## 2 2 710
## 3 3 614
## 4 4 156
greece$psppipla = factor(greece$psppipla)
greece %>%
ggplot(aes(x = psppipla)) +
geom_bar(fill = "lightblue", color = "blue") +
xlab("Category") +
ylab("Frequency") +
theme_bw()
scatter plot
par(mfrow = c(1, 3))
greece %>%
ggplot(aes(x=stfgov, y=happy)) +
geom_point(size=2) +
geom_smooth(method=lm)
## `geom_smooth()` using formula = 'y ~ x'
greece %>%
ggplot(aes(x=stfgov, y=trstlgl)) +
geom_point(size=2) +
geom_smooth(method=lm)
## `geom_smooth()` using formula = 'y ~ x'
greece %>%
ggplot(aes(x=trstlgl, y=happy)) +
geom_point(size=2) +
geom_smooth(method=lm)
## `geom_smooth()` using formula = 'y ~ x'
there is a positive correlation between happy and satisfaction with
government there is a positive correlation between trust in the legal
system and satisfaction with government there is a positive correlation
between happy and trust in the legal system
chart.Correlation(greece[,c('stfgov', 'happy', 'trstlgl')],
histogram = TRUE) # by default Pearson
## Warning in par(usr): argument 1 does not name a graphical parameter
## Warning in par(usr): argument 1 does not name a graphical parameter
## Warning in par(usr): argument 1 does not name a graphical parameter
chart.Correlation(greece[,c('stfgov', 'happy', 'trstlgl')],
histogram = TRUE,
method = "spearman") # Spearman's method
## Warning in cor.test.default(as.numeric(x), as.numeric(y), method = method):
## Есть совпадающие значения: не могу высчитать точное p-значение
## Warning in cor.test.default(as.numeric(x), as.numeric(y), method = method):
## argument 1 does not name a graphical parameter
## Warning in cor.test.default(as.numeric(x), as.numeric(y), method = method):
## Есть совпадающие значения: не могу высчитать точное p-значение
## Warning in par(usr): argument 1 does not name a graphical parameter
## Warning in cor.test.default(as.numeric(x), as.numeric(y), method = method):
## Есть совпадающие значения: не могу высчитать точное p-значение
## Warning in par(usr): argument 1 does not name a graphical parameter
chart.Correlation(greece[,c('stfgov', 'happy', 'trstlgl')],
histogram = TRUE,
method = "kendall") # Kendall's method
## Warning in par(usr): argument 1 does not name a graphical parameter
## Warning in par(usr): argument 1 does not name a graphical parameter
## Warning in par(usr): argument 1 does not name a graphical parameter
heatmap
heatmaply_cor(
cor(greece[,c('stfgov', 'happy', 'trstlgl')], method = "spearman"),
Colv=NA, Rowv=NA)
матрица корреляций
cor.test(greece$happy, greece$stfgov)
##
## Pearson's product-moment correlation
##
## data: greece$happy and greece$stfgov
## t = 12.302, df = 2683, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.1949530 0.2665744
## sample estimates:
## cor
## 0.2310767
cor.test(greece$happy, greece$stfgov,method="spearman")
## Warning in cor.test.default(greece$happy, greece$stfgov, method = "spearman"):
## Есть совпадающие значения: не могу высчитать точное p-значение
##
## Spearman's rank correlation rho
##
## data: greece$happy and greece$stfgov
## S = 2550059838, p-value < 2.2e-16
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
## rho
## 0.2095602
cor_matrix <- cor(greece[,c('stfgov', 'happy', 'trstlgl')], method = "spearman")
stargazer(cor_matrix, title="Correlation Matrix", type = "latex")
##
## % Table created by stargazer v.5.2.3 by Marek Hlavac, Social Policy Institute. E-mail: marek.hlavac at gmail.com
## % Date and time: Пт, июн 09, 2023 - 16:16:10
## \begin{table}[!htbp] \centering
## \caption{Correlation Matrix}
## \label{}
## \begin{tabular}{@{\extracolsep{5pt}} cccc}
## \\[-1.8ex]\hline
## \hline \\[-1.8ex]
## & stfgov & happy & trstlgl \\
## \hline \\[-1.8ex]
## stfgov & $1$ & $0.210$ & $0.313$ \\
## happy & $0.210$ & $1$ & $0.324$ \\
## trstlgl & $0.313$ & $0.324$ & $1$ \\
## \hline \\[-1.8ex]
## \end{tabular}
## \end{table}
sjPlot::tab_corr(greece[,c('stfgov', 'happy', 'trstlgl')],
corr.method = "spearman")
| stfgov | happy | trstlgl | |
|---|---|---|---|
| stfgov | 0.210*** | 0.313*** | |
| happy | 0.210*** | 0.324*** | |
| trstlgl | 0.313*** | 0.324*** | |
| Computed correlation used spearman-method with listwise-deletion. | |||
cor.test(greece$happy, greece$stfgov)
##
## Pearson's product-moment correlation
##
## data: greece$happy and greece$stfgov
## t = 12.302, df = 2683, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.1949530 0.2665744
## sample estimates:
## cor
## 0.2310767
cor.test(greece$happy, greece$stfgov,method="kendall")
##
## Kendall's rank correlation tau
##
## data: greece$happy and greece$stfgov
## z = 11.315, p-value < 2.2e-16
## alternative hypothesis: true tau is not equal to 0
## sample estimates:
## tau
## 0.1679942
cor_matrix <- cor(greece[,c('stfgov', 'happy', 'trstlgl')], method = "kendall")
stargazer(cor_matrix, title="Correlation Matrix", type = "latex")
##
## % Table created by stargazer v.5.2.3 by Marek Hlavac, Social Policy Institute. E-mail: marek.hlavac at gmail.com
## % Date and time: Пт, июн 09, 2023 - 16:16:11
## \begin{table}[!htbp] \centering
## \caption{Correlation Matrix}
## \label{}
## \begin{tabular}{@{\extracolsep{5pt}} cccc}
## \\[-1.8ex]\hline
## \hline \\[-1.8ex]
## & stfgov & happy & trstlgl \\
## \hline \\[-1.8ex]
## stfgov & $1$ & $0.168$ & $0.238$ \\
## happy & $0.168$ & $1$ & $0.256$ \\
## trstlgl & $0.238$ & $0.256$ & $1$ \\
## \hline \\[-1.8ex]
## \end{tabular}
## \end{table}
sjPlot::tab_corr(greece[,c('stfgov', 'happy', 'trstlgl')],
corr.method = "kendall")
| stfgov | happy | trstlgl | |
|---|---|---|---|
| stfgov | 0.168*** | 0.238*** | |
| happy | 0.168*** | 0.256*** | |
| trstlgl | 0.238*** | 0.256*** | |
| Computed correlation used kendall-method with listwise-deletion. | |||
cor.test(greece$happy, greece$stfgov)
##
## Pearson's product-moment correlation
##
## data: greece$happy and greece$stfgov
## t = 12.302, df = 2683, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.1949530 0.2665744
## sample estimates:
## cor
## 0.2310767
cor.test(greece$happy, greece$stfgov,method="spearman")
## Warning in cor.test.default(greece$happy, greece$stfgov, method = "spearman"):
## Есть совпадающие значения: не могу высчитать точное p-значение
##
## Spearman's rank correlation rho
##
## data: greece$happy and greece$stfgov
## S = 2550059838, p-value < 2.2e-16
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
## rho
## 0.2095602
cor_matrix <- cor(greece[,c('stfgov', 'happy', 'trstlgl')], method = "spearman")
stargazer(cor_matrix, title="Correlation Matrix", type = "latex")
##
## % Table created by stargazer v.5.2.3 by Marek Hlavac, Social Policy Institute. E-mail: marek.hlavac at gmail.com
## % Date and time: Пт, июн 09, 2023 - 16:16:13
## \begin{table}[!htbp] \centering
## \caption{Correlation Matrix}
## \label{}
## \begin{tabular}{@{\extracolsep{5pt}} cccc}
## \\[-1.8ex]\hline
## \hline \\[-1.8ex]
## & stfgov & happy & trstlgl \\
## \hline \\[-1.8ex]
## stfgov & $1$ & $0.210$ & $0.313$ \\
## happy & $0.210$ & $1$ & $0.324$ \\
## trstlgl & $0.313$ & $0.324$ & $1$ \\
## \hline \\[-1.8ex]
## \end{tabular}
## \end{table}
sjPlot::tab_corr(greece[,c('stfgov', 'happy', 'trstlgl')],
corr.method = "spearman")
| stfgov | happy | trstlgl | |
|---|---|---|---|
| stfgov | 0.210*** | 0.313*** | |
| happy | 0.210*** | 0.324*** | |
| trstlgl | 0.313*** | 0.324*** | |
| Computed correlation used spearman-method with listwise-deletion. | |||
rcorr(as.matrix(greece[,c('stfgov', 'happy', 'trstlgl')]), type = "spearman")
## stfgov happy trstlgl
## stfgov 1.00 0.21 0.31
## happy 0.21 1.00 0.32
## trstlgl 0.31 0.32 1.00
##
## n= 2685
##
##
## P
## stfgov happy trstlgl
## stfgov 0 0
## happy 0 0
## trstlgl 0 0
cor_mat <- greece[,-4] %>%
rstatix::cor_mat()
cor_mat %>%
rstatix::cor_get_pval()
## # A tibble: 3 × 4
## rowname stfgov happy trstlgl
## <chr> <dbl> <dbl> <dbl>
## 1 stfgov 0 7.09e-34 1.03e-68
## 2 happy 7.09e-34 0 2.03e-63
## 3 trstlgl 1.03e-68 2.03e-63 0
cor_mat %>%
rstatix::cor_gather()
## # A tibble: 9 × 4
## var1 var2 cor p
## <chr> <chr> <dbl> <dbl>
## 1 stfgov stfgov 1 0
## 2 happy stfgov 0.23 7.09e-34
## 3 trstlgl stfgov 0.33 1.03e-68
## 4 stfgov happy 0.23 7.09e-34
## 5 happy happy 1 0
## 6 trstlgl happy 0.32 2.03e-63
## 7 stfgov trstlgl 0.33 1.03e-68
## 8 happy trstlgl 0.32 2.03e-63
## 9 trstlgl trstlgl 1 0
greece[,-4] %>%
apa.cor.table(filename = "cor_matrix_Greece.doc")
##
##
## Means, standard deviations, and correlations with confidence intervals
##
##
## Variable M SD 1 2
## 1. stfgov 4.11 2.28
##
## 2. happy 6.59 1.53 .23**
## [.19, .27]
##
## 3. trstlgl 6.43 2.26 .33** .32**
## [.29, .36] [.28, .35]
##
##
## Note. M and SD are used to represent mean and standard deviation, respectively.
## Values in square brackets indicate the 95% confidence interval.
## The confidence interval is a plausible range of population correlations
## that could have caused the sample correlation (Cumming, 2014).
## * indicates p < .05. ** indicates p < .01.
##
greece[,-4] %>%
sjPlot::sjp.corr()
## Warning: 'sjp.corr' is deprecated. Please use 'correlation::correlation()' and
## its related plot()-method.
## Computing correlation using pearson-method with listwise-deletion...
## Warning: Removed 6 rows containing missing values (`geom_text()`).
From what we can see, all the relationship between our variables are
quite moderate and have positive direction. The highest correlation
coefficient is between trstlgl and stfgov. The presented values confirm
the situation on the scatterplots. It is also worth noting that there is
a very high level of significance (p <0.001)
a boxplot for the categorical predictor and the outcome
greece %>%
ggplot(aes(x = factor (psppipla),
y = happy,
fill = factor (psppipla))) +
geom_boxplot() +
ggtitle("Distribution of happy level") +
xlab("Category") +
ylab("Happy level") +
theme_bw()+
theme(legend.position="none")
Regardless of the level of psppipla, we observe the same distribution of
the level of happiness of citizens
model1 = lm(happy ~ stfgov, data = greece)
sjPlot::tab_model(model1)
| happy | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 5.96 | 5.84 – 6.07 | <0.001 |
| stfgov | 0.15 | 0.13 – 0.18 | <0.001 |
| Observations | 2685 | ||
| R2 / R2 adjusted | 0.053 / 0.053 | ||
we standardize - so we can compare the coefficients with each other, and interpret them as the size of the effect
greece <- greece %>%
mutate(Zhappy = scale(happy)[,1],
Zstfgov = scale(stfgov)[,1],
Ztrstlgl = scale(trstlgl)[,1])
model1_std = lm(Zhappy ~ Zstfgov, data = greece)
sjPlot::tab_model(model1_std)
| Zhappy | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 0.00 | -0.04 – 0.04 | 1.000 |
| Zstfgov | 0.23 | 0.19 – 0.27 | <0.001 |
| Observations | 2685 | ||
| R2 / R2 adjusted | 0.053 / 0.053 | ||
# let's add a categorical variable
model2 = lm(happy ~ stfgov + psppipla, data = greece)
sjPlot::tab_model(model2)
| happy | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 5.99 | 5.86 – 6.11 | <0.001 |
| stfgov | 0.15 | 0.13 – 0.18 | <0.001 |
| psppipla [2] | -0.05 | -0.19 – 0.09 | 0.497 |
| psppipla [3] | -0.09 | -0.24 – 0.05 | 0.206 |
| psppipla [4] | 0.18 | -0.07 – 0.43 | 0.161 |
| Observations | 2685 | ||
| R2 / R2 adjusted | 0.055 / 0.054 | ||
# with standardized coefficients
model2_std = lm(Zhappy ~ Zstfgov + psppipla, data = greece)
sjPlot::tab_model(model2_std)
| Zhappy | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 0.02 | -0.04 – 0.07 | 0.582 |
| Zstfgov | 0.23 | 0.19 – 0.27 | <0.001 |
| psppipla [2] | -0.03 | -0.12 – 0.06 | 0.497 |
| psppipla [3] | -0.06 | -0.16 – 0.03 | 0.206 |
| psppipla [4] | 0.12 | -0.05 – 0.28 | 0.161 |
| Observations | 2685 | ||
| R2 / R2 adjusted | 0.055 / 0.054 | ||
# comparison of models
anova(model1_std, model2_std)
## Analysis of Variance Table
##
## Model 1: Zhappy ~ Zstfgov
## Model 2: Zhappy ~ Zstfgov + psppipla
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 2683 2540.7
## 2 2680 2536.2 3 4.4841 1.5794 0.1923
Model 1 is statistically significantly better suited to the data than model 2 (p>0.05)
summary(model1)
##
## Call:
## lm(formula = happy ~ stfgov, data = greece)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.7319 -0.8869 0.1131 0.9582 4.0429
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.95712 0.05914 100.7 <2e-16 ***
## stfgov 0.15496 0.01260 12.3 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.487 on 2683 degrees of freedom
## Multiple R-squared: 0.0534, Adjusted R-squared: 0.05304
## F-statistic: 151.3 on 1 and 2683 DF, p-value: < 2.2e-16
For a model with non-standardized coefficients
p-value: < 2.2-16 <0.05, maybe makes sense Adjusted R-squared: 0.053, i.e. this indicator is 5.3% of the expected variable (happy) with my independent time (stfgov) Coefficients 0.15 and p-value:< 0.001, with each increase in atf gov per unit, the happiness level increases by 0.15. intersept = 5.96 - this refers to the predicted value of happy when stfgov is 0. The regression equation looks like this: happy = 5.96 + 0.15*stfgov
Linear regression model with 2 continuous predictors Now we add another predictor to our model.
# Let's add another continuous variable to the model
model3 = lm(happy ~ stfgov + trstlgl, data = greece)
sjPlot::tab_model(model3)
| happy | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 5.03 | 4.86 – 5.20 | <0.001 |
| stfgov | 0.10 | 0.07 – 0.12 | <0.001 |
| trstlgl | 0.18 | 0.16 – 0.21 | <0.001 |
| Observations | 2685 | ||
| R2 / R2 adjusted | 0.118 / 0.117 | ||
model3_std = lm(Zhappy ~ Zstfgov + Ztrstlgl, data = greece)
sjPlot::tab_model(model3_std)
| Zhappy | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 0.00 | -0.04 – 0.04 | 1.000 |
| Zstfgov | 0.14 | 0.10 – 0.18 | <0.001 |
| Ztrstlgl | 0.27 | 0.23 – 0.31 | <0.001 |
| Observations | 2685 | ||
| R2 / R2 adjusted | 0.118 / 0.117 | ||
# model comparison
anova(model1_std, model3_std)
## Analysis of Variance Table
##
## Model 1: Zhappy ~ Zstfgov
## Model 2: Zhappy ~ Zstfgov + Ztrstlgl
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 2683 2540.7
## 2 2682 2367.0 1 173.68 196.8 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Conclusion: Model 3 is statistically significantly better suited to the data than model 1 (p<0.05)
summary(model3_std)
##
## Call:
## lm(formula = Zhappy ~ Zstfgov + Ztrstlgl, data = greece)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3653 -0.5186 0.0344 0.6186 3.2524
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.498e-15 1.813e-02 0.000 1
## Zstfgov 1.425e-01 1.920e-02 7.422 1.54e-13 ***
## Ztrstlgl 2.694e-01 1.920e-02 14.028 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9394 on 2682 degrees of freedom
## Multiple R-squared: 0.1181, Adjusted R-squared: 0.1174
## F-statistic: 179.6 on 2 and 2682 DF, p-value: < 2.2e-16
For a model with standardized coefficients
p-value: < 2.2-16 <0.05, maybe makes sense Adjusted R-squared: 0.1174, i.e. this indicator is 11.74% of the expected variable the model is quite high-quality (happy) with mine, independent, unchangeable (stfgov & trstlgl) Correlation coefficients 0.14 and 0.27 and p-value:< 0.001, correlation coefficient = 0.00. The regression equation outputs: Z happy = 0.14Zstfgov + 0.27Ztrstlgl
summary(model3)
##
## Call:
## lm(formula = happy ~ stfgov + trstlgl, data = greece)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.6697 -0.7923 0.0526 0.9452 4.9695
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.03054 0.08731 57.620 < 2e-16 ***
## stfgov 0.09557 0.01288 7.422 1.54e-13 ***
## trstlgl 0.18213 0.01298 14.028 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.435 on 2682 degrees of freedom
## Multiple R-squared: 0.1181, Adjusted R-squared: 0.1174
## F-statistic: 179.6 on 2 and 2682 DF, p-value: < 2.2e-16
For a model with non-standardized coefficients
p-value: < 2.2-16 <0.05, maybe makes sense Adjusted R-squared: 0.1174, i.e.this means that the model is not quite good quality R-squared: 11,8% of dependent variable deviation can be explained by the model Coefficients of independent variables are 0.10 and 0.18 and p-value:< 0.001, intercept = 5.0 - this refers to the predicted value of happy when stfgov and trstlgl indicators are equal to 0.
The regression equation looks like this: happy = 5.03 + 0.10stfgov + 0.18trstlgl
With each increase in stfgov by one, happy rises by 0.10. With each increase in trstlgl by one, happy rises by 0.18
Checking Linear Regression Assumptions Linear regression makes several assumptions about the data, such as :
autoplot(model3_std)
let’s check in a little more detail, the assumptions of linear regression are fulfilled 1) normality of the remainder distribution
res <- resid(model3_std)
hist(res, breaks = 20, col = 'lightblue', freq = FALSE)
lines(density(res), col = 'red', lwd = 2)
shapiro.test(res) # the leftovers are NOT distributed normally
##
## Shapiro-Wilk normality test
##
## data: res
## W = 0.98214, p-value < 2.2e-16
#QQ-plot
par(mfrow = c(1, 1))
qqnorm(res)
qqline(res)
car::qqPlot(model3_std)
## 1402 1484
## 1346 1424
#The histogram, test and qqplot graphs DO NOT show the normal distribution of residuals
# homoscedasticity
plot(fitted(model3_std), res)
abline(0,0)
ggplot(data = model3_std, aes(x = .fitted, y = .stdresid)) +
geom_point() +
geom_hline(yintercept = 0)
bptest(model3_std) # The Broich — Pagan or Breusch — Pagan test
##
## studentized Breusch-Pagan test
##
## data: model3_std
## BP = 112.38, df = 2, p-value < 2.2e-16
# we can say that homoscedasticity does NOT hold
# let's check multicollinearity
car::vif(model3_std)
## Zstfgov Ztrstlgl
## 1.12121 1.12121
# there is NO multicollinearity
Linearity assumption: at the Residuals vs.Fitted plot a horizontal line, without distinct patterns can be seen, which is surely a good thing. (Our data is linear) The histogram, test and qqplot graphs DO NOT show the normal distribution of residuals Scale-Location & Residuals vs. Leverage plot DO NOT show us a horizontal line with equally, though in a funny way, spread points. This corresponds with NO homoscedasticity of our data.
In this project, we want to consider the impact of such a variable as the number of hours spent on the Internet on the indicator of the level of happiness, on satisfaction with the government and trust in the legal system. There is a significant amount of research on these topics. Some of those that we have considered: The study “Internet Use and Happiness: A Longitudinal Analysis” by Richard H. Hall suggests that students who spent the most hours on the Internet showed fewer scores on the scale of happiness than students who spent fewer hours on the Internet. Another study conducted by American researchers “E-Citizenship: Trust in Government, Political Efficiency, and Political Participation in the Internet Era” by Sari Sharoni shows that the relationship between these two factors is present, but it is impossible to say about the presence of direct correlation. Thus, we can emphasize that the number of hours spent on the Internet has a significant impact on different areas of a person’s life. Thus, our research question is: Which of these indicators (trust in the legal system, level of happiness, satisfaction with national government) does the number of hours spent on the Internet have the greatest impact?
Null statistic hypothesis: there is no relationship between the independent variables (trust in the legal system, level of happiness, satisfaction with national government) and the dependent variable (how often people use Internet)
The alternate statistic hypothesis is that there exists a relationship between the independent variables (trust in the legal system, level of happiness, satisfaction with national government) and the dependent variable (how often people use Internet)
df <- import("/Users/DP/OneDrive/Рабочий стол/ESS10.sav")
attributes(df$cntry)
## $label
## [1] "Country"
##
## $format.spss
## [1] "A2"
##
## $labels
## Albania Austria Belgium Bulgaria
## "AL" "AT" "BE" "BG"
## Switzerland Cyprus Czechia Germany
## "CH" "CY" "CZ" "DE"
## Denmark Estonia Spain Finland
## "DK" "EE" "ES" "FI"
## France United Kingdom Georgia Greece
## "FR" "GB" "GE" "GR"
## Croatia Hungary Ireland Iceland
## "HR" "HU" "IE" "IS"
## Israel Italy Lithuania Luxembourg
## "IL" "IT" "LT" "LU"
## Latvia Montenegro North Macedonia Netherlands
## "LV" "ME" "MK" "NL"
## Norway Poland Portugal Romania
## "NO" "PL" "PT" "RO"
## Serbia Russian Federation Sweden Slovenia
## "RS" "RU" "SE" "SI"
## Slovakia Turkey Ukraine Kosovo
## "SK" "TR" "UA" "XK"
gr <- filter(df, cntry=="GR")
dim(gr)
## [1] 2799 586
Variables which we use:
Name <- c("stfgov", "happy", "trstlgl", "netusoft" )
Meaning <- c("Satisfaction with government", "How happy are you", "Trust in the legal system", "How often person use the internet")
Type <- c("continuous ", "continuous ", "continuous ", "categorical")
Measurement <- c("0 - 10","0 - 10", "0 - 10", "1 - 5")
greece1 <- data.frame(Name, Meaning, Type, Measurement, stringsAsFactors = FALSE)
kable(greece1) %>%
kable_styling(bootstrap_options=c("bordered", "responsive","striped"), full_width = FALSE)
| Name | Meaning | Type | Measurement |
|---|---|---|---|
| stfgov | Satisfaction with government | continuous | 0 - 10 |
| happy | How happy are you | continuous | 0 - 10 |
| trstlgl | Trust in the legal system | continuous | 0 - 10 |
| netusoft | How often person use the internet | categorical | 1 - 5 |
gr <- select(gr, c("stfgov", "happy", "trstlgl", "netusoft"))
skim(gr)
| Name | gr |
| Number of rows | 2799 |
| Number of columns | 4 |
| _______________________ | |
| Column type frequency: | |
| numeric | 4 |
| ________________________ | |
| Group variables | None |
Variable type: numeric
| skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
|---|---|---|---|---|---|---|---|---|---|---|
| stfgov | 21 | 0.99 | 4.12 | 2.27 | 0 | 2 | 4 | 6 | 10 | ▇▇▇▅▁ |
| happy | 5 | 1.00 | 6.58 | 1.54 | 0 | 6 | 7 | 8 | 10 | ▁▁▅▇▁ |
| trstlgl | 13 | 1.00 | 6.43 | 2.26 | 0 | 5 | 7 | 8 | 10 | ▂▃▆▇▅ |
| netusoft | 5 | 1.00 | 3.97 | 1.56 | 1 | 3 | 5 | 5 | 5 | ▂▁▁▁▇ |
summary(gr)
## stfgov happy trstlgl netusoft
## Min. : 0.000 Min. : 0.000 Min. : 0.00 Min. :1.000
## 1st Qu.: 2.000 1st Qu.: 6.000 1st Qu.: 5.00 1st Qu.:3.000
## Median : 4.000 Median : 7.000 Median : 7.00 Median :5.000
## Mean : 4.116 Mean : 6.579 Mean : 6.43 Mean :3.972
## 3rd Qu.: 6.000 3rd Qu.: 8.000 3rd Qu.: 8.00 3rd Qu.:5.000
## Max. :10.000 Max. :10.000 Max. :10.00 Max. :5.000
## NA's :21 NA's :5 NA's :13 NA's :5
table(gr$netusoft)
##
## 1 2 3 4 5
## 499 100 151 273 1771
prop.table(table(gr$netusoft))
##
## 1 2 3 4 5
## 0.17859699 0.03579098 0.05404438 0.09770938 0.63385827
Consider this variable (netusoft), we see that categories 2 and 3 contain a small amount of data compared to the other categories of this permanent, since 2 is only occasionally using the Internet, and 3 is a few times a week, then they can be combined into one variable 2 - sometimes I use the Internet, it is necessary in order to avoid mistakes during further analysis.
gr$netusoft <- recode(gr$netusoft, "1=1; c(2,3)=2; 4=3; 5=4")
table(gr$netusoft)
##
## 1 2 3 4
## 499 251 273 1771
prop.table(table(gr$netusoft))
##
## 1 2 3 4
## 0.17859699 0.08983536 0.09770938 0.63385827
Now we see that categories 2 and 3 make up about 9% of all categories
gr$netusoft <- as.factor(gr$netusoft )
gr$stfgov = as.numeric(as.character(gr$stfgov))
gr$happy = as.numeric(as.character(gr$happy))
gr$trstlgl = as.numeric(as.character(gr$trstlgl))
gr <- drop_na(gr)
Here we refine the types of variables and remove missing values from the dataset. Otherwise we cannot compare different models.
We get general information about variables using the describe function
gr %>%
describe()
## vars n mean sd median trimmed mad min max range skew kurtosis
## stfgov 1 2755 4.11 2.27 4 4.10 2.97 0 10 10 0.09 -0.74
## happy 2 2755 6.58 1.53 7 6.69 1.48 0 10 10 -0.71 0.92
## trstlgl 3 2755 6.44 2.25 7 6.66 1.48 0 10 10 -0.73 -0.08
## netusoft* 4 2755 3.19 1.18 4 3.36 0.00 1 4 3 -1.02 -0.68
## se
## stfgov 0.04
## happy 0.03
## trstlgl 0.04
## netusoft* 0.02
Everything seems to be fine with these variables, we can move on to the next stage
gr %>%
pivot_longer(c(stfgov, happy, trstlgl),
names_to = 'Var', values_to = 'Score') %>%
ggplot(aes(y=Score)) +
geom_boxplot() +
ggtitle("Distribution of scores") +
xlab("Variable") +
ylab("Score") +
theme_bw()+
theme(legend.position="none") +
facet_wrap(~Var)
In boxplot we see several outliers in the values of happy and trust
gr %>%
pivot_longer(c(stfgov, happy, trstlgl),
names_to = 'Var', values_to = 'Score') %>%
ggplot(aes(x=Score, fill=Var)) +
geom_histogram(aes(y=..density.., fill = Var), bins = 10) +
geom_density(alpha = .5, color="blue")+
ggtitle("Distribution of scores") +
xlab("Variable") +
ylab("Score") +
theme_bw()+
theme(legend.position="none") +
facet_wrap(~Var)
As it can be seen from the histograms, satisfaction with government,
happy close to normal distribution. As for the trust in the legal system
the histogram is not normally distributed.
gr %>%
ggplot(aes(x = netusoft)) +
geom_bar(fill = "lightpink", color = "lightblue") +
xlab("Category") +
ylab("Frequency") +
theme_bw()
There is obviously a bias towards category 4 (Every day of Internet
use)
gr %>%
ggplot(aes(x=stfgov, y=happy)) +
geom_point(size=2) +
geom_smooth(method=lm)
## `geom_smooth()` using formula = 'y ~ x'
gr %>%
ggplot(aes(x=stfgov, y=trstlgl)) +
geom_point(size=2) +
geom_smooth(method=lm)
## `geom_smooth()` using formula = 'y ~ x'
gr %>%
ggplot(aes(x=trstlgl, y=happy)) +
geom_point(size=2) +
geom_smooth(method=lm)
## `geom_smooth()` using formula = 'y ~ x'
Based on the scatterplot, we see that: - there is a positive correlation
between happy and satisfaction with government - there is a positive
correlation between trust in the legal system and satisfaction with
government - there is a positive correlation between happy and trust in
the legal system
It is also important to look at how our continuous variables relate (using heatmaps):
heatmaply_cor(
cor(gr[,c('stfgov', 'happy', 'trstlgl')], method = "spearman"),
Colv=NA, Rowv=NA)
You can see that all variables are positively and moderately correlated. The highest correlation between happy and trust in the legal system (0.3206)
Initially, we standardized variables to be able to compare coefficients in models.
gr <- gr %>%
mutate(Zhappy = scale(happy)[,1],
Zstfgov = scale(stfgov)[,1],
Ztrstlgl = scale(trstlgl)[,1])
The first model is a model with a single predictor, in which we consider how happy can be predicted using satisfaction with government
model1 = lm(Zhappy ~ Zstfgov, data = gr)
summary(model1)
##
## Call:
## lm(formula = Zhappy ~ Zstfgov, data = gr)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3804 -0.5687 0.0834 0.6347 2.6443
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.410e-16 1.855e-02 0.00 1
## Zstfgov 2.288e-01 1.855e-02 12.34 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9736 on 2753 degrees of freedom
## Multiple R-squared: 0.05237, Adjusted R-squared: 0.05203
## F-statistic: 152.1 on 1 and 2753 DF, p-value: < 2.2e-16
sjPlot::tab_model(model1)
| Zhappy | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 0.00 | -0.04 – 0.04 | 1.000 |
| Zstfgov | 0.23 | 0.19 – 0.27 | <0.001 |
| Observations | 2755 | ||
| R2 / R2 adjusted | 0.052 / 0.052 | ||
Next, in the second model, we add the trust in legal system variable to understand whether this will affect the fact that we will be able to predict the level of happy better
model2 = lm(Zhappy ~ Zstfgov + Ztrstlgl, data = gr)
summary(model2)
##
## Call:
## lm(formula = Zhappy ~ Zstfgov + Ztrstlgl, data = gr)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3433 -0.5514 0.0364 0.6228 3.2574
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.768e-16 1.790e-02 0.00 1
## Zstfgov 1.410e-01 1.893e-02 7.45 1.24e-13 ***
## Ztrstlgl 2.703e-01 1.893e-02 14.28 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9396 on 2752 degrees of freedom
## Multiple R-squared: 0.1177, Adjusted R-squared: 0.1171
## F-statistic: 183.6 on 2 and 2752 DF, p-value: < 2.2e-16
sjPlot::tab_model(model2)
| Zhappy | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 0.00 | -0.04 – 0.04 | 1.000 |
| Zstfgov | 0.14 | 0.10 – 0.18 | <0.001 |
| Ztrstlgl | 0.27 | 0.23 – 0.31 | <0.001 |
| Observations | 2755 | ||
| R2 / R2 adjusted | 0.118 / 0.117 | ||
We also add a categorical variable (Internet use, how often) to the model to understand how it will help predict the level of happy
model3 = lm(Zhappy ~ Zstfgov + Ztrstlgl + netusoft, data = gr)
summary(model3)
##
## Call:
## lm(formula = Zhappy ~ Zstfgov + Ztrstlgl + netusoft, data = gr)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4219 -0.5196 0.0684 0.6250 3.1718
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.32071 0.04192 -7.651 2.73e-14 ***
## Zstfgov 0.15141 0.01863 8.125 6.67e-16 ***
## Ztrstlgl 0.27769 0.01870 14.848 < 2e-16 ***
## netusoft2 0.15063 0.07274 2.071 0.038464 *
## netusoft3 0.24220 0.07023 3.449 0.000572 ***
## netusoft4 0.44615 0.04743 9.406 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9233 on 2749 degrees of freedom
## Multiple R-squared: 0.149, Adjusted R-squared: 0.1475
## F-statistic: 96.27 on 5 and 2749 DF, p-value: < 2.2e-16
sjPlot::tab_model(model3)
| Zhappy | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | -0.32 | -0.40 – -0.24 | <0.001 |
| Zstfgov | 0.15 | 0.11 – 0.19 | <0.001 |
| Ztrstlgl | 0.28 | 0.24 – 0.31 | <0.001 |
| netusoft [2] | 0.15 | 0.01 – 0.29 | 0.038 |
| netusoft [3] | 0.24 | 0.10 – 0.38 | 0.001 |
| netusoft [4] | 0.45 | 0.35 – 0.54 | <0.001 |
| Observations | 2755 | ||
| R2 / R2 adjusted | 0.149 / 0.147 | ||
anova(model1,model2)
## Analysis of Variance Table
##
## Model 1: Zhappy ~ Zstfgov
## Model 2: Zhappy ~ Zstfgov + Ztrstlgl
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 2753 2609.8
## 2 2752 2429.7 1 180.04 203.92 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
It is necessary to look at the p-value, for models it is <0.05, after which we consider the RSS value and the model with a lower value is better, that is, the second model is better than the first
anova(model2, model3)
## Analysis of Variance Table
##
## Model 1: Zhappy ~ Zstfgov + Ztrstlgl
## Model 2: Zhappy ~ Zstfgov + Ztrstlgl + netusoft
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 2752 2429.7
## 2 2749 2343.6 3 86.1 33.664 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
The third model is better than the second one
model4 = lm(Zhappy ~ Zstfgov + Ztrstlgl + netusoft *Ztrstlgl + netusoft , data = gr)
summary(model4)
##
## Call:
## lm(formula = Zhappy ~ Zstfgov + Ztrstlgl + netusoft * Ztrstlgl +
## netusoft, data = gr)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4248 -0.5308 0.0500 0.6139 3.0981
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.31277 0.04273 -7.320 3.24e-13 ***
## Zstfgov 0.14862 0.01863 7.976 2.19e-15 ***
## Ztrstlgl 0.24291 0.04382 5.543 3.26e-08 ***
## netusoft2 0.17956 0.07380 2.433 0.015043 *
## netusoft3 0.23665 0.07064 3.350 0.000819 ***
## netusoft4 0.43750 0.04810 9.095 < 2e-16 ***
## Ztrstlgl:netusoft2 0.21003 0.07162 2.932 0.003390 **
## Ztrstlgl:netusoft3 0.08643 0.07099 1.218 0.223511
## Ztrstlgl:netusoft4 0.01051 0.04885 0.215 0.829618
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9218 on 2746 degrees of freedom
## Multiple R-squared: 0.1528, Adjusted R-squared: 0.1503
## F-statistic: 61.89 on 8 and 2746 DF, p-value: < 2.2e-16
sjPlot::tab_model(model4)
| Zhappy | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | -0.31 | -0.40 – -0.23 | <0.001 |
| Zstfgov | 0.15 | 0.11 – 0.19 | <0.001 |
| Ztrstlgl | 0.24 | 0.16 – 0.33 | <0.001 |
| netusoft [2] | 0.18 | 0.03 – 0.32 | 0.015 |
| netusoft [3] | 0.24 | 0.10 – 0.38 | 0.001 |
| netusoft [4] | 0.44 | 0.34 – 0.53 | <0.001 |
| Ztrstlgl × netusoft [2] | 0.21 | 0.07 – 0.35 | 0.003 |
| Ztrstlgl × netusoft [3] | 0.09 | -0.05 – 0.23 | 0.224 |
| Ztrstlgl × netusoft [4] | 0.01 | -0.09 – 0.11 | 0.830 |
| Observations | 2755 | ||
| R2 / R2 adjusted | 0.153 / 0.150 | ||
anova(model3, model4)
## Analysis of Variance Table
##
## Model 1: Zhappy ~ Zstfgov + Ztrstlgl + netusoft
## Model 2: Zhappy ~ Zstfgov + Ztrstlgl + netusoft * Ztrstlgl + netusoft
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 2749 2343.6
## 2 2746 2333.3 3 10.353 4.0615 0.006856 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
It is necessary to look at the p-value, for models it is <0.05, after which we consider the RSS value and the model with a lower value is better, that is, the second model is better than the first, so model 4 is better
plot_model(model4, type = "int", terms = "netusoft", mdrt.values = "minmax")
marg1 <- ggeffects::ggpredict(model4,terms = c("Ztrstlgl",'netusoft'))
plot(marg1)
Based on this graph, we can conclude that if a respondent is related to sometimes group of using Internet and he or she has high level of trust in legal system then coefficient of happy is higher than in other categories. However if a respondent is related to sometimes group of using Internet and he or she has low level of trust in legal system then coefficient of happy is lower than in other categories.
tab_model(model3, model4)
| Zhappy | Zhappy | |||||
|---|---|---|---|---|---|---|
| Predictors | Estimates | CI | p | Estimates | CI | p |
| (Intercept) | -0.32 | -0.40 – -0.24 | <0.001 | -0.31 | -0.40 – -0.23 | <0.001 |
| Zstfgov | 0.15 | 0.11 – 0.19 | <0.001 | 0.15 | 0.11 – 0.19 | <0.001 |
| Ztrstlgl | 0.28 | 0.24 – 0.31 | <0.001 | 0.24 | 0.16 – 0.33 | <0.001 |
| netusoft [2] | 0.15 | 0.01 – 0.29 | 0.038 | 0.18 | 0.03 – 0.32 | 0.015 |
| netusoft [3] | 0.24 | 0.10 – 0.38 | 0.001 | 0.24 | 0.10 – 0.38 | 0.001 |
| netusoft [4] | 0.45 | 0.35 – 0.54 | <0.001 | 0.44 | 0.34 – 0.53 | <0.001 |
| Ztrstlgl × netusoft [2] | 0.21 | 0.07 – 0.35 | 0.003 | |||
| Ztrstlgl × netusoft [3] | 0.09 | -0.05 – 0.23 | 0.224 | |||
| Ztrstlgl × netusoft [4] | 0.01 | -0.09 – 0.11 | 0.830 | |||
| Observations | 2755 | 2755 | ||||
| R2 / R2 adjusted | 0.149 / 0.147 | 0.153 / 0.150 | ||||
par(mfrow = c(2, 2))
plot(model4)
Linearity assumption: at the Residuals vs.Fitted plot a horizontal line,
without distinct patterns can be seen, so our data is linear At the Q-Q
plot points follow the straight dashed line, which is a indicator of
normally distributed residuals. Scale-Location plot show us a red
horizontal line with equally. This corresponds with the homoscedasticity
of our data. On Residuals vs Leverage plot we can spot only a couple of
outliers
Based on our results, we can conclude that our hypothesis that the relationship between the (написать какие переменные) and (название зависимой переменной) has been confirmed. All three variables that were used in the analysis have a significant impact on a person’s happiness (coefficients are statistically significant) We can also see that the interaction of trust in legal system and frequency of using internet is significant Which again indicates that if a person trusts the government and at the same time uses the Internet uses the Internet every day, then his level of happiness will be higher than that of other categories. Also, if a person does not trust the government and uses the Internet every day, then his level of happiness will be lower than that of all other categories with the same trust in the government.
1)Mazzurco, Sari, E-Citizenship: Trust in Government, Political Efficacy, and Political Participation in the Internet Era (July 2012). Electronic Media & Politics, 1 (8): 119-135, Available at SSRN: https://ssrn.com/abstract=3342574
2)Kitazawa, M., Yoshimura, M., Hitokoto, H. et al. Survey of the effects of internet usage on the happiness of Japanese university students. Health Qual Life Outcomes 17, 151 (2019). https://doi.org/10.1186/s12955-019-1227-5