library(rio)
library(dplyr) 
## 
## Присоединяю пакет: 'dplyr'
## Следующие объекты скрыты от 'package:stats':
## 
##     filter, lag
## Следующие объекты скрыты от 'package:base':
## 
##     intersect, setdiff, setequal, union
library(ggplot2) 
library(PerformanceAnalytics) 
## Загрузка требуемого пакета: xts
## Загрузка требуемого пакета: zoo
## 
## Присоединяю пакет: 'zoo'
## Следующие объекты скрыты от 'package:base':
## 
##     as.Date, as.Date.numeric
## 
## ######################### Warning from 'xts' package ##########################
## #                                                                             #
## # The dplyr lag() function breaks how base R's lag() function is supposed to  #
## # work, which breaks lag(my_xts). Calls to lag(my_xts) that you type or       #
## # source() into this session won't work correctly.                            #
## #                                                                             #
## # Use stats::lag() to make sure you're not using dplyr::lag(), or you can add #
## # conflictRules('dplyr', exclude = 'lag') to your .Rprofile to stop           #
## # dplyr from breaking base R's lag() function.                                #
## #                                                                             #
## # Code in packages is not affected. It's protected by R's namespace mechanism #
## # Set `options(xts.warn_dplyr_breaks_lag = FALSE)` to suppress this warning.  #
## #                                                                             #
## ###############################################################################
## 
## Присоединяю пакет: 'xts'
## Следующие объекты скрыты от 'package:dplyr':
## 
##     first, last
## 
## Присоединяю пакет: 'PerformanceAnalytics'
## Следующий объект скрыт от 'package:graphics':
## 
##     legend
library(Hmisc) 
## 
## Присоединяю пакет: 'Hmisc'
## Следующие объекты скрыты от 'package:dplyr':
## 
##     src, summarize
## Следующие объекты скрыты от 'package:base':
## 
##     format.pval, units
library(corrplot) 
## corrplot 0.92 loaded
library(RColorBrewer)
library(heatmaply) 
## Загрузка требуемого пакета: plotly
## 
## Присоединяю пакет: 'plotly'
## Следующий объект скрыт от 'package:Hmisc':
## 
##     subplot
## Следующий объект скрыт от 'package:ggplot2':
## 
##     last_plot
## Следующий объект скрыт от 'package:rio':
## 
##     export
## Следующий объект скрыт от 'package:stats':
## 
##     filter
## Следующий объект скрыт от 'package:graphics':
## 
##     layout
## Загрузка требуемого пакета: viridis
## Загрузка требуемого пакета: viridisLite
## 
## ======================
## Welcome to heatmaply version 1.4.2
## 
## Type citation('heatmaply') for how to cite the package.
## Type ?heatmaply for the main documentation.
## 
## The github page is: https://github.com/talgalili/heatmaply/
## Please submit your suggestions and bug-reports at: https://github.com/talgalili/heatmaply/issues
## You may ask questions at stackoverflow, use the r and heatmaply tags: 
##   https://stackoverflow.com/questions/tagged/heatmaply
## ======================
library(psych) 
## 
## Присоединяю пакет: 'psych'
## Следующий объект скрыт от 'package:Hmisc':
## 
##     describe
## Следующие объекты скрыты от 'package:ggplot2':
## 
##     %+%, alpha
library(lmtest) 
library(skimr) 
library(broom) 
library(tidyr) 
library(apaTables)
library(stargazer)
## 
## Please cite as:
##  Hlavac, Marek (2022). stargazer: Well-Formatted Regression and Summary Statistics Tables.
##  R package version 5.2.3. https://CRAN.R-project.org/package=stargazer
library(ggfortify)
library (car)
## Загрузка требуемого пакета: carData
## 
## Присоединяю пакет: 'car'
## Следующий объект скрыт от 'package:psych':
## 
##     logit
## Следующий объект скрыт от 'package:dplyr':
## 
##     recode
library (sjPlot)
library(kableExtra)
## 
## Присоединяю пакет: 'kableExtra'
## Следующий объект скрыт от 'package:dplyr':
## 
##     group_rows
library(ggthemes)
library(foreign)
library(gmodels)
library(moments)
## 
## Присоединяю пакет: 'moments'
## Следующие объекты скрыты от 'package:PerformanceAnalytics':
## 
##     kurtosis, skewness

1 Project 1

1.1 Introduction

Our team is Biba and Boba (Diana Piskareva and Daria Rukosueva). Our team wants to explore: The relationship between trust in state institutions and the amount of time spent on media resources.

We are interested in this topic because a large number of studies are devoted to the relationship between media and political participation. According to the Dimensions results, about 50 articles on this topic were published in 2018. Further research on this issue was on the decline, so research analysis of this aspect now seems necessary and important.

(https://app.dimensions.ai/discover/publication?search_mode=content&search_text=political%20participation%20and%20media%20consuption&search_type=kws&search_field=full_search)

Also we were interested in this one because we see how the amount of time in absolutely different media resources increases from generation to generation, so for example, based on Zenith data, in 2021 Americans spent 252 minutes a day on my mobile Internet, and in 2012 60 minutes, this can be assumed to have happened due to the availability of devices with access to the Internet and a reduction in the cost of the Internet itself.

(https://www.vox.com/recode/2020/1/6/21048116/tech-companies-time-well-spent-mobile-phone-usage-data)

We chose Ukraine because these are the states of the post-Soviet space within which we are located, and therefore it would be interesting to observe the relationships that will appear within this state of the near abroad, since this may be applied (or vice versa not) in relation to Russia.

Our research question: how does the amount of time spent in the media space affect political trust?

1.2 Manipulating the data

Thus, in order to perform the necessary manipulations with the data, we downloaded the date ESS 2012

ESS6 <-
  read.spss("/Users/DP/Downloads/ESS6.sav",
            use.value.labels = T,
            to.data.frame = T)

Next, we directly selected the relevant data for our study

ESS6 <- dplyr:: select(ESS6, c("cntry", "tvtot", "tvpol", "polintr", "trstlgl", "trstplc", "trstplt"))
ESSn <- filter(ESS6, cntry=="Ukraine")

Next, we came across the fact that some of the data we need is presented in a categorical format, so we converted them to numerical

ESSn = ESSn %>% mutate(trstlgl = case_when(trstlgl=="No trust at all" ~ "0",trstlgl=="1" ~ "1",trstlgl=="2" ~ "2", trstlgl=="3" ~ "3", trstlgl=="4" ~ "4", trstlgl=="5" ~ "5", trstlgl=="6" ~ "6",trstlgl=="7" ~ "7",trstlgl=="8" ~ "8", trstlgl=="9" ~ "9", trstlgl=="Complete trust" ~ "10"))

ESSn = ESSn %>% mutate(polintr = case_when(polintr=="Very interested" ~ "4",polintr=="Quite interested" ~ "3",polintr=="Hardly interested" ~ "2", polintr=="Not at all interested" ~ "1"))

ESSn = ESSn %>% mutate(trstplc = case_when(trstplc=="No trust at all" ~ "0",trstplc=="Complete trust" ~ "10",trstplc=="1" ~ "1",trstplc=="2" ~ "2", trstplc=="3" ~ "3", trstplc=="4" ~ "4", trstplc=="5" ~ "5", trstplc=="6" ~ "6",trstplc=="7" ~ "7",trstplc=="8" ~ "8", trstplc=="9" ~ "9"))

ESSn = ESSn %>% mutate(trstplt = case_when(trstplt=="No trust at all" ~ "0",trstplt=="Complete trust" ~ "10",trstplt=="1" ~ "1",trstplt=="2" ~ "2", trstplt=="3" ~ "3", trstplt=="4" ~ "4", trstplt=="5" ~ "5", trstplt=="6" ~ "6",trstplt=="7" ~ "7",trstplt=="8" ~ "8", trstplt=="9" ~ "9"))
ESSn$trstlgl <- as.numeric(as.character(ESSn$trstlgl))

ESSn$polintr <- as.numeric(as.character(ESSn$polintr))

ESSn$trstplc <- as.numeric(as.character(ESSn$trstplc))

ESSn$trstplt <- as.numeric(as.character(ESSn$trstplt))

The following table describes the categories of the variables we have selected

Variable = c("tvpol","tvtot","polintr","trstlgl","trstplc","trstplt")

Meaning = c("TV watching, news/politics/current, affairs on average weekday", "TV watching, total time on average weekday", "How interested in politics", "Trust in the legal system", "Trust in policy", "Trust in politicans")
  
Type = c("Ordinal", "Ordinal","Numeric","Numeric","Numeric","Numeric") 


df <- data.frame(Variable, Meaning, Type, stringsAsFactors = FALSE)
df %>% kbl() %>% kable_minimal()
Variable Meaning Type
tvpol TV watching, news/politics/current, affairs on average weekday Ordinal
tvtot TV watching, total time on average weekday Ordinal
polintr How interested in politics Numeric
trstlgl Trust in the legal system Numeric
trstplc Trust in policy Numeric
trstplt Trust in politicans Numeric

1.3 Data measurements

Next, we calculate the mean, mode and median indicators for our variables

Mode <- function(x) {
  ux <- unique(x)
  ux[which.max(tabulate(match(x, ux)))]
}  
ESSn$polintr =  as.numeric(as.character(ESSn$polintr))
polintr <- c(mean(ESSn$polintr, na.rm = TRUE), Mode(ESSn$polintr), median(ESSn$polintr, na.rm = TRUE))
names(polintr) <- c("mean", "mode", "median")

ESSn$trstlgl =  as.numeric(as.character(ESSn$trstlgl))
trstlgl <- c(mean(ESSn$trstlgl, na.rm = TRUE), Mode(ESSn$trstlgl), median(ESSn$trstlgl, na.rm = TRUE))
names(trstlgl) <- c("mean", "mode", "median")

ESSn$trstplc =  as.numeric(as.character(ESSn$trstplc))
trstplc <- c(mean(ESSn$trstplc, na.rm = TRUE), Mode(ESSn$trstplc), median(ESSn$trstplc, na.rm = TRUE))
names(trstplc) <- c("mean", "mode", "median")

ESSn$trstplt =  as.numeric(as.character(ESSn$trstplt))
trstplt <- c(mean(ESSn$trstplt, na.rm = TRUE), Mode(ESSn$trstplt), median(ESSn$trstplt, na.rm = TRUE))
names(trstplt) <- c("mean", "mode", "median")



measure =  data.frame(polintr, trstlgl, trstplc, trstplt, stringsAsFactors = FALSE)

kable(measure) %>% 
  kable_styling(bootstrap_options=c("bordered", "responsive","striped"), full_width = FALSE)
polintr trstlgl trstplc trstplt
mean 2.161049 1.866176 2.045823 1.722329
mode 2.000000 0.000000 0.000000 0.000000
median 2.000000 1.000000 1.000000 1.000000

1.4 Visualisation

Next, we want to find out how much time people spend consuming content in general, how many people consume content for more than a few hours a day and how many people in general practically do not watch TV, do not read newspapers, etc.

ggplot(ESSn, aes(x = tvtot)) +
  geom_bar(color = "white", fill = "white") +
  coord_flip() +
  scale_x_discrete(limits = rev(levels(ESSn$tvtot))) +
  theme(panel.background = element_rect(fill = "pink", colour = "white"))

As we can see on this histogram, the largest indicator is from 1.5 hours to 2, the next largest is more than three hours, and what is even more significant for us is the fact that the number of people who said that they do not consume this kind of content at all is extremely small in relation to other indicators

Next, we want to consider whether these indicators differ in the context of not just media content consumption, but content directly related to politics and news

ggplot(ESSn, aes(x = tvpol)) +
  geom_bar(color = "white", fill = "white") +
  coord_flip() +
  scale_x_discrete(limits = rev(levels(ESSn$tvpol))) +
  theme(panel.background = element_rect(fill = "pink", colour = "white"))

And in this case, we see that political content is consumed much less than TV viewing in general. The largest indicator in this case will be less than 0.5 hours, which again is strikingly different from the consumption of content in general, the smallest indicator will be from 2 hours to 2.5

Our next step is the question of how much people in this state as a whole are interested in politics

ggplot(ESSn, aes(x = polintr)) +
  geom_histogram(binwidth = 1, colour = "pink", fill = "white") +
  theme(panel.background = element_rect(fill = "pink", colour = "black"))

According to these data, the majority of people are barely interested in politics, while the smallest group will be people who are actively interested in politics At this stage, we can see a certain correlation between the fact that people do not consume a large amount of political content and, in general, when asked about interest in political processes, they say more about a small interest

Our next aspect is trust in the legal system

ESSn %>% 
  
ggplot() +
  geom_bar(aes(y = trstlgl), fill="pink") +
  labs (x="Amount of people", y="Trust in the legal system") 

In this case, we see that trust in the legal system is almost completely absent, the greatest indicator is a sneaky distrust of the legal system

further, in more detail, we also want to consider the relationship of trust in the legal system with viewing political content

box_plot <- ggplot(ESSn, aes(x = trstlgl, y = tvpol))
box_plot +
    geom_boxplot(fill="pink")

In this case, we can see that the average indicators of trust in political systems for almost all groups will be similar, at a not very high level, the only critical exceptions here will be people who do not consume this content at all, their average value is zero, as well as people who consume from 1 to 1.5 hours of political content, their the average value is much higher than the others and their response range is also much wider. While all other groups have approximately the same range of responses regardless of the number of hours viewed. The only small exception in this case for gas can be a group consuming from 2 to 2.5 hours, while those who consume only 0.5 more already have much more standard indicators

Also in this context, it would be logical to consider whether there are serious differences in the range between trust in politicians and trust in police

ggplot(ESSn, aes(x=trstplc, y=trstplt))+
  geom_point(color="pink", position = "jitter")+
  labs( x = "Trust in the police", y = "Trust in the politicans")

Here we see that there is a correlation between a lack of trust in politicians and a lack of trust in the police, it is quite obvious that most people, not trusting politicians, also adhere to a position of distrust in relation to other state institutions

ggplot(ESSn, aes(fill=tvpol, y=tvtot, x=polintr)) + 
  geom_bar(position='stack', stat='identity') +
  theme_wsj()

And the last graph we reviewed brings us back to the issue of viewing ordinary content and political content, here we see that almost all groups consuming TV content are characterized by a small amount of consumed political content. In this case, it is important to note and pay attention that people consume it for less than an hour or up to an hour, but the number of people who answered that they do not watch it is quite small

In this case, returning to our research question, we can say that the amount of content conducted does not critically affect the credibility of politics, the only exception here will be only people who do not consume political content at all, only in their case we see a correlation between the absence of this content and also the lack of trust in politics. We can assume that trust in political institutions will be more influenced by trust in individual political institutions than viewing political content

2 Project 2

ESS10 <- import("/Users/DP/OneDrive/Рабочий стол/ESS10.sav")
str(df)
## 'data.frame':    6 obs. of  3 variables:
##  $ Variable: chr  "tvpol" "tvtot" "polintr" "trstlgl" ...
##  $ Meaning : chr  "TV watching, news/politics/current, affairs on average weekday" "TV watching, total time on average weekday" "How interested in politics" "Trust in the legal system" ...
##  $ Type    : chr  "Ordinal" "Ordinal" "Numeric" "Numeric" ...
View(head(df))

2.1 Clean the data

Step 0 - clear the dataset, leave only important things

greece <- filter(ESS10, ESS10$cntry == "GR")

Let’s describe relationships between the following pairs of variables:

  • polintr and vote

I expect to find out if there is a relationship between the level of political interest (polintr) and whether individuals voted during last national elections (vote).

greece_2 <- greece %>% dplyr:: select(polintr, vote)
greece_2 <- na.omit(greece_2)
greece_2
##      polintr vote
## 1          3    1
## 2          3    1
## 3          2    1
## 4          3    3
## 5          3    1
## 6          4    1
## 7          3    1
## 8          4    1
## 9          3    1
## 10         4    1
## 11         1    1
## 12         2    1
## 13         3    1
## 14         3    2
## 15         2    1
## 16         2    1
## 17         1    1
## 18         4    1
## 19         2    1
## 20         4    1
## 22         4    1
## 23         2    1
## 24         3    1
## 25         3    1
## 26         1    1
## 27         3    1
## 28         2    1
## 29         2    1
## 30         4    2
## 31         2    1
## 32         2    1
## 33         4    1
## 34         3    2
## 35         2    1
## 36         4    1
## 37         4    1
## 38         4    1
## 39         2    1
## 40         4    2
## 41         3    3
## 42         4    1
## 43         3    1
## 44         2    1
## 45         2    1
## 46         1    1
## 47         1    1
## 48         4    1
## 49         4    1
## 50         3    1
## 51         1    1
## 52         4    1
## 53         4    2
## 54         2    1
## 55         1    2
## 56         4    1
## 57         3    1
## 58         3    1
## 59         4    1
## 60         4    1
## 61         2    1
## 62         2    1
## 63         3    1
## 64         2    1
## 65         3    1
## 66         3    1
## 67         3    1
## 68         4    1
## 69         4    1
## 70         2    1
## 71         2    1
## 72         4    2
## 73         3    1
## 74         2    1
## 75         2    1
## 76         2    1
## 77         4    1
## 78         4    1
## 80         2    1
## 81         1    1
## 82         3    1
## 83         2    1
## 84         2    1
## 85         3    1
## 86         4    1
## 87         4    1
## 88         4    1
## 89         3    1
## 90         1    1
## 91         2    1
## 93         3    1
## 95         3    1
## 96         4    1
## 97         1    1
## 98         1    1
## 99         2    1
## 100        1    1
## 101        3    1
## 102        4    3
## 103        3    1
## 104        2    1
## 105        2    1
## 106        4    1
## 107        4    1
## 108        2    1
## 109        4    2
## 110        4    2
## 111        4    1
## 112        4    1
## 113        3    1
## 114        2    1
## 115        3    1
## 116        3    2
## 117        4    1
## 118        4    1
## 119        2    1
## 120        4    1
## 121        4    1
## 122        3    1
## 123        2    1
## 124        3    1
## 125        2    1
## 126        3    1
## 127        3    1
## 128        2    1
## 129        1    1
## 130        2    2
## 131        3    1
## 132        1    1
## 133        1    1
## 134        4    1
## 135        1    1
## 136        4    1
## 137        4    1
## 138        2    1
## 139        3    1
## 141        2    2
## 142        3    2
## 143        3    1
## 144        3    1
## 145        4    1
## 146        3    2
## 147        2    2
## 148        4    1
## 149        2    1
## 150        3    1
## 151        3    1
## 152        4    1
## 153        2    1
## 154        4    1
## 155        3    1
## 156        2    2
## 157        3    2
## 158        1    1
## 159        2    1
## 160        3    1
## 161        3    1
## 162        3    2
## 163        4    1
## 164        3    1
## 165        2    1
## 166        4    1
## 167        1    1
## 168        3    1
## 169        1    1
## 170        3    1
## 171        4    1
## 172        4    1
## 174        2    1
## 175        2    1
## 176        3    2
## 177        2    1
## 178        3    1
## 179        1    1
## 180        4    1
## 181        4    1
## 182        4    1
## 183        3    1
## 184        3    2
## 185        2    2
## 186        3    1
## 187        3    1
## 188        4    1
## 189        3    1
## 190        3    1
## 191        4    1
## 192        3    1
## 193        4    3
## 194        3    1
## 195        3    1
## 196        4    1
## 197        4    1
## 198        4    1
## 200        3    1
## 201        4    3
## 202        3    1
## 203        3    1
## 204        4    1
## 205        2    1
## 206        4    2
## 207        4    1
## 208        4    2
## 209        3    1
## 210        1    1
## 211        4    1
## 212        4    1
## 213        4    1
## 214        4    1
## 215        3    1
## 216        3    1
## 217        4    1
## 218        4    1
## 219        4    2
## 220        4    1
## 221        2    1
## 222        3    1
## 223        2    1
## 224        3    1
## 225        3    1
## 226        2    1
## 227        2    1
## 228        2    1
## 229        1    1
## 230        2    1
## 231        4    1
## 232        3    1
## 233        4    1
## 234        3    1
## 235        3    2
## 236        3    1
## 237        3    1
## 239        2    1
## 240        3    1
## 241        3    1
## 242        2    1
## 243        2    1
## 244        3    1
## 245        3    1
## 246        3    1
## 248        4    2
## 250        2    1
## 251        3    1
## 252        2    1
## 253        4    1
## 254        2    1
## 255        3    2
## 256        3    1
## 257        3    1
## 258        4    2
## 259        3    1
## 260        4    1
## 261        4    1
## 262        4    3
## 263        2    1
## 264        1    1
## 265        3    2
## 266        4    1
## 267        4    1
## 268        3    1
## 269        2    1
## 270        3    1
## 271        3    1
## 272        2    2
## 273        3    1
## 274        3    1
## 275        2    2
## 276        3    1
## 277        2    1
## 278        3    1
## 279        2    1
## 280        2    1
## 281        4    1
## 282        2    1
## 283        2    1
## 284        4    2
## 285        4    1
## 286        4    1
## 287        4    1
## 288        2    1
## 289        3    2
## 290        3    1
## 292        4    1
## 293        4    1
## 294        3    1
## 295        4    1
## 296        4    1
## 297        4    1
## 298        3    2
## 299        4    1
## 300        2    1
## 301        2    1
## 302        4    1
## 303        4    1
## 304        2    2
## 305        3    1
## 307        2    1
## 308        4    2
## 309        2    2
## 310        3    2
## 311        3    1
## 312        4    2
## 313        1    1
## 314        2    1
## 315        4    1
## 316        4    1
## 317        2    1
## 318        3    2
## 319        4    1
## 320        4    1
## 321        4    2
## 322        2    1
## 323        3    1
## 324        2    1
## 325        2    1
## 326        2    1
## 327        4    1
## 328        2    1
## 329        2    1
## 330        4    1
## 331        4    1
## 332        1    1
## 333        4    1
## 334        3    1
## 335        3    1
## 336        4    1
## 337        3    1
## 338        2    1
## 339        1    1
## 340        4    2
## 341        4    1
## 342        2    1
## 343        3    1
## 344        4    1
## 345        3    1
## 346        4    2
## 347        2    1
## 348        2    1
## 349        4    1
## 350        2    1
## 351        3    1
## 352        3    1
## 353        4    1
## 354        2    1
## 355        3    1
## 356        4    1
## 357        2    1
## 358        2    1
## 359        3    1
## 360        3    1
## 361        2    2
## 362        4    1
## 363        3    1
## 364        4    1
## 365        2    1
## 366        3    1
## 367        3    1
## 368        3    1
## 370        4    1
## 371        4    1
## 372        4    1
## 373        3    1
## 374        2    1
## 375        4    1
## 376        4    2
## 377        2    1
## 378        4    2
## 379        3    2
## 380        4    2
## 381        2    1
## 382        2    1
## 383        2    1
## 384        4    1
## 385        4    1
## 386        2    1
## 387        4    1
## 388        2    1
## 389        4    2
## 390        4    3
## 391        4    1
## 392        2    1
## 393        4    2
## 394        2    2
## 395        3    1
## 396        4    1
## 397        4    1
## 398        4    1
## 399        4    1
## 400        3    1
## 401        2    1
## 402        2    1
## 403        1    1
## 404        2    1
## 405        2    1
## 406        4    2
## 407        4    2
## 408        3    3
## 409        4    1
## 410        3    1
## 411        4    1
## 412        3    1
## 413        4    1
## 414        2    1
## 415        4    1
## 416        3    1
## 417        2    1
## 418        2    1
## 419        2    1
## 420        2    1
## 421        4    1
## 422        4    1
## 423        3    1
## 424        1    1
## 425        3    1
## 426        4    1
## 427        4    1
## 428        4    1
## 429        4    1
## 430        2    1
## 431        4    2
## 432        4    1
## 433        3    1
## 434        3    2
## 435        2    1
## 436        4    1
## 437        4    1
## 438        2    1
## 439        2    1
## 440        2    2
## 441        2    1
## 442        2    1
## 443        3    1
## 444        2    2
## 445        3    1
## 446        2    1
## 447        3    2
## 448        3    2
## 449        2    1
## 450        3    1
## 451        4    1
## 452        3    2
## 453        3    1
## 454        3    1
## 455        4    1
## 456        4    1
## 457        4    1
## 458        4    1
## 459        4    1
## 460        3    1
## 461        4    1
## 462        4    1
## 463        3    2
## 464        1    1
## 465        3    1
## 466        3    1
## 467        3    1
## 468        3    1
## 469        4    1
## 470        4    1
## 471        4    1
## 472        4    2
## 473        3    1
## 474        2    1
## 475        4    1
## 476        3    1
## 477        4    2
## 479        3    1
## 480        2    1
## 481        2    2
## 482        1    1
## 483        3    1
## 484        4    1
## 485        3    2
## 486        4    2
## 487        4    1
## 488        4    1
## 489        4    1
## 490        3    1
## 491        4    1
## 492        2    1
## 493        2    2
## 494        4    2
## 495        4    1
## 496        3    1
## 497        4    1
## 498        4    1
## 499        2    1
## 500        3    1
## 501        3    1
## 502        2    1
## 503        4    1
## 504        4    1
## 505        3    1
## 506        3    1
## 507        2    2
## 508        3    1
## 509        1    1
## 510        2    1
## 511        4    1
## 512        2    1
## 513        2    1
## 514        4    2
## 515        4    2
## 516        4    1
## 517        2    1
## 518        3    1
## 519        3    1
## 520        3    1
## 521        2    1
## 522        4    1
## 523        4    2
## 524        3    1
## 525        2    1
## 526        4    1
## 527        2    2
## 528        4    1
## 529        4    2
## 530        2    1
## 531        3    1
## 532        4    1
## 533        2    1
## 534        3    1
## 535        4    1
## 536        4    2
## 537        3    1
## 538        2    1
## 539        4    1
## 540        4    1
## 541        4    1
## 543        4    1
## 544        3    1
## 545        3    3
## 546        1    1
## 547        4    1
## 548        2    2
## 549        2    1
## 550        4    1
## 551        3    1
## 552        4    1
## 553        3    1
## 554        3    1
## 555        4    1
## 556        2    1
## 557        3    1
## 559        4    1
## 560        2    1
## 561        4    2
## 562        2    1
## 563        4    1
## 564        2    1
## 565        4    1
## 566        4    3
## 567        4    1
## 568        4    2
## 569        3    1
## 570        1    1
## 571        3    1
## 572        3    1
## 573        2    1
## 574        4    1
## 575        4    1
## 576        2    1
## 578        2    1
## 579        4    1
## 580        3    1
## 581        3    1
## 582        2    1
## 583        3    1
## 584        4    3
## 585        2    1
## 586        4    1
## 587        2    1
## 588        4    1
## 589        2    1
## 590        4    1
## 591        3    1
## 592        3    3
## 593        4    3
## 594        2    1
## 595        3    1
## 596        3    2
## 597        3    1
## 598        4    1
## 599        2    1
## 600        2    1
## 601        2    1
## 602        2    1
## 603        3    1
## 604        3    1
## 605        2    1
## 606        4    1
## 607        2    1
## 608        3    3
## 609        3    1
## 610        1    1
## 611        3    2
## 612        3    1
## 613        4    1
## 614        3    1
## 615        2    1
## 616        4    1
## 617        4    2
## 618        3    1
## 619        2    1
## 620        4    1
## 621        4    2
## 622        3    1
## 623        4    1
## 625        3    1
## 626        3    1
## 627        4    1
## 628        3    1
## 629        3    1
## 630        2    1
## 631        4    2
## 632        4    1
## 633        4    1
## 634        3    1
## 635        3    2
## 636        2    1
## 637        4    3
## 638        3    1
## 639        2    1
## 640        4    1
## 641        3    1
## 642        4    2
## 643        3    1
## 644        4    1
## 645        3    1
## 646        1    1
## 647        4    2
## 648        4    1
## 649        2    1
## 650        2    1
## 651        2    1
## 652        4    1
## 653        3    2
## 654        4    1
## 655        4    2
## 656        3    1
## 657        3    1
## 658        3    1
## 659        2    1
## 660        4    1
## 661        4    1
## 662        3    1
## 663        4    1
## 664        3    1
## 665        2    1
## 666        4    1
## 667        2    1
## 668        2    1
## 669        4    2
## 670        2    1
## 671        1    1
## 672        4    1
## 674        3    1
## 675        3    1
## 676        3    1
## 677        3    2
## 678        4    1
## 679        3    1
## 680        4    1
## 681        4    3
## 682        2    1
## 683        3    1
## 684        3    1
## 685        3    2
## 686        3    1
## 687        3    1
## 688        3    1
## 689        4    1
## 690        3    1
## 691        4    1
## 692        3    1
## 693        3    1
## 694        2    1
## 695        2    1
## 696        4    1
## 697        2    1
## 698        4    3
## 699        4    1
## 700        4    1
## 701        1    1
## 702        4    1
## 703        2    1
## 704        4    1
## 705        4    1
## 706        4    1
## 707        4    1
## 708        4    1
## 709        2    1
## 710        4    1
## 711        2    1
## 712        2    1
## 713        3    1
## 714        2    1
## 715        2    1
## 716        1    1
## 717        4    1
## 718        2    1
## 719        4    1
## 720        2    1
## 721        3    1
## 722        2    1
## 723        2    1
## 724        3    2
## 725        3    1
## 726        3    1
## 727        2    1
## 728        2    1
## 729        4    1
## 730        3    1
## 731        4    1
## 733        2    1
## 734        4    1
## 735        2    1
## 736        4    1
## 737        2    1
## 738        2    2
## 739        2    1
## 740        4    1
## 741        3    1
## 742        4    2
## 743        4    1
## 744        4    2
## 745        3    1
## 746        2    2
## 747        4    2
## 748        4    2
## 749        3    1
## 750        2    1
## 751        4    1
## 752        2    1
## 753        4    1
## 754        2    1
## 755        4    2
## 756        2    1
## 757        2    1
## 758        3    1
## 759        4    2
## 760        3    1
## 761        2    1
## 762        3    1
## 763        4    1
## 764        4    2
## 765        4    1
## 766        3    1
## 767        4    2
## 768        3    1
## 769        2    1
## 770        4    1
## 771        4    3
## 772        2    1
## 773        2    1
## 774        3    1
## 775        2    1
## 776        4    1
## 777        3    1
## 778        3    1
## 779        4    1
## 780        1    1
## 781        4    1
## 782        4    1
## 783        4    1
## 784        2    1
## 785        4    1
## 786        3    1
## 787        3    1
## 788        3    1
## 789        2    1
## 790        3    1
## 791        4    1
## 792        2    1
## 793        2    1
## 794        3    2
## 795        3    1
## 796        4    1
## 797        2    1
## 798        2    1
## 800        4    1
## 801        2    1
## 802        4    1
## 803        2    1
## 804        2    1
## 805        4    1
## 806        2    1
## 807        2    1
## 808        2    2
## 809        1    1
## 810        3    1
## 811        3    1
## 812        2    1
## 813        2    1
## 814        2    1
## 815        3    1
## 816        3    1
## 817        3    1
## 818        2    1
## 819        4    1
## 820        4    1
## 821        4    1
## 822        4    1
## 823        2    1
## 824        4    1
## 825        1    1
## 826        3    2
## 828        3    2
## 829        1    2
## 830        3    1
## 831        3    1
## 832        4    1
## 833        3    1
## 834        2    1
## 835        3    1
## 836        3    1
## 837        3    2
## 838        2    1
## 839        1    1
## 840        3    2
## 841        4    1
## 842        2    1
## 843        4    1
## 844        3    1
## 845        4    1
## 846        4    1
## 847        3    1
## 848        4    1
## 849        4    1
## 850        4    1
## 851        3    1
## 852        2    1
## 853        3    1
## 854        4    2
## 855        4    2
## 856        2    1
## 857        2    1
## 858        3    1
## 859        4    1
## 860        4    1
## 861        2    1
## 862        4    1
## 863        3    1
## 864        2    2
## 865        3    1
## 866        4    1
## 867        4    1
## 868        2    1
## 869        4    1
## 870        2    1
## 871        2    3
## 872        3    1
## 873        4    1
## 874        2    1
## 875        4    1
## 876        4    1
## 877        4    1
## 878        2    1
## 879        4    1
## 880        4    1
## 881        3    1
## 882        2    1
## 883        4    1
## 884        2    1
## 885        4    1
## 886        4    1
## 887        4    1
## 888        4    1
## 889        3    1
## 890        4    2
## 891        2    1
## 892        4    1
## 893        2    1
## 894        2    1
## 895        3    1
## 896        4    1
## 897        4    1
## 898        4    1
## 899        3    1
## 900        3    1
## 901        4    2
## 902        1    1
## 903        4    2
## 904        2    1
## 905        4    1
## 906        4    1
## 907        1    1
## 908        2    1
## 909        3    2
## 910        4    2
## 911        2    1
## 912        3    2
## 913        3    1
## 914        2    1
## 915        3    1
## 916        4    1
## 917        4    2
## 918        4    1
## 919        4    3
## 920        3    1
## 921        4    1
## 922        2    1
## 923        2    1
## 924        2    2
## 925        2    1
## 926        4    2
## 927        4    1
## 928        2    1
## 929        3    2
## 930        2    1
## 931        2    1
## 932        3    1
## 933        3    2
## 934        3    1
## 935        2    1
## 936        3    1
## 937        4    1
## 938        2    1
## 939        1    1
## 940        3    1
## 941        3    1
## 942        2    2
## 943        3    1
## 944        3    1
## 945        4    1
## 946        3    1
## 947        3    1
## 948        1    1
## 949        1    1
## 950        4    1
## 951        1    1
## 952        1    1
## 953        2    1
## 954        4    1
## 955        3    1
## 956        4    1
## 957        3    3
## 958        1    1
## 959        2    1
## 960        3    1
## 961        3    1
## 962        1    1
## 963        2    1
## 964        4    1
## 965        3    3
## 967        4    1
## 968        1    1
## 969        4    1
## 970        4    1
## 971        3    1
## 972        2    1
## 973        2    1
## 974        2    1
## 975        1    1
## 976        4    2
## 977        2    1
## 978        4    1
## 979        2    1
## 980        1    1
## 981        4    2
## 982        2    1
## 983        3    1
## 984        4    1
## 985        4    2
## 986        2    1
## 987        4    1
## 988        4    1
## 989        3    1
## 990        2    1
## 991        2    1
## 992        4    1
## 993        2    1
## 994        4    1
## 995        4    1
## 996        2    1
## 997        4    1
## 998        3    1
## 999        2    1
## 1000       4    1
## 1001       3    1
## 1002       4    1
## 1003       3    1
## 1004       3    1
## 1005       3    1
## 1006       4    2
## 1007       4    1
## 1008       3    1
## 1009       4    1
## 1010       4    1
## 1011       4    2
## 1012       3    1
## 1013       2    1
## 1014       4    1
## 1015       3    1
## 1016       3    1
## 1017       3    1
## 1018       2    1
## 1019       2    1
## 1020       2    1
## 1021       2    1
## 1022       3    1
## 1023       2    1
## 1024       2    1
## 1025       3    1
## 1026       4    1
## 1027       2    1
## 1028       4    1
## 1030       2    1
## 1031       4    2
## 1032       2    1
## 1034       2    1
## 1035       3    1
## 1036       4    1
## 1037       2    1
## 1038       4    1
## 1039       4    1
## 1040       4    1
## 1041       3    1
## 1042       2    1
## 1043       3    3
## 1044       3    1
## 1045       2    1
## 1046       4    1
## 1047       4    1
## 1048       3    1
## 1049       4    1
## 1050       4    2
## 1051       3    1
## 1052       4    1
## 1053       3    3
## 1054       1    1
## 1055       3    1
## 1056       4    1
## 1057       4    1
## 1058       2    1
## 1059       4    1
## 1060       2    1
## 1061       3    2
## 1062       2    1
## 1063       3    1
## 1064       3    1
## 1065       4    1
## 1066       4    1
## 1067       2    1
## 1068       3    1
## 1069       3    2
## 1070       3    1
## 1071       2    1
## 1072       4    1
## 1073       3    1
## 1074       4    1
## 1075       3    1
## 1076       1    1
## 1077       2    1
## 1078       4    1
## 1079       4    1
## 1080       3    1
## 1081       3    1
## 1082       4    1
## 1083       2    1
## 1084       4    1
## 1085       4    1
## 1086       3    2
## 1087       3    1
## 1088       2    1
## 1089       4    1
## 1090       4    1
## 1091       4    1
## 1092       4    1
## 1093       4    1
## 1094       4    1
## 1095       4    2
## 1096       4    1
## 1097       4    1
## 1098       2    1
## 1099       4    2
## 1100       4    2
## 1101       3    1
## 1102       3    1
## 1103       4    1
## 1104       3    1
## 1105       3    1
## 1106       4    1
## 1107       3    1
## 1108       4    1
## 1109       4    1
## 1110       4    3
## 1111       3    1
## 1112       2    1
## 1113       2    1
## 1114       3    1
## 1115       3    1
## 1116       3    1
## 1117       3    1
## 1118       3    1
## 1119       3    2
## 1120       3    2
## 1121       4    1
## 1122       3    1
## 1123       4    1
## 1124       2    2
## 1125       2    1
## 1126       3    1
## 1127       2    1
## 1128       2    1
## 1129       4    1
## 1130       2    1
## 1131       3    2
## 1132       4    2
## 1133       3    1
## 1134       2    1
## 1135       4    1
## 1136       4    1
## 1137       4    2
## 1138       4    1
## 1139       1    1
## 1140       1    3
## 1141       3    1
## 1142       1    1
## 1143       4    2
## 1144       3    1
## 1145       2    1
## 1146       4    1
## 1147       2    2
## 1148       3    1
## 1149       3    2
## 1150       3    1
## 1151       2    1
## 1152       4    1
## 1153       3    1
## 1154       1    1
## 1155       4    1
## 1156       4    2
## 1158       4    1
## 1159       3    1
## 1160       3    1
## 1161       3    1
## 1162       4    1
## 1163       3    2
## 1164       3    1
## 1165       4    1
## 1166       2    1
## 1167       4    1
## 1168       2    1
## 1169       2    1
## 1170       3    1
## 1171       1    1
## 1172       4    1
## 1173       3    1
## 1174       4    1
## 1175       2    1
## 1176       3    1
## 1177       4    1
## 1178       2    1
## 1179       3    3
## 1180       3    1
## 1181       3    1
## 1182       4    1
## 1183       2    1
## 1184       2    1
## 1185       2    1
## 1186       2    1
## 1187       3    1
## 1188       3    1
## 1189       3    1
## 1190       3    1
## 1191       3    1
## 1192       4    2
## 1193       2    1
## 1194       4    1
## 1195       4    2
## 1196       2    2
## 1197       1    1
## 1199       3    1
## 1200       2    1
## 1201       3    1
## 1202       2    1
## 1203       4    2
## 1204       4    1
## 1205       3    1
## 1206       3    1
## 1207       3    1
## 1208       3    3
## 1209       1    1
## 1210       3    3
## 1211       4    1
## 1212       1    1
## 1213       3    2
## 1214       4    1
## 1215       4    1
## 1216       2    1
## 1217       4    1
## 1218       3    1
## 1219       4    1
## 1220       4    1
## 1222       4    1
## 1223       1    1
## 1224       4    1
## 1225       3    1
## 1226       3    1
## 1227       2    3
## 1228       2    1
## 1229       3    1
## 1230       4    1
## 1231       4    1
## 1232       4    1
## 1233       4    1
## 1234       2    1
## 1235       4    1
## 1236       3    1
## 1237       3    1
## 1238       1    1
## 1239       2    1
## 1240       2    1
## 1241       3    1
## 1242       2    1
## 1243       3    1
## 1244       4    2
## 1245       3    1
## 1246       2    1
## 1247       4    1
## 1248       2    1
## 1249       3    1
## 1250       2    1
## 1251       4    2
## 1252       4    1
## 1253       4    1
## 1254       4    1
## 1255       4    1
## 1256       3    2
## 1257       4    1
## 1258       4    1
## 1259       4    1
## 1260       2    1
## 1261       2    1
## 1262       3    1
## 1263       3    1
## 1264       1    1
## 1265       4    2
## 1266       2    1
## 1267       3    1
## 1268       3    1
## 1269       4    2
## 1270       4    1
## 1271       4    2
## 1272       4    2
## 1273       4    3
## 1274       4    1
## 1275       4    1
## 1276       4    2
## 1277       2    2
## 1278       4    1
## 1279       1    1
## 1280       3    1
## 1281       2    1
## 1282       4    1
## 1283       3    1
## 1284       1    1
## 1285       1    1
## 1286       2    1
## 1287       3    1
## 1288       3    1
## 1289       4    1
## 1290       3    1
## 1291       4    1
## 1292       2    1
## 1293       3    1
## 1294       4    1
## 1295       4    2
## 1296       4    1
## 1297       1    2
## 1298       3    2
## 1299       2    1
## 1300       4    1
## 1301       3    1
## 1302       3    1
## 1303       4    3
## 1304       2    2
## 1305       3    1
## 1306       4    1
## 1307       1    1
## 1308       4    1
## 1309       3    1
## 1310       3    2
## 1311       4    1
## 1312       2    1
## 1313       2    1
## 1314       4    1
## 1315       3    2
## 1316       4    2
## 1317       4    1
## 1318       4    1
## 1319       4    1
## 1320       2    1
## 1321       4    1
## 1322       3    1
## 1323       4    2
## 1324       4    1
## 1325       3    1
## 1326       2    1
## 1327       3    1
## 1328       3    2
## 1329       2    1
## 1330       4    1
## 1331       3    1
## 1332       2    1
## 1333       2    1
## 1334       4    1
## 1335       4    1
## 1336       4    1
## 1337       4    1
## 1338       3    1
## 1339       3    1
## 1340       4    1
## 1341       4    1
## 1342       4    1
## 1343       2    1
## 1344       3    1
## 1345       4    1
## 1346       3    1
## 1347       2    1
## 1348       4    2
## 1349       2    1
## 1350       3    1
## 1351       2    1
## 1352       2    1
## 1353       2    2
## 1354       3    1
## 1355       1    1
## 1356       4    1
## 1357       4    1
## 1358       4    1
## 1359       1    1
## 1360       2    2
## 1362       3    1
## 1363       3    1
## 1364       2    1
## 1365       2    1
## 1366       4    1
## 1367       2    1
## 1368       4    2
## 1369       4    2
## 1370       2    1
## 1371       3    1
## 1372       3    1
## 1373       3    3
## 1374       3    1
## 1375       3    1
## 1376       4    1
## 1377       2    1
## 1378       4    2
## 1379       4    1
## 1380       2    1
## 1381       3    1
## 1382       4    1
## 1383       4    1
## 1384       3    1
## 1385       3    1
## 1386       3    1
## 1387       3    1
## 1388       3    1
## 1389       3    1
## 1390       2    1
## 1391       3    1
## 1392       4    2
## 1393       2    1
## 1394       4    2
## 1395       4    1
## 1396       2    1
## 1397       3    2
## 1398       4    2
## 1399       3    1
## 1400       2    1
## 1401       3    1
## 1402       1    1
## 1403       3    1
## 1404       2    1
## 1405       3    1
## 1406       4    1
## 1407       3    1
## 1408       4    1
## 1409       2    1
## 1410       4    2
## 1411       2    2
## 1412       4    2
## 1413       1    1
## 1414       2    1
## 1415       1    1
## 1416       4    1
## 1417       3    1
## 1418       4    1
## 1419       2    1
## 1420       3    1
## 1421       3    1
## 1422       2    1
## 1423       4    1
## 1424       2    1
## 1425       2    1
## 1426       2    1
## 1427       2    1
## 1428       4    1
## 1429       4    1
## 1430       4    1
## 1431       3    2
## 1432       4    1
## 1433       2    1
## 1434       4    1
## 1435       4    3
## 1436       1    1
## 1437       2    1
## 1438       4    1
## 1439       2    1
## 1440       3    2
## 1441       2    2
## 1442       2    1
## 1443       3    1
## 1444       4    1
## 1445       3    1
## 1446       4    1
## 1447       4    1
## 1448       2    1
## 1449       4    2
## 1450       4    2
## 1451       3    1
## 1452       2    1
## 1453       2    1
## 1454       2    2
## 1455       4    1
## 1456       3    1
## 1457       2    2
## 1458       3    1
## 1459       4    1
## 1460       2    1
## 1461       3    1
## 1462       4    1
## 1463       4    1
## 1464       2    1
## 1465       2    1
## 1466       4    2
## 1467       3    1
## 1468       4    1
## 1469       4    1
## 1470       2    1
## 1471       3    1
## 1472       3    1
## 1473       3    1
## 1474       3    2
## 1475       3    1
## 1476       2    1
## 1477       2    1
## 1478       2    1
## 1479       3    2
## 1480       3    1
## 1481       2    1
## 1482       3    1
## 1484       4    1
## 1485       2    1
## 1486       4    1
## 1487       3    1
## 1488       2    1
## 1489       2    1
## 1490       2    1
## 1491       4    1
## 1492       1    1
## 1493       2    1
## 1494       3    1
## 1495       4    1
## 1496       4    1
## 1497       4    1
## 1498       4    1
## 1499       3    1
## 1500       2    1
## 1501       4    1
## 1502       4    1
## 1503       4    2
## 1504       4    2
## 1505       1    1
## 1506       4    1
## 1507       3    1
## 1508       1    1
## 1509       4    1
## 1510       2    1
## 1511       4    1
## 1512       4    1
## 1513       4    1
## 1514       2    1
## 1515       4    1
## 1516       3    1
## 1517       2    1
## 1518       3    1
## 1519       4    1
## 1520       3    1
## 1521       4    1
## 1522       2    1
## 1523       3    1
## 1524       3    1
## 1525       4    2
## 1526       2    1
## 1527       1    1
## 1528       3    1
## 1529       2    1
## 1530       3    1
## 1531       3    2
## 1532       3    1
## 1533       4    2
## 1534       4    1
## 1535       4    1
## 1536       2    1
## 1537       2    1
## 1538       1    1
## 1539       3    1
## 1540       3    1
## 1541       4    1
## 1542       4    1
## 1543       3    1
## 1544       2    1
## 1546       3    1
## 1547       4    1
## 1548       3    1
## 1549       4    1
## 1550       3    1
## 1551       2    2
## 1552       4    1
## 1553       2    1
## 1554       3    1
## 1555       3    1
## 1556       4    1
## 1557       3    3
## 1558       4    1
## 1559       4    1
## 1560       2    1
## 1561       2    1
## 1562       4    1
## 1563       3    1
## 1564       4    1
## 1565       2    1
## 1566       3    1
## 1567       1    1
## 1568       4    1
## 1569       2    1
## 1570       2    2
## 1571       2    1
## 1572       2    1
## 1573       4    1
## 1574       4    2
## 1575       2    1
## 1576       2    1
## 1577       3    1
## 1578       4    1
## 1579       3    2
## 1580       3    1
## 1581       2    1
## 1582       4    1
## 1583       3    1
## 1584       2    1
## 1585       2    2
## 1586       4    1
## 1587       2    1
## 1588       2    1
## 1589       3    1
## 1590       2    1
## 1591       4    1
## 1592       4    1
## 1593       2    1
## 1594       2    1
## 1595       3    1
## 1596       2    1
## 1597       2    1
## 1598       2    1
## 1599       2    1
## 1600       4    1
## 1601       2    1
## 1602       4    1
## 1603       3    1
## 1604       3    1
## 1605       3    1
## 1606       3    1
## 1607       1    1
## 1608       4    1
## 1609       3    1
## 1610       4    1
## 1611       3    1
## 1612       4    1
## 1613       1    1
## 1614       2    1
## 1615       4    2
## 1616       3    1
## 1617       2    1
## 1618       2    1
## 1619       2    1
## 1620       3    2
## 1621       3    1
## 1622       4    3
## 1623       4    3
## 1624       3    1
## 1625       3    1
## 1626       4    1
## 1627       3    1
## 1628       4    1
## 1629       2    1
## 1630       2    1
## 1631       3    1
## 1632       4    1
## 1633       2    1
## 1634       3    2
## 1635       4    1
## 1636       3    2
## 1637       4    1
## 1638       2    1
## 1639       3    1
## 1640       2    1
## 1641       2    1
## 1642       3    1
## 1643       3    2
## 1644       2    1
## 1645       4    1
## 1646       3    1
## 1647       4    1
## 1648       4    1
## 1649       4    1
## 1650       2    1
## 1651       3    1
## 1652       4    2
## 1653       3    2
## 1654       3    1
## 1655       4    2
## 1656       1    1
## 1657       3    1
## 1658       4    1
## 1659       4    1
## 1660       4    1
## 1661       3    1
## 1662       4    1
## 1663       3    2
## 1664       3    1
## 1665       4    1
## 1666       4    1
## 1667       2    1
## 1668       3    2
## 1669       3    1
## 1670       2    1
## 1671       4    1
## 1672       4    1
## 1673       2    1
## 1674       4    1
## 1675       4    1
## 1676       2    1
## 1677       4    2
## 1678       3    1
## 1679       3    3
## 1680       3    1
## 1681       3    1
## 1682       2    1
## 1684       2    1
## 1685       3    2
## 1686       3    1
## 1687       3    1
## 1688       4    1
## 1689       3    1
## 1690       4    1
## 1691       3    1
## 1692       4    1
## 1693       3    1
## 1694       4    1
## 1695       2    1
## 1696       4    1
## 1697       4    1
## 1698       2    1
## 1699       3    1
## 1700       4    1
## 1701       3    1
## 1702       3    1
## 1703       2    1
## 1704       4    2
## 1705       2    1
## 1706       4    1
## 1707       4    1
## 1708       4    1
## 1709       3    2
## 1710       3    1
## 1711       3    1
## 1712       4    1
## 1713       3    1
## 1714       2    3
## 1715       2    1
## 1716       2    2
## 1717       4    2
## 1718       4    1
## 1719       2    1
## 1720       2    1
## 1721       4    1
## 1722       4    1
## 1723       2    2
## 1724       2    1
## 1725       4    2
## 1726       4    1
## 1727       4    1
## 1728       2    1
## 1729       4    1
## 1730       3    1
## 1731       3    1
## 1732       2    1
## 1733       2    1
## 1734       4    1
## 1735       2    1
## 1736       4    2
## 1737       2    1
## 1738       2    1
## 1739       2    1
## 1740       4    1
## 1741       1    1
## 1742       4    1
## 1743       2    2
## 1744       1    1
## 1745       4    1
## 1746       4    1
## 1747       3    1
## 1748       3    1
## 1749       3    1
## 1750       3    1
## 1751       4    3
## 1752       4    1
## 1753       2    1
## 1754       2    1
## 1755       2    1
## 1756       3    1
## 1757       4    1
## 1758       2    1
## 1759       3    1
## 1760       4    2
## 1761       4    3
## 1762       2    1
## 1763       3    1
## 1764       2    2
## 1765       1    1
## 1766       4    1
## 1767       4    2
## 1768       3    1
## 1769       4    2
## 1770       4    1
## 1771       2    1
## 1772       4    2
## 1773       4    1
## 1774       4    1
## 1775       4    1
## 1776       2    1
## 1777       3    1
## 1778       2    1
## 1779       4    1
## 1780       4    1
## 1781       4    2
## 1782       2    1
## 1783       4    1
## 1784       4    1
## 1785       3    1
## 1786       4    2
## 1787       4    1
## 1788       2    1
## 1789       3    1
## 1790       2    1
## 1791       3    1
## 1792       4    2
## 1793       2    1
## 1794       2    1
## 1795       3    1
## 1796       4    1
## 1797       2    1
## 1798       3    1
## 1799       2    1
## 1800       1    1
## 1801       2    1
## 1802       3    1
## 1803       3    1
## 1804       3    1
## 1805       4    1
## 1806       4    1
## 1807       3    1
## 1808       4    1
## 1809       3    1
## 1810       2    1
## 1811       3    1
## 1812       4    1
## 1813       3    1
## 1814       2    1
## 1815       3    1
## 1816       3    1
## 1817       3    1
## 1818       3    1
## 1819       3    1
## 1820       2    2
## 1821       3    2
## 1822       3    1
## 1823       4    1
## 1824       4    1
## 1825       2    1
## 1826       3    1
## 1828       2    1
## 1829       2    1
## 1830       1    1
## 1831       3    1
## 1832       2    1
## 1833       1    1
## 1834       4    1
## 1835       3    1
## 1836       4    2
## 1837       4    2
## 1838       2    1
## 1839       4    1
## 1841       4    1
## 1842       3    1
## 1843       4    1
## 1844       4    1
## 1845       2    1
## 1846       2    1
## 1847       4    1
## 1849       3    1
## 1850       2    1
## 1851       3    1
## 1852       3    1
## 1853       3    1
## 1854       3    1
## 1855       4    1
## 1856       3    1
## 1857       4    1
## 1858       3    1
## 1859       2    1
## 1860       3    1
## 1861       2    1
## 1862       4    2
## 1863       4    1
## 1864       4    3
## 1865       1    1
## 1866       3    1
## 1867       4    1
## 1868       4    1
## 1869       3    1
## 1870       3    1
## 1871       1    1
## 1872       2    1
## 1873       4    1
## 1874       2    1
## 1875       1    1
## 1876       3    1
## 1877       2    1
## 1878       2    1
## 1879       4    1
## 1880       4    1
## 1881       4    1
## 1882       4    1
## 1883       4    1
## 1884       4    1
## 1885       3    1
## 1886       4    1
## 1887       3    1
## 1888       3    1
## 1889       3    1
## 1890       4    1
## 1891       4    1
## 1892       3    1
## 1893       2    1
## 1894       4    3
## 1895       3    1
## 1896       2    1
## 1897       4    2
## 1898       4    1
## 1899       3    1
## 1900       4    1
## 1901       3    1
## 1902       3    1
## 1903       2    1
## 1904       3    2
## 1905       4    2
## 1906       1    1
## 1907       4    1
## 1908       4    1
## 1909       1    1
## 1911       4    1
## 1912       4    1
## 1913       3    2
## 1914       3    1
## 1915       3    1
## 1916       4    1
## 1917       4    1
## 1918       3    1
## 1919       3    1
## 1920       2    1
## 1922       4    1
## 1923       2    1
## 1924       4    1
## 1925       2    1
## 1926       4    2
## 1927       3    1
## 1929       3    1
## 1930       4    1
## 1931       2    2
## 1932       4    1
## 1933       4    1
## 1934       4    1
## 1935       2    1
## 1936       4    1
## 1937       2    1
## 1938       3    1
## 1939       4    2
## 1940       1    1
## 1941       4    2
## 1942       2    1
## 1943       3    2
## 1944       3    1
## 1945       4    1
## 1946       3    1
## 1947       4    1
## 1948       4    1
## 1949       4    1
## 1950       4    2
## 1951       3    1
## 1952       3    2
## 1953       2    1
## 1954       2    1
## 1955       4    1
## 1956       4    2
## 1957       2    1
## 1958       4    1
## 1959       2    1
## 1960       4    1
## 1961       4    1
## 1962       4    1
## 1963       2    2
## 1964       2    2
## 1965       3    1
## 1966       2    3
## 1967       2    1
## 1968       3    1
## 1969       4    2
## 1970       1    1
## 1972       3    1
## 1973       3    1
## 1974       4    1
## 1975       3    1
## 1976       2    1
## 1977       3    1
## 1978       2    1
## 1979       4    1
## 1980       4    1
## 1981       3    1
## 1982       3    1
## 1983       3    1
## 1984       4    1
## 1985       4    1
## 1986       3    1
## 1987       1    1
## 1988       3    1
## 1989       3    1
## 1990       2    1
## 1991       4    1
## 1992       3    1
## 1993       3    1
## 1994       3    1
## 1995       3    2
## 1996       4    1
## 1997       1    1
## 1998       2    1
## 1999       4    1
## 2000       4    1
## 2001       4    2
## 2002       4    2
## 2003       2    1
## 2004       2    1
## 2005       4    1
## 2006       3    2
## 2007       3    1
## 2008       3    1
## 2009       3    1
## 2010       4    1
## 2011       4    3
## 2012       3    1
## 2013       2    1
## 2014       3    2
## 2015       2    1
## 2016       2    1
## 2017       4    1
## 2018       3    3
## 2019       4    1
## 2020       3    1
## 2021       2    1
## 2022       4    2
## 2023       4    1
## 2024       3    1
## 2025       4    1
## 2026       2    1
## 2027       3    1
## 2028       4    1
## 2029       4    1
## 2030       3    1
## 2031       2    1
## 2032       3    2
## 2033       3    1
## 2034       3    1
## 2035       4    2
## 2036       3    1
## 2037       3    1
## 2038       3    1
## 2039       2    1
## 2040       4    1
## 2041       3    1
## 2042       3    1
## 2043       2    1
## 2044       3    1
## 2045       3    1
## 2046       2    1
## 2047       3    1
## 2048       3    1
## 2049       3    1
## 2050       3    1
## 2051       1    1
## 2053       3    1
## 2054       3    1
## 2055       2    1
## 2056       4    1
## 2057       4    1
## 2058       4    1
## 2059       3    1
## 2060       2    1
## 2061       2    1
## 2062       4    2
## 2063       1    1
## 2064       4    1
## 2065       3    1
## 2066       2    1
## 2067       3    1
## 2068       3    1
## 2069       2    1
## 2070       2    1
## 2071       2    1
## 2072       3    1
## 2073       4    1
## 2074       2    1
## 2075       2    1
## 2076       4    2
## 2077       3    1
## 2078       4    1
## 2079       3    1
## 2080       3    1
## 2081       3    1
## 2082       4    1
## 2083       3    1
## 2084       4    2
## 2085       2    1
## 2086       2    1
## 2087       3    1
## 2088       2    1
## 2089       4    1
## 2090       4    1
## 2091       3    1
## 2092       3    1
## 2093       4    3
## 2094       4    1
## 2095       2    1
## 2096       2    1
## 2097       2    1
## 2098       4    1
## 2099       2    1
## 2100       3    1
## 2101       4    1
## 2102       3    3
## 2103       3    1
## 2104       2    1
## 2105       3    2
## 2106       3    1
## 2107       3    2
## 2108       1    1
## 2109       3    1
## 2110       4    1
## 2111       3    1
## 2112       3    1
## 2113       4    1
## 2114       3    1
## 2115       3    1
## 2116       3    1
## 2117       4    1
## 2118       4    2
## 2119       3    1
## 2120       4    1
## 2121       2    1
## 2122       2    1
## 2123       2    1
## 2124       3    1
## 2125       4    3
## 2126       4    2
## 2127       4    1
## 2128       4    1
## 2129       3    1
## 2130       3    1
## 2131       4    1
## 2132       3    1
## 2133       3    1
## 2134       3    1
## 2135       3    1
## 2136       3    1
## 2137       4    1
## 2138       2    1
## 2139       4    1
## 2140       3    1
## 2141       4    1
## 2142       3    1
## 2143       3    1
## 2144       3    1
## 2145       3    1
## 2146       3    1
## 2147       3    1
## 2148       2    1
## 2149       2    1
## 2150       2    1
## 2151       4    1
## 2152       4    2
## 2153       4    1
## 2154       2    1
## 2155       4    1
## 2156       2    1
## 2157       4    1
## 2158       4    2
## 2159       2    1
## 2160       4    1
## 2161       4    1
## 2162       4    1
## 2163       2    1
## 2164       2    1
## 2165       4    1
## 2166       4    2
## 2167       3    1
## 2168       2    1
## 2169       3    1
## 2170       4    1
## 2171       3    1
## 2172       4    1
## 2173       4    1
## 2174       2    1
## 2175       2    1
## 2176       2    1
## 2177       2    1
## 2178       4    1
## 2179       2    1
## 2180       1    1
## 2181       4    3
## 2182       4    2
## 2183       2    1
## 2184       3    1
## 2185       2    1
## 2186       2    1
## 2187       3    1
## 2188       4    1
## 2189       2    1
## 2190       4    3
## 2191       2    1
## 2192       2    1
## 2193       3    1
## 2194       4    1
## 2195       4    1
## 2196       4    1
## 2197       3    1
## 2198       3    1
## 2199       1    1
## 2200       3    1
## 2201       3    1
## 2202       2    1
## 2203       4    1
## 2204       2    1
## 2205       4    1
## 2206       4    1
## 2207       4    1
## 2208       3    1
## 2209       2    1
## 2210       4    1
## 2211       3    1
## 2212       3    1
## 2213       3    3
## 2214       3    2
## 2215       3    2
## 2216       3    1
## 2217       4    1
## 2218       3    1
## 2219       2    1
## 2220       3    1
## 2221       4    3
## 2222       3    1
## 2223       4    2
## 2224       3    1
## 2225       3    1
## 2226       4    1
## 2227       4    2
## 2228       4    1
## 2229       4    1
## 2230       2    1
## 2231       2    1
## 2232       3    1
## 2233       4    2
## 2234       4    1
## 2235       3    1
## 2236       4    1
## 2237       4    1
## 2238       2    2
## 2239       1    1
## 2240       4    1
## 2241       4    1
## 2242       3    1
## 2243       3    3
## 2244       3    1
## 2245       2    1
## 2246       4    1
## 2247       3    1
## 2248       3    1
## 2249       4    2
## 2250       4    1
## 2251       4    1
## 2252       3    1
## 2253       3    1
## 2254       3    1
## 2256       4    1
## 2257       4    2
## 2258       4    2
## 2259       2    1
## 2260       4    1
## 2261       3    1
## 2262       3    1
## 2263       2    1
## 2264       3    1
## 2265       4    2
## 2266       4    1
## 2267       3    1
## 2268       3    1
## 2269       4    1
## 2270       3    2
## 2271       4    1
## 2272       2    1
## 2273       1    1
## 2274       2    1
## 2275       4    1
## 2276       4    1
## 2277       3    1
## 2278       3    1
## 2279       4    1
## 2280       3    2
## 2281       3    1
## 2282       4    1
## 2283       2    1
## 2284       3    1
## 2285       4    1
## 2286       4    1
## 2287       1    1
## 2288       3    1
## 2289       1    1
## 2290       3    1
## 2291       2    1
## 2292       4    1
## 2293       4    1
## 2294       2    1
## 2295       1    1
## 2296       4    1
## 2297       1    1
## 2298       4    1
## 2299       3    1
## 2300       4    1
## 2301       1    1
## 2302       2    1
## 2303       4    1
## 2304       4    1
## 2305       2    1
## 2306       4    1
## 2307       4    1
## 2308       3    1
## 2309       4    1
## 2310       2    1
## 2311       3    1
## 2312       3    3
## 2313       4    2
## 2314       3    1
## 2315       4    1
## 2316       4    1
## 2317       3    1
## 2318       3    2
## 2319       2    1
## 2320       4    1
## 2321       4    1
## 2322       3    1
## 2323       3    1
## 2324       4    2
## 2325       4    1
## 2326       4    1
## 2327       4    1
## 2328       3    1
## 2329       2    1
## 2330       2    1
## 2331       2    1
## 2332       3    1
## 2333       2    1
## 2334       3    1
## 2335       3    1
## 2336       2    1
## 2337       2    1
## 2338       4    1
## 2339       3    1
## 2340       4    1
## 2341       4    2
## 2342       1    2
## 2343       2    2
## 2344       3    1
## 2345       4    1
## 2346       4    1
## 2347       3    1
## 2348       4    1
## 2349       4    1
## 2350       4    1
## 2351       2    1
## 2352       3    1
## 2353       2    1
## 2354       4    1
## 2355       4    1
## 2356       2    1
## 2357       4    1
## 2358       2    1
## 2359       2    1
## 2360       1    1
## 2361       4    2
## 2362       2    2
## 2363       4    1
## 2364       4    3
## 2365       4    1
## 2366       2    1
## 2367       2    1
## 2368       3    1
## 2369       4    3
## 2370       1    1
## 2371       2    1
## 2372       4    2
## 2373       3    2
## 2374       4    1
## 2375       4    1
## 2376       4    1
## 2377       3    2
## 2378       2    1
## 2379       4    1
## 2380       4    1
## 2381       4    1
## 2382       3    1
## 2383       4    1
## 2384       4    1
## 2385       4    1
## 2386       4    1
## 2387       3    1
## 2388       4    1
## 2389       3    1
## 2390       2    1
## 2391       4    2
## 2392       4    2
## 2393       3    1
## 2394       4    1
## 2395       3    1
## 2396       3    1
## 2397       4    2
## 2398       4    2
## 2399       4    2
## 2400       2    1
## 2403       4    1
## 2404       4    3
## 2405       4    1
## 2406       4    1
## 2407       2    2
## 2408       2    1
## 2409       2    1
## 2410       4    1
## 2411       2    1
## 2412       3    1
## 2413       2    1
## 2414       2    1
## 2415       4    3
## 2416       2    1
## 2417       4    1
## 2418       4    1
## 2419       2    1
## 2420       3    1
## 2421       4    2
## 2422       3    1
## 2423       3    1
## 2424       4    1
## 2425       4    2
## 2426       2    1
## 2427       3    1
## 2428       4    1
## 2429       3    1
## 2430       3    1
## 2431       2    1
## 2432       2    1
## 2433       3    1
## 2434       3    1
## 2435       2    1
## 2436       4    1
## 2437       3    1
## 2438       3    2
## 2439       4    2
## 2440       3    1
## 2441       3    1
## 2442       4    1
## 2443       3    1
## 2444       4    1
## 2445       4    1
## 2446       4    1
## 2447       1    1
## 2448       4    3
## 2449       4    1
## 2450       2    1
## 2451       3    2
## 2452       2    2
## 2453       1    1
## 2454       2    1
## 2455       2    1
## 2456       3    2
## 2457       2    1
## 2458       2    2
## 2459       2    1
## 2460       2    1
## 2461       4    2
## 2462       3    1
## 2463       3    1
## 2464       4    1
## 2465       4    1
## 2466       3    1
## 2467       3    1
## 2468       3    1
## 2469       2    1
## 2470       4    1
## 2471       4    1
## 2472       4    1
## 2473       4    1
## 2474       3    2
## 2475       2    1
## 2476       4    1
## 2477       4    1
## 2478       3    1
## 2480       4    1
## 2481       4    1
## 2482       4    1
## 2483       2    2
## 2484       3    1
## 2485       1    1
## 2486       1    1
## 2487       2    1
## 2488       2    1
## 2489       3    1
## 2490       4    2
## 2491       3    2
## 2492       4    1
## 2493       3    1
## 2494       4    2
## 2495       2    1
## 2496       1    1
## 2497       4    1
## 2498       4    1
## 2499       4    1
## 2501       3    1
## 2502       4    1
## 2503       4    2
## 2504       2    1
## 2505       3    2
## 2506       4    1
## 2507       4    1
## 2508       3    1
## 2509       4    1
## 2510       3    1
## 2511       4    1
## 2512       4    1
## 2513       3    1
## 2514       2    1
## 2515       3    2
## 2516       4    1
## 2517       4    1
## 2518       4    1
## 2519       4    1
## 2520       2    1
## 2521       2    2
## 2522       2    1
## 2523       2    1
## 2524       2    1
## 2525       4    2
## 2526       2    1
## 2527       2    1
## 2528       4    2
## 2529       2    1
## 2530       4    1
## 2531       3    1
## 2532       2    1
## 2533       4    1
## 2534       3    1
## 2535       3    1
## 2536       4    1
## 2537       3    2
## 2538       4    1
## 2539       3    1
## 2540       3    1
## 2541       3    1
## 2542       2    1
## 2543       3    1
## 2544       4    1
## 2545       3    1
## 2546       3    1
## 2547       2    1
## 2548       2    1
## 2549       4    1
## 2550       4    1
## 2551       3    1
## 2552       4    1
## 2553       4    1
## 2554       4    1
## 2555       4    2
## 2556       3    1
## 2557       2    1
## 2558       2    1
## 2559       3    1
## 2560       1    1
## 2561       2    2
## 2562       2    1
## 2563       3    1
## 2564       3    1
## 2565       2    1
## 2566       3    1
## 2567       3    1
## 2568       4    1
## 2569       4    1
## 2570       3    1
## 2571       4    1
## 2572       3    2
## 2573       3    1
## 2574       4    1
## 2575       4    2
## 2576       2    1
## 2577       4    1
## 2578       4    1
## 2579       3    1
## 2580       4    2
## 2581       4    2
## 2582       3    2
## 2583       2    1
## 2584       3    2
## 2585       4    1
## 2586       4    1
## 2587       3    1
## 2588       2    1
## 2589       3    1
## 2590       3    1
## 2591       4    1
## 2592       3    1
## 2593       4    2
## 2594       3    1
## 2595       4    1
## 2596       4    1
## 2597       2    1
## 2598       4    1
## 2599       4    2
## 2600       2    1
## 2601       3    1
## 2602       2    1
## 2603       2    2
## 2604       4    1
## 2605       3    1
## 2606       4    1
## 2607       2    1
## 2608       4    1
## 2609       3    1
## 2610       3    1
## 2611       3    1
## 2612       4    1
## 2613       2    1
## 2614       2    1
## 2615       4    1
## 2616       4    2
## 2617       3    1
## 2618       3    1
## 2619       4    1
## 2620       2    1
## 2621       2    1
## 2622       3    1
## 2623       3    1
## 2624       3    1
## 2625       3    1
## 2626       2    1
## 2627       3    1
## 2628       4    2
## 2629       4    2
## 2630       4    1
## 2631       4    1
## 2632       3    1
## 2633       3    1
## 2634       4    1
## 2635       4    1
## 2636       4    2
## 2637       3    1
## 2638       3    1
## 2639       3    1
## 2640       3    1
## 2641       4    2
## 2642       3    1
## 2643       2    1
## 2644       4    1
## 2645       3    1
## 2646       2    2
## 2647       3    1
## 2648       3    1
## 2649       2    1
## 2650       2    1
## 2651       3    2
## 2652       3    1
## 2653       2    1
## 2654       4    1
## 2655       2    2
## 2656       2    1
## 2657       4    2
## 2658       4    1
## 2659       4    1
## 2660       4    1
## 2661       3    2
## 2662       2    1
## 2663       2    1
## 2664       4    1
## 2665       2    1
## 2666       4    1
## 2667       4    1
## 2668       4    1
## 2669       4    1
## 2670       4    2
## 2671       2    1
## 2672       2    1
## 2673       3    1
## 2674       4    2
## 2675       4    1
## 2676       2    1
## 2677       1    2
## 2678       4    1
## 2679       1    1
## 2680       4    1
## 2681       3    1
## 2682       2    1
## 2683       4    1
## 2684       4    1
## 2685       3    1
## 2686       4    3
## 2687       4    1
## 2688       3    1
## 2689       2    1
## 2690       3    1
## 2691       3    1
## 2692       3    1
## 2693       4    1
## 2694       2    1
## 2695       4    1
## 2696       2    1
## 2697       3    1
## 2698       1    1
## 2699       4    1
## 2700       3    1
## 2701       4    1
## 2702       4    1
## 2703       3    1
## 2704       2    1
## 2705       2    1
## 2706       3    1
## 2707       3    1
## 2708       4    1
## 2710       3    2
## 2711       3    1
## 2712       4    1
## 2713       3    1
## 2714       4    3
## 2715       2    1
## 2716       3    1
## 2717       3    1
## 2718       3    1
## 2719       2    1
## 2720       2    1
## 2721       1    1
## 2722       4    2
## 2723       2    1
## 2724       4    1
## 2725       1    1
## 2726       2    1
## 2727       3    1
## 2728       3    1
## 2729       4    2
## 2730       2    1
## 2731       2    1
## 2732       4    1
## 2733       3    1
## 2734       3    1
## 2735       2    1
## 2736       3    1
## 2737       2    1
## 2738       4    1
## 2739       2    1
## 2740       4    2
## 2741       1    1
## 2742       4    1
## 2744       3    3
## 2745       3    1
## 2746       2    1
## 2747       2    1
## 2748       4    1
## 2749       4    1
## 2750       3    1
## 2751       3    1
## 2752       3    1
## 2753       2    2
## 2754       4    1
## 2755       2    1
## 2756       3    2
## 2757       4    1
## 2758       2    1
## 2759       4    1
## 2760       4    1
## 2761       4    1
## 2762       4    1
## 2763       4    2
## 2764       4    1
## 2765       4    1
## 2766       2    1
## 2767       4    1
## 2768       2    1
## 2769       2    1
## 2770       4    2
## 2771       4    2
## 2772       3    1
## 2773       4    2
## 2774       4    3
## 2775       3    1
## 2776       4    2
## 2777       4    2
## 2778       4    1
## 2779       2    1
## 2780       1    1
## 2781       3    1
## 2782       2    1
## 2783       2    1
## 2784       2    1
## 2785       2    1
## 2786       3    1
## 2787       2    1
## 2788       2    1
## 2789       2    1
## 2790       1    1
## 2791       3    1
## 2792       2    1
## 2793       3    1
## 2794       2    1
## 2795       2    1
## 2796       4    1
## 2797       2    1
## 2798       1    1
## 2799       3    3
greece_2$polintr <- as.numeric(greece_2$polintr)
greece_2$vote <- as.numeric(greece_2$vote)
greece_2
##      polintr vote
## 1          3    1
## 2          3    1
## 3          2    1
## 4          3    3
## 5          3    1
## 6          4    1
## 7          3    1
## 8          4    1
## 9          3    1
## 10         4    1
## 11         1    1
## 12         2    1
## 13         3    1
## 14         3    2
## 15         2    1
## 16         2    1
## 17         1    1
## 18         4    1
## 19         2    1
## 20         4    1
## 22         4    1
## 23         2    1
## 24         3    1
## 25         3    1
## 26         1    1
## 27         3    1
## 28         2    1
## 29         2    1
## 30         4    2
## 31         2    1
## 32         2    1
## 33         4    1
## 34         3    2
## 35         2    1
## 36         4    1
## 37         4    1
## 38         4    1
## 39         2    1
## 40         4    2
## 41         3    3
## 42         4    1
## 43         3    1
## 44         2    1
## 45         2    1
## 46         1    1
## 47         1    1
## 48         4    1
## 49         4    1
## 50         3    1
## 51         1    1
## 52         4    1
## 53         4    2
## 54         2    1
## 55         1    2
## 56         4    1
## 57         3    1
## 58         3    1
## 59         4    1
## 60         4    1
## 61         2    1
## 62         2    1
## 63         3    1
## 64         2    1
## 65         3    1
## 66         3    1
## 67         3    1
## 68         4    1
## 69         4    1
## 70         2    1
## 71         2    1
## 72         4    2
## 73         3    1
## 74         2    1
## 75         2    1
## 76         2    1
## 77         4    1
## 78         4    1
## 80         2    1
## 81         1    1
## 82         3    1
## 83         2    1
## 84         2    1
## 85         3    1
## 86         4    1
## 87         4    1
## 88         4    1
## 89         3    1
## 90         1    1
## 91         2    1
## 93         3    1
## 95         3    1
## 96         4    1
## 97         1    1
## 98         1    1
## 99         2    1
## 100        1    1
## 101        3    1
## 102        4    3
## 103        3    1
## 104        2    1
## 105        2    1
## 106        4    1
## 107        4    1
## 108        2    1
## 109        4    2
## 110        4    2
## 111        4    1
## 112        4    1
## 113        3    1
## 114        2    1
## 115        3    1
## 116        3    2
## 117        4    1
## 118        4    1
## 119        2    1
## 120        4    1
## 121        4    1
## 122        3    1
## 123        2    1
## 124        3    1
## 125        2    1
## 126        3    1
## 127        3    1
## 128        2    1
## 129        1    1
## 130        2    2
## 131        3    1
## 132        1    1
## 133        1    1
## 134        4    1
## 135        1    1
## 136        4    1
## 137        4    1
## 138        2    1
## 139        3    1
## 141        2    2
## 142        3    2
## 143        3    1
## 144        3    1
## 145        4    1
## 146        3    2
## 147        2    2
## 148        4    1
## 149        2    1
## 150        3    1
## 151        3    1
## 152        4    1
## 153        2    1
## 154        4    1
## 155        3    1
## 156        2    2
## 157        3    2
## 158        1    1
## 159        2    1
## 160        3    1
## 161        3    1
## 162        3    2
## 163        4    1
## 164        3    1
## 165        2    1
## 166        4    1
## 167        1    1
## 168        3    1
## 169        1    1
## 170        3    1
## 171        4    1
## 172        4    1
## 174        2    1
## 175        2    1
## 176        3    2
## 177        2    1
## 178        3    1
## 179        1    1
## 180        4    1
## 181        4    1
## 182        4    1
## 183        3    1
## 184        3    2
## 185        2    2
## 186        3    1
## 187        3    1
## 188        4    1
## 189        3    1
## 190        3    1
## 191        4    1
## 192        3    1
## 193        4    3
## 194        3    1
## 195        3    1
## 196        4    1
## 197        4    1
## 198        4    1
## 200        3    1
## 201        4    3
## 202        3    1
## 203        3    1
## 204        4    1
## 205        2    1
## 206        4    2
## 207        4    1
## 208        4    2
## 209        3    1
## 210        1    1
## 211        4    1
## 212        4    1
## 213        4    1
## 214        4    1
## 215        3    1
## 216        3    1
## 217        4    1
## 218        4    1
## 219        4    2
## 220        4    1
## 221        2    1
## 222        3    1
## 223        2    1
## 224        3    1
## 225        3    1
## 226        2    1
## 227        2    1
## 228        2    1
## 229        1    1
## 230        2    1
## 231        4    1
## 232        3    1
## 233        4    1
## 234        3    1
## 235        3    2
## 236        3    1
## 237        3    1
## 239        2    1
## 240        3    1
## 241        3    1
## 242        2    1
## 243        2    1
## 244        3    1
## 245        3    1
## 246        3    1
## 248        4    2
## 250        2    1
## 251        3    1
## 252        2    1
## 253        4    1
## 254        2    1
## 255        3    2
## 256        3    1
## 257        3    1
## 258        4    2
## 259        3    1
## 260        4    1
## 261        4    1
## 262        4    3
## 263        2    1
## 264        1    1
## 265        3    2
## 266        4    1
## 267        4    1
## 268        3    1
## 269        2    1
## 270        3    1
## 271        3    1
## 272        2    2
## 273        3    1
## 274        3    1
## 275        2    2
## 276        3    1
## 277        2    1
## 278        3    1
## 279        2    1
## 280        2    1
## 281        4    1
## 282        2    1
## 283        2    1
## 284        4    2
## 285        4    1
## 286        4    1
## 287        4    1
## 288        2    1
## 289        3    2
## 290        3    1
## 292        4    1
## 293        4    1
## 294        3    1
## 295        4    1
## 296        4    1
## 297        4    1
## 298        3    2
## 299        4    1
## 300        2    1
## 301        2    1
## 302        4    1
## 303        4    1
## 304        2    2
## 305        3    1
## 307        2    1
## 308        4    2
## 309        2    2
## 310        3    2
## 311        3    1
## 312        4    2
## 313        1    1
## 314        2    1
## 315        4    1
## 316        4    1
## 317        2    1
## 318        3    2
## 319        4    1
## 320        4    1
## 321        4    2
## 322        2    1
## 323        3    1
## 324        2    1
## 325        2    1
## 326        2    1
## 327        4    1
## 328        2    1
## 329        2    1
## 330        4    1
## 331        4    1
## 332        1    1
## 333        4    1
## 334        3    1
## 335        3    1
## 336        4    1
## 337        3    1
## 338        2    1
## 339        1    1
## 340        4    2
## 341        4    1
## 342        2    1
## 343        3    1
## 344        4    1
## 345        3    1
## 346        4    2
## 347        2    1
## 348        2    1
## 349        4    1
## 350        2    1
## 351        3    1
## 352        3    1
## 353        4    1
## 354        2    1
## 355        3    1
## 356        4    1
## 357        2    1
## 358        2    1
## 359        3    1
## 360        3    1
## 361        2    2
## 362        4    1
## 363        3    1
## 364        4    1
## 365        2    1
## 366        3    1
## 367        3    1
## 368        3    1
## 370        4    1
## 371        4    1
## 372        4    1
## 373        3    1
## 374        2    1
## 375        4    1
## 376        4    2
## 377        2    1
## 378        4    2
## 379        3    2
## 380        4    2
## 381        2    1
## 382        2    1
## 383        2    1
## 384        4    1
## 385        4    1
## 386        2    1
## 387        4    1
## 388        2    1
## 389        4    2
## 390        4    3
## 391        4    1
## 392        2    1
## 393        4    2
## 394        2    2
## 395        3    1
## 396        4    1
## 397        4    1
## 398        4    1
## 399        4    1
## 400        3    1
## 401        2    1
## 402        2    1
## 403        1    1
## 404        2    1
## 405        2    1
## 406        4    2
## 407        4    2
## 408        3    3
## 409        4    1
## 410        3    1
## 411        4    1
## 412        3    1
## 413        4    1
## 414        2    1
## 415        4    1
## 416        3    1
## 417        2    1
## 418        2    1
## 419        2    1
## 420        2    1
## 421        4    1
## 422        4    1
## 423        3    1
## 424        1    1
## 425        3    1
## 426        4    1
## 427        4    1
## 428        4    1
## 429        4    1
## 430        2    1
## 431        4    2
## 432        4    1
## 433        3    1
## 434        3    2
## 435        2    1
## 436        4    1
## 437        4    1
## 438        2    1
## 439        2    1
## 440        2    2
## 441        2    1
## 442        2    1
## 443        3    1
## 444        2    2
## 445        3    1
## 446        2    1
## 447        3    2
## 448        3    2
## 449        2    1
## 450        3    1
## 451        4    1
## 452        3    2
## 453        3    1
## 454        3    1
## 455        4    1
## 456        4    1
## 457        4    1
## 458        4    1
## 459        4    1
## 460        3    1
## 461        4    1
## 462        4    1
## 463        3    2
## 464        1    1
## 465        3    1
## 466        3    1
## 467        3    1
## 468        3    1
## 469        4    1
## 470        4    1
## 471        4    1
## 472        4    2
## 473        3    1
## 474        2    1
## 475        4    1
## 476        3    1
## 477        4    2
## 479        3    1
## 480        2    1
## 481        2    2
## 482        1    1
## 483        3    1
## 484        4    1
## 485        3    2
## 486        4    2
## 487        4    1
## 488        4    1
## 489        4    1
## 490        3    1
## 491        4    1
## 492        2    1
## 493        2    2
## 494        4    2
## 495        4    1
## 496        3    1
## 497        4    1
## 498        4    1
## 499        2    1
## 500        3    1
## 501        3    1
## 502        2    1
## 503        4    1
## 504        4    1
## 505        3    1
## 506        3    1
## 507        2    2
## 508        3    1
## 509        1    1
## 510        2    1
## 511        4    1
## 512        2    1
## 513        2    1
## 514        4    2
## 515        4    2
## 516        4    1
## 517        2    1
## 518        3    1
## 519        3    1
## 520        3    1
## 521        2    1
## 522        4    1
## 523        4    2
## 524        3    1
## 525        2    1
## 526        4    1
## 527        2    2
## 528        4    1
## 529        4    2
## 530        2    1
## 531        3    1
## 532        4    1
## 533        2    1
## 534        3    1
## 535        4    1
## 536        4    2
## 537        3    1
## 538        2    1
## 539        4    1
## 540        4    1
## 541        4    1
## 543        4    1
## 544        3    1
## 545        3    3
## 546        1    1
## 547        4    1
## 548        2    2
## 549        2    1
## 550        4    1
## 551        3    1
## 552        4    1
## 553        3    1
## 554        3    1
## 555        4    1
## 556        2    1
## 557        3    1
## 559        4    1
## 560        2    1
## 561        4    2
## 562        2    1
## 563        4    1
## 564        2    1
## 565        4    1
## 566        4    3
## 567        4    1
## 568        4    2
## 569        3    1
## 570        1    1
## 571        3    1
## 572        3    1
## 573        2    1
## 574        4    1
## 575        4    1
## 576        2    1
## 578        2    1
## 579        4    1
## 580        3    1
## 581        3    1
## 582        2    1
## 583        3    1
## 584        4    3
## 585        2    1
## 586        4    1
## 587        2    1
## 588        4    1
## 589        2    1
## 590        4    1
## 591        3    1
## 592        3    3
## 593        4    3
## 594        2    1
## 595        3    1
## 596        3    2
## 597        3    1
## 598        4    1
## 599        2    1
## 600        2    1
## 601        2    1
## 602        2    1
## 603        3    1
## 604        3    1
## 605        2    1
## 606        4    1
## 607        2    1
## 608        3    3
## 609        3    1
## 610        1    1
## 611        3    2
## 612        3    1
## 613        4    1
## 614        3    1
## 615        2    1
## 616        4    1
## 617        4    2
## 618        3    1
## 619        2    1
## 620        4    1
## 621        4    2
## 622        3    1
## 623        4    1
## 625        3    1
## 626        3    1
## 627        4    1
## 628        3    1
## 629        3    1
## 630        2    1
## 631        4    2
## 632        4    1
## 633        4    1
## 634        3    1
## 635        3    2
## 636        2    1
## 637        4    3
## 638        3    1
## 639        2    1
## 640        4    1
## 641        3    1
## 642        4    2
## 643        3    1
## 644        4    1
## 645        3    1
## 646        1    1
## 647        4    2
## 648        4    1
## 649        2    1
## 650        2    1
## 651        2    1
## 652        4    1
## 653        3    2
## 654        4    1
## 655        4    2
## 656        3    1
## 657        3    1
## 658        3    1
## 659        2    1
## 660        4    1
## 661        4    1
## 662        3    1
## 663        4    1
## 664        3    1
## 665        2    1
## 666        4    1
## 667        2    1
## 668        2    1
## 669        4    2
## 670        2    1
## 671        1    1
## 672        4    1
## 674        3    1
## 675        3    1
## 676        3    1
## 677        3    2
## 678        4    1
## 679        3    1
## 680        4    1
## 681        4    3
## 682        2    1
## 683        3    1
## 684        3    1
## 685        3    2
## 686        3    1
## 687        3    1
## 688        3    1
## 689        4    1
## 690        3    1
## 691        4    1
## 692        3    1
## 693        3    1
## 694        2    1
## 695        2    1
## 696        4    1
## 697        2    1
## 698        4    3
## 699        4    1
## 700        4    1
## 701        1    1
## 702        4    1
## 703        2    1
## 704        4    1
## 705        4    1
## 706        4    1
## 707        4    1
## 708        4    1
## 709        2    1
## 710        4    1
## 711        2    1
## 712        2    1
## 713        3    1
## 714        2    1
## 715        2    1
## 716        1    1
## 717        4    1
## 718        2    1
## 719        4    1
## 720        2    1
## 721        3    1
## 722        2    1
## 723        2    1
## 724        3    2
## 725        3    1
## 726        3    1
## 727        2    1
## 728        2    1
## 729        4    1
## 730        3    1
## 731        4    1
## 733        2    1
## 734        4    1
## 735        2    1
## 736        4    1
## 737        2    1
## 738        2    2
## 739        2    1
## 740        4    1
## 741        3    1
## 742        4    2
## 743        4    1
## 744        4    2
## 745        3    1
## 746        2    2
## 747        4    2
## 748        4    2
## 749        3    1
## 750        2    1
## 751        4    1
## 752        2    1
## 753        4    1
## 754        2    1
## 755        4    2
## 756        2    1
## 757        2    1
## 758        3    1
## 759        4    2
## 760        3    1
## 761        2    1
## 762        3    1
## 763        4    1
## 764        4    2
## 765        4    1
## 766        3    1
## 767        4    2
## 768        3    1
## 769        2    1
## 770        4    1
## 771        4    3
## 772        2    1
## 773        2    1
## 774        3    1
## 775        2    1
## 776        4    1
## 777        3    1
## 778        3    1
## 779        4    1
## 780        1    1
## 781        4    1
## 782        4    1
## 783        4    1
## 784        2    1
## 785        4    1
## 786        3    1
## 787        3    1
## 788        3    1
## 789        2    1
## 790        3    1
## 791        4    1
## 792        2    1
## 793        2    1
## 794        3    2
## 795        3    1
## 796        4    1
## 797        2    1
## 798        2    1
## 800        4    1
## 801        2    1
## 802        4    1
## 803        2    1
## 804        2    1
## 805        4    1
## 806        2    1
## 807        2    1
## 808        2    2
## 809        1    1
## 810        3    1
## 811        3    1
## 812        2    1
## 813        2    1
## 814        2    1
## 815        3    1
## 816        3    1
## 817        3    1
## 818        2    1
## 819        4    1
## 820        4    1
## 821        4    1
## 822        4    1
## 823        2    1
## 824        4    1
## 825        1    1
## 826        3    2
## 828        3    2
## 829        1    2
## 830        3    1
## 831        3    1
## 832        4    1
## 833        3    1
## 834        2    1
## 835        3    1
## 836        3    1
## 837        3    2
## 838        2    1
## 839        1    1
## 840        3    2
## 841        4    1
## 842        2    1
## 843        4    1
## 844        3    1
## 845        4    1
## 846        4    1
## 847        3    1
## 848        4    1
## 849        4    1
## 850        4    1
## 851        3    1
## 852        2    1
## 853        3    1
## 854        4    2
## 855        4    2
## 856        2    1
## 857        2    1
## 858        3    1
## 859        4    1
## 860        4    1
## 861        2    1
## 862        4    1
## 863        3    1
## 864        2    2
## 865        3    1
## 866        4    1
## 867        4    1
## 868        2    1
## 869        4    1
## 870        2    1
## 871        2    3
## 872        3    1
## 873        4    1
## 874        2    1
## 875        4    1
## 876        4    1
## 877        4    1
## 878        2    1
## 879        4    1
## 880        4    1
## 881        3    1
## 882        2    1
## 883        4    1
## 884        2    1
## 885        4    1
## 886        4    1
## 887        4    1
## 888        4    1
## 889        3    1
## 890        4    2
## 891        2    1
## 892        4    1
## 893        2    1
## 894        2    1
## 895        3    1
## 896        4    1
## 897        4    1
## 898        4    1
## 899        3    1
## 900        3    1
## 901        4    2
## 902        1    1
## 903        4    2
## 904        2    1
## 905        4    1
## 906        4    1
## 907        1    1
## 908        2    1
## 909        3    2
## 910        4    2
## 911        2    1
## 912        3    2
## 913        3    1
## 914        2    1
## 915        3    1
## 916        4    1
## 917        4    2
## 918        4    1
## 919        4    3
## 920        3    1
## 921        4    1
## 922        2    1
## 923        2    1
## 924        2    2
## 925        2    1
## 926        4    2
## 927        4    1
## 928        2    1
## 929        3    2
## 930        2    1
## 931        2    1
## 932        3    1
## 933        3    2
## 934        3    1
## 935        2    1
## 936        3    1
## 937        4    1
## 938        2    1
## 939        1    1
## 940        3    1
## 941        3    1
## 942        2    2
## 943        3    1
## 944        3    1
## 945        4    1
## 946        3    1
## 947        3    1
## 948        1    1
## 949        1    1
## 950        4    1
## 951        1    1
## 952        1    1
## 953        2    1
## 954        4    1
## 955        3    1
## 956        4    1
## 957        3    3
## 958        1    1
## 959        2    1
## 960        3    1
## 961        3    1
## 962        1    1
## 963        2    1
## 964        4    1
## 965        3    3
## 967        4    1
## 968        1    1
## 969        4    1
## 970        4    1
## 971        3    1
## 972        2    1
## 973        2    1
## 974        2    1
## 975        1    1
## 976        4    2
## 977        2    1
## 978        4    1
## 979        2    1
## 980        1    1
## 981        4    2
## 982        2    1
## 983        3    1
## 984        4    1
## 985        4    2
## 986        2    1
## 987        4    1
## 988        4    1
## 989        3    1
## 990        2    1
## 991        2    1
## 992        4    1
## 993        2    1
## 994        4    1
## 995        4    1
## 996        2    1
## 997        4    1
## 998        3    1
## 999        2    1
## 1000       4    1
## 1001       3    1
## 1002       4    1
## 1003       3    1
## 1004       3    1
## 1005       3    1
## 1006       4    2
## 1007       4    1
## 1008       3    1
## 1009       4    1
## 1010       4    1
## 1011       4    2
## 1012       3    1
## 1013       2    1
## 1014       4    1
## 1015       3    1
## 1016       3    1
## 1017       3    1
## 1018       2    1
## 1019       2    1
## 1020       2    1
## 1021       2    1
## 1022       3    1
## 1023       2    1
## 1024       2    1
## 1025       3    1
## 1026       4    1
## 1027       2    1
## 1028       4    1
## 1030       2    1
## 1031       4    2
## 1032       2    1
## 1034       2    1
## 1035       3    1
## 1036       4    1
## 1037       2    1
## 1038       4    1
## 1039       4    1
## 1040       4    1
## 1041       3    1
## 1042       2    1
## 1043       3    3
## 1044       3    1
## 1045       2    1
## 1046       4    1
## 1047       4    1
## 1048       3    1
## 1049       4    1
## 1050       4    2
## 1051       3    1
## 1052       4    1
## 1053       3    3
## 1054       1    1
## 1055       3    1
## 1056       4    1
## 1057       4    1
## 1058       2    1
## 1059       4    1
## 1060       2    1
## 1061       3    2
## 1062       2    1
## 1063       3    1
## 1064       3    1
## 1065       4    1
## 1066       4    1
## 1067       2    1
## 1068       3    1
## 1069       3    2
## 1070       3    1
## 1071       2    1
## 1072       4    1
## 1073       3    1
## 1074       4    1
## 1075       3    1
## 1076       1    1
## 1077       2    1
## 1078       4    1
## 1079       4    1
## 1080       3    1
## 1081       3    1
## 1082       4    1
## 1083       2    1
## 1084       4    1
## 1085       4    1
## 1086       3    2
## 1087       3    1
## 1088       2    1
## 1089       4    1
## 1090       4    1
## 1091       4    1
## 1092       4    1
## 1093       4    1
## 1094       4    1
## 1095       4    2
## 1096       4    1
## 1097       4    1
## 1098       2    1
## 1099       4    2
## 1100       4    2
## 1101       3    1
## 1102       3    1
## 1103       4    1
## 1104       3    1
## 1105       3    1
## 1106       4    1
## 1107       3    1
## 1108       4    1
## 1109       4    1
## 1110       4    3
## 1111       3    1
## 1112       2    1
## 1113       2    1
## 1114       3    1
## 1115       3    1
## 1116       3    1
## 1117       3    1
## 1118       3    1
## 1119       3    2
## 1120       3    2
## 1121       4    1
## 1122       3    1
## 1123       4    1
## 1124       2    2
## 1125       2    1
## 1126       3    1
## 1127       2    1
## 1128       2    1
## 1129       4    1
## 1130       2    1
## 1131       3    2
## 1132       4    2
## 1133       3    1
## 1134       2    1
## 1135       4    1
## 1136       4    1
## 1137       4    2
## 1138       4    1
## 1139       1    1
## 1140       1    3
## 1141       3    1
## 1142       1    1
## 1143       4    2
## 1144       3    1
## 1145       2    1
## 1146       4    1
## 1147       2    2
## 1148       3    1
## 1149       3    2
## 1150       3    1
## 1151       2    1
## 1152       4    1
## 1153       3    1
## 1154       1    1
## 1155       4    1
## 1156       4    2
## 1158       4    1
## 1159       3    1
## 1160       3    1
## 1161       3    1
## 1162       4    1
## 1163       3    2
## 1164       3    1
## 1165       4    1
## 1166       2    1
## 1167       4    1
## 1168       2    1
## 1169       2    1
## 1170       3    1
## 1171       1    1
## 1172       4    1
## 1173       3    1
## 1174       4    1
## 1175       2    1
## 1176       3    1
## 1177       4    1
## 1178       2    1
## 1179       3    3
## 1180       3    1
## 1181       3    1
## 1182       4    1
## 1183       2    1
## 1184       2    1
## 1185       2    1
## 1186       2    1
## 1187       3    1
## 1188       3    1
## 1189       3    1
## 1190       3    1
## 1191       3    1
## 1192       4    2
## 1193       2    1
## 1194       4    1
## 1195       4    2
## 1196       2    2
## 1197       1    1
## 1199       3    1
## 1200       2    1
## 1201       3    1
## 1202       2    1
## 1203       4    2
## 1204       4    1
## 1205       3    1
## 1206       3    1
## 1207       3    1
## 1208       3    3
## 1209       1    1
## 1210       3    3
## 1211       4    1
## 1212       1    1
## 1213       3    2
## 1214       4    1
## 1215       4    1
## 1216       2    1
## 1217       4    1
## 1218       3    1
## 1219       4    1
## 1220       4    1
## 1222       4    1
## 1223       1    1
## 1224       4    1
## 1225       3    1
## 1226       3    1
## 1227       2    3
## 1228       2    1
## 1229       3    1
## 1230       4    1
## 1231       4    1
## 1232       4    1
## 1233       4    1
## 1234       2    1
## 1235       4    1
## 1236       3    1
## 1237       3    1
## 1238       1    1
## 1239       2    1
## 1240       2    1
## 1241       3    1
## 1242       2    1
## 1243       3    1
## 1244       4    2
## 1245       3    1
## 1246       2    1
## 1247       4    1
## 1248       2    1
## 1249       3    1
## 1250       2    1
## 1251       4    2
## 1252       4    1
## 1253       4    1
## 1254       4    1
## 1255       4    1
## 1256       3    2
## 1257       4    1
## 1258       4    1
## 1259       4    1
## 1260       2    1
## 1261       2    1
## 1262       3    1
## 1263       3    1
## 1264       1    1
## 1265       4    2
## 1266       2    1
## 1267       3    1
## 1268       3    1
## 1269       4    2
## 1270       4    1
## 1271       4    2
## 1272       4    2
## 1273       4    3
## 1274       4    1
## 1275       4    1
## 1276       4    2
## 1277       2    2
## 1278       4    1
## 1279       1    1
## 1280       3    1
## 1281       2    1
## 1282       4    1
## 1283       3    1
## 1284       1    1
## 1285       1    1
## 1286       2    1
## 1287       3    1
## 1288       3    1
## 1289       4    1
## 1290       3    1
## 1291       4    1
## 1292       2    1
## 1293       3    1
## 1294       4    1
## 1295       4    2
## 1296       4    1
## 1297       1    2
## 1298       3    2
## 1299       2    1
## 1300       4    1
## 1301       3    1
## 1302       3    1
## 1303       4    3
## 1304       2    2
## 1305       3    1
## 1306       4    1
## 1307       1    1
## 1308       4    1
## 1309       3    1
## 1310       3    2
## 1311       4    1
## 1312       2    1
## 1313       2    1
## 1314       4    1
## 1315       3    2
## 1316       4    2
## 1317       4    1
## 1318       4    1
## 1319       4    1
## 1320       2    1
## 1321       4    1
## 1322       3    1
## 1323       4    2
## 1324       4    1
## 1325       3    1
## 1326       2    1
## 1327       3    1
## 1328       3    2
## 1329       2    1
## 1330       4    1
## 1331       3    1
## 1332       2    1
## 1333       2    1
## 1334       4    1
## 1335       4    1
## 1336       4    1
## 1337       4    1
## 1338       3    1
## 1339       3    1
## 1340       4    1
## 1341       4    1
## 1342       4    1
## 1343       2    1
## 1344       3    1
## 1345       4    1
## 1346       3    1
## 1347       2    1
## 1348       4    2
## 1349       2    1
## 1350       3    1
## 1351       2    1
## 1352       2    1
## 1353       2    2
## 1354       3    1
## 1355       1    1
## 1356       4    1
## 1357       4    1
## 1358       4    1
## 1359       1    1
## 1360       2    2
## 1362       3    1
## 1363       3    1
## 1364       2    1
## 1365       2    1
## 1366       4    1
## 1367       2    1
## 1368       4    2
## 1369       4    2
## 1370       2    1
## 1371       3    1
## 1372       3    1
## 1373       3    3
## 1374       3    1
## 1375       3    1
## 1376       4    1
## 1377       2    1
## 1378       4    2
## 1379       4    1
## 1380       2    1
## 1381       3    1
## 1382       4    1
## 1383       4    1
## 1384       3    1
## 1385       3    1
## 1386       3    1
## 1387       3    1
## 1388       3    1
## 1389       3    1
## 1390       2    1
## 1391       3    1
## 1392       4    2
## 1393       2    1
## 1394       4    2
## 1395       4    1
## 1396       2    1
## 1397       3    2
## 1398       4    2
## 1399       3    1
## 1400       2    1
## 1401       3    1
## 1402       1    1
## 1403       3    1
## 1404       2    1
## 1405       3    1
## 1406       4    1
## 1407       3    1
## 1408       4    1
## 1409       2    1
## 1410       4    2
## 1411       2    2
## 1412       4    2
## 1413       1    1
## 1414       2    1
## 1415       1    1
## 1416       4    1
## 1417       3    1
## 1418       4    1
## 1419       2    1
## 1420       3    1
## 1421       3    1
## 1422       2    1
## 1423       4    1
## 1424       2    1
## 1425       2    1
## 1426       2    1
## 1427       2    1
## 1428       4    1
## 1429       4    1
## 1430       4    1
## 1431       3    2
## 1432       4    1
## 1433       2    1
## 1434       4    1
## 1435       4    3
## 1436       1    1
## 1437       2    1
## 1438       4    1
## 1439       2    1
## 1440       3    2
## 1441       2    2
## 1442       2    1
## 1443       3    1
## 1444       4    1
## 1445       3    1
## 1446       4    1
## 1447       4    1
## 1448       2    1
## 1449       4    2
## 1450       4    2
## 1451       3    1
## 1452       2    1
## 1453       2    1
## 1454       2    2
## 1455       4    1
## 1456       3    1
## 1457       2    2
## 1458       3    1
## 1459       4    1
## 1460       2    1
## 1461       3    1
## 1462       4    1
## 1463       4    1
## 1464       2    1
## 1465       2    1
## 1466       4    2
## 1467       3    1
## 1468       4    1
## 1469       4    1
## 1470       2    1
## 1471       3    1
## 1472       3    1
## 1473       3    1
## 1474       3    2
## 1475       3    1
## 1476       2    1
## 1477       2    1
## 1478       2    1
## 1479       3    2
## 1480       3    1
## 1481       2    1
## 1482       3    1
## 1484       4    1
## 1485       2    1
## 1486       4    1
## 1487       3    1
## 1488       2    1
## 1489       2    1
## 1490       2    1
## 1491       4    1
## 1492       1    1
## 1493       2    1
## 1494       3    1
## 1495       4    1
## 1496       4    1
## 1497       4    1
## 1498       4    1
## 1499       3    1
## 1500       2    1
## 1501       4    1
## 1502       4    1
## 1503       4    2
## 1504       4    2
## 1505       1    1
## 1506       4    1
## 1507       3    1
## 1508       1    1
## 1509       4    1
## 1510       2    1
## 1511       4    1
## 1512       4    1
## 1513       4    1
## 1514       2    1
## 1515       4    1
## 1516       3    1
## 1517       2    1
## 1518       3    1
## 1519       4    1
## 1520       3    1
## 1521       4    1
## 1522       2    1
## 1523       3    1
## 1524       3    1
## 1525       4    2
## 1526       2    1
## 1527       1    1
## 1528       3    1
## 1529       2    1
## 1530       3    1
## 1531       3    2
## 1532       3    1
## 1533       4    2
## 1534       4    1
## 1535       4    1
## 1536       2    1
## 1537       2    1
## 1538       1    1
## 1539       3    1
## 1540       3    1
## 1541       4    1
## 1542       4    1
## 1543       3    1
## 1544       2    1
## 1546       3    1
## 1547       4    1
## 1548       3    1
## 1549       4    1
## 1550       3    1
## 1551       2    2
## 1552       4    1
## 1553       2    1
## 1554       3    1
## 1555       3    1
## 1556       4    1
## 1557       3    3
## 1558       4    1
## 1559       4    1
## 1560       2    1
## 1561       2    1
## 1562       4    1
## 1563       3    1
## 1564       4    1
## 1565       2    1
## 1566       3    1
## 1567       1    1
## 1568       4    1
## 1569       2    1
## 1570       2    2
## 1571       2    1
## 1572       2    1
## 1573       4    1
## 1574       4    2
## 1575       2    1
## 1576       2    1
## 1577       3    1
## 1578       4    1
## 1579       3    2
## 1580       3    1
## 1581       2    1
## 1582       4    1
## 1583       3    1
## 1584       2    1
## 1585       2    2
## 1586       4    1
## 1587       2    1
## 1588       2    1
## 1589       3    1
## 1590       2    1
## 1591       4    1
## 1592       4    1
## 1593       2    1
## 1594       2    1
## 1595       3    1
## 1596       2    1
## 1597       2    1
## 1598       2    1
## 1599       2    1
## 1600       4    1
## 1601       2    1
## 1602       4    1
## 1603       3    1
## 1604       3    1
## 1605       3    1
## 1606       3    1
## 1607       1    1
## 1608       4    1
## 1609       3    1
## 1610       4    1
## 1611       3    1
## 1612       4    1
## 1613       1    1
## 1614       2    1
## 1615       4    2
## 1616       3    1
## 1617       2    1
## 1618       2    1
## 1619       2    1
## 1620       3    2
## 1621       3    1
## 1622       4    3
## 1623       4    3
## 1624       3    1
## 1625       3    1
## 1626       4    1
## 1627       3    1
## 1628       4    1
## 1629       2    1
## 1630       2    1
## 1631       3    1
## 1632       4    1
## 1633       2    1
## 1634       3    2
## 1635       4    1
## 1636       3    2
## 1637       4    1
## 1638       2    1
## 1639       3    1
## 1640       2    1
## 1641       2    1
## 1642       3    1
## 1643       3    2
## 1644       2    1
## 1645       4    1
## 1646       3    1
## 1647       4    1
## 1648       4    1
## 1649       4    1
## 1650       2    1
## 1651       3    1
## 1652       4    2
## 1653       3    2
## 1654       3    1
## 1655       4    2
## 1656       1    1
## 1657       3    1
## 1658       4    1
## 1659       4    1
## 1660       4    1
## 1661       3    1
## 1662       4    1
## 1663       3    2
## 1664       3    1
## 1665       4    1
## 1666       4    1
## 1667       2    1
## 1668       3    2
## 1669       3    1
## 1670       2    1
## 1671       4    1
## 1672       4    1
## 1673       2    1
## 1674       4    1
## 1675       4    1
## 1676       2    1
## 1677       4    2
## 1678       3    1
## 1679       3    3
## 1680       3    1
## 1681       3    1
## 1682       2    1
## 1684       2    1
## 1685       3    2
## 1686       3    1
## 1687       3    1
## 1688       4    1
## 1689       3    1
## 1690       4    1
## 1691       3    1
## 1692       4    1
## 1693       3    1
## 1694       4    1
## 1695       2    1
## 1696       4    1
## 1697       4    1
## 1698       2    1
## 1699       3    1
## 1700       4    1
## 1701       3    1
## 1702       3    1
## 1703       2    1
## 1704       4    2
## 1705       2    1
## 1706       4    1
## 1707       4    1
## 1708       4    1
## 1709       3    2
## 1710       3    1
## 1711       3    1
## 1712       4    1
## 1713       3    1
## 1714       2    3
## 1715       2    1
## 1716       2    2
## 1717       4    2
## 1718       4    1
## 1719       2    1
## 1720       2    1
## 1721       4    1
## 1722       4    1
## 1723       2    2
## 1724       2    1
## 1725       4    2
## 1726       4    1
## 1727       4    1
## 1728       2    1
## 1729       4    1
## 1730       3    1
## 1731       3    1
## 1732       2    1
## 1733       2    1
## 1734       4    1
## 1735       2    1
## 1736       4    2
## 1737       2    1
## 1738       2    1
## 1739       2    1
## 1740       4    1
## 1741       1    1
## 1742       4    1
## 1743       2    2
## 1744       1    1
## 1745       4    1
## 1746       4    1
## 1747       3    1
## 1748       3    1
## 1749       3    1
## 1750       3    1
## 1751       4    3
## 1752       4    1
## 1753       2    1
## 1754       2    1
## 1755       2    1
## 1756       3    1
## 1757       4    1
## 1758       2    1
## 1759       3    1
## 1760       4    2
## 1761       4    3
## 1762       2    1
## 1763       3    1
## 1764       2    2
## 1765       1    1
## 1766       4    1
## 1767       4    2
## 1768       3    1
## 1769       4    2
## 1770       4    1
## 1771       2    1
## 1772       4    2
## 1773       4    1
## 1774       4    1
## 1775       4    1
## 1776       2    1
## 1777       3    1
## 1778       2    1
## 1779       4    1
## 1780       4    1
## 1781       4    2
## 1782       2    1
## 1783       4    1
## 1784       4    1
## 1785       3    1
## 1786       4    2
## 1787       4    1
## 1788       2    1
## 1789       3    1
## 1790       2    1
## 1791       3    1
## 1792       4    2
## 1793       2    1
## 1794       2    1
## 1795       3    1
## 1796       4    1
## 1797       2    1
## 1798       3    1
## 1799       2    1
## 1800       1    1
## 1801       2    1
## 1802       3    1
## 1803       3    1
## 1804       3    1
## 1805       4    1
## 1806       4    1
## 1807       3    1
## 1808       4    1
## 1809       3    1
## 1810       2    1
## 1811       3    1
## 1812       4    1
## 1813       3    1
## 1814       2    1
## 1815       3    1
## 1816       3    1
## 1817       3    1
## 1818       3    1
## 1819       3    1
## 1820       2    2
## 1821       3    2
## 1822       3    1
## 1823       4    1
## 1824       4    1
## 1825       2    1
## 1826       3    1
## 1828       2    1
## 1829       2    1
## 1830       1    1
## 1831       3    1
## 1832       2    1
## 1833       1    1
## 1834       4    1
## 1835       3    1
## 1836       4    2
## 1837       4    2
## 1838       2    1
## 1839       4    1
## 1841       4    1
## 1842       3    1
## 1843       4    1
## 1844       4    1
## 1845       2    1
## 1846       2    1
## 1847       4    1
## 1849       3    1
## 1850       2    1
## 1851       3    1
## 1852       3    1
## 1853       3    1
## 1854       3    1
## 1855       4    1
## 1856       3    1
## 1857       4    1
## 1858       3    1
## 1859       2    1
## 1860       3    1
## 1861       2    1
## 1862       4    2
## 1863       4    1
## 1864       4    3
## 1865       1    1
## 1866       3    1
## 1867       4    1
## 1868       4    1
## 1869       3    1
## 1870       3    1
## 1871       1    1
## 1872       2    1
## 1873       4    1
## 1874       2    1
## 1875       1    1
## 1876       3    1
## 1877       2    1
## 1878       2    1
## 1879       4    1
## 1880       4    1
## 1881       4    1
## 1882       4    1
## 1883       4    1
## 1884       4    1
## 1885       3    1
## 1886       4    1
## 1887       3    1
## 1888       3    1
## 1889       3    1
## 1890       4    1
## 1891       4    1
## 1892       3    1
## 1893       2    1
## 1894       4    3
## 1895       3    1
## 1896       2    1
## 1897       4    2
## 1898       4    1
## 1899       3    1
## 1900       4    1
## 1901       3    1
## 1902       3    1
## 1903       2    1
## 1904       3    2
## 1905       4    2
## 1906       1    1
## 1907       4    1
## 1908       4    1
## 1909       1    1
## 1911       4    1
## 1912       4    1
## 1913       3    2
## 1914       3    1
## 1915       3    1
## 1916       4    1
## 1917       4    1
## 1918       3    1
## 1919       3    1
## 1920       2    1
## 1922       4    1
## 1923       2    1
## 1924       4    1
## 1925       2    1
## 1926       4    2
## 1927       3    1
## 1929       3    1
## 1930       4    1
## 1931       2    2
## 1932       4    1
## 1933       4    1
## 1934       4    1
## 1935       2    1
## 1936       4    1
## 1937       2    1
## 1938       3    1
## 1939       4    2
## 1940       1    1
## 1941       4    2
## 1942       2    1
## 1943       3    2
## 1944       3    1
## 1945       4    1
## 1946       3    1
## 1947       4    1
## 1948       4    1
## 1949       4    1
## 1950       4    2
## 1951       3    1
## 1952       3    2
## 1953       2    1
## 1954       2    1
## 1955       4    1
## 1956       4    2
## 1957       2    1
## 1958       4    1
## 1959       2    1
## 1960       4    1
## 1961       4    1
## 1962       4    1
## 1963       2    2
## 1964       2    2
## 1965       3    1
## 1966       2    3
## 1967       2    1
## 1968       3    1
## 1969       4    2
## 1970       1    1
## 1972       3    1
## 1973       3    1
## 1974       4    1
## 1975       3    1
## 1976       2    1
## 1977       3    1
## 1978       2    1
## 1979       4    1
## 1980       4    1
## 1981       3    1
## 1982       3    1
## 1983       3    1
## 1984       4    1
## 1985       4    1
## 1986       3    1
## 1987       1    1
## 1988       3    1
## 1989       3    1
## 1990       2    1
## 1991       4    1
## 1992       3    1
## 1993       3    1
## 1994       3    1
## 1995       3    2
## 1996       4    1
## 1997       1    1
## 1998       2    1
## 1999       4    1
## 2000       4    1
## 2001       4    2
## 2002       4    2
## 2003       2    1
## 2004       2    1
## 2005       4    1
## 2006       3    2
## 2007       3    1
## 2008       3    1
## 2009       3    1
## 2010       4    1
## 2011       4    3
## 2012       3    1
## 2013       2    1
## 2014       3    2
## 2015       2    1
## 2016       2    1
## 2017       4    1
## 2018       3    3
## 2019       4    1
## 2020       3    1
## 2021       2    1
## 2022       4    2
## 2023       4    1
## 2024       3    1
## 2025       4    1
## 2026       2    1
## 2027       3    1
## 2028       4    1
## 2029       4    1
## 2030       3    1
## 2031       2    1
## 2032       3    2
## 2033       3    1
## 2034       3    1
## 2035       4    2
## 2036       3    1
## 2037       3    1
## 2038       3    1
## 2039       2    1
## 2040       4    1
## 2041       3    1
## 2042       3    1
## 2043       2    1
## 2044       3    1
## 2045       3    1
## 2046       2    1
## 2047       3    1
## 2048       3    1
## 2049       3    1
## 2050       3    1
## 2051       1    1
## 2053       3    1
## 2054       3    1
## 2055       2    1
## 2056       4    1
## 2057       4    1
## 2058       4    1
## 2059       3    1
## 2060       2    1
## 2061       2    1
## 2062       4    2
## 2063       1    1
## 2064       4    1
## 2065       3    1
## 2066       2    1
## 2067       3    1
## 2068       3    1
## 2069       2    1
## 2070       2    1
## 2071       2    1
## 2072       3    1
## 2073       4    1
## 2074       2    1
## 2075       2    1
## 2076       4    2
## 2077       3    1
## 2078       4    1
## 2079       3    1
## 2080       3    1
## 2081       3    1
## 2082       4    1
## 2083       3    1
## 2084       4    2
## 2085       2    1
## 2086       2    1
## 2087       3    1
## 2088       2    1
## 2089       4    1
## 2090       4    1
## 2091       3    1
## 2092       3    1
## 2093       4    3
## 2094       4    1
## 2095       2    1
## 2096       2    1
## 2097       2    1
## 2098       4    1
## 2099       2    1
## 2100       3    1
## 2101       4    1
## 2102       3    3
## 2103       3    1
## 2104       2    1
## 2105       3    2
## 2106       3    1
## 2107       3    2
## 2108       1    1
## 2109       3    1
## 2110       4    1
## 2111       3    1
## 2112       3    1
## 2113       4    1
## 2114       3    1
## 2115       3    1
## 2116       3    1
## 2117       4    1
## 2118       4    2
## 2119       3    1
## 2120       4    1
## 2121       2    1
## 2122       2    1
## 2123       2    1
## 2124       3    1
## 2125       4    3
## 2126       4    2
## 2127       4    1
## 2128       4    1
## 2129       3    1
## 2130       3    1
## 2131       4    1
## 2132       3    1
## 2133       3    1
## 2134       3    1
## 2135       3    1
## 2136       3    1
## 2137       4    1
## 2138       2    1
## 2139       4    1
## 2140       3    1
## 2141       4    1
## 2142       3    1
## 2143       3    1
## 2144       3    1
## 2145       3    1
## 2146       3    1
## 2147       3    1
## 2148       2    1
## 2149       2    1
## 2150       2    1
## 2151       4    1
## 2152       4    2
## 2153       4    1
## 2154       2    1
## 2155       4    1
## 2156       2    1
## 2157       4    1
## 2158       4    2
## 2159       2    1
## 2160       4    1
## 2161       4    1
## 2162       4    1
## 2163       2    1
## 2164       2    1
## 2165       4    1
## 2166       4    2
## 2167       3    1
## 2168       2    1
## 2169       3    1
## 2170       4    1
## 2171       3    1
## 2172       4    1
## 2173       4    1
## 2174       2    1
## 2175       2    1
## 2176       2    1
## 2177       2    1
## 2178       4    1
## 2179       2    1
## 2180       1    1
## 2181       4    3
## 2182       4    2
## 2183       2    1
## 2184       3    1
## 2185       2    1
## 2186       2    1
## 2187       3    1
## 2188       4    1
## 2189       2    1
## 2190       4    3
## 2191       2    1
## 2192       2    1
## 2193       3    1
## 2194       4    1
## 2195       4    1
## 2196       4    1
## 2197       3    1
## 2198       3    1
## 2199       1    1
## 2200       3    1
## 2201       3    1
## 2202       2    1
## 2203       4    1
## 2204       2    1
## 2205       4    1
## 2206       4    1
## 2207       4    1
## 2208       3    1
## 2209       2    1
## 2210       4    1
## 2211       3    1
## 2212       3    1
## 2213       3    3
## 2214       3    2
## 2215       3    2
## 2216       3    1
## 2217       4    1
## 2218       3    1
## 2219       2    1
## 2220       3    1
## 2221       4    3
## 2222       3    1
## 2223       4    2
## 2224       3    1
## 2225       3    1
## 2226       4    1
## 2227       4    2
## 2228       4    1
## 2229       4    1
## 2230       2    1
## 2231       2    1
## 2232       3    1
## 2233       4    2
## 2234       4    1
## 2235       3    1
## 2236       4    1
## 2237       4    1
## 2238       2    2
## 2239       1    1
## 2240       4    1
## 2241       4    1
## 2242       3    1
## 2243       3    3
## 2244       3    1
## 2245       2    1
## 2246       4    1
## 2247       3    1
## 2248       3    1
## 2249       4    2
## 2250       4    1
## 2251       4    1
## 2252       3    1
## 2253       3    1
## 2254       3    1
## 2256       4    1
## 2257       4    2
## 2258       4    2
## 2259       2    1
## 2260       4    1
## 2261       3    1
## 2262       3    1
## 2263       2    1
## 2264       3    1
## 2265       4    2
## 2266       4    1
## 2267       3    1
## 2268       3    1
## 2269       4    1
## 2270       3    2
## 2271       4    1
## 2272       2    1
## 2273       1    1
## 2274       2    1
## 2275       4    1
## 2276       4    1
## 2277       3    1
## 2278       3    1
## 2279       4    1
## 2280       3    2
## 2281       3    1
## 2282       4    1
## 2283       2    1
## 2284       3    1
## 2285       4    1
## 2286       4    1
## 2287       1    1
## 2288       3    1
## 2289       1    1
## 2290       3    1
## 2291       2    1
## 2292       4    1
## 2293       4    1
## 2294       2    1
## 2295       1    1
## 2296       4    1
## 2297       1    1
## 2298       4    1
## 2299       3    1
## 2300       4    1
## 2301       1    1
## 2302       2    1
## 2303       4    1
## 2304       4    1
## 2305       2    1
## 2306       4    1
## 2307       4    1
## 2308       3    1
## 2309       4    1
## 2310       2    1
## 2311       3    1
## 2312       3    3
## 2313       4    2
## 2314       3    1
## 2315       4    1
## 2316       4    1
## 2317       3    1
## 2318       3    2
## 2319       2    1
## 2320       4    1
## 2321       4    1
## 2322       3    1
## 2323       3    1
## 2324       4    2
## 2325       4    1
## 2326       4    1
## 2327       4    1
## 2328       3    1
## 2329       2    1
## 2330       2    1
## 2331       2    1
## 2332       3    1
## 2333       2    1
## 2334       3    1
## 2335       3    1
## 2336       2    1
## 2337       2    1
## 2338       4    1
## 2339       3    1
## 2340       4    1
## 2341       4    2
## 2342       1    2
## 2343       2    2
## 2344       3    1
## 2345       4    1
## 2346       4    1
## 2347       3    1
## 2348       4    1
## 2349       4    1
## 2350       4    1
## 2351       2    1
## 2352       3    1
## 2353       2    1
## 2354       4    1
## 2355       4    1
## 2356       2    1
## 2357       4    1
## 2358       2    1
## 2359       2    1
## 2360       1    1
## 2361       4    2
## 2362       2    2
## 2363       4    1
## 2364       4    3
## 2365       4    1
## 2366       2    1
## 2367       2    1
## 2368       3    1
## 2369       4    3
## 2370       1    1
## 2371       2    1
## 2372       4    2
## 2373       3    2
## 2374       4    1
## 2375       4    1
## 2376       4    1
## 2377       3    2
## 2378       2    1
## 2379       4    1
## 2380       4    1
## 2381       4    1
## 2382       3    1
## 2383       4    1
## 2384       4    1
## 2385       4    1
## 2386       4    1
## 2387       3    1
## 2388       4    1
## 2389       3    1
## 2390       2    1
## 2391       4    2
## 2392       4    2
## 2393       3    1
## 2394       4    1
## 2395       3    1
## 2396       3    1
## 2397       4    2
## 2398       4    2
## 2399       4    2
## 2400       2    1
## 2403       4    1
## 2404       4    3
## 2405       4    1
## 2406       4    1
## 2407       2    2
## 2408       2    1
## 2409       2    1
## 2410       4    1
## 2411       2    1
## 2412       3    1
## 2413       2    1
## 2414       2    1
## 2415       4    3
## 2416       2    1
## 2417       4    1
## 2418       4    1
## 2419       2    1
## 2420       3    1
## 2421       4    2
## 2422       3    1
## 2423       3    1
## 2424       4    1
## 2425       4    2
## 2426       2    1
## 2427       3    1
## 2428       4    1
## 2429       3    1
## 2430       3    1
## 2431       2    1
## 2432       2    1
## 2433       3    1
## 2434       3    1
## 2435       2    1
## 2436       4    1
## 2437       3    1
## 2438       3    2
## 2439       4    2
## 2440       3    1
## 2441       3    1
## 2442       4    1
## 2443       3    1
## 2444       4    1
## 2445       4    1
## 2446       4    1
## 2447       1    1
## 2448       4    3
## 2449       4    1
## 2450       2    1
## 2451       3    2
## 2452       2    2
## 2453       1    1
## 2454       2    1
## 2455       2    1
## 2456       3    2
## 2457       2    1
## 2458       2    2
## 2459       2    1
## 2460       2    1
## 2461       4    2
## 2462       3    1
## 2463       3    1
## 2464       4    1
## 2465       4    1
## 2466       3    1
## 2467       3    1
## 2468       3    1
## 2469       2    1
## 2470       4    1
## 2471       4    1
## 2472       4    1
## 2473       4    1
## 2474       3    2
## 2475       2    1
## 2476       4    1
## 2477       4    1
## 2478       3    1
## 2480       4    1
## 2481       4    1
## 2482       4    1
## 2483       2    2
## 2484       3    1
## 2485       1    1
## 2486       1    1
## 2487       2    1
## 2488       2    1
## 2489       3    1
## 2490       4    2
## 2491       3    2
## 2492       4    1
## 2493       3    1
## 2494       4    2
## 2495       2    1
## 2496       1    1
## 2497       4    1
## 2498       4    1
## 2499       4    1
## 2501       3    1
## 2502       4    1
## 2503       4    2
## 2504       2    1
## 2505       3    2
## 2506       4    1
## 2507       4    1
## 2508       3    1
## 2509       4    1
## 2510       3    1
## 2511       4    1
## 2512       4    1
## 2513       3    1
## 2514       2    1
## 2515       3    2
## 2516       4    1
## 2517       4    1
## 2518       4    1
## 2519       4    1
## 2520       2    1
## 2521       2    2
## 2522       2    1
## 2523       2    1
## 2524       2    1
## 2525       4    2
## 2526       2    1
## 2527       2    1
## 2528       4    2
## 2529       2    1
## 2530       4    1
## 2531       3    1
## 2532       2    1
## 2533       4    1
## 2534       3    1
## 2535       3    1
## 2536       4    1
## 2537       3    2
## 2538       4    1
## 2539       3    1
## 2540       3    1
## 2541       3    1
## 2542       2    1
## 2543       3    1
## 2544       4    1
## 2545       3    1
## 2546       3    1
## 2547       2    1
## 2548       2    1
## 2549       4    1
## 2550       4    1
## 2551       3    1
## 2552       4    1
## 2553       4    1
## 2554       4    1
## 2555       4    2
## 2556       3    1
## 2557       2    1
## 2558       2    1
## 2559       3    1
## 2560       1    1
## 2561       2    2
## 2562       2    1
## 2563       3    1
## 2564       3    1
## 2565       2    1
## 2566       3    1
## 2567       3    1
## 2568       4    1
## 2569       4    1
## 2570       3    1
## 2571       4    1
## 2572       3    2
## 2573       3    1
## 2574       4    1
## 2575       4    2
## 2576       2    1
## 2577       4    1
## 2578       4    1
## 2579       3    1
## 2580       4    2
## 2581       4    2
## 2582       3    2
## 2583       2    1
## 2584       3    2
## 2585       4    1
## 2586       4    1
## 2587       3    1
## 2588       2    1
## 2589       3    1
## 2590       3    1
## 2591       4    1
## 2592       3    1
## 2593       4    2
## 2594       3    1
## 2595       4    1
## 2596       4    1
## 2597       2    1
## 2598       4    1
## 2599       4    2
## 2600       2    1
## 2601       3    1
## 2602       2    1
## 2603       2    2
## 2604       4    1
## 2605       3    1
## 2606       4    1
## 2607       2    1
## 2608       4    1
## 2609       3    1
## 2610       3    1
## 2611       3    1
## 2612       4    1
## 2613       2    1
## 2614       2    1
## 2615       4    1
## 2616       4    2
## 2617       3    1
## 2618       3    1
## 2619       4    1
## 2620       2    1
## 2621       2    1
## 2622       3    1
## 2623       3    1
## 2624       3    1
## 2625       3    1
## 2626       2    1
## 2627       3    1
## 2628       4    2
## 2629       4    2
## 2630       4    1
## 2631       4    1
## 2632       3    1
## 2633       3    1
## 2634       4    1
## 2635       4    1
## 2636       4    2
## 2637       3    1
## 2638       3    1
## 2639       3    1
## 2640       3    1
## 2641       4    2
## 2642       3    1
## 2643       2    1
## 2644       4    1
## 2645       3    1
## 2646       2    2
## 2647       3    1
## 2648       3    1
## 2649       2    1
## 2650       2    1
## 2651       3    2
## 2652       3    1
## 2653       2    1
## 2654       4    1
## 2655       2    2
## 2656       2    1
## 2657       4    2
## 2658       4    1
## 2659       4    1
## 2660       4    1
## 2661       3    2
## 2662       2    1
## 2663       2    1
## 2664       4    1
## 2665       2    1
## 2666       4    1
## 2667       4    1
## 2668       4    1
## 2669       4    1
## 2670       4    2
## 2671       2    1
## 2672       2    1
## 2673       3    1
## 2674       4    2
## 2675       4    1
## 2676       2    1
## 2677       1    2
## 2678       4    1
## 2679       1    1
## 2680       4    1
## 2681       3    1
## 2682       2    1
## 2683       4    1
## 2684       4    1
## 2685       3    1
## 2686       4    3
## 2687       4    1
## 2688       3    1
## 2689       2    1
## 2690       3    1
## 2691       3    1
## 2692       3    1
## 2693       4    1
## 2694       2    1
## 2695       4    1
## 2696       2    1
## 2697       3    1
## 2698       1    1
## 2699       4    1
## 2700       3    1
## 2701       4    1
## 2702       4    1
## 2703       3    1
## 2704       2    1
## 2705       2    1
## 2706       3    1
## 2707       3    1
## 2708       4    1
## 2710       3    2
## 2711       3    1
## 2712       4    1
## 2713       3    1
## 2714       4    3
## 2715       2    1
## 2716       3    1
## 2717       3    1
## 2718       3    1
## 2719       2    1
## 2720       2    1
## 2721       1    1
## 2722       4    2
## 2723       2    1
## 2724       4    1
## 2725       1    1
## 2726       2    1
## 2727       3    1
## 2728       3    1
## 2729       4    2
## 2730       2    1
## 2731       2    1
## 2732       4    1
## 2733       3    1
## 2734       3    1
## 2735       2    1
## 2736       3    1
## 2737       2    1
## 2738       4    1
## 2739       2    1
## 2740       4    2
## 2741       1    1
## 2742       4    1
## 2744       3    3
## 2745       3    1
## 2746       2    1
## 2747       2    1
## 2748       4    1
## 2749       4    1
## 2750       3    1
## 2751       3    1
## 2752       3    1
## 2753       2    2
## 2754       4    1
## 2755       2    1
## 2756       3    2
## 2757       4    1
## 2758       2    1
## 2759       4    1
## 2760       4    1
## 2761       4    1
## 2762       4    1
## 2763       4    2
## 2764       4    1
## 2765       4    1
## 2766       2    1
## 2767       4    1
## 2768       2    1
## 2769       2    1
## 2770       4    2
## 2771       4    2
## 2772       3    1
## 2773       4    2
## 2774       4    3
## 2775       3    1
## 2776       4    2
## 2777       4    2
## 2778       4    1
## 2779       2    1
## 2780       1    1
## 2781       3    1
## 2782       2    1
## 2783       2    1
## 2784       2    1
## 2785       2    1
## 2786       3    1
## 2787       2    1
## 2788       2    1
## 2789       2    1
## 2790       1    1
## 2791       3    1
## 2792       2    1
## 2793       3    1
## 2794       2    1
## 2795       2    1
## 2796       4    1
## 2797       2    1
## 2798       1    1
## 2799       3    3

2.2 Chi-squared Test

Part I. Chi-squared Test (2 points) 1) The correct choice of variables. A plot with the two variables involved (0.5 points)

# Convert the variables to factors
greece_2$polintr <- factor(greece_2$polintr)
greece_2$vote <- factor(greece_2$vote)

# Create a table with the counts for each combination of polintr and vote
table_data <- table(greece_2$polintr, greece_2$vote)

# Convert the table to a data frame
table_df <- as.data.frame.matrix(table_data)

# Add row names as a variable
table_df$polintr <- rownames(table_df)

# Reshape the data from wide to long format
table_long <- reshape2::melt(table_df, id.vars = "polintr")

# Create the stacked bar chart
ggplot(table_long, aes(x = polintr, y = value, fill = variable)) + 
  geom_bar(stat = "identity") + 
  labs(x = "Political Interest", y = "Count", fill = "Vote")

2) The null hypothesis is spelled out, and you make conclusions as table(flowers) to how the results relate to it (0.5)

Vote Categories 1 Yes 2 No 3 Not eligible to vote

polintr Category 1 Very interested 2 Quite interested 3 Hardly interested 4 Not at all interested

We are interested in examining the association between political interest (polintr) and voting behavior (vote) among Greek citizens. Specifically, we want to test whether there is a significant difference in the distribution of votes among individuals with different levels of political interest. We can formulate the following null and alternative hypotheses:

Null hypothesis (H0): The distribution of votes is the same across all levels of political interest. Alternative hypothesis (HA): The distribution of votes is different across at least one pair of levels of political interest.

# Perform chi-squared test of independence
chisq_res <- chisq.test(table_data)
## Warning in chisq.test(table_data): аппроксимация на основе хи-квадрат может
## быть неправильной
# Print the test result
chisq_res
## 
##  Pearson's Chi-squared test
## 
## data:  table_data
## X-squared = 76.519, df = 6, p-value = 1.867e-14

We can reject the null hypothesis (p-value = 1.867e-14 < 0,05) and conclude that there is a significant difference in the distribution of votes across at least one pair of levels of political interest.

CrossTable(table_data, expected=T)
## Warning in chisq.test(t, correct = FALSE, ...): аппроксимация на основе
## хи-квадрат может быть неправильной
## 
##  
##    Cell Contents
## |-------------------------|
## |                       N |
## |              Expected N |
## | Chi-square contribution |
## |           N / Row Total |
## |           N / Col Total |
## |         N / Table Total |
## |-------------------------|
## 
##  
## Total Observations in Table:  2752 
## 
##  
##              |  
##              |         1 |         2 |         3 | Row Total | 
## -------------|-----------|-----------|-----------|-----------|
##            1 |       127 |         5 |         1 |       133 | 
##              |   112.605 |    17.253 |     3.141 |           | 
##              |     1.840 |     8.702 |     1.460 |           | 
##              |     0.955 |     0.038 |     0.008 |     0.048 | 
##              |     0.055 |     0.014 |     0.015 |           | 
##              |     0.046 |     0.002 |     0.000 |           | 
## -------------|-----------|-----------|-----------|-----------|
##            2 |       654 |        59 |         4 |       717 | 
##              |   607.053 |    93.012 |    16.935 |           | 
##              |     3.631 |    12.437 |     9.880 |           | 
##              |     0.912 |     0.082 |     0.006 |     0.261 | 
##              |     0.281 |     0.165 |     0.062 |           | 
##              |     0.238 |     0.021 |     0.001 |           | 
## -------------|-----------|-----------|-----------|-----------|
##            3 |       748 |       102 |        23 |       873 | 
##              |   739.132 |   113.249 |    20.620 |           | 
##              |     0.106 |     1.117 |     0.275 |           | 
##              |     0.857 |     0.117 |     0.026 |     0.317 | 
##              |     0.321 |     0.286 |     0.354 |           | 
##              |     0.272 |     0.037 |     0.008 |           | 
## -------------|-----------|-----------|-----------|-----------|
##            4 |       801 |       191 |        37 |      1029 | 
##              |   871.210 |   133.486 |    24.304 |           | 
##              |     5.658 |    24.781 |     6.632 |           | 
##              |     0.778 |     0.186 |     0.036 |     0.374 | 
##              |     0.344 |     0.535 |     0.569 |           | 
##              |     0.291 |     0.069 |     0.013 |           | 
## -------------|-----------|-----------|-----------|-----------|
## Column Total |      2330 |       357 |        65 |      2752 | 
##              |     0.847 |     0.130 |     0.024 |           | 
## -------------|-----------|-----------|-----------|-----------|
## 
##  
## Statistics for All Table Factors
## 
## 
## Pearson's Chi-squared test 
## ------------------------------------------------------------
## Chi^2 =  76.51923     d.f. =  6     p =  1.867254e-14 
## 
## 
## 
  1. You have checked all the assumptions of the chi-square test and they are matched. You have run and correctly interpreted the chi-square test, analysing the standardized residuals (1)

The result of the chi-square test is a p-value of 1.867254e-14, which is less than the standard significance level of 0.05. Therefore, we reject the null hypothesis and conclude that there is a significant association between political interest and vote.

In this case, we can see that the cells with the largest standardized residuals are in the fourth second column (vote = 2). Specifically, the observed counts for those cells where political interest = 1 and political interest = 2 we overpredict, while when political interest = 4 we underpredict. Basically, people who are interested in politics do not vote less than we predict, on the other hand people who are not intereste din politics do not vote more often than we predict.

2.3 The t-test

Part II. The t-test (2.5 points) 4) The correct choice of variables, a plot with these variables (0.5)

greece_3 <- greece %>% dplyr:: select(netustm, vote)
greece_3 <- na.omit(greece_3)
greece_3$netustm <- as.numeric(greece_3$netustm)
greece_3$vote <- as.numeric(greece_3$vote)
greece_3
##      netustm vote
## 1         60    1
## 3        240    1
## 4        120    3
## 5         60    1
## 7        120    1
## 9        120    1
## 11       120    1
## 12       480    1
## 13       190    1
## 14       300    2
## 16       360    1
## 18       200    1
## 19       360    1
## 20       240    1
## 22       300    1
## 23        75    1
## 24       120    1
## 25        75    1
## 26       420    1
## 27       180    1
## 32       210    1
## 33       300    1
## 36        45    1
## 37        60    1
## 38        60    1
## 40       120    2
## 41       240    3
## 42       600    1
## 43       180    1
## 44       300    1
## 45       300    1
## 48        60    1
## 50       240    1
## 51       360    1
## 53       300    2
## 54       120    1
## 55        60    2
## 56       180    1
## 59        90    1
## 61       240    1
## 62       128    1
## 63       120    1
## 65        60    1
## 67       240    1
## 68        90    1
## 70        40    1
## 71       150    1
## 72        60    2
## 73       210    1
## 75       190    1
## 76       120    1
## 77       300    1
## 78       120    1
## 80       180    1
## 81       140    1
## 82        60    1
## 83        60    1
## 85       120    1
## 86       180    1
## 87        90    1
## 88       150    1
## 89       210    1
## 90       180    1
## 91       120    1
## 93       300    1
## 96       360    1
## 97       180    1
## 98       300    1
## 100      150    1
## 101      120    1
## 102       60    3
## 103      120    1
## 104      480    1
## 105      600    1
## 106      180    1
## 107      120    1
## 109      150    2
## 110      120    2
## 111       60    1
## 112        0    1
## 113       90    1
## 115      120    1
## 116      240    2
## 117       90    1
## 118      240    1
## 119       30    1
## 120      180    1
## 121      180    1
## 122      600    1
## 123      240    1
## 124       60    1
## 125      120    1
## 127      600    1
## 128      120    1
## 130       90    2
## 133      150    1
## 135      180    1
## 136      300    1
## 138      360    1
## 139      120    1
## 142      180    2
## 144      300    1
## 145      300    1
## 146      120    2
## 147      120    2
## 148       90    1
## 149      180    1
## 150       30    1
## 152      210    1
## 153       90    1
## 154      240    1
## 155      240    1
## 156      120    2
## 157      120    2
## 158      120    1
## 159      240    1
## 160      150    1
## 161       60    1
## 162      180    2
## 163       60    1
## 165      480    1
## 166      180    1
## 167      600    1
## 168       45    1
## 169      240    1
## 172      150    1
## 175      120    1
## 176       90    2
## 181       60    1
## 184      360    2
## 185      120    2
## 186       60    1
## 188       30    1
## 190      360    1
## 192        1    1
## 194      120    1
## 195      360    1
## 196      300    1
## 197      120    1
## 198      300    1
## 200       60    1
## 201      150    3
## 202      300    1
## 204       60    1
## 207      120    1
## 208      720    2
## 210      120    1
## 211      180    1
## 214       60    1
## 215      240    1
## 216      180    1
## 218      180    1
## 219       60    2
## 220      180    1
## 221       60    1
## 222      240    1
## 223      600    1
## 224      120    1
## 225      300    1
## 226      540    1
## 228      120    1
## 229      300    1
## 230      270    1
## 231      150    1
## 232       30    1
## 233      120    1
## 234      120    1
## 236      120    1
## 237      150    1
## 240      180    1
## 241      120    1
## 243      120    1
## 244      120    1
## 245       90    1
## 248      210    2
## 250       30    1
## 251       60    1
## 252       60    1
## 253      600    1
## 256      300    1
## 259      180    1
## 260       60    1
## 261      150    1
## 262      300    3
## 263      240    1
## 264       90    1
## 265      210    2
## 267       90    1
## 268       30    1
## 270      120    1
## 272       90    2
## 273       60    1
## 275      120    2
## 276       30    1
## 277      240    1
## 278      120    1
## 281      300    1
## 283      210    1
## 284      360    2
## 285      240    1
## 288      120    1
## 289      120    2
## 293      120    1
## 295      180    1
## 296      300    1
## 297      120    1
## 298      240    2
## 301      360    1
## 302      150    1
## 305      120    1
## 307       60    1
## 310      120    2
## 311      240    1
## 312       90    2
## 313      180    1
## 314      240    1
## 316      360    1
## 317       90    1
## 323      120    1
## 324       60    1
## 325      480    1
## 327      120    1
## 328      120    1
## 329      150    1
## 330      600    1
## 331       60    1
## 332      120    1
## 333      120    1
## 334      480    1
## 336      120    1
## 338      210    1
## 339      480    1
## 340      120    2
## 341      240    1
## 342       30    1
## 344      240    1
## 345      180    1
## 346      120    2
## 347      120    1
## 349      180    1
## 350      210    1
## 351      180    1
## 352      120    1
## 353       60    1
## 354       60    1
## 355      120    1
## 356      180    1
## 357      120    1
## 358      180    1
## 360       60    1
## 361      120    2
## 362       90    1
## 363       60    1
## 364      120    1
## 365      360    1
## 367      150    1
## 370       60    1
## 371       60    1
## 372      150    1
## 373      300    1
## 375       90    1
## 376      240    2
## 377       60    1
## 378      480    2
## 379      120    2
## 380       60    2
## 381       90    1
## 382      270    1
## 385      120    1
## 389      150    2
## 391      180    1
## 392      600    1
## 393      180    2
## 394      600    2
## 396      150    1
## 397      180    1
## 399      120    1
## 400       60    1
## 401      540    1
## 402      120    1
## 403      240    1
## 406      420    2
## 407      260    2
## 408       30    3
## 409      240    1
## 410      360    1
## 411       15    1
## 412      600    1
## 413      120    1
## 414      183    1
## 415       60    1
## 416      180    1
## 417      120    1
## 418       90    1
## 419      120    1
## 420      330    1
## 421      180    1
## 422      180    1
## 423      180    1
## 425      120    1
## 427      180    1
## 430       60    1
## 431      600    2
## 432      300    1
## 433       60    1
## 434      180    2
## 436      120    1
## 437      300    1
## 439      120    1
## 440      120    2
## 442      120    1
## 443       75    1
## 445      180    1
## 446      600    1
## 447      180    2
## 448      360    2
## 449      240    1
## 450       90    1
## 451      120    1
## 452      300    2
## 454      240    1
## 456      120    1
## 458      180    1
## 460      180    1
## 463      150    2
## 464      240    1
## 466      120    1
## 467      180    1
## 468      120    1
## 469      120    1
## 470      360    1
## 471      240    1
## 472      270    2
## 473       30    1
## 474      600    1
## 475      120    1
## 477      240    2
## 480      120    1
## 481       90    2
## 482      180    1
## 483      120    1
## 485      180    2
## 486      390    2
## 487      360    1
## 488       60    1
## 489       60    1
## 491      480    1
## 492      120    1
## 493      240    2
## 497      120    1
## 499       60    1
## 500      120    1
## 503      120    1
## 506      300    1
## 507       60    2
## 508      240    1
## 510       60    1
## 511      120    1
## 513      270    1
## 514      240    2
## 515      120    2
## 516      150    1
## 517      180    1
## 518      120    1
## 520      180    1
## 521      120    1
## 522      180    1
## 524      180    1
## 525      180    1
## 526      120    1
## 527      270    2
## 529      120    2
## 530       60    1
## 531      170    1
## 532      120    1
## 533      150    1
## 534      180    1
## 535      600    1
## 536      180    2
## 540      120    1
## 543       90    1
## 544      120    1
## 545      180    3
## 546      210    1
## 547      180    1
## 549       60    1
## 550      120    1
## 552       60    1
## 553      180    1
## 555      600    1
## 556      120    1
## 559      300    1
## 560      120    1
## 561      180    2
## 565      120    1
## 566      300    3
## 570      360    1
## 571      210    1
## 573      120    1
## 576      180    1
## 578       30    1
## 579      480    1
## 580      300    1
## 584      120    3
## 585      450    1
## 586       90    1
## 587      180    1
## 589      180    1
## 591      330    1
## 592       60    3
## 593       60    3
## 594      240    1
## 596      120    2
## 598      120    1
## 599      240    1
## 601      180    1
## 602      240    1
## 603      150    1
## 608      120    3
## 609      180    1
## 610      270    1
## 611      180    2
## 612      180    1
## 614       60    1
## 616      180    1
## 617      300    2
## 618      180    1
## 620      120    1
## 621      120    2
## 622       60    1
## 626      180    1
## 627      180    1
## 629      170    1
## 630      150    1
## 631      120    2
## 632      120    1
## 633       60    1
## 634       90    1
## 635      120    2
## 636      300    1
## 637      300    3
## 638      120    1
## 640      120    1
## 642      300    2
## 643      120    1
## 645      150    1
## 646      120    1
## 647      120    2
## 648       90    1
## 649      120    1
## 650      120    1
## 651      150    1
## 652      300    1
## 653      180    2
## 654      600    1
## 655      120    2
## 656      240    1
## 657       60    1
## 658      240    1
## 659      240    1
## 660      180    1
## 661      120    1
## 662      120    1
## 663      420    1
## 664      180    1
## 666      150    1
## 668       60    1
## 670      240    1
## 671      150    1
## 672      180    1
## 676       60    1
## 677       60    2
## 681      120    3
## 684      150    1
## 685      240    2
## 686       60    1
## 687      120    1
## 688      120    1
## 690      210    1
## 691      720    1
## 692      480    1
## 695      240    1
## 698      180    3
## 700      480    1
## 701      600    1
## 703      300    1
## 704      120    1
## 705      360    1
## 707      300    1
## 708       60    1
## 709      180    1
## 711       60    1
## 712      600    1
## 713      450    1
## 715      240    1
## 716      180    1
## 717      180    1
## 718      300    1
## 719      330    1
## 720      120    1
## 721      120    1
## 724      420    2
## 727      120    1
## 728      300    1
## 729      420    1
## 731       60    1
## 733      120    1
## 734      120    1
## 735      150    1
## 736      900    1
## 737      123    1
## 738      120    2
## 739      300    1
## 740      300    1
## 741      150    1
## 742       90    2
## 744      120    2
## 746      180    2
## 747      360    2
## 748       60    2
## 749       60    1
## 750      180    1
## 752      300    1
## 755      120    2
## 756       90    1
## 757      210    1
## 758       60    1
## 759      120    2
## 760      180    1
## 762       60    1
## 763      240    1
## 765       60    1
## 766      120    1
## 767      600    2
## 769      120    1
## 770      300    1
## 771       90    3
## 772      360    1
## 773      300    1
## 775       90    1
## 776      120    1
## 778      180    1
## 781      120    1
## 783      120    1
## 785      180    1
## 786      120    1
## 788      300    1
## 790       60    1
## 792      120    1
## 793       60    1
## 794      210    2
## 795      210    1
## 796       90    1
## 797       60    1
## 798      180    1
## 800      180    1
## 801      300    1
## 802      180    1
## 803       60    1
## 804       60    1
## 808      300    2
## 810      180    1
## 811      180    1
## 814      330    1
## 815      300    1
## 816      300    1
## 817      300    1
## 818      300    1
## 819      180    1
## 820      300    1
## 821       90    1
## 822      330    1
## 826       90    2
## 829      360    2
## 830      180    1
## 831      180    1
## 832      300    1
## 834      330    1
## 835      180    1
## 836      150    1
## 837      600    2
## 838       60    1
## 840      480    2
## 842      120    1
## 843      720    1
## 844      180    1
## 845      120    1
## 846      305    1
## 847       60    1
## 848      240    1
## 850       60    1
## 851      240    1
## 852       90    1
## 853       60    1
## 854      120    2
## 855      420    2
## 856      150    1
## 857      120    1
## 858      120    1
## 862      180    1
## 863      180    1
## 864      260    2
## 865       90    1
## 866      120    1
## 868      300    1
## 870      180    1
## 871      150    3
## 872      600    1
## 873        2    1
## 874      180    1
## 880      180    1
## 883      240    1
## 884       20    1
## 886      150    1
## 887      150    1
## 888      120    1
## 890      360    2
## 891      600    1
## 893      300    1
## 894      300    1
## 896      120    1
## 897      180    1
## 898      360    1
## 901      300    2
## 902      120    1
## 903      180    2
## 904      180    1
## 905      120    1
## 907      240    1
## 908       90    1
## 909       60    2
## 910      240    2
## 911      270    1
## 912      180    2
## 913      240    1
## 915      120    1
## 916      180    1
## 918       90    1
## 919      300    3
## 920      300    1
## 921      180    1
## 925      480    1
## 928      120    1
## 929      150    2
## 930      120    1
## 933      240    2
## 934      120    1
## 935      330    1
## 936      240    1
## 937      270    1
## 938      180    1
## 939      420    1
## 941       90    1
## 942      120    2
## 943       90    1
## 944      390    1
## 945      120    1
## 946      240    1
## 947      150    1
## 948      120    1
## 949      300    1
## 951      120    1
## 952       90    1
## 953      300    1
## 954      600    1
## 955      240    1
## 957       60    3
## 959      180    1
## 960      240    1
## 961      120    1
## 962      120    1
## 963      150    1
## 964      300    1
## 965      240    3
## 968      120    1
## 969      300    1
## 970      120    1
## 971       90    1
## 973      150    1
## 974      330    1
## 975      120    1
## 979      120    1
## 980      300    1
## 981      300    2
## 984      120    1
## 985      120    2
## 987      330    1
## 988      120    1
## 989       90    1
## 991       90    1
## 992       90    1
## 993      120    1
## 994       90    1
## 995       60    1
## 997       90    1
## 1002     150    1
## 1004      60    1
## 1006     120    2
## 1007     480    1
## 1008     120    1
## 1009     120    1
## 1010     180    1
## 1011     600    2
## 1012     240    1
## 1014     120    1
## 1016     120    1
## 1017     600    1
## 1018     120    1
## 1019     180    1
## 1020     210    1
## 1021     480    1
## 1022     180    1
## 1023     225    1
## 1025      60    1
## 1026     300    1
## 1027     480    1
## 1028     600    1
## 1030      90    1
## 1034      60    1
## 1035     300    1
## 1036     300    1
## 1037     120    1
## 1038     900    1
## 1041     240    1
## 1042     150    1
## 1044     330    1
## 1045      60    1
## 1048     300    1
## 1049      60    1
## 1050     120    2
## 1051      90    1
## 1053     360    3
## 1054     180    1
## 1056      90    1
## 1057     480    1
## 1059     480    1
## 1060     120    1
## 1062      30    1
## 1063      90    1
## 1064     120    1
## 1065     180    1
## 1066     480    1
## 1067      60    1
## 1068     120    1
## 1070     210    1
## 1072      60    1
## 1073     240    1
## 1074     180    1
## 1076     240    1
## 1080     120    1
## 1082      60    1
## 1083      90    1
## 1084     240    1
## 1085     180    1
## 1086     150    2
## 1087     150    1
## 1088     330    1
## 1089     240    1
## 1090      60    1
## 1092     240    1
## 1093     180    1
## 1096     480    1
## 1097     240    1
## 1099     150    2
## 1100     150    2
## 1102     120    1
## 1104      90    1
## 1106     120    1
## 1107     180    1
## 1109     180    1
## 1110     300    3
## 1111     120    1
## 1114      90    1
## 1115     190    1
## 1116     120    1
## 1117     120    1
## 1119     300    2
## 1120      20    2
## 1121     240    1
## 1124     270    2
## 1125     120    1
## 1126     240    1
## 1127     180    1
## 1129     120    1
## 1130     180    1
## 1132     300    2
## 1134     120    1
## 1135     180    1
## 1136     120    1
## 1137     600    2
## 1138     120    1
## 1140     300    3
## 1141     120    1
## 1143     180    2
## 1144     600    1
## 1145     240    1
## 1149     150    2
## 1150     120    1
## 1151     180    1
## 1152     250    1
## 1153      60    1
## 1154     180    1
## 1155     240    1
## 1156     120    2
## 1157     120    1
## 1159      60    1
## 1162     300    1
## 1163     120    2
## 1164     120    1
## 1165     300    1
## 1166     480    1
## 1167     600    1
## 1168     120    1
## 1169     135    1
## 1172     350    1
## 1173     120    1
## 1174      60    1
## 1175     510    1
## 1176      90    1
## 1179      60    3
## 1180     240    1
## 1181     390    1
## 1182     180    1
## 1183     420    1
## 1184     180    1
## 1185     240    1
## 1187     120    1
## 1188      60    1
## 1190      60    1
## 1191     210    1
## 1193     120    1
## 1194     360    1
## 1195     360    2
## 1196     120    2
## 1197      60    1
## 1200     120    1
## 1203     480    2
## 1204      90    1
## 1205     180    1
## 1206     180    1
## 1208     180    3
## 1210     480    3
## 1211     300    1
## 1212      90    1
## 1213     183    2
## 1214     120    1
## 1217     120    1
## 1218      60    1
## 1219     480    1
## 1220     120    1
## 1224     420    1
## 1225     420    1
## 1226     300    1
## 1227     240    3
## 1228     180    1
## 1229      60    1
## 1230     150    1
## 1231     240    1
## 1232     180    1
## 1233     120    1
## 1234      30    1
## 1235      90    1
## 1236     180    1
## 1238     240    1
## 1239     300    1
## 1240      60    1
## 1244     180    2
## 1245      60    1
## 1246     300    1
## 1247     180    1
## 1249     120    1
## 1250     150    1
## 1255     180    1
## 1256     180    2
## 1257     360    1
## 1258     360    1
## 1260     510    1
## 1262      60    1
## 1263      60    1
## 1264      60    1
## 1268     120    1
## 1270      60    1
## 1271     180    2
## 1273     180    3
## 1275     120    1
## 1277     120    2
## 1278     180    1
## 1279     150    1
## 1280     240    1
## 1281     120    1
## 1282     480    1
## 1283      60    1
## 1284     360    1
## 1287      60    1
## 1288     180    1
## 1289     660    1
## 1291     120    1
## 1292     300    1
## 1293     180    1
## 1296      90    1
## 1297     240    2
## 1299     180    1
## 1300     120    1
## 1301      90    1
## 1303      90    3
## 1304     240    2
## 1306     600    1
## 1307     120    1
## 1308     180    1
## 1309     120    1
## 1310     300    2
## 1311     240    1
## 1312      30    1
## 1313     270    1
## 1314      30    1
## 1317      60    1
## 1318      10    1
## 1319     180    1
## 1320     180    1
## 1322      90    1
## 1323     360    2
## 1324      90    1
## 1328     150    2
## 1329     330    1
## 1330      60    1
## 1332      60    1
## 1333     120    1
## 1334     120    1
## 1335     120    1
## 1336     170    1
## 1337     120    1
## 1338     540    1
## 1339      90    1
## 1341      90    1
## 1342     240    1
## 1343     240    1
## 1344     180    1
## 1345     120    1
## 1347     120    1
## 1348     480    2
## 1349     300    1
## 1350      60    1
## 1351     180    1
## 1353     180    2
## 1354      20    1
## 1355     150    1
## 1356     300    1
## 1357     240    1
## 1358      60    1
## 1360     360    2
## 1362      90    1
## 1363     210    1
## 1364     180    1
## 1365     240    1
## 1367     120    1
## 1368     360    2
## 1371     300    1
## 1372     180    1
## 1373     180    3
## 1376     600    1
## 1379     180    1
## 1380     300    1
## 1381      60    1
## 1382      30    1
## 1383     180    1
## 1384      60    1
## 1385     180    1
## 1386      60    1
## 1387     150    1
## 1388     600    1
## 1389     150    1
## 1391      60    1
## 1392     120    2
## 1393     120    1
## 1395     180    1
## 1396     360    1
## 1397     240    2
## 1398     210    2
## 1399     180    1
## 1400     150    1
## 1402     120    1
## 1403     180    1
## 1404     180    1
## 1405     300    1
## 1407      90    1
## 1408     300    1
## 1412     600    2
## 1413     210    1
## 1414     120    1
## 1415      60    1
## 1416     150    1
## 1417      90    1
## 1418      60    1
## 1419     120    1
## 1420      60    1
## 1421     240    1
## 1422      90    1
## 1423      30    1
## 1426     180    1
## 1427     120    1
## 1428     240    1
## 1431     120    2
## 1432     150    1
## 1434     120    1
## 1435      45    3
## 1436      90    1
## 1438      30    1
## 1439     120    1
## 1440     330    2
## 1441     300    2
## 1443      60    1
## 1446     120    1
## 1447      90    1
## 1448     270    1
## 1450     300    2
## 1451     150    1
## 1453     120    1
## 1454     120    2
## 1455     180    1
## 1456     180    1
## 1457     210    2
## 1458     240    1
## 1459     180    1
## 1460     150    1
## 1461      90    1
## 1462      60    1
## 1463      90    1
## 1464     180    1
## 1465      60    1
## 1466      30    2
## 1467     480    1
## 1469      60    1
## 1470     120    1
## 1471     120    1
## 1472     240    1
## 1473     120    1
## 1474     240    2
## 1475     120    1
## 1476     120    1
## 1478     240    1
## 1480     240    1
## 1481     180    1
## 1482     120    1
## 1486     240    1
## 1487     120    1
## 1488     210    1
## 1489     300    1
## 1490     120    1
## 1491     180    1
## 1494      60    1
## 1495     480    1
## 1496     240    1
## 1497     120    1
## 1498     240    1
## 1499     120    1
## 1500     120    1
## 1502     120    1
## 1503     420    2
## 1504     480    2
## 1505     240    1
## 1506     240    1
## 1507     120    1
## 1510     330    1
## 1511     120    1
## 1512     120    1
## 1514     135    1
## 1515     230    1
## 1516     240    1
## 1517     240    1
## 1518     120    1
## 1519     120    1
## 1520     480    1
## 1521     180    1
## 1522      60    1
## 1523     240    1
## 1524      60    1
## 1525     300    2
## 1527     180    1
## 1528     180    1
## 1529      60    1
## 1530      60    1
## 1533      60    2
## 1535     240    1
## 1538     183    1
## 1539     180    1
## 1540      60    1
## 1541      90    1
## 1542      60    1
## 1544      60    1
## 1546     180    1
## 1547     180    1
## 1549      90    1
## 1550     300    1
## 1551     120    2
## 1552     488    1
## 1555     180    1
## 1556       0    1
## 1557      60    3
## 1558     170    1
## 1559     600    1
## 1561      45    1
## 1562      90    1
## 1563      30    1
## 1564     120    1
## 1565      60    1
## 1566     300    1
## 1567     300    1
## 1568     180    1
## 1569     300    1
## 1571      90    1
## 1572      60    1
## 1573     240    1
## 1574     600    2
## 1575     120    1
## 1576     180    1
## 1577     180    1
## 1579     300    2
## 1582      60    1
## 1583      60    1
## 1584     270    1
## 1585     180    2
## 1586     300    1
## 1587     600    1
## 1588     600    1
## 1589     300    1
## 1591     210    1
## 1592     150    1
## 1593     120    1
## 1596      30    1
## 1598     360    1
## 1600     180    1
## 1601     120    1
## 1603     120    1
## 1605      60    1
## 1606     120    1
## 1607     180    1
## 1608     180    1
## 1609     180    1
## 1610     120    1
## 1611      90    1
## 1614     300    1
## 1616      90    1
## 1617      60    1
## 1619     180    1
## 1620     300    2
## 1621      60    1
## 1623     120    3
## 1624     120    1
## 1625     720    1
## 1626     120    1
## 1627     180    1
## 1629     300    1
## 1631     180    1
## 1632      90    1
## 1634     240    2
## 1635     120    1
## 1636     120    2
## 1638     320    1
## 1641     180    1
## 1642     150    1
## 1644     120    1
## 1645     360    1
## 1647     150    1
## 1648     210    1
## 1649     720    1
## 1650      70    1
## 1651     180    1
## 1653      60    2
## 1654      90    1
## 1655     180    2
## 1656     180    1
## 1657     120    1
## 1659     300    1
## 1660     120    1
## 1661     240    1
## 1662     120    1
## 1663     150    2
## 1665      30    1
## 1666     480    1
## 1668      90    2
## 1670      90    1
## 1671     180    1
## 1672     180    1
## 1674     120    1
## 1676      60    1
## 1677     180    2
## 1678     410    1
## 1679     360    3
## 1681     300    1
## 1682     600    1
## 1684     120    1
## 1685     240    2
## 1688     150    1
## 1689     150    1
## 1691     480    1
## 1692     210    1
## 1693     300    1
## 1695     120    1
## 1696     120    1
## 1697      30    1
## 1698      30    1
## 1701     350    1
## 1704     240    2
## 1705      80    1
## 1706     600    1
## 1707     180    1
## 1708     480    1
## 1709     120    2
## 1711     240    1
## 1712      90    1
## 1714     120    3
## 1716     150    2
## 1717     180    2
## 1718      60    1
## 1719     120    1
## 1720      60    1
## 1721     120    1
## 1722     360    1
## 1723     120    2
## 1724     120    1
## 1726     480    1
## 1727      60    1
## 1730     120    1
## 1731     240    1
## 1732     120    1
## 1733      45    1
## 1734     150    1
## 1735     180    1
## 1736     480    2
## 1737     150    1
## 1738     180    1
## 1739     240    1
## 1740     120    1
## 1745      60    1
## 1747      90    1
## 1749     120    1
## 1750     600    1
## 1751      60    3
## 1752     120    1
## 1753     150    1
## 1754     300    1
## 1756     120    1
## 1757     120    1
## 1758     120    1
## 1759     420    1
## 1761     180    3
## 1762     360    1
## 1763      90    1
## 1764     210    2
## 1765      90    1
## 1766     180    1
## 1769     240    2
## 1770     240    1
## 1771     120    1
## 1773     120    1
## 1774     180    1
## 1775      60    1
## 1776     240    1
## 1777     300    1
## 1778     150    1
## 1779     120    1
## 1780     180    1
## 1781     600    2
## 1782      90    1
## 1784     180    1
## 1785      60    1
## 1787      60    1
## 1788     120    1
## 1789     120    1
## 1790     120    1
## 1791     180    1
## 1792     600    2
## 1793     240    1
## 1796     120    1
## 1798     120    1
## 1799     120    1
## 1800     420    1
## 1801     330    1
## 1802      45    1
## 1803      90    1
## 1804      90    1
## 1806      80    1
## 1807     300    1
## 1808      30    1
## 1809     180    1
## 1810     270    1
## 1813      60    1
## 1815     300    1
## 1817     600    1
## 1818      90    1
## 1819     180    1
## 1821      30    2
## 1822     120    1
## 1824      60    1
## 1826     120    1
## 1828     210    1
## 1830     180    1
## 1831      60    1
## 1832     180    1
## 1833     150    1
## 1834     480    1
## 1835     270    1
## 1836      60    2
## 1837     180    2
## 1838     120    1
## 1839     150    1
## 1841      60    1
## 1843     600    1
## 1844     120    1
## 1846     120    1
## 1847      30    1
## 1850     290    1
## 1851     300    1
## 1852     180    1
## 1855      60    1
## 1857     180    1
## 1858     240    1
## 1859      90    1
## 1860     120    1
## 1862     240    2
## 1864     180    3
## 1865     360    1
## 1867     180    1
## 1868     180    1
## 1869     150    1
## 1870     120    1
## 1872     120    1
## 1877     390    1
## 1878      60    1
## 1879      60    1
## 1881     120    1
## 1882     185    1
## 1883     150    1
## 1884     120    1
## 1885     350    1
## 1886     300    1
## 1888     240    1
## 1889      90    1
## 1890     120    1
## 1892      60    1
## 1893     240    1
## 1894     600    3
## 1896     120    1
## 1897     180    2
## 1898     120    1
## 1899     180    1
## 1900     300    1
## 1901     240    1
## 1902     150    1
## 1903     180    1
## 1904     180    2
## 1905     240    2
## 1907      60    1
## 1908      60    1
## 1909     300    1
## 1911     600    1
## 1912     340    1
## 1913      40    2
## 1915     120    1
## 1917     180    1
## 1918      60    1
## 1919     300    1
## 1920     210    1
## 1923     300    1
## 1924     120    1
## 1925      60    1
## 1926     360    2
## 1927     120    1
## 1930      60    1
## 1931     210    2
## 1932      60    1
## 1933      90    1
## 1934     120    1
## 1935     300    1
## 1936      90    1
## 1937     180    1
## 1938     180    1
## 1939     120    2
## 1941     160    2
## 1942     120    1
## 1943     300    2
## 1944     120    1
## 1946     120    1
## 1947      90    1
## 1948      60    1
## 1949     180    1
## 1950     240    2
## 1951     120    1
## 1954     180    1
## 1955     180    1
## 1956     300    2
## 1957     150    1
## 1958      63    1
## 1959     300    1
## 1960     150    1
## 1961      60    1
## 1963     155    2
## 1964     180    2
## 1966     180    3
## 1967      60    1
## 1972     180    1
## 1973      60    1
## 1974     600    1
## 1976      90    1
## 1977     180    1
## 1979      60    1
## 1980      90    1
## 1983     210    1
## 1984     300    1
## 1985     120    1
## 1986     120    1
## 1987     180    1
## 1988     240    1
## 1990     150    1
## 1993     150    1
## 1994     120    1
## 1995     180    2
## 1996     600    1
## 1997     120    1
## 1999     660    1
## 2003     480    1
## 2004     120    1
## 2005      60    1
## 2006     120    2
## 2007      90    1
## 2008     300    1
## 2009     300    1
## 2010     600    1
## 2011     180    3
## 2012     240    1
## 2014     360    2
## 2015     180    1
## 2017     600    1
## 2018      90    3
## 2020     120    1
## 2021     480    1
## 2023      20    1
## 2024     120    1
## 2026     120    1
## 2028     120    1
## 2030      30    1
## 2033     180    1
## 2035      60    2
## 2036      60    1
## 2037     120    1
## 2038     270    1
## 2039      90    1
## 2040     150    1
## 2041     180    1
## 2042     240    1
## 2043     120    1
## 2045      60    1
## 2047     240    1
## 2049     270    1
## 2050     158    1
## 2051     300    1
## 2053      60    1
## 2054      30    1
## 2057     150    1
## 2059     300    1
## 2060     120    1
## 2061     240    1
## 2062     180    2
## 2063     120    1
## 2064     120    1
## 2065      90    1
## 2066      90    1
## 2067     180    1
## 2068     360    1
## 2071     270    1
## 2073      60    1
## 2075     120    1
## 2076     120    2
## 2077     240    1
## 2078     180    1
## 2079     360    1
## 2080      60    1
## 2081     960    1
## 2082     180    1
## 2083      60    1
## 2085      60    1
## 2086     120    1
## 2089     240    1
## 2091      60    1
## 2092     180    1
## 2093     270    3
## 2094     120    1
## 2095     270    1
## 2096      60    1
## 2098      60    1
## 2099      60    1
## 2100     120    1
## 2102     180    3
## 2103     300    1
## 2104     120    1
## 2105     600    2
## 2106     210    1
## 2107     180    2
## 2108     180    1
## 2109     120    1
## 2110     360    1
## 2111     180    1
## 2112      60    1
## 2113     180    1
## 2114     240    1
## 2115      90    1
## 2116     120    1
## 2117     180    1
## 2118     240    2
## 2119     120    1
## 2120     120    1
## 2121     120    1
## 2122     150    1
## 2123      60    1
## 2124     300    1
## 2125     240    3
## 2126      20    2
## 2127     120    1
## 2128     120    1
## 2129     150    1
## 2130     420    1
## 2131     180    1
## 2132       1    1
## 2133      60    1
## 2135     120    1
## 2136     120    1
## 2138     270    1
## 2139      60    1
## 2140     480    1
## 2141      60    1
## 2142     120    1
## 2143     120    1
## 2144      60    1
## 2145      60    1
## 2146      30    1
## 2147      60    1
## 2152     240    2
## 2154      30    1
## 2157     360    1
## 2158      60    2
## 2161      90    1
## 2163     480    1
## 2164     300    1
## 2165     150    1
## 2168      60    1
## 2169     120    1
## 2171      45    1
## 2172      60    1
## 2175     180    1
## 2178     240    1
## 2180      30    1
## 2181     120    3
## 2182     120    2
## 2183     120    1
## 2184     270    1
## 2185     120    1
## 2190     180    3
## 2191     120    1
## 2193     180    1
## 2197     180    1
## 2198     300    1
## 2199     300    1
## 2200     270    1
## 2201     150    1
## 2203     120    1
## 2204     480    1
## 2205     120    1
## 2207     150    1
## 2208     450    1
## 2209      90    1
## 2210     240    1
## 2211      60    1
## 2212     240    1
## 2213     150    3
## 2214     360    2
## 2215     240    2
## 2216     150    1
## 2217     120    1
## 2218     300    1
## 2221     120    3
## 2222      90    1
## 2223     120    2
## 2224     600    1
## 2225      90    1
## 2226     300    1
## 2227     180    2
## 2228     120    1
## 2229     180    1
## 2230     240    1
## 2231      30    1
## 2232     210    1
## 2233     300    2
## 2234     480    1
## 2235     150    1
## 2236     140    1
## 2240      90    1
## 2241      90    1
## 2242     120    1
## 2243      60    3
## 2244     720    1
## 2245      90    1
## 2247     240    1
## 2248     120    1
## 2249     420    2
## 2250     240    1
## 2251     120    1
## 2252     120    1
## 2253     120    1
## 2256     300    1
## 2259      90    1
## 2260      60    1
## 2263     300    1
## 2264      60    1
## 2265     240    2
## 2266     180    1
## 2267     600    1
## 2269     300    1
## 2270     180    2
## 2272     540    1
## 2273     240    1
## 2274      30    1
## 2275     180    1
## 2278     180    1
## 2280     300    2
## 2281     300    1
## 2282      60    1
## 2283     300    1
## 2284     300    1
## 2286     240    1
## 2287     420    1
## 2288      90    1
## 2289     350    1
## 2292     240    1
## 2293     420    1
## 2294     180    1
## 2295      60    1
## 2296     150    1
## 2297     120    1
## 2298     240    1
## 2299      60    1
## 2300     180    1
## 2301     240    1
## 2302     120    1
## 2304     540    1
## 2305     120    1
## 2306     240    1
## 2307     300    1
## 2310     150    1
## 2311     240    1
## 2312     300    3
## 2313     120    2
## 2314     180    1
## 2315     180    1
## 2316     180    1
## 2317     480    1
## 2318      60    2
## 2319      20    1
## 2321      90    1
## 2322     120    1
## 2323      60    1
## 2324     180    2
## 2325     180    1
## 2326     120    1
## 2327     480    1
## 2328     240    1
## 2329     310    1
## 2331     120    1
## 2333     120    1
## 2334     120    1
## 2335      60    1
## 2336     270    1
## 2339     180    1
## 2340     300    1
## 2341     210    2
## 2343     210    2
## 2344     180    1
## 2346     240    1
## 2348     150    1
## 2349     180    1
## 2350     150    1
## 2351      45    1
## 2352     180    1
## 2354     150    1
## 2355     210    1
## 2356     120    1
## 2357     300    1
## 2359     150    1
## 2361     240    2
## 2362     300    2
## 2363     120    1
## 2364     300    3
## 2365     420    1
## 2366      30    1
## 2367     120    1
## 2369     300    3
## 2371     300    1
## 2374     150    1
## 2375     180    1
## 2376     300    1
## 2377     360    2
## 2378     180    1
## 2379      90    1
## 2380     120    1
## 2381     240    1
## 2382     150    1
## 2383     240    1
## 2384      60    1
## 2385      60    1
## 2386     480    1
## 2387     150    1
## 2390     120    1
## 2393     180    1
## 2394     120    1
## 2395     300    1
## 2396      60    1
## 2399     360    2
## 2403     720    1
## 2404      60    3
## 2405      10    1
## 2407     240    2
## 2408     190    1
## 2410      60    1
## 2411     120    1
## 2413      60    1
## 2414     270    1
## 2416     180    1
## 2417     480    1
## 2418     240    1
## 2419     270    1
## 2422     150    1
## 2423     120    1
## 2424     240    1
## 2425      60    2
## 2426     120    1
## 2427      60    1
## 2428      90    1
## 2429     270    1
## 2430     240    1
## 2431    1200    1
## 2432      40    1
## 2433     120    1
## 2434     150    1
## 2435     240    1
## 2436     180    1
## 2438     150    2
## 2440     180    1
## 2443     300    1
## 2444      60    1
## 2445     180    1
## 2446     180    1
## 2447      60    1
## 2448     300    3
## 2449      30    1
## 2452     300    2
## 2453      90    1
## 2456      90    2
## 2458     300    2
## 2460      60    1
## 2461     300    2
## 2462     150    1
## 2463     240    1
## 2464     720    1
## 2467     240    1
## 2468     120    1
## 2469     240    1
## 2470     300    1
## 2471     360    1
## 2472     120    1
## 2473      90    1
## 2474      40    2
## 2475     240    1
## 2481     300    1
## 2482      90    1
## 2483      60    2
## 2484     120    1
## 2486     240    1
## 2487     240    1
## 2489     120    1
## 2491     120    2
## 2492     180    1
## 2493      60    1
## 2494     180    2
## 2495     300    1
## 2496     450    1
## 2498     180    1
## 2499     120    1
## 2501     120    1
## 2504     120    1
## 2505     280    2
## 2506      90    1
## 2507     600    1
## 2508     300    1
## 2509     240    1
## 2511      90    1
## 2512     240    1
## 2513      60    1
## 2514     180    1
## 2515     240    2
## 2516      90    1
## 2518     120    1
## 2519     120    1
## 2520     360    1
## 2521      60    2
## 2524     180    1
## 2526     300    1
## 2527     300    1
## 2531     360    1
## 2532     240    1
## 2533     180    1
## 2534     240    1
## 2535     180    1
## 2536      68    1
## 2537     180    2
## 2538      60    1
## 2539     120    1
## 2541     180    1
## 2543     600    1
## 2544      90    1
## 2545     150    1
## 2546      60    1
## 2548      98    1
## 2551     120    1
## 2553     540    1
## 2554      30    1
## 2555     150    2
## 2556     180    1
## 2557     120    1
## 2558     150    1
## 2559     120    1
## 2560     120    1
## 2561     300    2
## 2562     300    1
## 2563     120    1
## 2564     180    1
## 2565     420    1
## 2566      60    1
## 2567     120    1
## 2568      90    1
## 2569     180    1
## 2570     300    1
## 2571     480    1
## 2572     480    2
## 2574     240    1
## 2576     240    1
## 2577     120    1
## 2581     360    2
## 2583     120    1
## 2584     210    2
## 2585     120    1
## 2586     120    1
## 2587     180    1
## 2588     300    1
## 2589     120    1
## 2590     360    1
## 2591      60    1
## 2592     600    1
## 2593     120    2
## 2595     240    1
## 2596     300    1
## 2597     360    1
## 2598     180    1
## 2599     180    2
## 2600     300    1
## 2601     120    1
## 2603     300    2
## 2605     150    1
## 2606     330    1
## 2609      60    1
## 2610     240    1
## 2611     360    1
## 2612     360    1
## 2614     480    1
## 2616     360    2
## 2617     120    1
## 2619     180    1
## 2620     120    1
## 2621     120    1
## 2622      60    1
## 2623      15    1
## 2628     360    2
## 2630     300    1
## 2632     900    1
## 2633      30    1
## 2634     180    1
## 2635      30    1
## 2636     120    2
## 2637      60    1
## 2638     120    1
## 2639      90    1
## 2640     180    1
## 2641      60    2
## 2642     240    1
## 2644     180    1
## 2646     540    2
## 2647      60    1
## 2649      60    1
## 2650     180    1
## 2651     120    2
## 2654     120    1
## 2655     180    2
## 2656     180    1
## 2657     120    2
## 2658     150    1
## 2659      60    1
## 2660     120    1
## 2661      60    2
## 2662     180    1
## 2663     150    1
## 2664     120    1
## 2666     360    1
## 2667     430    1
## 2672     180    1
## 2673     120    1
## 2675      90    1
## 2677     120    2
## 2678     180    1
## 2679     300    1
## 2680     120    1
## 2681     360    1
## 2683     360    1
## 2685     480    1
## 2686     180    3
## 2688     150    1
## 2689      90    1
## 2690      90    1
## 2691      90    1
## 2692     300    1
## 2693     180    1
## 2694      90    1
## 2695     180    1
## 2696     270    1
## 2699     180    1
## 2700     120    1
## 2701     240    1
## 2702     180    1
## 2704     330    1
## 2705     180    1
## 2709     150    1
## 2715     120    1
## 2716     120    1
## 2717     120    1
## 2718     300    1
## 2720      60    1
## 2721     300    1
## 2722     210    2
## 2723     150    1
## 2725     300    1
## 2729     180    2
## 2730     120    1
## 2731      60    1
## 2732     240    1
## 2734     180    1
## 2735     180    1
## 2736      60    1
## 2737      60    1
## 2738     300    1
## 2739     240    1
## 2740      90    2
## 2741     120    1
## 2744     180    3
## 2745     120    1
## 2746      90    1
## 2747     330    1
## 2752     345    1
## 2754      90    1
## 2757      60    1
## 2759     300    1
## 2760     180    1
## 2762      60    1
## 2763      90    2
## 2764     120    1
## 2765     360    1
## 2766     330    1
## 2769     300    1
## 2770     150    2
## 2772      70    1
## 2773     360    2
## 2774     600    3
## 2776     480    2
## 2778     420    1
## 2781     120    1
## 2782     120    1
## 2786     180    1
## 2789     120    1
## 2790     180    1
## 2791     120    1
## 2792      60    1
## 2793      90    1
## 2794     120    1
## 2797     120    1
## 2798     300    1

netustm - internet use in minutes vote - national elections

# Create a vector for each vote category (1, 2, 3)
vote_1 <- subset(greece_3, vote == 1)$netustm
vote_2 <- subset(greece_3, vote == 2)$netustm
vote_3 <- subset(greece_3, vote == 3)$netustm #We will not use it
ggplot() + labs (title = "Internet use in minutes vs Voting", x="Did people vote on last national elections?", y="") +
  geom_boxplot(aes(x='Yes', y=vote_1), fill="tomato1") + 
  geom_boxplot(aes(x='No', y=vote_2), fill="purple4") + 
  theme_bw()

5) You have checked the normality assumption for the t-test in 2 different ways (QQ plots / histogram / skew and kurtosis) (0.5)

shapiro.test(vote_1)
## 
##  Shapiro-Wilk normality test
## 
## data:  vote_1
## W = 0.83022, p-value < 2.2e-16
shapiro.test(vote_2)
## 
##  Shapiro-Wilk normality test
## 
## data:  vote_2
## W = 0.8899, p-value = 7.288e-13
var.test(vote_1, vote_2)
## 
##  F test to compare two variances
## 
## data:  vote_1 and vote_2
## F = 1.0064, num df = 1670, denom df = 261, p-value = 0.9645
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.8312979 1.2030520
## sample estimates:
## ratio of variances 
##           1.006375
# QQ plot for vote_1
qqnorm(vote_1)
qqline(vote_1)

# Histogram for vote_1
hist(vote_1)

# QQ plot for vote_2
qqnorm(vote_2)
qqline(vote_2)

# Histogram for vote_2
hist(vote_2)

# Calculate skewness and kurtosis for vote_1
skewness(vote_1)
## [1] 1.87265
kurtosis(vote_1)
## [1] 8.054205
# Calculate skewness and kurtosis for vote_2
skewness(vote_2)
## [1] 1.2126
kurtosis(vote_2)
## [1] 4.260232

For vote_1, the skewness value is 1.87265 which is greater than zero, indicating a positively skewed distribution. The kurtosis value of 8.054205 indicates that the distribution is highly leptokurtic, meaning it has a sharp peak and heavy tails. These results suggest that the distribution of vote_1 may not be normal.

For vote_2, the skewness value is 1.2126 which is also greater than zero, indicating a positively skewed distribution. The kurtosis value of 4.260232 indicates that the distribution is moderately leptokurtic, meaning it has a relatively sharp peak and moderately heavy tails. These results also suggest that the distribution of vote_2 may not be normal.

Overall, neither vote_1 nor vote_2 appears to have a normal distribution based on their skewness and kurtosis values.

  1. The null hypothesis is spelled out, and you make conclusions as to how the results relate to it. You have applied the correct t-test formula and interpreted the result correctly. If the result is statistically significant, the effect size is reported (1)

Null hypothesis: There is no significant difference in the mean time spent on the internet between people who voted and those who didn’t vote in the last national elections.

Alternative hypothesis: There is a significant difference in the mean time spent on the internet between people who voted and those who didn’t vote in the last national elections.

t.test(vote_1, vote_2, var.equal = TRUE)
## 
##  Two Sample t-test
## 
## data:  vote_1 and vote_2
## t = -3.2426, df = 1931, p-value = 0.001204
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -47.33311 -11.65582
## sample estimates:
## mean of x mean of y 
##  190.8414  220.3359

The t-test results show that there is a statistically significant difference between the mean number of minutes spent on the internet by people who voted in the last national elections (vote_1) and those who did not vote (vote_2). The t-statistic value is -3.2426 with a p-value of 0.001204, which is less than the typical threshold of 0.05, indicating strong evidence against the null hypothesis.

The 95% confidence interval for the difference in means is between -47.33311 and -11.65582, which does not include zero, indicating that the difference between the two means is statistically significant. The negative sign of the confidence interval suggests that people who did not vote tend to spend more minutes on the internet compared to those who did vote.

Therefore, we can reject the null hypothesis and conclude that there is a significant difference in the mean number of minutes spent on the internet between people who voted and those who did not vote.

  1. You have double-checked your results with a non-parametric test (0.5)
wilcox.test(vote_1, vote_2, alternative = "two.sided")
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  vote_1 and vote_2
## W = 183930, p-value = 2.664e-05
## alternative hypothesis: true location shift is not equal to 0

The test resulted in a W value of 183930 and a p-value of 2.664e-05. The p-value is less than the significance level of 0.05, indicating that we can reject the null hypothesis of no difference between the two groups. Therefore, we can conclude that there is a significant difference in the internet use in minutes between people who voted on the last national election and those who did not vote.

We can conclude that people who do not vote spend more time in the internet on average then those who do vote.

2.4 ANOVA

Part III. ANOVA (3.5 points) 8) The correct choice of variables, a boxplot with these variables (0.5)

greece_4 <- greece %>% dplyr:: select(polintr, netustm)
greece_4 <- na.omit(greece_4)
greece_4$polintr <- as.factor(greece_4$polintr)
greece_4$netustm <- as.numeric(as.character(greece_4$netustm))
greece_4
##      polintr netustm
## 1          3      60
## 3          2     240
## 4          3     120
## 5          3      60
## 7          3     120
## 9          3     120
## 11         1     120
## 12         2     480
## 13         3     190
## 14         3     300
## 16         2     360
## 18         4     200
## 19         2     360
## 20         4     240
## 21         4     480
## 22         4     300
## 23         2      75
## 24         3     120
## 25         3      75
## 26         1     420
## 27         3     180
## 32         2     210
## 33         4     300
## 36         4      45
## 37         4      60
## 38         4      60
## 40         4     120
## 41         3     240
## 42         4     600
## 43         3     180
## 44         2     300
## 45         2     300
## 48         4      60
## 50         3     240
## 51         1     360
## 53         4     300
## 54         2     120
## 55         1      60
## 56         4     180
## 59         4      90
## 61         2     240
## 62         2     128
## 63         3     120
## 65         3      60
## 67         3     240
## 68         4      90
## 70         2      40
## 71         2     150
## 72         4      60
## 73         3     210
## 75         2     190
## 76         2     120
## 77         4     300
## 78         4     120
## 80         2     180
## 81         1     140
## 82         3      60
## 83         2      60
## 85         3     120
## 86         4     180
## 87         4      90
## 88         4     150
## 89         3     210
## 90         1     180
## 91         2     120
## 93         3     300
## 94         3     180
## 96         4     360
## 97         1     180
## 98         1     300
## 100        1     150
## 101        3     120
## 102        4      60
## 103        3     120
## 104        2     480
## 105        2     600
## 106        4     180
## 107        4     120
## 109        4     150
## 110        4     120
## 111        4      60
## 112        4       0
## 113        3      90
## 115        3     120
## 116        3     240
## 117        4      90
## 118        4     240
## 119        2      30
## 120        4     180
## 121        4     180
## 122        3     600
## 123        2     240
## 124        3      60
## 125        2     120
## 127        3     600
## 128        2     120
## 130        2      90
## 133        1     150
## 135        1     180
## 136        4     300
## 138        2     360
## 139        3     120
## 142        3     180
## 144        3     300
## 145        4     300
## 146        3     120
## 147        2     120
## 148        4      90
## 149        2     180
## 150        3      30
## 152        4     210
## 153        2      90
## 154        4     240
## 155        3     240
## 156        2     120
## 157        3     120
## 158        1     120
## 159        2     240
## 160        3     150
## 161        3      60
## 162        3     180
## 163        4      60
## 165        2     480
## 166        4     180
## 167        1     600
## 168        3      45
## 169        1     240
## 172        4     150
## 173        4     240
## 175        2     120
## 176        3      90
## 181        4      60
## 184        3     360
## 185        2     120
## 186        3      60
## 188        4      30
## 190        3     360
## 192        3       1
## 194        3     120
## 195        3     360
## 196        4     300
## 197        4     120
## 198        4     300
## 199        4     300
## 200        3      60
## 201        4     150
## 202        3     300
## 204        4      60
## 207        4     120
## 208        4     720
## 210        1     120
## 211        4     180
## 214        4      60
## 215        3     240
## 216        3     180
## 218        4     180
## 219        4      60
## 220        4     180
## 221        2      60
## 222        3     240
## 223        2     600
## 224        3     120
## 225        3     300
## 226        2     540
## 228        2     120
## 229        1     300
## 230        2     270
## 231        4     150
## 232        3      30
## 233        4     120
## 234        3     120
## 236        3     120
## 237        3     150
## 240        3     180
## 241        3     120
## 243        2     120
## 244        3     120
## 245        3      90
## 247        3     135
## 248        4     210
## 249        4     300
## 250        2      30
## 251        3      60
## 252        2      60
## 253        4     600
## 256        3     300
## 259        3     180
## 260        4      60
## 261        4     150
## 262        4     300
## 263        2     240
## 264        1      90
## 265        3     210
## 267        4      90
## 268        3      30
## 270        3     120
## 272        2      90
## 273        3      60
## 275        2     120
## 276        3      30
## 277        2     240
## 278        3     120
## 281        4     300
## 283        2     210
## 284        4     360
## 285        4     240
## 288        2     120
## 289        3     120
## 291        3      60
## 293        4     120
## 295        4     180
## 296        4     300
## 297        4     120
## 298        3     240
## 301        2     360
## 302        4     150
## 305        3     120
## 307        2      60
## 310        3     120
## 311        3     240
## 312        4      90
## 313        1     180
## 314        2     240
## 316        4     360
## 317        2      90
## 323        3     120
## 324        2      60
## 325        2     480
## 327        4     120
## 328        2     120
## 329        2     150
## 330        4     600
## 331        4      60
## 332        1     120
## 333        4     120
## 334        3     480
## 336        4     120
## 338        2     210
## 339        1     480
## 340        4     120
## 341        4     240
## 342        2      30
## 344        4     240
## 345        3     180
## 346        4     120
## 347        2     120
## 349        4     180
## 350        2     210
## 351        3     180
## 352        3     120
## 353        4      60
## 354        2      60
## 355        3     120
## 356        4     180
## 357        2     120
## 358        2     180
## 360        3      60
## 361        2     120
## 362        4      90
## 363        3      60
## 364        4     120
## 365        2     360
## 367        3     150
## 369        2     180
## 370        4      60
## 371        4      60
## 372        4     150
## 373        3     300
## 375        4      90
## 376        4     240
## 377        2      60
## 378        4     480
## 379        3     120
## 380        4      60
## 381        2      90
## 382        2     270
## 385        4     120
## 389        4     150
## 391        4     180
## 392        2     600
## 393        4     180
## 394        2     600
## 396        4     150
## 397        4     180
## 399        4     120
## 400        3      60
## 401        2     540
## 402        2     120
## 403        1     240
## 406        4     420
## 407        4     260
## 408        3      30
## 409        4     240
## 410        3     360
## 411        4      15
## 412        3     600
## 413        4     120
## 414        2     183
## 415        4      60
## 416        3     180
## 417        2     120
## 418        2      90
## 419        2     120
## 420        2     330
## 421        4     180
## 422        4     180
## 423        3     180
## 425        3     120
## 427        4     180
## 430        2      60
## 431        4     600
## 432        4     300
## 433        3      60
## 434        3     180
## 436        4     120
## 437        4     300
## 439        2     120
## 440        2     120
## 442        2     120
## 443        3      75
## 445        3     180
## 446        2     600
## 447        3     180
## 448        3     360
## 449        2     240
## 450        3      90
## 451        4     120
## 452        3     300
## 454        3     240
## 456        4     120
## 458        4     180
## 460        3     180
## 463        3     150
## 464        1     240
## 466        3     120
## 467        3     180
## 468        3     120
## 469        4     120
## 470        4     360
## 471        4     240
## 472        4     270
## 473        3      30
## 474        2     600
## 475        4     120
## 477        4     240
## 480        2     120
## 481        2      90
## 482        1     180
## 483        3     120
## 485        3     180
## 486        4     390
## 487        4     360
## 488        4      60
## 489        4      60
## 491        4     480
## 492        2     120
## 493        2     240
## 497        4     120
## 499        2      60
## 500        3     120
## 503        4     120
## 506        3     300
## 507        2      60
## 508        3     240
## 510        2      60
## 511        4     120
## 513        2     270
## 514        4     240
## 515        4     120
## 516        4     150
## 517        2     180
## 518        3     120
## 520        3     180
## 521        2     120
## 522        4     180
## 524        3     180
## 525        2     180
## 526        4     120
## 527        2     270
## 529        4     120
## 530        2      60
## 531        3     170
## 532        4     120
## 533        2     150
## 534        3     180
## 535        4     600
## 536        4     180
## 540        4     120
## 543        4      90
## 544        3     120
## 545        3     180
## 546        1     210
## 547        4     180
## 549        2      60
## 550        4     120
## 552        4      60
## 553        3     180
## 555        4     600
## 556        2     120
## 558        3     120
## 559        4     300
## 560        2     120
## 561        4     180
## 565        4     120
## 566        4     300
## 570        1     360
## 571        3     210
## 573        2     120
## 576        2     180
## 577        2     240
## 578        2      30
## 579        4     480
## 580        3     300
## 584        4     120
## 585        2     450
## 586        4      90
## 587        2     180
## 589        2     180
## 591        3     330
## 592        3      60
## 593        4      60
## 594        2     240
## 596        3     120
## 598        4     120
## 599        2     240
## 601        2     180
## 602        2     240
## 603        3     150
## 608        3     120
## 609        3     180
## 610        1     270
## 611        3     180
## 612        3     180
## 614        3      60
## 616        4     180
## 617        4     300
## 618        3     180
## 620        4     120
## 621        4     120
## 622        3      60
## 626        3     180
## 627        4     180
## 629        3     170
## 630        2     150
## 631        4     120
## 632        4     120
## 633        4      60
## 634        3      90
## 635        3     120
## 636        2     300
## 637        4     300
## 638        3     120
## 640        4     120
## 642        4     300
## 643        3     120
## 645        3     150
## 646        1     120
## 647        4     120
## 648        4      90
## 649        2     120
## 650        2     120
## 651        2     150
## 652        4     300
## 653        3     180
## 654        4     600
## 655        4     120
## 656        3     240
## 657        3      60
## 658        3     240
## 659        2     240
## 660        4     180
## 661        4     120
## 662        3     120
## 663        4     420
## 664        3     180
## 666        4     150
## 668        2      60
## 670        2     240
## 671        1     150
## 672        4     180
## 673        4     180
## 676        3      60
## 677        3      60
## 681        4     120
## 684        3     150
## 685        3     240
## 686        3      60
## 687        3     120
## 688        3     120
## 690        3     210
## 691        4     720
## 692        3     480
## 695        2     240
## 698        4     180
## 700        4     480
## 701        1     600
## 703        2     300
## 704        4     120
## 705        4     360
## 707        4     300
## 708        4      60
## 709        2     180
## 711        2      60
## 712        2     600
## 713        3     450
## 715        2     240
## 716        1     180
## 717        4     180
## 718        2     300
## 719        4     330
## 720        2     120
## 721        3     120
## 724        3     420
## 727        2     120
## 728        2     300
## 729        4     420
## 731        4      60
## 732        3     300
## 733        2     120
## 734        4     120
## 735        2     150
## 736        4     900
## 737        2     123
## 738        2     120
## 739        2     300
## 740        4     300
## 741        3     150
## 742        4      90
## 744        4     120
## 746        2     180
## 747        4     360
## 748        4      60
## 749        3      60
## 750        2     180
## 752        2     300
## 755        4     120
## 756        2      90
## 757        2     210
## 758        3      60
## 759        4     120
## 760        3     180
## 762        3      60
## 763        4     240
## 765        4      60
## 766        3     120
## 767        4     600
## 769        2     120
## 770        4     300
## 771        4      90
## 772        2     360
## 773        2     300
## 775        2      90
## 776        4     120
## 778        3     180
## 781        4     120
## 783        4     120
## 785        4     180
## 786        3     120
## 788        3     300
## 790        3      60
## 792        2     120
## 793        2      60
## 794        3     210
## 795        3     210
## 796        4      90
## 797        2      60
## 798        2     180
## 800        4     180
## 801        2     300
## 802        4     180
## 803        2      60
## 804        2      60
## 808        2     300
## 810        3     180
## 811        3     180
## 814        2     330
## 815        3     300
## 816        3     300
## 817        3     300
## 818        2     300
## 819        4     180
## 820        4     300
## 821        4      90
## 822        4     330
## 826        3      90
## 827        3      60
## 829        1     360
## 830        3     180
## 831        3     180
## 832        4     300
## 834        2     330
## 835        3     180
## 836        3     150
## 837        3     600
## 838        2      60
## 840        3     480
## 842        2     120
## 843        4     720
## 844        3     180
## 845        4     120
## 846        4     305
## 847        3      60
## 848        4     240
## 850        4      60
## 851        3     240
## 852        2      90
## 853        3      60
## 854        4     120
## 855        4     420
## 856        2     150
## 857        2     120
## 858        3     120
## 862        4     180
## 863        3     180
## 864        2     260
## 865        3      90
## 866        4     120
## 868        2     300
## 870        2     180
## 871        2     150
## 872        3     600
## 873        4       2
## 874        2     180
## 880        4     180
## 883        4     240
## 884        2      20
## 886        4     150
## 887        4     150
## 888        4     120
## 890        4     360
## 891        2     600
## 893        2     300
## 894        2     300
## 896        4     120
## 897        4     180
## 898        4     360
## 901        4     300
## 902        1     120
## 903        4     180
## 904        2     180
## 905        4     120
## 907        1     240
## 908        2      90
## 909        3      60
## 910        4     240
## 911        2     270
## 912        3     180
## 913        3     240
## 915        3     120
## 916        4     180
## 918        4      90
## 919        4     300
## 920        3     300
## 921        4     180
## 925        2     480
## 928        2     120
## 929        3     150
## 930        2     120
## 933        3     240
## 934        3     120
## 935        2     330
## 936        3     240
## 937        4     270
## 938        2     180
## 939        1     420
## 941        3      90
## 942        2     120
## 943        3      90
## 944        3     390
## 945        4     120
## 946        3     240
## 947        3     150
## 948        1     120
## 949        1     300
## 951        1     120
## 952        1      90
## 953        2     300
## 954        4     600
## 955        3     240
## 957        3      60
## 959        2     180
## 960        3     240
## 961        3     120
## 962        1     120
## 963        2     150
## 964        4     300
## 965        3     240
## 966        3     420
## 968        1     120
## 969        4     300
## 970        4     120
## 971        3      90
## 973        2     150
## 974        2     330
## 975        1     120
## 979        2     120
## 980        1     300
## 981        4     300
## 984        4     120
## 985        4     120
## 987        4     330
## 988        4     120
## 989        3      90
## 991        2      90
## 992        4      90
## 993        2     120
## 994        4      90
## 995        4      60
## 997        4      90
## 1002       4     150
## 1004       3      60
## 1006       4     120
## 1007       4     480
## 1008       3     120
## 1009       4     120
## 1010       4     180
## 1011       4     600
## 1012       3     240
## 1014       4     120
## 1016       3     120
## 1017       3     600
## 1018       2     120
## 1019       2     180
## 1020       2     210
## 1021       2     480
## 1022       3     180
## 1023       2     225
## 1025       3      60
## 1026       4     300
## 1027       2     480
## 1028       4     600
## 1030       2      90
## 1033       3     240
## 1034       2      60
## 1035       3     300
## 1036       4     300
## 1037       2     120
## 1038       4     900
## 1041       3     240
## 1042       2     150
## 1044       3     330
## 1045       2      60
## 1048       3     300
## 1049       4      60
## 1050       4     120
## 1051       3      90
## 1053       3     360
## 1054       1     180
## 1056       4      90
## 1057       4     480
## 1059       4     480
## 1060       2     120
## 1062       2      30
## 1063       3      90
## 1064       3     120
## 1065       4     180
## 1066       4     480
## 1067       2      60
## 1068       3     120
## 1070       3     210
## 1072       4      60
## 1073       3     240
## 1074       4     180
## 1076       1     240
## 1080       3     120
## 1082       4      60
## 1083       2      90
## 1084       4     240
## 1085       4     180
## 1086       3     150
## 1087       3     150
## 1088       2     330
## 1089       4     240
## 1090       4      60
## 1092       4     240
## 1093       4     180
## 1096       4     480
## 1097       4     240
## 1099       4     150
## 1100       4     150
## 1102       3     120
## 1104       3      90
## 1106       4     120
## 1107       3     180
## 1109       4     180
## 1110       4     300
## 1111       3     120
## 1114       3      90
## 1115       3     190
## 1116       3     120
## 1117       3     120
## 1119       3     300
## 1120       3      20
## 1121       4     240
## 1124       2     270
## 1125       2     120
## 1126       3     240
## 1127       2     180
## 1129       4     120
## 1130       2     180
## 1132       4     300
## 1134       2     120
## 1135       4     180
## 1136       4     120
## 1137       4     600
## 1138       4     120
## 1140       1     300
## 1141       3     120
## 1143       4     180
## 1144       3     600
## 1145       2     240
## 1149       3     150
## 1150       3     120
## 1151       2     180
## 1152       4     250
## 1153       3      60
## 1154       1     180
## 1155       4     240
## 1156       4     120
## 1159       3      60
## 1162       4     300
## 1163       3     120
## 1164       3     120
## 1165       4     300
## 1166       2     480
## 1167       4     600
## 1168       2     120
## 1169       2     135
## 1172       4     350
## 1173       3     120
## 1174       4      60
## 1175       2     510
## 1176       3      90
## 1179       3      60
## 1180       3     240
## 1181       3     390
## 1182       4     180
## 1183       2     420
## 1184       2     180
## 1185       2     240
## 1187       3     120
## 1188       3      60
## 1190       3      60
## 1191       3     210
## 1193       2     120
## 1194       4     360
## 1195       4     360
## 1196       2     120
## 1197       1      60
## 1198       3     180
## 1200       2     120
## 1203       4     480
## 1204       4      90
## 1205       3     180
## 1206       3     180
## 1208       3     180
## 1210       3     480
## 1211       4     300
## 1212       1      90
## 1213       3     183
## 1214       4     120
## 1217       4     120
## 1218       3      60
## 1219       4     480
## 1220       4     120
## 1224       4     420
## 1225       3     420
## 1226       3     300
## 1227       2     240
## 1228       2     180
## 1229       3      60
## 1230       4     150
## 1231       4     240
## 1232       4     180
## 1233       4     120
## 1234       2      30
## 1235       4      90
## 1236       3     180
## 1238       1     240
## 1239       2     300
## 1240       2      60
## 1244       4     180
## 1245       3      60
## 1246       2     300
## 1247       4     180
## 1249       3     120
## 1250       2     150
## 1255       4     180
## 1256       3     180
## 1257       4     360
## 1258       4     360
## 1260       2     510
## 1262       3      60
## 1263       3      60
## 1264       1      60
## 1268       3     120
## 1270       4      60
## 1271       4     180
## 1273       4     180
## 1275       4     120
## 1277       2     120
## 1278       4     180
## 1279       1     150
## 1280       3     240
## 1281       2     120
## 1282       4     480
## 1283       3      60
## 1284       1     360
## 1287       3      60
## 1288       3     180
## 1289       4     660
## 1291       4     120
## 1292       2     300
## 1293       3     180
## 1296       4      90
## 1297       1     240
## 1299       2     180
## 1300       4     120
## 1301       3      90
## 1303       4      90
## 1304       2     240
## 1306       4     600
## 1307       1     120
## 1308       4     180
## 1309       3     120
## 1310       3     300
## 1311       4     240
## 1312       2      30
## 1313       2     270
## 1314       4      30
## 1317       4      60
## 1318       4      10
## 1319       4     180
## 1320       2     180
## 1322       3      90
## 1323       4     360
## 1324       4      90
## 1328       3     150
## 1329       2     330
## 1330       4      60
## 1332       2      60
## 1333       2     120
## 1334       4     120
## 1335       4     120
## 1336       4     170
## 1337       4     120
## 1338       3     540
## 1339       3      90
## 1341       4      90
## 1342       4     240
## 1343       2     240
## 1344       3     180
## 1345       4     120
## 1347       2     120
## 1348       4     480
## 1349       2     300
## 1350       3      60
## 1351       2     180
## 1353       2     180
## 1354       3      20
## 1355       1     150
## 1356       4     300
## 1357       4     240
## 1358       4      60
## 1360       2     360
## 1361       3     120
## 1362       3      90
## 1363       3     210
## 1364       2     180
## 1365       2     240
## 1367       2     120
## 1368       4     360
## 1371       3     300
## 1372       3     180
## 1373       3     180
## 1376       4     600
## 1379       4     180
## 1380       2     300
## 1381       3      60
## 1382       4      30
## 1383       4     180
## 1384       3      60
## 1385       3     180
## 1386       3      60
## 1387       3     150
## 1388       3     600
## 1389       3     150
## 1391       3      60
## 1392       4     120
## 1393       2     120
## 1395       4     180
## 1396       2     360
## 1397       3     240
## 1398       4     210
## 1399       3     180
## 1400       2     150
## 1402       1     120
## 1403       3     180
## 1404       2     180
## 1405       3     300
## 1407       3      90
## 1408       4     300
## 1412       4     600
## 1413       1     210
## 1414       2     120
## 1415       1      60
## 1416       4     150
## 1417       3      90
## 1418       4      60
## 1419       2     120
## 1420       3      60
## 1421       3     240
## 1422       2      90
## 1423       4      30
## 1426       2     180
## 1427       2     120
## 1428       4     240
## 1431       3     120
## 1432       4     150
## 1434       4     120
## 1435       4      45
## 1436       1      90
## 1438       4      30
## 1439       2     120
## 1440       3     330
## 1441       2     300
## 1443       3      60
## 1446       4     120
## 1447       4      90
## 1448       2     270
## 1450       4     300
## 1451       3     150
## 1453       2     120
## 1454       2     120
## 1455       4     180
## 1456       3     180
## 1457       2     210
## 1458       3     240
## 1459       4     180
## 1460       2     150
## 1461       3      90
## 1462       4      60
## 1463       4      90
## 1464       2     180
## 1465       2      60
## 1466       4      30
## 1467       3     480
## 1469       4      60
## 1470       2     120
## 1471       3     120
## 1472       3     240
## 1473       3     120
## 1474       3     240
## 1475       3     120
## 1476       2     120
## 1478       2     240
## 1480       3     240
## 1481       2     180
## 1482       3     120
## 1486       4     240
## 1487       3     120
## 1488       2     210
## 1489       2     300
## 1490       2     120
## 1491       4     180
## 1494       3      60
## 1495       4     480
## 1496       4     240
## 1497       4     120
## 1498       4     240
## 1499       3     120
## 1500       2     120
## 1502       4     120
## 1503       4     420
## 1504       4     480
## 1505       1     240
## 1506       4     240
## 1507       3     120
## 1510       2     330
## 1511       4     120
## 1512       4     120
## 1514       2     135
## 1515       4     230
## 1516       3     240
## 1517       2     240
## 1518       3     120
## 1519       4     120
## 1520       3     480
## 1521       4     180
## 1522       2      60
## 1523       3     240
## 1524       3      60
## 1525       4     300
## 1527       1     180
## 1528       3     180
## 1529       2      60
## 1530       3      60
## 1533       4      60
## 1535       4     240
## 1538       1     183
## 1539       3     180
## 1540       3      60
## 1541       4      90
## 1542       4      60
## 1544       2      60
## 1545       4     240
## 1546       3     180
## 1547       4     180
## 1549       4      90
## 1550       3     300
## 1551       2     120
## 1552       4     488
## 1555       3     180
## 1556       4       0
## 1557       3      60
## 1558       4     170
## 1559       4     600
## 1561       2      45
## 1562       4      90
## 1563       3      30
## 1564       4     120
## 1565       2      60
## 1566       3     300
## 1567       1     300
## 1568       4     180
## 1569       2     300
## 1571       2      90
## 1572       2      60
## 1573       4     240
## 1574       4     600
## 1575       2     120
## 1576       2     180
## 1577       3     180
## 1579       3     300
## 1582       4      60
## 1583       3      60
## 1584       2     270
## 1585       2     180
## 1586       4     300
## 1587       2     600
## 1588       2     600
## 1589       3     300
## 1591       4     210
## 1592       4     150
## 1593       2     120
## 1596       2      30
## 1598       2     360
## 1600       4     180
## 1601       2     120
## 1603       3     120
## 1605       3      60
## 1606       3     120
## 1607       1     180
## 1608       4     180
## 1609       3     180
## 1610       4     120
## 1611       3      90
## 1614       2     300
## 1616       3      90
## 1617       2      60
## 1619       2     180
## 1620       3     300
## 1621       3      60
## 1623       4     120
## 1624       3     120
## 1625       3     720
## 1626       4     120
## 1627       3     180
## 1629       2     300
## 1631       3     180
## 1632       4      90
## 1634       3     240
## 1635       4     120
## 1636       3     120
## 1638       2     320
## 1641       2     180
## 1642       3     150
## 1644       2     120
## 1645       4     360
## 1647       4     150
## 1648       4     210
## 1649       4     720
## 1650       2      70
## 1651       3     180
## 1653       3      60
## 1654       3      90
## 1655       4     180
## 1656       1     180
## 1657       3     120
## 1659       4     300
## 1660       4     120
## 1661       3     240
## 1662       4     120
## 1663       3     150
## 1665       4      30
## 1666       4     480
## 1668       3      90
## 1670       2      90
## 1671       4     180
## 1672       4     180
## 1674       4     120
## 1676       2      60
## 1677       4     180
## 1678       3     410
## 1679       3     360
## 1681       3     300
## 1682       2     600
## 1683       2     150
## 1684       2     120
## 1685       3     240
## 1688       4     150
## 1689       3     150
## 1691       3     480
## 1692       4     210
## 1693       3     300
## 1695       2     120
## 1696       4     120
## 1697       4      30
## 1698       2      30
## 1701       3     350
## 1704       4     240
## 1705       2      80
## 1706       4     600
## 1707       4     180
## 1708       4     480
## 1709       3     120
## 1711       3     240
## 1712       4      90
## 1714       2     120
## 1716       2     150
## 1717       4     180
## 1718       4      60
## 1719       2     120
## 1720       2      60
## 1721       4     120
## 1722       4     360
## 1723       2     120
## 1724       2     120
## 1726       4     480
## 1727       4      60
## 1730       3     120
## 1731       3     240
## 1732       2     120
## 1733       2      45
## 1734       4     150
## 1735       2     180
## 1736       4     480
## 1737       2     150
## 1738       2     180
## 1739       2     240
## 1740       4     120
## 1745       4      60
## 1747       3      90
## 1749       3     120
## 1750       3     600
## 1751       4      60
## 1752       4     120
## 1753       2     150
## 1754       2     300
## 1756       3     120
## 1757       4     120
## 1758       2     120
## 1759       3     420
## 1761       4     180
## 1762       2     360
## 1763       3      90
## 1764       2     210
## 1765       1      90
## 1766       4     180
## 1769       4     240
## 1770       4     240
## 1771       2     120
## 1773       4     120
## 1774       4     180
## 1775       4      60
## 1776       2     240
## 1777       3     300
## 1778       2     150
## 1779       4     120
## 1780       4     180
## 1781       4     600
## 1782       2      90
## 1784       4     180
## 1785       3      60
## 1787       4      60
## 1788       2     120
## 1789       3     120
## 1790       2     120
## 1791       3     180
## 1792       4     600
## 1793       2     240
## 1796       4     120
## 1798       3     120
## 1799       2     120
## 1800       1     420
## 1801       2     330
## 1802       3      45
## 1803       3      90
## 1804       3      90
## 1806       4      80
## 1807       3     300
## 1808       4      30
## 1809       3     180
## 1810       2     270
## 1813       3      60
## 1815       3     300
## 1817       3     600
## 1818       3      90
## 1819       3     180
## 1821       3      30
## 1822       3     120
## 1824       4      60
## 1826       3     120
## 1827       4     180
## 1828       2     210
## 1830       1     180
## 1831       3      60
## 1832       2     180
## 1833       1     150
## 1834       4     480
## 1835       3     270
## 1836       4      60
## 1837       4     180
## 1838       2     120
## 1839       4     150
## 1840       3      80
## 1841       4      60
## 1843       4     600
## 1844       4     120
## 1846       2     120
## 1847       4      30
## 1850       2     290
## 1851       3     300
## 1852       3     180
## 1855       4      60
## 1857       4     180
## 1858       3     240
## 1859       2      90
## 1860       3     120
## 1862       4     240
## 1864       4     180
## 1865       1     360
## 1867       4     180
## 1868       4     180
## 1869       3     150
## 1870       3     120
## 1872       2     120
## 1877       2     390
## 1878       2      60
## 1879       4      60
## 1881       4     120
## 1882       4     185
## 1883       4     150
## 1884       4     120
## 1885       3     350
## 1886       4     300
## 1888       3     240
## 1889       3      90
## 1890       4     120
## 1892       3      60
## 1893       2     240
## 1894       4     600
## 1896       2     120
## 1897       4     180
## 1898       4     120
## 1899       3     180
## 1900       4     300
## 1901       3     240
## 1902       3     150
## 1903       2     180
## 1904       3     180
## 1905       4     240
## 1907       4      60
## 1908       4      60
## 1909       1     300
## 1910       4     300
## 1911       4     600
## 1912       4     340
## 1913       3      40
## 1915       3     120
## 1917       4     180
## 1918       3      60
## 1919       3     300
## 1920       2     210
## 1921       4     120
## 1923       2     300
## 1924       4     120
## 1925       2      60
## 1926       4     360
## 1927       3     120
## 1928       4     600
## 1930       4      60
## 1931       2     210
## 1932       4      60
## 1933       4      90
## 1934       4     120
## 1935       2     300
## 1936       4      90
## 1937       2     180
## 1938       3     180
## 1939       4     120
## 1941       4     160
## 1942       2     120
## 1943       3     300
## 1944       3     120
## 1946       3     120
## 1947       4      90
## 1948       4      60
## 1949       4     180
## 1950       4     240
## 1951       3     120
## 1954       2     180
## 1955       4     180
## 1956       4     300
## 1957       2     150
## 1958       4      63
## 1959       2     300
## 1960       4     150
## 1961       4      60
## 1963       2     155
## 1964       2     180
## 1966       2     180
## 1967       2      60
## 1971       2     360
## 1972       3     180
## 1973       3      60
## 1974       4     600
## 1976       2      90
## 1977       3     180
## 1979       4      60
## 1980       4      90
## 1983       3     210
## 1984       4     300
## 1985       4     120
## 1986       3     120
## 1987       1     180
## 1988       3     240
## 1990       2     150
## 1993       3     150
## 1994       3     120
## 1995       3     180
## 1996       4     600
## 1997       1     120
## 1999       4     660
## 2003       2     480
## 2004       2     120
## 2005       4      60
## 2006       3     120
## 2007       3      90
## 2008       3     300
## 2009       3     300
## 2010       4     600
## 2011       4     180
## 2012       3     240
## 2014       3     360
## 2015       2     180
## 2017       4     600
## 2018       3      90
## 2020       3     120
## 2021       2     480
## 2023       4      20
## 2024       3     120
## 2026       2     120
## 2028       4     120
## 2030       3      30
## 2033       3     180
## 2035       4      60
## 2036       3      60
## 2037       3     120
## 2038       3     270
## 2039       2      90
## 2040       4     150
## 2041       3     180
## 2042       3     240
## 2043       2     120
## 2045       3      60
## 2047       3     240
## 2049       3     270
## 2050       3     158
## 2051       1     300
## 2053       3      60
## 2054       3      30
## 2057       4     150
## 2059       3     300
## 2060       2     120
## 2061       2     240
## 2062       4     180
## 2063       1     120
## 2064       4     120
## 2065       3      90
## 2066       2      90
## 2067       3     180
## 2068       3     360
## 2071       2     270
## 2073       4      60
## 2075       2     120
## 2076       4     120
## 2077       3     240
## 2078       4     180
## 2079       3     360
## 2080       3      60
## 2081       3     960
## 2082       4     180
## 2083       3      60
## 2085       2      60
## 2086       2     120
## 2089       4     240
## 2091       3      60
## 2092       3     180
## 2093       4     270
## 2094       4     120
## 2095       2     270
## 2096       2      60
## 2098       4      60
## 2099       2      60
## 2100       3     120
## 2102       3     180
## 2103       3     300
## 2104       2     120
## 2105       3     600
## 2106       3     210
## 2107       3     180
## 2108       1     180
## 2109       3     120
## 2110       4     360
## 2111       3     180
## 2112       3      60
## 2113       4     180
## 2114       3     240
## 2115       3      90
## 2116       3     120
## 2117       4     180
## 2118       4     240
## 2119       3     120
## 2120       4     120
## 2121       2     120
## 2122       2     150
## 2123       2      60
## 2124       3     300
## 2125       4     240
## 2126       4      20
## 2127       4     120
## 2128       4     120
## 2129       3     150
## 2130       3     420
## 2131       4     180
## 2132       3       1
## 2133       3      60
## 2135       3     120
## 2136       3     120
## 2138       2     270
## 2139       4      60
## 2140       3     480
## 2141       4      60
## 2142       3     120
## 2143       3     120
## 2144       3      60
## 2145       3      60
## 2146       3      30
## 2147       3      60
## 2152       4     240
## 2154       2      30
## 2157       4     360
## 2158       4      60
## 2161       4      90
## 2163       2     480
## 2164       2     300
## 2165       4     150
## 2168       2      60
## 2169       3     120
## 2171       3      45
## 2172       4      60
## 2175       2     180
## 2178       4     240
## 2180       1      30
## 2181       4     120
## 2182       4     120
## 2183       2     120
## 2184       3     270
## 2185       2     120
## 2190       4     180
## 2191       2     120
## 2193       3     180
## 2197       3     180
## 2198       3     300
## 2199       1     300
## 2200       3     270
## 2201       3     150
## 2203       4     120
## 2204       2     480
## 2205       4     120
## 2207       4     150
## 2208       3     450
## 2209       2      90
## 2210       4     240
## 2211       3      60
## 2212       3     240
## 2213       3     150
## 2214       3     360
## 2215       3     240
## 2216       3     150
## 2217       4     120
## 2218       3     300
## 2221       4     120
## 2222       3      90
## 2223       4     120
## 2224       3     600
## 2225       3      90
## 2226       4     300
## 2227       4     180
## 2228       4     120
## 2229       4     180
## 2230       2     240
## 2231       2      30
## 2232       3     210
## 2233       4     300
## 2234       4     480
## 2235       3     150
## 2236       4     140
## 2240       4      90
## 2241       4      90
## 2242       3     120
## 2243       3      60
## 2244       3     720
## 2245       2      90
## 2247       3     240
## 2248       3     120
## 2249       4     420
## 2250       4     240
## 2251       4     120
## 2252       3     120
## 2253       3     120
## 2255       2     300
## 2256       4     300
## 2259       2      90
## 2260       4      60
## 2263       2     300
## 2264       3      60
## 2265       4     240
## 2266       4     180
## 2267       3     600
## 2269       4     300
## 2270       3     180
## 2272       2     540
## 2273       1     240
## 2274       2      30
## 2275       4     180
## 2278       3     180
## 2280       3     300
## 2281       3     300
## 2282       4      60
## 2283       2     300
## 2284       3     300
## 2286       4     240
## 2287       1     420
## 2288       3      90
## 2289       1     350
## 2292       4     240
## 2293       4     420
## 2294       2     180
## 2295       1      60
## 2296       4     150
## 2297       1     120
## 2298       4     240
## 2299       3      60
## 2300       4     180
## 2301       1     240
## 2302       2     120
## 2304       4     540
## 2305       2     120
## 2306       4     240
## 2307       4     300
## 2310       2     150
## 2311       3     240
## 2312       3     300
## 2313       4     120
## 2314       3     180
## 2315       4     180
## 2316       4     180
## 2317       3     480
## 2318       3      60
## 2319       2      20
## 2321       4      90
## 2322       3     120
## 2323       3      60
## 2324       4     180
## 2325       4     180
## 2326       4     120
## 2327       4     480
## 2328       3     240
## 2329       2     310
## 2331       2     120
## 2333       2     120
## 2334       3     120
## 2335       3      60
## 2336       2     270
## 2339       3     180
## 2340       4     300
## 2341       4     210
## 2343       2     210
## 2344       3     180
## 2346       4     240
## 2348       4     150
## 2349       4     180
## 2350       4     150
## 2351       2      45
## 2352       3     180
## 2354       4     150
## 2355       4     210
## 2356       2     120
## 2357       4     300
## 2359       2     150
## 2361       4     240
## 2362       2     300
## 2363       4     120
## 2364       4     300
## 2365       4     420
## 2366       2      30
## 2367       2     120
## 2369       4     300
## 2371       2     300
## 2374       4     150
## 2375       4     180
## 2376       4     300
## 2377       3     360
## 2378       2     180
## 2379       4      90
## 2380       4     120
## 2381       4     240
## 2382       3     150
## 2383       4     240
## 2384       4      60
## 2385       4      60
## 2386       4     480
## 2387       3     150
## 2390       2     120
## 2393       3     180
## 2394       4     120
## 2395       3     300
## 2396       3      60
## 2399       4     360
## 2401       4     600
## 2402       4     180
## 2403       4     720
## 2404       4      60
## 2405       4      10
## 2407       2     240
## 2408       2     190
## 2410       4      60
## 2411       2     120
## 2413       2      60
## 2414       2     270
## 2416       2     180
## 2417       4     480
## 2418       4     240
## 2419       2     270
## 2422       3     150
## 2423       3     120
## 2424       4     240
## 2425       4      60
## 2426       2     120
## 2427       3      60
## 2428       4      90
## 2429       3     270
## 2430       3     240
## 2431       2    1200
## 2432       2      40
## 2433       3     120
## 2434       3     150
## 2435       2     240
## 2436       4     180
## 2438       3     150
## 2440       3     180
## 2443       3     300
## 2444       4      60
## 2445       4     180
## 2446       4     180
## 2447       1      60
## 2448       4     300
## 2449       4      30
## 2452       2     300
## 2453       1      90
## 2456       3      90
## 2458       2     300
## 2460       2      60
## 2461       4     300
## 2462       3     150
## 2463       3     240
## 2464       4     720
## 2467       3     240
## 2468       3     120
## 2469       2     240
## 2470       4     300
## 2471       4     360
## 2472       4     120
## 2473       4      90
## 2474       3      40
## 2475       2     240
## 2479       3     240
## 2481       4     300
## 2482       4      90
## 2483       2      60
## 2484       3     120
## 2486       1     240
## 2487       2     240
## 2489       3     120
## 2491       3     120
## 2492       4     180
## 2493       3      60
## 2494       4     180
## 2495       2     300
## 2496       1     450
## 2498       4     180
## 2499       4     120
## 2501       3     120
## 2504       2     120
## 2505       3     280
## 2506       4      90
## 2507       4     600
## 2508       3     300
## 2509       4     240
## 2511       4      90
## 2512       4     240
## 2513       3      60
## 2514       2     180
## 2515       3     240
## 2516       4      90
## 2518       4     120
## 2519       4     120
## 2520       2     360
## 2521       2      60
## 2524       2     180
## 2526       2     300
## 2527       2     300
## 2531       3     360
## 2532       2     240
## 2533       4     180
## 2534       3     240
## 2535       3     180
## 2536       4      68
## 2537       3     180
## 2538       4      60
## 2539       3     120
## 2541       3     180
## 2543       3     600
## 2544       4      90
## 2545       3     150
## 2546       3      60
## 2548       2      98
## 2551       3     120
## 2553       4     540
## 2554       4      30
## 2555       4     150
## 2556       3     180
## 2557       2     120
## 2558       2     150
## 2559       3     120
## 2560       1     120
## 2561       2     300
## 2562       2     300
## 2563       3     120
## 2564       3     180
## 2565       2     420
## 2566       3      60
## 2567       3     120
## 2568       4      90
## 2569       4     180
## 2570       3     300
## 2571       4     480
## 2572       3     480
## 2574       4     240
## 2576       2     240
## 2577       4     120
## 2581       4     360
## 2583       2     120
## 2584       3     210
## 2585       4     120
## 2586       4     120
## 2587       3     180
## 2588       2     300
## 2589       3     120
## 2590       3     360
## 2591       4      60
## 2592       3     600
## 2593       4     120
## 2595       4     240
## 2596       4     300
## 2597       2     360
## 2598       4     180
## 2599       4     180
## 2600       2     300
## 2601       3     120
## 2603       2     300
## 2605       3     150
## 2606       4     330
## 2609       3      60
## 2610       3     240
## 2611       3     360
## 2612       4     360
## 2614       2     480
## 2616       4     360
## 2617       3     120
## 2619       4     180
## 2620       2     120
## 2621       2     120
## 2622       3      60
## 2623       3      15
## 2628       4     360
## 2630       4     300
## 2632       3     900
## 2633       3      30
## 2634       4     180
## 2635       4      30
## 2636       4     120
## 2637       3      60
## 2638       3     120
## 2639       3      90
## 2640       3     180
## 2641       4      60
## 2642       3     240
## 2644       4     180
## 2646       2     540
## 2647       3      60
## 2649       2      60
## 2650       2     180
## 2651       3     120
## 2654       4     120
## 2655       2     180
## 2656       2     180
## 2657       4     120
## 2658       4     150
## 2659       4      60
## 2660       4     120
## 2661       3      60
## 2662       2     180
## 2663       2     150
## 2664       4     120
## 2666       4     360
## 2667       4     430
## 2672       2     180
## 2673       3     120
## 2675       4      90
## 2677       1     120
## 2678       4     180
## 2679       1     300
## 2680       4     120
## 2681       3     360
## 2683       4     360
## 2685       3     480
## 2686       4     180
## 2688       3     150
## 2689       2      90
## 2690       3      90
## 2691       3      90
## 2692       3     300
## 2693       4     180
## 2694       2      90
## 2695       4     180
## 2696       2     270
## 2699       4     180
## 2700       3     120
## 2701       4     240
## 2702       4     180
## 2704       2     330
## 2705       2     180
## 2715       2     120
## 2716       3     120
## 2717       3     120
## 2718       3     300
## 2720       2      60
## 2721       1     300
## 2722       4     210
## 2723       2     150
## 2725       1     300
## 2729       4     180
## 2730       2     120
## 2731       2      60
## 2732       4     240
## 2734       3     180
## 2735       2     180
## 2736       3      60
## 2737       2      60
## 2738       4     300
## 2739       2     240
## 2740       4      90
## 2741       1     120
## 2743       2      60
## 2744       3     180
## 2745       3     120
## 2746       2      90
## 2747       2     330
## 2752       3     345
## 2754       4      90
## 2757       4      60
## 2759       4     300
## 2760       4     180
## 2762       4      60
## 2763       4      90
## 2764       4     120
## 2765       4     360
## 2766       2     330
## 2769       2     300
## 2770       4     150
## 2772       3      70
## 2773       4     360
## 2774       4     600
## 2776       4     480
## 2778       4     420
## 2781       3     120
## 2782       2     120
## 2786       3     180
## 2789       2     120
## 2790       1     180
## 2791       3     120
## 2792       2      60
## 2793       3      90
## 2794       2     120
## 2797       2     120
## 2798       1     300

polintr - interests in politics 1 - Very interested 2 - Quite interested 3 - Hardly interested 4 - Not at all interested

netustm - internet use in minutes

# Create a vector for each polit. interest category (1, 2, 3,4)
pol_1 <- subset(greece_4, polintr == 1)$netustm
pol_2 <- subset(greece_4, polintr == 2)$netustm
pol_3 <- subset(greece_4, polintr == 3)$netustm 
pol_4 <- subset(greece_4, polintr == 4)$netustm 
  ggplot()+
  geom_boxplot(data = greece_4, aes(x = polintr, y = netustm), fill="green3", col="purple", alpha = 0.5) +
  ylim(c(0,1000)) +
  xlab("How interested are people in politics?") + 
  ylab("Internet use in minutes ") +
  ggtitle("Internet use in minutes vs Political interest")
## Warning: Removed 1 rows containing non-finite values (`stat_boxplot()`).

  1. You have checked and correctly interpreted the assumptions (1)

Hypothesis: the mean amount of time spent on the Internet is the same for people with different levels of political interests

library(kableExtra)
library(psych)
describeBy(greece_4$netustm, greece_4$polintr, mat = TRUE) %>% #create dataframe
  dplyr:: select(polintr = group1, N=n, Mean=mean, SD=sd, Median=median, Min=min, Max=max, 
                Skew=skew, Kurtosis=kurtosis, st.error = se) %>% 
  kable(align=c("lrrrrrrrr"), digits=2, row.names = FALSE,
        caption="Political interests") %>% 
  kable_styling(bootstrap_options=c("bordered", "responsive","striped"), full_width = FALSE)
Political interests
polintr N Mean SD Median Min Max Skew Kurtosis st.error
1 96 211.70 117.44 180 30 600 1.03 0.95 11.99
2 502 193.35 131.56 150 20 1200 1.94 7.40 5.87
3 660 181.22 127.12 150 1 960 1.94 5.55 4.95
4 761 207.33 149.58 180 0 900 1.53 2.34 5.42
par(mar = c(3,10,0,3))
barplot(table(greece_4$polintr)/nrow(greece_4)*100, horiz = T, xlim = c(0,60), las = 2)

it can be concluded from these data that the samples can be compared

leveneTest(greece_4$netustm ~ greece_4$polintr)
## Levene's Test for Homogeneity of Variance (center = median)
##         Df F value  Pr(>F)  
## group    3  3.3025 0.01956 *
##       2015                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The variances are not equal, since Pr < 0.05 , so we can reject the null hypothesis of equality of variances

oneway.test(greece_4$netustm ~ greece_4$polintr, var.equal = F) 
## 
##  One-way analysis of means (not assuming equal variances)
## 
## data:  greece_4$netustm and greece_4$polintr
## F = 4.9501, num df = 3.00, denom df = 432.13, p-value = 0.002174
pairwise.t.test(greece_4$netustm, greece_4$polintr, 
                adjust = "bonferroni")
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  greece_4$netustm and greece_4$polintr 
## 
##   1     2     3    
## 2 0.457 -     -    
## 3 0.207 0.402 -    
## 4 0.768 0.302 0.002
## 
## P value adjustment method: holm
plot_grpfrq(greece_4$netustm, greece_4$polintr,  type = "box")
## Warning: The `fun.y` argument of `stat_summary()` is deprecated as of ggplot2 3.3.0.
## ℹ Please use the `fun` argument instead.
## ℹ The deprecated feature was likely used in the sjPlot package.
##   Please report the issue at <]8;;https://github.com/strengejacke/sjPlot/issueshttps://github.com/strengejacke/sjPlot/issues]8;;>.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## Warning in rq.fit.br(wx, wy, tau = tau, ...): Solution may be nonunique

## Warning in rq.fit.br(wx, wy, tau = tau, ...): Solution may be nonunique

## Warning in rq.fit.br(wx, wy, tau = tau, ...): Solution may be nonunique

## Warning in rq.fit.br(wx, wy, tau = tau, ...): Solution may be nonunique

## Warning in rq.fit.br(wx, wy, tau = tau, ...): Solution may be nonunique

## Warning in rq.fit.br(wx, wy, tau = tau, ...): Solution may be nonunique

## Warning in rq.fit.br(wx, wy, tau = tau, ...): Solution may be nonunique

it can be concluded that those who are Very interested, Quite interesting and Not at all interested spend the most time on the Internet, unlike those who are Hardly interested in politics

3 Project 3

RQ: Are related persons satisfied with the national government, happy and trust the legal system with the ability of the population to influence on politics in Greek government?

df <- import("/Users/DP/OneDrive/Рабочий стол/ESS10.sav")

3.1 Manipulation the data

in order to make it easier to work with data, we will create a separate dataset with Greek data

attributes(df$cntry)
## $label
## [1] "Country"
## 
## $format.spss
## [1] "A2"
## 
## $labels
##            Albania            Austria            Belgium           Bulgaria 
##               "AL"               "AT"               "BE"               "BG" 
##        Switzerland             Cyprus            Czechia            Germany 
##               "CH"               "CY"               "CZ"               "DE" 
##            Denmark            Estonia              Spain            Finland 
##               "DK"               "EE"               "ES"               "FI" 
##             France     United Kingdom            Georgia             Greece 
##               "FR"               "GB"               "GE"               "GR" 
##            Croatia            Hungary            Ireland            Iceland 
##               "HR"               "HU"               "IE"               "IS" 
##             Israel              Italy          Lithuania         Luxembourg 
##               "IL"               "IT"               "LT"               "LU" 
##             Latvia         Montenegro    North Macedonia        Netherlands 
##               "LV"               "ME"               "MK"               "NL" 
##             Norway             Poland           Portugal            Romania 
##               "NO"               "PL"               "PT"               "RO" 
##             Serbia Russian Federation             Sweden           Slovenia 
##               "RS"               "RU"               "SE"               "SI" 
##           Slovakia             Turkey            Ukraine             Kosovo 
##               "SK"               "TR"               "UA"               "XK"
greece <- filter(df, cntry=="GR")
dim(greece)
## [1] 2799  586

Let’s choose 3 continuous and 1 categorical variables

continuous

happy - How happy are you. C1 Taking all things together, how happy would you say you are?

stfgov - How satisfied with the national government

trstlgl - Trust in the legal system B6-12a Using this card, please tell me on a score of 0-10 how much you personally trust each of the institutions I read out. 0 means you do not trust an institution at all, and 10 means you have complete trust. Firstly… …the legal system?

categorical psppipla - Political system allows people to have influence on politics. And how much would you say that the political system in [country] allows people like you to have an influence on politics?

greece <- select(greece, c("stfgov", "happy", "trstlgl", "psppipla"))

skim(greece)
Data summary
Name greece
Number of rows 2799
Number of columns 4
_______________________
Column type frequency:
numeric 4
________________________
Group variables None

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
stfgov 21 0.99 4.12 2.27 0 2 4 6 10 ▇▇▇▅▁
happy 5 1.00 6.58 1.54 0 6 7 8 10 ▁▁▅▇▁
trstlgl 13 1.00 6.43 2.26 0 5 7 8 10 ▂▃▆▇▅
psppipla 78 0.97 1.90 0.96 1 1 2 3 5 ▇▅▅▁▁
summary(greece) 
##      stfgov           happy           trstlgl         psppipla    
##  Min.   : 0.000   Min.   : 0.000   Min.   : 0.00   Min.   :1.000  
##  1st Qu.: 2.000   1st Qu.: 6.000   1st Qu.: 5.00   1st Qu.:1.000  
##  Median : 4.000   Median : 7.000   Median : 7.00   Median :2.000  
##  Mean   : 4.116   Mean   : 6.579   Mean   : 6.43   Mean   :1.897  
##  3rd Qu.: 6.000   3rd Qu.: 8.000   3rd Qu.: 8.00   3rd Qu.:3.000  
##  Max.   :10.000   Max.   :10.000   Max.   :10.00   Max.   :5.000  
##  NA's   :21       NA's   :5        NA's   :13      NA's   :78

using the summary function, we saw that the missing values are encoded correctly and are reflected as NA, so we can remove them from the dataset so that they do not distort the results.

greece <- greece[complete.cases(greece),]
summary(greece)
##      stfgov           happy           trstlgl          psppipla  
##  Min.   : 0.000   Min.   : 0.000   Min.   : 0.000   Min.   :1.0  
##  1st Qu.: 2.000   1st Qu.: 6.000   1st Qu.: 5.000   1st Qu.:1.0  
##  Median : 4.000   Median : 7.000   Median : 7.000   Median :2.0  
##  Mean   : 4.105   Mean   : 6.593   Mean   : 6.426   Mean   :1.9  
##  3rd Qu.: 6.000   3rd Qu.: 8.000   3rd Qu.: 8.000   3rd Qu.:3.0  
##  Max.   :10.000   Max.   :10.000   Max.   :10.000   Max.   :5.0

3.2 descriptive statistics

We get general information about variables using the describe function

greece %>% 
  dplyr::select(-4) %>% 
  describe() 
##         vars    n mean   sd median trimmed  mad min max range  skew kurtosis
## stfgov     1 2685 4.11 2.28      4    4.08 2.97   0  10    10  0.10    -0.75
## happy      2 2685 6.59 1.53      7    6.70 1.48   0  10    10 -0.73     0.96
## trstlgl    3 2685 6.43 2.26      7    6.65 1.48   0  10    10 -0.72    -0.13
##           se
## stfgov  0.04
## happy   0.03
## trstlgl 0.04
greece %>% 
  dplyr::select(-4) %>% 
  sjmisc::descr(show = c('n', "mean","sd", "md", "range")) %>% 
  rename("variable" = "var",
         "Number of obs." = "n",
         "Mean" = "mean",
         "SD" = "sd",
         "Median" = "md",
         "Range" = "range") 
## 
## ## Basic descriptive statistics
## 
##  variable Number of obs.     Mean       SD Median     Range
##    stfgov           2685 4.105400 2.278420      4 10 (0-10)
##     happy           2685 6.593296 1.527917      7 10 (0-10)
##   trstlgl           2685 6.426071 2.259652      7 10 (0-10)
greece %>% 
  pivot_longer(c(stfgov, happy, trstlgl),
               names_to = 'Var', values_to = 'Score') %>% 
  ggplot(aes(y=Score)) + 
  geom_boxplot() +
  ggtitle("Distribution of scores") +
  xlab("Variable") + 
  ylab("Score") +
  theme_bw()+
  theme(legend.position="none") +
  facet_wrap(~Var)

In boxplot we see several outliers in the values of happy and trust

greece %>% 
  pivot_longer(c(stfgov, happy, trstlgl),
               names_to = 'Var', values_to = 'Score') %>% 
  ggplot(aes(x=Score, fill=Var)) + 
  geom_histogram(aes(y=..density.., fill = Var), bins = 10) +
  geom_density(alpha = .5, color="blue")+
  ggtitle("Distribution of scores") +
  xlab("Variable") + 
  ylab("Score") +
  theme_bw()+
  theme(legend.position="none") +
  facet_wrap(~Var)
## Warning: The dot-dot notation (`..density..`) was deprecated in ggplot2 3.4.0.
## ℹ Please use `after_stat(density)` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.

As it can be seen from the histograms, satisfaction with government, happy close to normal distribution. As for the trust in the legal system the histogram is not normally distributed.

categorical Let’s look at the categorical variable

table(greece$psppipla)
## 
##    1    2    3    4    5 
## 1205  710  614  146   10

Category 5 (`A great deal’) contains only 5 observations. This may affect the evaluation of the coefficients. Therefore, let’s combine categories 4 and 5

greece$psppipla <- car::recode(greece$psppipla, "1 = 1;
                                      2 = 2;
                                      3 = 3;
                                      4 = 4;
                                      5 = 4")
greece %>% 
  group_by(psppipla) %>% 
  count()
## # A tibble: 4 × 2
## # Groups:   psppipla [4]
##   psppipla     n
##      <dbl> <int>
## 1        1  1205
## 2        2   710
## 3        3   614
## 4        4   156
greece$psppipla = factor(greece$psppipla) 
greece %>% 
  ggplot(aes(x = psppipla)) +
  geom_bar(fill = "lightblue", color = "blue") +
  xlab("Category") +
  ylab("Frequency") +
  theme_bw() 

scatter plot

par(mfrow = c(1, 3))
greece %>% 
  ggplot(aes(x=stfgov, y=happy)) +
  geom_point(size=2) +
  geom_smooth(method=lm)
## `geom_smooth()` using formula = 'y ~ x'

greece %>% 
  ggplot(aes(x=stfgov, y=trstlgl)) +
  geom_point(size=2) +
  geom_smooth(method=lm)
## `geom_smooth()` using formula = 'y ~ x'

greece %>% 
  ggplot(aes(x=trstlgl, y=happy)) +
  geom_point(size=2) +
  geom_smooth(method=lm)
## `geom_smooth()` using formula = 'y ~ x'

there is a positive correlation between happy and satisfaction with government there is a positive correlation between trust in the legal system and satisfaction with government there is a positive correlation between happy and trust in the legal system

3.3 Correlations

chart.Correlation(greece[,c('stfgov', 'happy', 'trstlgl')],
                  histogram = TRUE) # by default Pearson
## Warning in par(usr): argument 1 does not name a graphical parameter

## Warning in par(usr): argument 1 does not name a graphical parameter

## Warning in par(usr): argument 1 does not name a graphical parameter

chart.Correlation(greece[,c('stfgov', 'happy', 'trstlgl')],
                  histogram = TRUE,
                  method = "spearman") # Spearman's method
## Warning in cor.test.default(as.numeric(x), as.numeric(y), method = method):
## Есть совпадающие значения: не могу высчитать точное p-значение

## Warning in cor.test.default(as.numeric(x), as.numeric(y), method = method):
## argument 1 does not name a graphical parameter
## Warning in cor.test.default(as.numeric(x), as.numeric(y), method = method):
## Есть совпадающие значения: не могу высчитать точное p-значение
## Warning in par(usr): argument 1 does not name a graphical parameter
## Warning in cor.test.default(as.numeric(x), as.numeric(y), method = method):
## Есть совпадающие значения: не могу высчитать точное p-значение
## Warning in par(usr): argument 1 does not name a graphical parameter

chart.Correlation(greece[,c('stfgov', 'happy', 'trstlgl')],
                  histogram = TRUE,
                  method = "kendall") # Kendall's method
## Warning in par(usr): argument 1 does not name a graphical parameter

## Warning in par(usr): argument 1 does not name a graphical parameter

## Warning in par(usr): argument 1 does not name a graphical parameter

heatmap

heatmaply_cor(
  cor(greece[,c('stfgov', 'happy', 'trstlgl')], method = "spearman"),
  Colv=NA, Rowv=NA)

матрица корреляций

cor.test(greece$happy, greece$stfgov)
## 
##  Pearson's product-moment correlation
## 
## data:  greece$happy and greece$stfgov
## t = 12.302, df = 2683, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.1949530 0.2665744
## sample estimates:
##       cor 
## 0.2310767
cor.test(greece$happy, greece$stfgov,method="spearman")
## Warning in cor.test.default(greece$happy, greece$stfgov, method = "spearman"):
## Есть совпадающие значения: не могу высчитать точное p-значение
## 
##  Spearman's rank correlation rho
## 
## data:  greece$happy and greece$stfgov
## S = 2550059838, p-value < 2.2e-16
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##       rho 
## 0.2095602
cor_matrix <- cor(greece[,c('stfgov', 'happy', 'trstlgl')], method = "spearman")

stargazer(cor_matrix, title="Correlation Matrix", type = "latex")
## 
## % Table created by stargazer v.5.2.3 by Marek Hlavac, Social Policy Institute. E-mail: marek.hlavac at gmail.com
## % Date and time: Пт, июн 09, 2023 - 16:16:10
## \begin{table}[!htbp] \centering 
##   \caption{Correlation Matrix} 
##   \label{} 
## \begin{tabular}{@{\extracolsep{5pt}} cccc} 
## \\[-1.8ex]\hline 
## \hline \\[-1.8ex] 
##  & stfgov & happy & trstlgl \\ 
## \hline \\[-1.8ex] 
## stfgov & $1$ & $0.210$ & $0.313$ \\ 
## happy & $0.210$ & $1$ & $0.324$ \\ 
## trstlgl & $0.313$ & $0.324$ & $1$ \\ 
## \hline \\[-1.8ex] 
## \end{tabular} 
## \end{table}
sjPlot::tab_corr(greece[,c('stfgov', 'happy', 'trstlgl')],
                 corr.method = "spearman") 
  stfgov happy trstlgl
stfgov   0.210*** 0.313***
happy 0.210***   0.324***
trstlgl 0.313*** 0.324***  
Computed correlation used spearman-method with listwise-deletion.
cor.test(greece$happy, greece$stfgov)
## 
##  Pearson's product-moment correlation
## 
## data:  greece$happy and greece$stfgov
## t = 12.302, df = 2683, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.1949530 0.2665744
## sample estimates:
##       cor 
## 0.2310767
cor.test(greece$happy, greece$stfgov,method="kendall")
## 
##  Kendall's rank correlation tau
## 
## data:  greece$happy and greece$stfgov
## z = 11.315, p-value < 2.2e-16
## alternative hypothesis: true tau is not equal to 0
## sample estimates:
##       tau 
## 0.1679942
cor_matrix <- cor(greece[,c('stfgov', 'happy', 'trstlgl')], method = "kendall")

stargazer(cor_matrix, title="Correlation Matrix", type = "latex")
## 
## % Table created by stargazer v.5.2.3 by Marek Hlavac, Social Policy Institute. E-mail: marek.hlavac at gmail.com
## % Date and time: Пт, июн 09, 2023 - 16:16:11
## \begin{table}[!htbp] \centering 
##   \caption{Correlation Matrix} 
##   \label{} 
## \begin{tabular}{@{\extracolsep{5pt}} cccc} 
## \\[-1.8ex]\hline 
## \hline \\[-1.8ex] 
##  & stfgov & happy & trstlgl \\ 
## \hline \\[-1.8ex] 
## stfgov & $1$ & $0.168$ & $0.238$ \\ 
## happy & $0.168$ & $1$ & $0.256$ \\ 
## trstlgl & $0.238$ & $0.256$ & $1$ \\ 
## \hline \\[-1.8ex] 
## \end{tabular} 
## \end{table}
sjPlot::tab_corr(greece[,c('stfgov', 'happy', 'trstlgl')],
                 corr.method = "kendall")
  stfgov happy trstlgl
stfgov   0.168*** 0.238***
happy 0.168***   0.256***
trstlgl 0.238*** 0.256***  
Computed correlation used kendall-method with listwise-deletion.
cor.test(greece$happy, greece$stfgov)
## 
##  Pearson's product-moment correlation
## 
## data:  greece$happy and greece$stfgov
## t = 12.302, df = 2683, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.1949530 0.2665744
## sample estimates:
##       cor 
## 0.2310767
cor.test(greece$happy, greece$stfgov,method="spearman")
## Warning in cor.test.default(greece$happy, greece$stfgov, method = "spearman"):
## Есть совпадающие значения: не могу высчитать точное p-значение
## 
##  Spearman's rank correlation rho
## 
## data:  greece$happy and greece$stfgov
## S = 2550059838, p-value < 2.2e-16
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##       rho 
## 0.2095602
cor_matrix <- cor(greece[,c('stfgov', 'happy', 'trstlgl')], method = "spearman")

stargazer(cor_matrix, title="Correlation Matrix", type = "latex")
## 
## % Table created by stargazer v.5.2.3 by Marek Hlavac, Social Policy Institute. E-mail: marek.hlavac at gmail.com
## % Date and time: Пт, июн 09, 2023 - 16:16:13
## \begin{table}[!htbp] \centering 
##   \caption{Correlation Matrix} 
##   \label{} 
## \begin{tabular}{@{\extracolsep{5pt}} cccc} 
## \\[-1.8ex]\hline 
## \hline \\[-1.8ex] 
##  & stfgov & happy & trstlgl \\ 
## \hline \\[-1.8ex] 
## stfgov & $1$ & $0.210$ & $0.313$ \\ 
## happy & $0.210$ & $1$ & $0.324$ \\ 
## trstlgl & $0.313$ & $0.324$ & $1$ \\ 
## \hline \\[-1.8ex] 
## \end{tabular} 
## \end{table}
sjPlot::tab_corr(greece[,c('stfgov', 'happy', 'trstlgl')],
                 corr.method = "spearman")
  stfgov happy trstlgl
stfgov   0.210*** 0.313***
happy 0.210***   0.324***
trstlgl 0.313*** 0.324***  
Computed correlation used spearman-method with listwise-deletion.
rcorr(as.matrix(greece[,c('stfgov', 'happy', 'trstlgl')]), type = "spearman")
##         stfgov happy trstlgl
## stfgov    1.00  0.21    0.31
## happy     0.21  1.00    0.32
## trstlgl   0.31  0.32    1.00
## 
## n= 2685 
## 
## 
## P
##         stfgov happy trstlgl
## stfgov          0     0     
## happy    0            0     
## trstlgl  0      0
cor_mat <- greece[,-4] %>% 
  rstatix::cor_mat()

cor_mat %>% 
  rstatix::cor_get_pval()
## # A tibble: 3 × 4
##   rowname   stfgov    happy  trstlgl
##   <chr>      <dbl>    <dbl>    <dbl>
## 1 stfgov  0        7.09e-34 1.03e-68
## 2 happy   7.09e-34 0        2.03e-63
## 3 trstlgl 1.03e-68 2.03e-63 0
cor_mat %>% 
  rstatix::cor_gather()
## # A tibble: 9 × 4
##   var1    var2      cor        p
##   <chr>   <chr>   <dbl>    <dbl>
## 1 stfgov  stfgov   1    0       
## 2 happy   stfgov   0.23 7.09e-34
## 3 trstlgl stfgov   0.33 1.03e-68
## 4 stfgov  happy    0.23 7.09e-34
## 5 happy   happy    1    0       
## 6 trstlgl happy    0.32 2.03e-63
## 7 stfgov  trstlgl  0.33 1.03e-68
## 8 happy   trstlgl  0.32 2.03e-63
## 9 trstlgl trstlgl  1    0
greece[,-4] %>% 
  apa.cor.table(filename = "cor_matrix_Greece.doc")
## 
## 
## Means, standard deviations, and correlations with confidence intervals
##  
## 
##   Variable   M    SD   1          2         
##   1. stfgov  4.11 2.28                      
##                                             
##   2. happy   6.59 1.53 .23**                
##                        [.19, .27]           
##                                             
##   3. trstlgl 6.43 2.26 .33**      .32**     
##                        [.29, .36] [.28, .35]
##                                             
## 
## Note. M and SD are used to represent mean and standard deviation, respectively.
## Values in square brackets indicate the 95% confidence interval.
## The confidence interval is a plausible range of population correlations 
## that could have caused the sample correlation (Cumming, 2014).
##  * indicates p < .05. ** indicates p < .01.
## 
greece[,-4] %>% 
  sjPlot::sjp.corr()
## Warning: 'sjp.corr' is deprecated. Please use 'correlation::correlation()' and
## its related plot()-method.
## Computing correlation using pearson-method with listwise-deletion...
## Warning: Removed 6 rows containing missing values (`geom_text()`).

From what we can see, all the relationship between our variables are quite moderate and have positive direction. The highest correlation coefficient is between trstlgl and stfgov. The presented values confirm the situation on the scatterplots. It is also worth noting that there is a very high level of significance (p <0.001)

a boxplot for the categorical predictor and the outcome

greece %>% 
  ggplot(aes(x = factor (psppipla),
             y = happy,
             fill = factor (psppipla))) + 
  geom_boxplot() +
  ggtitle("Distribution of happy level") +
  xlab("Category") + 
  ylab("Happy level") +
  theme_bw()+
  theme(legend.position="none") 

Regardless of the level of psppipla, we observe the same distribution of the level of happiness of citizens

3.4 Linear regression

model1 = lm(happy ~ stfgov, data = greece)
sjPlot::tab_model(model1)
  happy
Predictors Estimates CI p
(Intercept) 5.96 5.84 – 6.07 <0.001
stfgov 0.15 0.13 – 0.18 <0.001
Observations 2685
R2 / R2 adjusted 0.053 / 0.053

we standardize - so we can compare the coefficients with each other, and interpret them as the size of the effect

greece <- greece %>% 
  mutate(Zhappy = scale(happy)[,1],
         Zstfgov = scale(stfgov)[,1],
         Ztrstlgl = scale(trstlgl)[,1])
model1_std = lm(Zhappy ~ Zstfgov, data = greece)
sjPlot::tab_model(model1_std)
  Zhappy
Predictors Estimates CI p
(Intercept) 0.00 -0.04 – 0.04 1.000
Zstfgov 0.23 0.19 – 0.27 <0.001
Observations 2685
R2 / R2 adjusted 0.053 / 0.053
# let's add a categorical variable
model2 = lm(happy ~ stfgov + psppipla, data = greece)
sjPlot::tab_model(model2)
  happy
Predictors Estimates CI p
(Intercept) 5.99 5.86 – 6.11 <0.001
stfgov 0.15 0.13 – 0.18 <0.001
psppipla [2] -0.05 -0.19 – 0.09 0.497
psppipla [3] -0.09 -0.24 – 0.05 0.206
psppipla [4] 0.18 -0.07 – 0.43 0.161
Observations 2685
R2 / R2 adjusted 0.055 / 0.054
# with standardized coefficients
model2_std = lm(Zhappy ~ Zstfgov + psppipla, data = greece)
sjPlot::tab_model(model2_std)
  Zhappy
Predictors Estimates CI p
(Intercept) 0.02 -0.04 – 0.07 0.582
Zstfgov 0.23 0.19 – 0.27 <0.001
psppipla [2] -0.03 -0.12 – 0.06 0.497
psppipla [3] -0.06 -0.16 – 0.03 0.206
psppipla [4] 0.12 -0.05 – 0.28 0.161
Observations 2685
R2 / R2 adjusted 0.055 / 0.054
# comparison of models
anova(model1_std, model2_std)
## Analysis of Variance Table
## 
## Model 1: Zhappy ~ Zstfgov
## Model 2: Zhappy ~ Zstfgov + psppipla
##   Res.Df    RSS Df Sum of Sq      F Pr(>F)
## 1   2683 2540.7                           
## 2   2680 2536.2  3    4.4841 1.5794 0.1923

3.5 Conclusion:

Model 1 is statistically significantly better suited to the data than model 2 (p>0.05)

summary(model1)
## 
## Call:
## lm(formula = happy ~ stfgov, data = greece)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.7319 -0.8869  0.1131  0.9582  4.0429 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  5.95712    0.05914   100.7   <2e-16 ***
## stfgov       0.15496    0.01260    12.3   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.487 on 2683 degrees of freedom
## Multiple R-squared:  0.0534, Adjusted R-squared:  0.05304 
## F-statistic: 151.3 on 1 and 2683 DF,  p-value: < 2.2e-16

For a model with non-standardized coefficients

p-value: < 2.2-16 <0.05, maybe makes sense Adjusted R-squared: 0.053, i.e. this indicator is 5.3% of the expected variable (happy) with my independent time (stfgov) Coefficients 0.15 and p-value:< 0.001, with each increase in atf gov per unit, the happiness level increases by 0.15. intersept = 5.96 - this refers to the predicted value of happy when stfgov is 0. The regression equation looks like this: happy = 5.96 + 0.15*stfgov

Linear regression model with 2 continuous predictors Now we add another predictor to our model.

# Let's add another continuous variable to the model
model3 = lm(happy ~ stfgov + trstlgl, data = greece)
sjPlot::tab_model(model3)
  happy
Predictors Estimates CI p
(Intercept) 5.03 4.86 – 5.20 <0.001
stfgov 0.10 0.07 – 0.12 <0.001
trstlgl 0.18 0.16 – 0.21 <0.001
Observations 2685
R2 / R2 adjusted 0.118 / 0.117
model3_std = lm(Zhappy ~ Zstfgov + Ztrstlgl, data = greece)
sjPlot::tab_model(model3_std)
  Zhappy
Predictors Estimates CI p
(Intercept) 0.00 -0.04 – 0.04 1.000
Zstfgov 0.14 0.10 – 0.18 <0.001
Ztrstlgl 0.27 0.23 – 0.31 <0.001
Observations 2685
R2 / R2 adjusted 0.118 / 0.117
# model comparison
anova(model1_std, model3_std)
## Analysis of Variance Table
## 
## Model 1: Zhappy ~ Zstfgov
## Model 2: Zhappy ~ Zstfgov + Ztrstlgl
##   Res.Df    RSS Df Sum of Sq     F    Pr(>F)    
## 1   2683 2540.7                                 
## 2   2682 2367.0  1    173.68 196.8 < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Conclusion: Model 3 is statistically significantly better suited to the data than model 1 (p<0.05)

summary(model3_std)
## 
## Call:
## lm(formula = Zhappy ~ Zstfgov + Ztrstlgl, data = greece)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.3653 -0.5186  0.0344  0.6186  3.2524 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 1.498e-15  1.813e-02   0.000        1    
## Zstfgov     1.425e-01  1.920e-02   7.422 1.54e-13 ***
## Ztrstlgl    2.694e-01  1.920e-02  14.028  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9394 on 2682 degrees of freedom
## Multiple R-squared:  0.1181, Adjusted R-squared:  0.1174 
## F-statistic: 179.6 on 2 and 2682 DF,  p-value: < 2.2e-16

For a model with standardized coefficients

p-value: < 2.2-16 <0.05, maybe makes sense Adjusted R-squared: 0.1174, i.e. this indicator is 11.74% of the expected variable the model is quite high-quality (happy) with mine, independent, unchangeable (stfgov & trstlgl) Correlation coefficients 0.14 and 0.27 and p-value:< 0.001, correlation coefficient = 0.00. The regression equation outputs: Z happy = 0.14Zstfgov + 0.27Ztrstlgl

summary(model3)
## 
## Call:
## lm(formula = happy ~ stfgov + trstlgl, data = greece)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.6697 -0.7923  0.0526  0.9452  4.9695 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  5.03054    0.08731  57.620  < 2e-16 ***
## stfgov       0.09557    0.01288   7.422 1.54e-13 ***
## trstlgl      0.18213    0.01298  14.028  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.435 on 2682 degrees of freedom
## Multiple R-squared:  0.1181, Adjusted R-squared:  0.1174 
## F-statistic: 179.6 on 2 and 2682 DF,  p-value: < 2.2e-16

For a model with non-standardized coefficients

p-value: < 2.2-16 <0.05, maybe makes sense Adjusted R-squared: 0.1174, i.e.this means that the model is not quite good quality R-squared: 11,8% of dependent variable deviation can be explained by the model Coefficients of independent variables are 0.10 and 0.18 and p-value:< 0.001, intercept = 5.0 - this refers to the predicted value of happy when stfgov and trstlgl indicators are equal to 0.

The regression equation looks like this: happy = 5.03 + 0.10stfgov + 0.18trstlgl

With each increase in stfgov by one, happy rises by 0.10. With each increase in trstlgl by one, happy rises by 0.18

3.6 check the assumptions of linear regression

Checking Linear Regression Assumptions Linear regression makes several assumptions about the data, such as :

  • Linearity of the data
  • Normality of residuals
  • Homogeneity of residuals variance
  • Independence of residuals error terms
  • multicolleniarity
autoplot(model3_std)

let’s check in a little more detail, the assumptions of linear regression are fulfilled 1) normality of the remainder distribution

res <- resid(model3_std)
hist(res, breaks = 20, col = 'lightblue', freq = FALSE)
lines(density(res), col = 'red', lwd = 2)

shapiro.test(res) # the leftovers are NOT distributed normally
## 
##  Shapiro-Wilk normality test
## 
## data:  res
## W = 0.98214, p-value < 2.2e-16
#QQ-plot
par(mfrow = c(1, 1))
qqnorm(res)
qqline(res)

car::qqPlot(model3_std)

## 1402 1484 
## 1346 1424
#The histogram, test and qqplot graphs DO NOT show the normal distribution of residuals
# homoscedasticity
plot(fitted(model3_std), res)
abline(0,0)

ggplot(data = model3_std, aes(x = .fitted, y = .stdresid)) + 
  geom_point() + 
  geom_hline(yintercept = 0)

bptest(model3_std) # The Broich — Pagan or Breusch — Pagan test
## 
##  studentized Breusch-Pagan test
## 
## data:  model3_std
## BP = 112.38, df = 2, p-value < 2.2e-16
# we can say that homoscedasticity does NOT hold
# let's check multicollinearity
car::vif(model3_std)
##  Zstfgov Ztrstlgl 
##  1.12121  1.12121
# there is NO multicollinearity

Linearity assumption: at the Residuals vs.Fitted plot a horizontal line, without distinct patterns can be seen, which is surely a good thing. (Our data is linear) The histogram, test and qqplot graphs DO NOT show the normal distribution of residuals Scale-Location & Residuals vs. Leverage plot DO NOT show us a horizontal line with equally, though in a funny way, spread points. This corresponds with NO homoscedasticity of our data.

4 Project 4

4.1 Introduction

In this project, we want to consider the impact of such a variable as the number of hours spent on the Internet on the indicator of the level of happiness, on satisfaction with the government and trust in the legal system. There is a significant amount of research on these topics. Some of those that we have considered: The study “Internet Use and Happiness: A Longitudinal Analysis” by Richard H. Hall suggests that students who spent the most hours on the Internet showed fewer scores on the scale of happiness than students who spent fewer hours on the Internet. Another study conducted by American researchers “E-Citizenship: Trust in Government, Political Efficiency, and Political Participation in the Internet Era” by Sari Sharoni shows that the relationship between these two factors is present, but it is impossible to say about the presence of direct correlation. Thus, we can emphasize that the number of hours spent on the Internet has a significant impact on different areas of a person’s life. Thus, our research question is: Which of these indicators (trust in the legal system, level of happiness, satisfaction with national government) does the number of hours spent on the Internet have the greatest impact?

Null statistic hypothesis: there is no relationship between the independent variables (trust in the legal system, level of happiness, satisfaction with national government) and the dependent variable (how often people use Internet)

The alternate statistic hypothesis is that there exists a relationship between the independent variables (trust in the legal system, level of happiness, satisfaction with national government) and the dependent variable (how often people use Internet)

df <- import("/Users/DP/OneDrive/Рабочий стол/ESS10.sav")
attributes(df$cntry)
## $label
## [1] "Country"
## 
## $format.spss
## [1] "A2"
## 
## $labels
##            Albania            Austria            Belgium           Bulgaria 
##               "AL"               "AT"               "BE"               "BG" 
##        Switzerland             Cyprus            Czechia            Germany 
##               "CH"               "CY"               "CZ"               "DE" 
##            Denmark            Estonia              Spain            Finland 
##               "DK"               "EE"               "ES"               "FI" 
##             France     United Kingdom            Georgia             Greece 
##               "FR"               "GB"               "GE"               "GR" 
##            Croatia            Hungary            Ireland            Iceland 
##               "HR"               "HU"               "IE"               "IS" 
##             Israel              Italy          Lithuania         Luxembourg 
##               "IL"               "IT"               "LT"               "LU" 
##             Latvia         Montenegro    North Macedonia        Netherlands 
##               "LV"               "ME"               "MK"               "NL" 
##             Norway             Poland           Portugal            Romania 
##               "NO"               "PL"               "PT"               "RO" 
##             Serbia Russian Federation             Sweden           Slovenia 
##               "RS"               "RU"               "SE"               "SI" 
##           Slovakia             Turkey            Ukraine             Kosovo 
##               "SK"               "TR"               "UA"               "XK"
gr <- filter(df, cntry=="GR")
dim(gr)
## [1] 2799  586

4.2 Manipulating the Data

Variables which we use:

Name <- c("stfgov", "happy", "trstlgl", "netusoft" ) 
Meaning <- c("Satisfaction with government", "How happy are you", "Trust in the legal system", "How often person use the internet")
Type <- c("continuous ", "continuous ", "continuous ", "categorical")
Measurement <- c("0 - 10","0 - 10", "0 - 10", "1 - 5")
greece1 <- data.frame(Name, Meaning, Type, Measurement, stringsAsFactors = FALSE)
kable(greece1) %>% 
  kable_styling(bootstrap_options=c("bordered", "responsive","striped"), full_width = FALSE)
Name Meaning Type Measurement
stfgov Satisfaction with government continuous 0 - 10
happy How happy are you continuous 0 - 10
trstlgl Trust in the legal system continuous 0 - 10
netusoft How often person use the internet categorical 1 - 5
gr <- select(gr, c("stfgov", "happy", "trstlgl", "netusoft"))

skim(gr)
Data summary
Name gr
Number of rows 2799
Number of columns 4
_______________________
Column type frequency:
numeric 4
________________________
Group variables None

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
stfgov 21 0.99 4.12 2.27 0 2 4 6 10 ▇▇▇▅▁
happy 5 1.00 6.58 1.54 0 6 7 8 10 ▁▁▅▇▁
trstlgl 13 1.00 6.43 2.26 0 5 7 8 10 ▂▃▆▇▅
netusoft 5 1.00 3.97 1.56 1 3 5 5 5 ▂▁▁▁▇
summary(gr)
##      stfgov           happy           trstlgl         netusoft    
##  Min.   : 0.000   Min.   : 0.000   Min.   : 0.00   Min.   :1.000  
##  1st Qu.: 2.000   1st Qu.: 6.000   1st Qu.: 5.00   1st Qu.:3.000  
##  Median : 4.000   Median : 7.000   Median : 7.00   Median :5.000  
##  Mean   : 4.116   Mean   : 6.579   Mean   : 6.43   Mean   :3.972  
##  3rd Qu.: 6.000   3rd Qu.: 8.000   3rd Qu.: 8.00   3rd Qu.:5.000  
##  Max.   :10.000   Max.   :10.000   Max.   :10.00   Max.   :5.000  
##  NA's   :21       NA's   :5        NA's   :13      NA's   :5
table(gr$netusoft)
## 
##    1    2    3    4    5 
##  499  100  151  273 1771
prop.table(table(gr$netusoft))
## 
##          1          2          3          4          5 
## 0.17859699 0.03579098 0.05404438 0.09770938 0.63385827

Consider this variable (netusoft), we see that categories 2 and 3 contain a small amount of data compared to the other categories of this permanent, since 2 is only occasionally using the Internet, and 3 is a few times a week, then they can be combined into one variable 2 - sometimes I use the Internet, it is necessary in order to avoid mistakes during further analysis.

gr$netusoft <- recode(gr$netusoft, "1=1; c(2,3)=2; 4=3; 5=4")
table(gr$netusoft)
## 
##    1    2    3    4 
##  499  251  273 1771
prop.table(table(gr$netusoft))
## 
##          1          2          3          4 
## 0.17859699 0.08983536 0.09770938 0.63385827

Now we see that categories 2 and 3 make up about 9% of all categories

gr$netusoft <- as.factor(gr$netusoft )
gr$stfgov = as.numeric(as.character(gr$stfgov))
gr$happy = as.numeric(as.character(gr$happy))
gr$trstlgl = as.numeric(as.character(gr$trstlgl))
gr <- drop_na(gr)

Here we refine the types of variables and remove missing values from the dataset. Otherwise we cannot compare different models.

4.3 descriptive statistics

We get general information about variables using the describe function

gr %>% 
  describe() 
##           vars    n mean   sd median trimmed  mad min max range  skew kurtosis
## stfgov       1 2755 4.11 2.27      4    4.10 2.97   0  10    10  0.09    -0.74
## happy        2 2755 6.58 1.53      7    6.69 1.48   0  10    10 -0.71     0.92
## trstlgl      3 2755 6.44 2.25      7    6.66 1.48   0  10    10 -0.73    -0.08
## netusoft*    4 2755 3.19 1.18      4    3.36 0.00   1   4     3 -1.02    -0.68
##             se
## stfgov    0.04
## happy     0.03
## trstlgl   0.04
## netusoft* 0.02

Everything seems to be fine with these variables, we can move on to the next stage

  1. let’s reflect the variables in the boxplot
gr %>% 
  pivot_longer(c(stfgov, happy, trstlgl),
               names_to = 'Var', values_to = 'Score') %>% 
  ggplot(aes(y=Score)) + 
  geom_boxplot() +
  ggtitle("Distribution of scores") +
  xlab("Variable") + 
  ylab("Score") +
  theme_bw()+
  theme(legend.position="none") +
  facet_wrap(~Var)

In boxplot we see several outliers in the values of happy and trust

  1. let’s look at the normality of the distribution of variables on histograms
gr %>% 
  pivot_longer(c(stfgov, happy, trstlgl),
               names_to = 'Var', values_to = 'Score') %>% 
  ggplot(aes(x=Score, fill=Var)) + 
  geom_histogram(aes(y=..density.., fill = Var), bins = 10) +
  geom_density(alpha = .5, color="blue")+
  ggtitle("Distribution of scores") +
  xlab("Variable") + 
  ylab("Score") +
  theme_bw()+
  theme(legend.position="none") +
  facet_wrap(~Var)

As it can be seen from the histograms, satisfaction with government, happy close to normal distribution. As for the trust in the legal system the histogram is not normally distributed.

  1. Let’s look at how representative the categories of a categorical variable are
gr %>% 
  ggplot(aes(x = netusoft)) +
  geom_bar(fill = "lightpink", color = "lightblue") +
  xlab("Category") +
  ylab("Frequency") +
  theme_bw() 

There is obviously a bias towards category 4 (Every day of Internet use)

  1. Look at the scatterplots to see correlations between different variables
gr %>% 
  ggplot(aes(x=stfgov, y=happy)) +
  geom_point(size=2) +
  geom_smooth(method=lm)
## `geom_smooth()` using formula = 'y ~ x'

gr %>% 
  ggplot(aes(x=stfgov, y=trstlgl)) +
  geom_point(size=2) +
  geom_smooth(method=lm)
## `geom_smooth()` using formula = 'y ~ x'

gr %>% 
  ggplot(aes(x=trstlgl, y=happy)) +
  geom_point(size=2) +
  geom_smooth(method=lm)
## `geom_smooth()` using formula = 'y ~ x'

Based on the scatterplot, we see that: - there is a positive correlation between happy and satisfaction with government - there is a positive correlation between trust in the legal system and satisfaction with government - there is a positive correlation between happy and trust in the legal system

It is also important to look at how our continuous variables relate (using heatmaps):

heatmaply_cor(
  cor(gr[,c('stfgov', 'happy', 'trstlgl')], method = "spearman"),
  Colv=NA, Rowv=NA)

You can see that all variables are positively and moderately correlated. The highest correlation between happy and trust in the legal system (0.3206)

4.4 Linear regression models

Initially, we standardized variables to be able to compare coefficients in models.

gr <- gr %>% 
  mutate(Zhappy = scale(happy)[,1],
         Zstfgov = scale(stfgov)[,1],
         Ztrstlgl = scale(trstlgl)[,1])

The first model is a model with a single predictor, in which we consider how happy can be predicted using satisfaction with government

model1 = lm(Zhappy ~ Zstfgov, data = gr)
summary(model1)
## 
## Call:
## lm(formula = Zhappy ~ Zstfgov, data = gr)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.3804 -0.5687  0.0834  0.6347  2.6443 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 4.410e-16  1.855e-02    0.00        1    
## Zstfgov     2.288e-01  1.855e-02   12.34   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9736 on 2753 degrees of freedom
## Multiple R-squared:  0.05237,    Adjusted R-squared:  0.05203 
## F-statistic: 152.1 on 1 and 2753 DF,  p-value: < 2.2e-16
sjPlot::tab_model(model1)
  Zhappy
Predictors Estimates CI p
(Intercept) 0.00 -0.04 – 0.04 1.000
Zstfgov 0.23 0.19 – 0.27 <0.001
Observations 2755
R2 / R2 adjusted 0.052 / 0.052
  • P-value for the model is significant (< 2.2e-16)
  • P-value for the coefficient of satisfaction with government is significant (<0.001)
  • R adjusted squared is 0,052, that means 5% of variation in happy can be explain by this model, which is not very much
  • Equation: Zhappy = 0,23*Zstfgov
  • With each unit increase in satisfaction with government, the level of happy increases by 0,23

Next, in the second model, we add the trust in legal system variable to understand whether this will affect the fact that we will be able to predict the level of happy better

model2 = lm(Zhappy ~ Zstfgov + Ztrstlgl, data = gr)
summary(model2)
## 
## Call:
## lm(formula = Zhappy ~ Zstfgov + Ztrstlgl, data = gr)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.3433 -0.5514  0.0364  0.6228  3.2574 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 4.768e-16  1.790e-02    0.00        1    
## Zstfgov     1.410e-01  1.893e-02    7.45 1.24e-13 ***
## Ztrstlgl    2.703e-01  1.893e-02   14.28  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9396 on 2752 degrees of freedom
## Multiple R-squared:  0.1177, Adjusted R-squared:  0.1171 
## F-statistic: 183.6 on 2 and 2752 DF,  p-value: < 2.2e-16
sjPlot::tab_model(model2)
  Zhappy
Predictors Estimates CI p
(Intercept) 0.00 -0.04 – 0.04 1.000
Zstfgov 0.14 0.10 – 0.18 <0.001
Ztrstlgl 0.27 0.23 – 0.31 <0.001
Observations 2755
R2 / R2 adjusted 0.118 / 0.117
  • P-value for the model is significant (< 2.2e-16)
  • R adjusted squared is 0,117, that means 11,7% of variation in happy can be explain by this model, which is not very much, but better than in previous model
  • Equation: Zhappy = 0,14Zstfgov + 0,27Ztrstlgl
  • With each unit increase in satisfaction with government, the level of happy increases by 0,14
  • With each unit increase in trust in legal system, the level of happy increases by 0,27

We also add a categorical variable (Internet use, how often) to the model to understand how it will help predict the level of happy

model3 = lm(Zhappy ~ Zstfgov + Ztrstlgl + netusoft, data = gr)
summary(model3)
## 
## Call:
## lm(formula = Zhappy ~ Zstfgov + Ztrstlgl + netusoft, data = gr)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.4219 -0.5196  0.0684  0.6250  3.1718 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -0.32071    0.04192  -7.651 2.73e-14 ***
## Zstfgov      0.15141    0.01863   8.125 6.67e-16 ***
## Ztrstlgl     0.27769    0.01870  14.848  < 2e-16 ***
## netusoft2    0.15063    0.07274   2.071 0.038464 *  
## netusoft3    0.24220    0.07023   3.449 0.000572 ***
## netusoft4    0.44615    0.04743   9.406  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9233 on 2749 degrees of freedom
## Multiple R-squared:  0.149,  Adjusted R-squared:  0.1475 
## F-statistic: 96.27 on 5 and 2749 DF,  p-value: < 2.2e-16
sjPlot::tab_model(model3)
  Zhappy
Predictors Estimates CI p
(Intercept) -0.32 -0.40 – -0.24 <0.001
Zstfgov 0.15 0.11 – 0.19 <0.001
Ztrstlgl 0.28 0.24 – 0.31 <0.001
netusoft [2] 0.15 0.01 – 0.29 0.038
netusoft [3] 0.24 0.10 – 0.38 0.001
netusoft [4] 0.45 0.35 – 0.54 <0.001
Observations 2755
R2 / R2 adjusted 0.149 / 0.147
  • P-value < 2.2e-16, so the model is significant
  • All coefficients here are significant (P-value < 0.05)
  • R adjusted squared is 0,147, that means 14,7% of variation in happy can be explain by this model, which is not very much, but also better than in previous model
  • Equation: Zhappy = -0,32 + 0,15Zstfgov + 0,28Ztrstlgl + 0,15sometimes I use the Internet + 0,24Most days + 0,45*Every day
  • With each unit increase in satisfaction with government, the level of happy increases by 0,15
  • With each unit increase in trust in legal system, the level of happy increases by 0,28
  • If the respondent sometimes uses the Internet, then the level of happy increases by 0,15
  • If the respondent uses Internt most days, then the level of happy increases by 0,24
  • If the respondent uses Internet every day, then the level of happy increases by 0,45

4.5 Comparing

anova(model1,model2)
## Analysis of Variance Table
## 
## Model 1: Zhappy ~ Zstfgov
## Model 2: Zhappy ~ Zstfgov + Ztrstlgl
##   Res.Df    RSS Df Sum of Sq      F    Pr(>F)    
## 1   2753 2609.8                                  
## 2   2752 2429.7  1    180.04 203.92 < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

It is necessary to look at the p-value, for models it is <0.05, after which we consider the RSS value and the model with a lower value is better, that is, the second model is better than the first

anova(model2, model3)
## Analysis of Variance Table
## 
## Model 1: Zhappy ~ Zstfgov + Ztrstlgl
## Model 2: Zhappy ~ Zstfgov + Ztrstlgl + netusoft
##   Res.Df    RSS Df Sum of Sq      F    Pr(>F)    
## 1   2752 2429.7                                  
## 2   2749 2343.6  3      86.1 33.664 < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The third model is better than the second one

4.6 Interaction model:

model4 = lm(Zhappy ~ Zstfgov + Ztrstlgl + netusoft *Ztrstlgl + netusoft , data = gr)
summary(model4)
## 
## Call:
## lm(formula = Zhappy ~ Zstfgov + Ztrstlgl + netusoft * Ztrstlgl + 
##     netusoft, data = gr)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.4248 -0.5308  0.0500  0.6139  3.0981 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        -0.31277    0.04273  -7.320 3.24e-13 ***
## Zstfgov             0.14862    0.01863   7.976 2.19e-15 ***
## Ztrstlgl            0.24291    0.04382   5.543 3.26e-08 ***
## netusoft2           0.17956    0.07380   2.433 0.015043 *  
## netusoft3           0.23665    0.07064   3.350 0.000819 ***
## netusoft4           0.43750    0.04810   9.095  < 2e-16 ***
## Ztrstlgl:netusoft2  0.21003    0.07162   2.932 0.003390 ** 
## Ztrstlgl:netusoft3  0.08643    0.07099   1.218 0.223511    
## Ztrstlgl:netusoft4  0.01051    0.04885   0.215 0.829618    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9218 on 2746 degrees of freedom
## Multiple R-squared:  0.1528, Adjusted R-squared:  0.1503 
## F-statistic: 61.89 on 8 and 2746 DF,  p-value: < 2.2e-16
sjPlot::tab_model(model4)
  Zhappy
Predictors Estimates CI p
(Intercept) -0.31 -0.40 – -0.23 <0.001
Zstfgov 0.15 0.11 – 0.19 <0.001
Ztrstlgl 0.24 0.16 – 0.33 <0.001
netusoft [2] 0.18 0.03 – 0.32 0.015
netusoft [3] 0.24 0.10 – 0.38 0.001
netusoft [4] 0.44 0.34 – 0.53 <0.001
Ztrstlgl × netusoft [2] 0.21 0.07 – 0.35 0.003
Ztrstlgl × netusoft [3] 0.09 -0.05 – 0.23 0.224
Ztrstlgl × netusoft [4] 0.01 -0.09 – 0.11 0.830
Observations 2755
R2 / R2 adjusted 0.153 / 0.150
  • P-value < 2.2e-16, so the model is significant
  • All coefficients here are significant (P-value < 0.05) except interaction between trust in legal system and using Internet most days also trust in legal system and using Internet every day
  • R adjusted squared is 0,150, that means 15% of variation in happy can be explain by this model, which is not very much, but also better than in previous model withot interaction
  • With each unit increase in satisfaction with government, the level of happy increases by 0,15
  • With each unit increase in trust in legal system, the level of happy increases by 0,24
  • If the respondent sometimes uses the Internet, then the level of happy increases by 0,18
  • If the respondent uses Internt most days, then the level of happy increases by 0,24
  • If the respondent uses Internet every day, then the level of happy increases by 0,44
  • The interaction between trust to legal systen and using Internet sometimes is 0,21, that increase the trust in legal system in one point, than 0,24 + 0,21*sometimes I use the Internet
  • Equation: Zhappy = -0,31 + 0,15Zstfgov + 0,24Ztrstlgl + 0,18sometimes I use the Internet + 0,24Most days + 0,44Every day + 0,21Ztrstlglsometimes I use the Internet + 0,09 ZtrstlglMost days + 0.01Ztrstlgl*Every day
anova(model3, model4)
## Analysis of Variance Table
## 
## Model 1: Zhappy ~ Zstfgov + Ztrstlgl + netusoft
## Model 2: Zhappy ~ Zstfgov + Ztrstlgl + netusoft * Ztrstlgl + netusoft
##   Res.Df    RSS Df Sum of Sq      F   Pr(>F)   
## 1   2749 2343.6                                
## 2   2746 2333.3  3    10.353 4.0615 0.006856 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

It is necessary to look at the p-value, for models it is <0.05, after which we consider the RSS value and the model with a lower value is better, that is, the second model is better than the first, so model 4 is better

4.7 Interaction Plot

plot_model(model4, type = "int", terms = "netusoft", mdrt.values = "minmax")

marg1 <- ggeffects::ggpredict(model4,terms = c("Ztrstlgl",'netusoft'))
plot(marg1)

Based on this graph, we can conclude that if a respondent is related to sometimes group of using Internet and he or she has high level of trust in legal system then coefficient of happy is higher than in other categories. However if a respondent is related to sometimes group of using Internet and he or she has low level of trust in legal system then coefficient of happy is lower than in other categories.

tab_model(model3, model4)
  Zhappy Zhappy
Predictors Estimates CI p Estimates CI p
(Intercept) -0.32 -0.40 – -0.24 <0.001 -0.31 -0.40 – -0.23 <0.001
Zstfgov 0.15 0.11 – 0.19 <0.001 0.15 0.11 – 0.19 <0.001
Ztrstlgl 0.28 0.24 – 0.31 <0.001 0.24 0.16 – 0.33 <0.001
netusoft [2] 0.15 0.01 – 0.29 0.038 0.18 0.03 – 0.32 0.015
netusoft [3] 0.24 0.10 – 0.38 0.001 0.24 0.10 – 0.38 0.001
netusoft [4] 0.45 0.35 – 0.54 <0.001 0.44 0.34 – 0.53 <0.001
Ztrstlgl × netusoft [2] 0.21 0.07 – 0.35 0.003
Ztrstlgl × netusoft [3] 0.09 -0.05 – 0.23 0.224
Ztrstlgl × netusoft [4] 0.01 -0.09 – 0.11 0.830
Observations 2755 2755
R2 / R2 adjusted 0.149 / 0.147 0.153 / 0.150

4.8 Linear regression assumptions

par(mfrow = c(2, 2))
plot(model4)

Linearity assumption: at the Residuals vs.Fitted plot a horizontal line, without distinct patterns can be seen, so our data is linear At the Q-Q plot points follow the straight dashed line, which is a indicator of normally distributed residuals. Scale-Location plot show us a red horizontal line with equally. This corresponds with the homoscedasticity of our data. On Residuals vs Leverage plot we can spot only a couple of outliers

4.9 Conclusion:

Based on our results, we can conclude that our hypothesis that the relationship between the (написать какие переменные) and (название зависимой переменной) has been confirmed. All three variables that were used in the analysis have a significant impact on a person’s happiness (coefficients are statistically significant) We can also see that the interaction of trust in legal system and frequency of using internet is significant Which again indicates that if a person trusts the government and at the same time uses the Internet uses the Internet every day, then his level of happiness will be higher than that of other categories. Also, if a person does not trust the government and uses the Internet every day, then his level of happiness will be lower than that of all other categories with the same trust in the government.

4.10 Recources

1)Mazzurco, Sari, E-Citizenship: Trust in Government, Political Efficacy, and Political Participation in the Internet Era (July 2012). Electronic Media & Politics, 1 (8): 119-135, Available at SSRN: https://ssrn.com/abstract=3342574

2)Kitazawa, M., Yoshimura, M., Hitokoto, H. et al. Survey of the effects of internet usage on the happiness of Japanese university students. Health Qual Life Outcomes 17, 151 (2019). https://doi.org/10.1186/s12955-019-1227-5