library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(ggplot2)
theoph <- read.csv("theoph.csv")
theoph$Subject = factor(theoph$Subject)
theoph %>% select(Subject, Time, conc) %>%
head()
## Subject Time conc
## 1 1 0.00 0.74
## 2 1 0.25 2.84
## 3 1 0.57 6.57
## 4 1 1.12 10.50
## 5 1 2.02 9.66
## 6 1 3.82 8.58
theoph %>% select(Subject, Wt, Dose) %>%
distinct(Subject, Wt, Dose)
## Subject Wt Dose
## 1 1 79.6 4.02
## 2 2 72.4 4.40
## 3 3 70.5 4.53
## 4 4 72.7 4.40
## 5 5 54.6 5.86
## 6 6 80.0 4.00
## 7 7 64.6 4.95
## 8 8 70.5 4.53
## 9 9 86.4 3.10
## 10 10 58.2 5.50
## 11 11 65.0 4.92
## 12 12 60.5 5.30
theoph %>% filter(Subject == 1)
## Subject Wt Dose Time conc
## 1 1 79.6 4.02 0.00 0.74
## 2 1 79.6 4.02 0.25 2.84
## 3 1 79.6 4.02 0.57 6.57
## 4 1 79.6 4.02 1.12 10.50
## 5 1 79.6 4.02 2.02 9.66
## 6 1 79.6 4.02 3.82 8.58
## 7 1 79.6 4.02 5.10 8.36
## 8 1 79.6 4.02 7.03 7.47
## 9 1 79.6 4.02 9.05 6.89
## 10 1 79.6 4.02 12.12 5.94
## 11 1 79.6 4.02 24.37 3.28
theoph %>% filter(Subject == 1:4)
## Subject Wt Dose Time conc
## 1 1 79.6 4.02 0.00 0.74
## 2 1 79.6 4.02 2.02 9.66
## 3 1 79.6 4.02 9.05 6.89
## 4 2 72.4 4.40 0.52 7.91
## 5 2 72.4 4.40 5.02 6.08
## 6 2 72.4 4.40 24.30 0.90
## 7 3 70.5 4.53 0.00 0.00
## 8 3 70.5 4.53 2.02 7.80
## 9 3 70.5 4.53 9.00 4.90
## 10 4 72.7 4.40 0.60 4.60
## 11 4 72.7 4.40 5.02 6.88
## 12 4 72.7 4.40 24.65 1.15
theoph %>% group_by(Subject) %>%
summarise(aveConc = mean(conc))
## # A tibble: 12 × 2
## Subject aveConc
## <fct> <dbl>
## 1 1 6.44
## 2 2 4.82
## 3 3 5.09
## 4 4 4.94
## 5 5 5.78
## 6 6 3.53
## 7 7 3.91
## 8 8 4.27
## 9 9 4.89
## 10 10 5.93
## 11 11 4.51
## 12 12 5.41
theoph %>% filter(Subject == 1) %>%
ggplot(aes(x=Time, y=conc)) + geom_line() + ggtitle("Subject 1") +
xlab("Time (hours)") + ylab("Concentration") + theme_bw()
theoph %>% select(Subject, Time, conc) %>%
ggplot(aes(x=Time, y=conc, col=Subject)) + geom_line() +
ggtitle("Serum Concentration for all Subjects") +
xlab("Time (hours)") + ylab("Concentration") + theme_bw()
8.Using select() to extract just the Subject, Time and conc variables and pipe this to ggplot to make a line plot with Time on the x-axis, conc on the y-axis and faceted by the subject ID
theoph %>% select(Subject, Time, conc) %>%
ggplot(aes(x=Time, y=conc, col=Subject)) + geom_line() +
ggtitle("Serum Concentration for all Subjects") +
xlab("Time (hours)") + ylab("Concentration") +
theme_bw() + facet_wrap(~ Subject)